51
|
Shin HM, Tilahun ME, Cho OH, Chandiran K, Kuksin CA, Keerthivasan S, Fauq AH, Golde TE, Miele L, Thome M, Osborne BA, Minter LM. NOTCH1 Can Initiate NF-κB Activation via Cytosolic Interactions with Components of the T Cell Signalosome. Front Immunol 2014; 5:249. [PMID: 24904593 PMCID: PMC4033603 DOI: 10.3389/fimmu.2014.00249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/12/2014] [Indexed: 11/13/2022] Open
Abstract
T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB–DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Program in Molecular and Cellular Biology, University of Massachusetts/Amherst , Amherst, MA , USA
| | - Mulualem E Tilahun
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst , Amherst, MA , USA
| | - Ok Hyun Cho
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst , Amherst, MA , USA
| | - Karthik Chandiran
- Program in Molecular and Cellular Biology, University of Massachusetts/Amherst , Amherst, MA , USA
| | - Christina Arieta Kuksin
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst , Amherst, MA , USA
| | - Shilpa Keerthivasan
- Program in Molecular Biology, Loyola University Medical Center , Maywood, IL , USA
| | - Abdul H Fauq
- Chemical Synthesis Core Facility, Mayo Clinic , Jacksonville, FL , USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA ; Department of Neuroscience, College of Medicine, University of Florida , Gainesville, FL , USA
| | - Lucio Miele
- Department of Medicine and Pharmacology, University of Mississippi Medical Center, University of Mississippi Cancer Institute , Jackson, MS , USA
| | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne , Epalinges , Switzerland
| | - Barbara A Osborne
- Program in Molecular and Cellular Biology, University of Massachusetts/Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst , Amherst, MA , USA
| | - Lisa M Minter
- Program in Molecular and Cellular Biology, University of Massachusetts/Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst , Amherst, MA , USA
| |
Collapse
|
52
|
Stridh P, Ruhrmann S, Bergman P, Thessén Hedreul M, Flytzani S, Beyeen AD, Gillett A, Krivosija N, Öckinger J, Ferguson-Smith AC, Jagodic M. Parent-of-origin effects implicate epigenetic regulation of experimental autoimmune encephalomyelitis and identify imprinted Dlk1 as a novel risk gene. PLoS Genet 2014; 10:e1004265. [PMID: 24676147 PMCID: PMC3967983 DOI: 10.1371/journal.pgen.1004265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/02/2014] [Indexed: 12/17/2022] Open
Abstract
Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE), using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37–54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting–like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease. Even with recent progress in determining the genetic basis of complex diseases, the issue of ‘missing heritability’ remains and its potential sources are frequently speculated about but rarely explained. Parent-of-origin effects might contribute to the ‘missing heritability’ and involve genetic and epigenetic mechanisms of inheritance. Our study is the first that establishes (i) the magnitude and (ii) the type of parent-of-origin effects in the pathogenesis of a multiple sclerosis-like disease, experimental autoimmune encephalomyelitis (EAE) in rat, using a strategy designed to identify genes that confer risk only when inherited from either mother or father. A striking 37-54% of all risk loci depended on parental origin. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors for EAE, such as the imprinted Dlk1gene. Disease-predisposing alleles conferred lower Dlk1 expression in rats and transgenic Dlk1 mice demonstrated that lower Dlk1 drives more severe EAE and modulates adaptive immune responses. Because parental-origin effects are epigenetically regulated, our data implicate a contributory role for epigenetic mechanisms in complex diseases. Considering parent-of-origin effects in complex disease has enabled more powerful and precise identification of novel risk factors.
Collapse
Affiliation(s)
- Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petra Bergman
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mélanie Thessén Hedreul
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sevasti Flytzani
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Amennai Daniel Beyeen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alan Gillett
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Krivosija
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Öckinger
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
53
|
Dongre A, Surampudi L, Lawlor RG, Fauq AH, Miele L, Golde TE, Minter LM, Osborne BA. Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4(+) T Cells. Front Immunol 2014; 5:54. [PMID: 24611064 PMCID: PMC3921607 DOI: 10.3389/fimmu.2014.00054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/30/2014] [Indexed: 12/14/2022] Open
Abstract
Cleavage of the Notch receptor via a γ-secretase, results in the release of the active intra-cellular domain of Notch that migrates to the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target genes. This canonical Notch signaling pathway has been documented to influence T cell development and function. However, the mechanistic details underlying this process remain obscure. In addition to RBP-Jκ, the intra-cellular domain of Notch also interacts with other proteins in the cytoplasm and nucleus, giving rise to the possibility of an alternate, RBP-Jκ independent Notch pathway. However, the contribution of such RBP-Jκ independent, "non-canonical" Notch signaling in regulating peripheral T cell responses is unknown. In this report, we specifically demonstrate the requirement of Notch1 for regulating signal strength and signaling events distal to the T cell receptor in peripheral CD4(+) T cells. By using mice with a conditional deletion in Notch1 or RBP-Jκ, we show that Notch1 regulates activation