51
|
Abstract
The idiopathic generalized epilepsies encompass a class of epileptic seizure types that exhibit a polygenic and heritable etiology. Advances in molecular biology and genetics have implicated defects in certain types of voltage-gated calcium channels and their ancillary subunits as important players in this form of epilepsy. Both T-type and P/Q-type channels appear to mediate important contributions to seizure genesis, modulation of network activity, and genetic seizure susceptibility. Here, we provide a comprehensive overview of the roles of these channels and associated subunits in normal and pathological brain activity within the context of idiopathic generalized epilepsy.
Collapse
Affiliation(s)
- Houman Khosravani
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
52
|
Murakami M, Ohba T, Takahashi Y, Watanabe H, Miyoshi I, Nakayama S, Ono K, Ito H, Iijima T. Identification of a cardiac isoform of the murine calcium channel alpha1C (Cav1.2-a) subunit and its preferential binding with the beta2 subunit. J Mol Cell Cardiol 2006; 41:115-25. [PMID: 16787652 DOI: 10.1016/j.yjmcc.2006.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 11/29/2022]
Abstract
We describe a cardiac muscle isoform of the voltage-dependent calcium channel alpha1 subunit, which corresponds to the rabbit ortholog of alpha1C-a (Cav1.2a). We also cloned smooth muscle isoforms alpha1C-b (Cav1.2b) and alpha1C-d (Cav1.2d). Differences among these three isoforms lie within the N-terminal region (exon 1A or 1B), the sixth transmembrane segment of domain I (exon 8A or 8B), and the use of exon 10, which forms the intracellular loop between transmembrane domains I and II. Two-hybrid analysis revealed interactions among the three alpha1 isoforms and beta subunits. In vitro overlay and immunoprecipitation analyses revealed preferential binding between alpha1C-a and beta2, which is also expressed at a high level in the heart.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Finlin BS, Correll RN, Pang C, Crump SM, Satin J, Andres DA. Analysis of the complex between Ca2+ channel beta-subunit and the Rem GTPase. J Biol Chem 2006; 281:23557-66. [PMID: 16790445 DOI: 10.1074/jbc.m604867200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | |
Collapse
|
54
|
Sandoval A, Oviedo N, Tadmouri A, Avila T, De Waard M, Felix R. Two PEST-like motifs regulate Ca2+/calpain-mediated cleavage of the CaVbeta3 subunit and provide important determinants for neuronal Ca2+ channel activity. Eur J Neurosci 2006; 23:2311-20. [PMID: 16706839 PMCID: PMC2700823 DOI: 10.1111/j.1460-9568.2006.04749.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An increase in intracellular Ca2+ due to voltage-gated Ca2+ (CaV) channel opening represents an important trigger for a number of second-messenger-mediated effects ranging from neurotransmitter release to gene activation. Ca2+ entry occurs through the principal pore-forming protein but several ancillary subunits are known to more precisely tune ion influx. Among them, the CaVbeta subunits are perhaps the most important, given that they largely influence the biophysical and pharmacological properties of the channel. Notably, several functional features may be associated with specific structural regions of the CaVbeta subunits emphasizing the relevance of intramolecular domains in the physiology of these proteins. In the current report, we show that CaVbeta3 contains two PEST motifs and undergoes Ca2+ -dependent degradation which can be prevented by the specific calpain inhibitor calpeptin. Using mutant constructs lacking the PEST motifs, we present evidence that they are necessary for the cleavage of CaVbeta3 by calpain. Furthermore, the deletion of the PEST sequences did not affect the binding of CaVbeta3 to the ion-conducting CaV2.2 subunit and, when expressed in human embryonic kidney-293 cells, the PEST motif-deleted CaVbeta3 significantly increased whole-cell current density and retarded channel inactivation. Consistent with this observation, calpeptin treatment of human embryonic kidney-293 cells expressing wild-type CaVbeta3 resulted in an increase in current amplitude. Together, these findings suggest that calpain-mediated CaVbeta3 proteolysis may be an essential process for Ca2+ channel functional regulation.
Collapse
Affiliation(s)
- Alejandro Sandoval
- Department of Physiology, Biophysics and Neuroscience
CINVESTAV-IPNCinvestav, Mexico City,MX
- School of Medicine FES Iztacala
University of MexicoMX
| | - Norma Oviedo
- Department of Physiology, Biophysics and Neuroscience
CINVESTAV-IPNCinvestav, Mexico City,MX
- Department of Molecular Biology and Biotechnology
Biomedical Research InstituteUniversity of MexicoMX
| | - Abir Tadmouri
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs
38054 Grenoble,FR
| | - Traudy Avila
- Department of Physiology, Biophysics and Neuroscience
CINVESTAV-IPNCinvestav, Mexico City,MX
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs
38054 Grenoble,FR
| | - Ricardo Felix
- Department of Cell Biology
CINVESTAV-IPNMexico City,MX
| |
Collapse
|
55
|
Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. The L-type calcium channel in the heart: the beat goes on. J Clin Invest 2006; 115:3306-17. [PMID: 16322774 PMCID: PMC1297268 DOI: 10.1172/jci27167] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
56
|
Takahashi SX, Miriyala J, Tay LH, Yue DT, Colecraft HM. A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. ACTA ACUST UNITED AC 2005; 126:365-77. [PMID: 16186563 PMCID: PMC2266626 DOI: 10.1085/jgp.200509354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.
Collapse
Affiliation(s)
- Shoji X Takahashi
- Calcium Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
57
|
García MC, Carrillo E, Galindo JM, Hernández A, Copello JA, Fill M, Sánchez JA. Short-term regulation of excitation-contraction coupling by the beta1a subunit in adult mouse skeletal muscle. Biophys J 2005; 89:3976-84. [PMID: 16183888 PMCID: PMC1366963 DOI: 10.1529/biophysj.105.067116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The beta1a subunit of the skeletal muscle voltage-gated Ca2+ channel plays a fundamental role in the targeting of the channel to the tubular system as well as in channel function. To determine whether this cytosolic auxiliary subunit is also a regulatory protein of Ca2+ release from the sarcoplasmic reticulum in vivo, we pressure-injected the beta1a subunit into intact adult mouse muscle fibers and recorded, with Fluo-3 AM, the intracellular Ca2+ signal induced by the action potential. We found that the beta1a subunit significantly increased, within minutes, the amplitude of Ca2+ release without major changes in its time course. beta1a subunits with the carboxy-terminus region deleted did not show an effect on Ca2+ release. The possibility that potentiation of Ca2+ release is due to a direct interaction between the beta1a subunit and the ryanodine receptor was ruled out by bilayer experiments of RyR1 single-channel currents and also by Ca2+ flux experiments. Our data suggest that the beta1a subunit is capable of regulating E-C coupling in the short term and that the integrity of the carboxy-terminus region is essential for its modulatory effect.
Collapse
Affiliation(s)
- María C García
- Departmento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N., Mexico, D.F. 07360, Mexico
| | | | | | | | | | | | | |
Collapse
|
58
|
Dalton S, Takahashi SX, Miriyala J, Colecraft HM. A single CaVbeta can reconstitute both trafficking and macroscopic conductance of voltage-dependent calcium channels. J Physiol 2005; 567:757-69. [PMID: 16020456 PMCID: PMC1474221 DOI: 10.1113/jphysiol.2005.093195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-dependent calcium-channel beta subunits (Ca(V)beta) strongly modulate pore-forming alpha(1) subunits by trafficking channel complexes to the plasma membrane and enhancing channel open probability (P(o)). Despite their central role, it is unclear whether binding of a single Ca(V)beta, or multiple Ca(V)betas, to an alpha(1) subunit governs the two distinct functions. Conventional experiments utilizing coexpression of alpha(1) and Ca(V)beta subunits have been unable to resolve the ambiguity due to difficulties in establishing their stoichiometry in functional channels. Here, we unambiguously establish a 1: 1 stoichiometry by covalently linking Ca(V)beta(2b) to the carboxyl terminus of alpha(1C) (Ca(V)1.2), creating alpha(1C).beta(2b). Recombinant L-type channels reconstituted in HEK 293 cells with alpha(1C).beta(2b) supported whole-cell currents to the same extent as channels reconstituted via coexpression of the individual subunits. Analysis of gating charge showed alpha(1C).beta(2b) fully restored channel trafficking to the plasma membrane. Co-transfecting Ca(V)beta(2a) with alpha(1C).beta(2b) had little further impact on function. To rule out the possibility that fused Ca(V)beta(2b) was interacting in trans with neighbouring alpha(1) molecules, alpha(1C).beta(2b) was cotransfected with alpha(1B) (Ca(V)2.2), and pharmacological block with nimodipine showed an absence of alpha(1B) trafficking. These results establish that association of a single Ca(V)beta with a pore-forming alpha(1) subunit captures the functional essence of HVA calcium channels, and introduce alpha(1)-Ca(V)beta fusion proteins as a powerful new tool to probe structure-function mechanisms.
Collapse
Affiliation(s)
- Stanislava Dalton
- Calcium Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
59
|
French RJ, Zamponi GW. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. IEEE Trans Nanobioscience 2005; 4:58-69. [PMID: 15816172 DOI: 10.1109/tnb.2004.842500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ion channels are membrane proteins which underlie rapid electrical signals among neurons and the spread of excitation in skeletal muscle and heart. We outline some recent advances in the study of voltage-sensitive sodium and calcium channels. Investigations are providing insight into the changes in molecular conformation associated with open-closed gating of the channels, the mechanisms by which they allow only specific ion species to pass through and carry an electric current, and the pathological consequences of small perturbations in channel structure which result from genetic mutations. Determination of three-dimensional structures, coupled with molecular manipulations by site-directed mutagenesis, and parallel electrophysiological analyses of currents through the ion channels, are providing an understanding of the roles and function of these channels at an unprecedented level of molecular detail. Crucial to these advances are studies of bacterial homologues of ion channels from man and other eukaryotes, and the use of naturally occurring peptide toxins which target different ion channel types with exquisite specificity.
Collapse
Affiliation(s)
- Robert J French
- Department of Physiology and Biophysics, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
60
|
Funke L, Dakoji S, Bredt DS. MEMBRANE-ASSOCIATED GUANYLATE KINASES REGULATE ADHESION AND PLASTICITY AT CELL JUNCTIONS. Annu Rev Biochem 2005; 74:219-45. [PMID: 15952887 DOI: 10.1146/annurev.biochem.74.082803.133339] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue development, differentiation, and physiology require specialized cellular adhesion and signal transduction at sites of cell-cell contact. Scaffolding proteins that tether adhesion molecules, receptors, and intracellular signaling enzymes organize macromolecular protein complexes at cellular junctions to integrate these functions. One family of such scaffolding proteins is the large group of membrane-associated guanylate kinases (MAGUKs). Genetic studies have highlighted critical roles for MAGUK proteins in the development and physiology of numerous tissues from a variety of metazoan organisms. Mutation of Drosophila discs large (dlg) disrupts epithelial septate junctions and causes overgrowth of imaginal discs. Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain. These diverse roles are explained by recent biochemical and structural analyses of MAGUKs, which demonstrate their capacity to assemble well--efined--yet adaptable--protein complexes at cellular junctions.
Collapse
Affiliation(s)
- Lars Funke
- Department of Physiology, University of California at San Francisco, California 94143, USA.
| | | | | |
Collapse
|
61
|
Serysheva II. Structural insights into excitation-contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2005; 69:1226-32. [PMID: 15627376 DOI: 10.1007/s10541-005-0068-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In muscle, excitation-contraction coupling is defined as the process linking depolarization of the surface membrane with Ca2+ release from cytoplasmic stores, which activates contraction of striated muscle. This process is primarily controlled by interplay between two Ca2+ channels--the voltage-gated L-type Ca2+ channel (dihydropyridine receptor, DHPR) localized in the t-tubule membrane and the Ca2+-release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum membrane. The structures of both channels have been extensively studied by several groups using electron cryomicroscopy and single particle reconstruction techniques. The structures of RyR, determined at resolutions of 22-30 A, reveal a characteristic mushroom shape with a bulky cytoplasmic region and the membrane-spanning stem. While the cytoplasmic region exhibits a complex structure comprising a multitude of distinctive domains with numerous intervening cavities, at this resolution no definitive statement can be made about the location of the actual pore within the transmembrane region. Conformational changes associated with functional transitions of the Ca2+ release channel from closed to open states have been characterized. Further experiments determined localization of binding sites for various channel ligands. The structural studies of the DHPR are less developed. Although four 3D maps of the DHPR were reported recently at 24-30 A resolution from studies of frozen-hydrated and negatively stained receptors, there are some discrepancies between reported structures with respect to the overall appearance and dimensions of the channel structure. Future structural studies at higher resolution are needed to refine the structures of both channels and to substantiate a proposed molecular model for their interaction.
Collapse
Affiliation(s)
- I I Serysheva
- Department of Molecular Physiology and Biophysics, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
62
|
Maltez JM, Nunziato DA, Kim J, Pitt GS. Essential Cavβ modulatory properties are AID-independent. Nat Struct Mol Biol 2005; 12:372-7. [PMID: 15750602 DOI: 10.1038/nsmb909] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 02/03/2005] [Indexed: 11/09/2022]
Abstract
Voltage-gated Ca(2+) channel beta (Ca(v)beta) subunits have a highly conserved core consisting of interacting Src homology 3 and guanylate kinase domains, and are postulated to exert their effects through AID, the major interaction site in the pore-forming alpha(1) subunit. This stereotypical interaction does not explain how individual Ca(v)beta subunits modulate alpha(1) subunits differentially. Here we show that AID is neither necessary nor sufficient for critical Ca(v)beta regulatory properties. Complete modulation depends on additional contacts that are exclusive of AID and not revealed in recent crystal structures. These data offer a new context for understanding Ca(v)beta modulation, suggesting that the AID interaction orients the Ca(v)beta core so as to permit additional isoform-specific Ca(v)alpha(1)-Ca(v)beta interactions that underlie the particular regulation seen with each Ca(v)alpha(1)-Ca(v)beta pair, rather than as the main site of regulation.
Collapse
Affiliation(s)
- Janet M Maltez
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
63
|
Rousset M, Charnet P, Cens T. [Structure of the calcium channel beta subunit: the place of the beta-interaction domain]. Med Sci (Paris) 2005; 21:279-83. [PMID: 15745702 DOI: 10.1051/medsci/2005213279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Voltage-gated calcium channels are key players in a number of fundamental physiological functions including contraction, secretion, transmitter release or gene activation. They allow a flux of calcium into the cell that constitutes a switch-on signal for most of these functions. The structures responsible for the shaping of these fluxes by the membrane voltage belong to the channel itself, but a number of associated proteins are known to more precisely tune this calcium entry and adapt it to the cellular demand. The calcium channel regulatory beta subunit is undoubtedly the most important one, being influent on the expression, the kinetics, the voltage-dependence of channel opening and closing and on the pharmacology of the channel. Heterologous expression, combined to mutagenesis and electrophysiological and biochemical experiments have revealed the roles of short sequences of the beta subunit, including the BID (beta-interaction domain), in the physical and functional interactions with the channel pore. The resolved crystal structure of the beta subunit now sheds new light on these sequences and their interactions with the rest of the protein. The presence of a type 3 src-homology (SH3) domain and a guanylate kinase (GK) domain confirms that the subunit belongs to the MAGUK protein family. Consistently, the polyproline binding site and the kinase function of the SH3 and the GK domains, respectively, are non functional, and the BID appears to be buried in the structure, preserving the SH3-GK interaction but not directly available for interactions with the channel pore subunit. Anchoring of the beta subunit to the channel occurs via a hydrophobic grove in the GK domain, leaving a large surface of the subunit open to other protein-protein interactions. To what extent the intramolecular SH3-GK interaction is necessary for the stabilisation of this grove in a functional unit remains to be understood. The beta subunit may thus play a key role in scaffolding multiple proteins around the channel and organizing diverse calcium-dependent signalling pathways directly linked to voltage-gated calcium entry. These findings will undoubtedly vitalize the search for new beta-specific partners and functions.
Collapse
Affiliation(s)
- Matthieu Rousset
- Equipe de Neurobiologie moléculaire, Centre de Recherche de Biochimie macromoléculaire, CNRS FRE 2593, 1919, route de Mende, 34293 Montpellier, France
| | | | | |
Collapse
|
64
|
Richards MW, Butcher AJ, Dolphin AC. Ca2+ channel beta-subunits: structural insights AID our understanding. Trends Pharmacol Sci 2005; 25:626-32. [PMID: 15530640 DOI: 10.1016/j.tips.2004.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has taken 17 years from the first identification of a voltage-gated Ca2+ channel (CaV) beta-subunit as a band on a gel following purification of skeletal muscle dihydropyridine (DHP) receptors in 1987 to the publication of key information on the structures of Ca2+ channel beta-subunits. Three recent X-ray crystallographic studies have now solved the structures of the core domains of three Ca2+ channel beta-subunits. In this article, the properties of these cytoplasmic auxiliary subunits will first be summarized. Then the CaVbeta structures and the information they provide regarding how these proteins interact with the CaValpha1 subunit will be discussed and the possible implications of these new data for G-protein modulation of Ca2+ channels will be examined.
Collapse
Affiliation(s)
- Mark W Richards
- Laboratory of Cellular and Molecular Neuroscience, Department of Pharmacology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
65
|
Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L. The C-terminal Residues in the Alpha-interacting Domain (AID) Helix Anchor CaVβ Subunit Interaction and Modulation of CaV2.3 Channels. J Biol Chem 2005; 280:494-505. [PMID: 15507442 DOI: 10.1074/jbc.m410859200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-interacting domain (AID) in the I-II linker of high voltage-activated (HVA) Ca(2+) channel alpha1 subunits binds with high affinity to Ca(V)beta auxiliary subunits. The recently solved crystal structures of the AID-Ca(V)beta complex in Ca(V)1.1/1.2 have revealed that this interaction occurs through a set of six mostly invariant residues Glu/Asp(6), Leu(7), Gly(9), Tyr(10), Trp(13), and Ile(14) (where the superscript refers to the position of the residue starting with the QQ signature doublet) distributed among three alpha-helical turns in the proximal section of the I-II linker. We show herein that alanine mutations of N-terminal AID residues Gln(1), Gln(2), Ile(3), Glu(4), Glu(6), Leu(7), and Gly(9) in Ca(V)2.3 did not abolish [(35)S]Ca(V)beta 1b or [(35)S]Ca(V)beta 3 subunit overlay binding to fusion proteins nor did they prevent the typical modulation of whole cell currents by Ca(V)beta 3. Mutations of the invariant Tyr(10) with either hydrophobic (Ala), aromatic (Phe), or positively charged (Arg, Lys) residues yielded Ca(V)beta 3-responsive whole cell currents, whereas mutations with negatively charged residues (Asp, Glu) disrupted Ca(V)beta 3 binding and modulation. In contrast, modulation and binding by Ca(V)beta 3 was significantly weakened in I14A (neutral and hydrophobic) and I14S (neutral and polar) mutants and eradicated in negatively charged I14D and I14E or positively charged I14R and I14K mutants. Ca(V)beta 3-induced modulation was only preserved with the conserved I14L mutation. Molecular replacement analyses carried out using a three-dimensional homology model of the AID helix from Ca(V)2.3 suggests that a high degree of hydrophobicity and a restrained binding pocket could account for the strict structural specificity of the interaction site found at position Ile(14). Altogether these results indicate that the C-terminal residues Trp(13) (1) and Ile(14) anchor Ca(V)beta subunit functional modulation of HVA Ca(2+) channels.
Collapse
Affiliation(s)
- Laurent Berrou
- Département de Physiologie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
66
|
Serysheva II. Structural insights into excitation—contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
67
|
Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J. Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature 2004; 429:675-80. [PMID: 15170217 DOI: 10.1038/nature02641] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 05/10/2004] [Indexed: 11/08/2022]
Abstract
High-voltage-activated Ca2+ channels are essential for diverse biological processes. They are composed of four or five subunits, including alpha1, alpha2-delta, beta and gamma (ref. 1). Their expression and function are critically dependent on the beta-subunit, which transports alpha1 to the surface membrane and regulates diverse channel properties. It is believed that the beta-subunit interacts with alpha1 primarily through the beta-interaction domain (BID), which binds directly to the alpha-interaction domain (AID) of alpha1; however, the molecular mechanism of the alpha1-beta interaction is largely unclear. Here we report the crystal structures of the conserved core region of beta3, alone and in complex with AID, and of beta4 alone. The structures show that the beta-subunit core contains two interacting domains: a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain. The AID binds to a hydrophobic groove in the GK domain through extensive interactions, conferring extremely high affinity between alpha1 and beta-subunits. The BID is essential both for the structural integrity of and for bridging the SH3 and GK domains, but it does not participate directly in binding alpha1. The presence of multiple protein-interacting modules in the beta-subunit opens a new dimension to its function as a multi-functional protein.
Collapse
Affiliation(s)
- Yu-Hang Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
McGee AW, Nunziato DA, Maltez JM, Prehoda KE, Pitt GS, Bredt DS. Calcium channel function regulated by the SH3-GK module in beta subunits. Neuron 2004; 42:89-99. [PMID: 15066267 DOI: 10.1016/s0896-6273(04)00149-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/05/2004] [Accepted: 02/20/2004] [Indexed: 11/16/2022]
Abstract
beta subunits of voltage-gated calcium channels (VGCCs) regulate channel trafficking and function, thereby shaping the intensity and duration of intracellular changes in calcium. beta subunits share limited sequence homology with the Src homology 3-guanylate kinase (SH3-GK) module of membrane-associated guanylate kinases (MAGUKs). Here, we show biochemical similarities between beta subunits and MAGUKs, revealing important aspects of beta subunit structure and function. Similar to MAGUKs, an SH3-GK interaction within beta subunits can occur both intramolecularly and intermolecularly. Mutations that disrupt the SH3-GK interaction in beta subunits alter channel inactivation and can inhibit binding between the alpha(1) and beta subunits. Coexpression of beta subunits with complementary mutations in their SH3 and GK domains rescues these deficits through intermolecular beta subunit assembly. In MAGUKs, the SH3-GK module controls protein scaffolding. In beta subunits, this module regulates the inactivation of VGCCs and provides an additional mechanism for tuning calcium responsiveness.
Collapse
Affiliation(s)
- Aaron W McGee
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
69
|
Van Petegem F, Clark KA, Chatelain FC, Minor DL. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 2004; 429:671-5. [PMID: 15141227 PMCID: PMC3076333 DOI: 10.1038/nature02588] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 04/23/2004] [Indexed: 11/08/2022]
Abstract
Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.
Collapse
Affiliation(s)
- Filip Van Petegem
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, 513 Parnassus Avenue, Box 0130, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
70
|
Opatowsky Y, Chen CC, Campbell KP, Hirsch JA. Structural Analysis of the Voltage-Dependent Calcium Channel β Subunit Functional Core and Its Complex with the α1 Interaction Domain. Neuron 2004; 42:387-99. [PMID: 15134636 DOI: 10.1016/s0896-6273(04)00250-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 03/23/2004] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Voltage-dependent calcium channels (VDCC) are multiprotein assemblies that regulate the entry of extracellular calcium into electrically excitable cells and serve as signal transduction centers. The alpha1 subunit forms the membrane pore while the intracellular beta subunit is responsible for trafficking of the channel to the plasma membrane and modulation of its electrophysiological properties. Crystallographic analyses of a beta subunit functional core alone and in complex with a alpha1 interaction domain (AID) peptide, the primary binding site of beta to the alpha1 subunit, reveal that beta represents a novel member of the MAGUK protein family. The findings illustrate how the guanylate kinase fold has been fashioned into a protein-protein interaction module by alteration of one of its substrate sites. Combined results indicate that the AID peptide undergoes a helical transition in binding to beta. We outline the mechanistic implications for understanding the beta subunit's broad regulatory role of the VDCC, particularly via the AID.
Collapse
Affiliation(s)
- Yarden Opatowsky
- Department of Biochemistry, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
71
|
Affiliation(s)
- David T Yue
- The Johns Hopkins University School of Medicine, Departments of Biomedical Engineering and Neuroscience, Calcium Signals Laboratory, Ross 713, 720 Rutland Avenue, Baltimore, MD 21205 USA
| |
Collapse
|
72
|
Takahashi SX, Miriyala J, Colecraft HM. Membrane-associated guanylate kinase-like properties of beta-subunits required for modulation of voltage-dependent Ca2+ channels. Proc Natl Acad Sci U S A 2004; 101:7193-8. [PMID: 15100405 PMCID: PMC406488 DOI: 10.1073/pnas.0306665101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-voltage-activated Ca2+ channels regulate diverse functions ranging from muscle contraction to synaptic transmission. Association between auxiliary beta- and distinct pore-forming alpha1-subunits is obligatory for forming functional high-voltage-activated Ca2+ channels, yet the structural determinants underlying this interaction remain poorly understood. Recently, homology modeling of Ca(2+)-channel beta1b-subunit identified src homology 3 (SH3) and guanylate kinase (GK) motifs in a tandem arrangement reminiscent of the membrane-associated guanylate kinase (MAGUK) class of scaffolding proteins. However, direct evidence for MAGUK-like properties and their functional implications in beta-subunits is lacking. Here, we show a functional requirement for both SH3 and GK domains in beta2a. Point mutations in either the putative beta2a SH3 or GK domains severely blunted modulation of recombinant L-type channels, showing the importance of both motifs for a functional alpha1-beta interaction. Coexpression of these functionally deficient beta2a-SH3 and GK mutants rescued WT currents, demonstrating trans complementation similar to that observed in MAGUKs. Truncated "hemi-beta2a" subunits, containing either the SH3 or GK domain, were ineffective on their own, but reconstituted WT currents when coexpressed. Moreover, the SH3 and GK domains were found to interact in vitro. These findings reveal MAGUK-like properties in beta-subunits that are critical for alpha1-subunit modulation, revise current models of alpha1-beta association, and predict new physiological dimensions of beta-subunit function.
Collapse
Affiliation(s)
- Shoji X Takahashi
- Calcium Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 726 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|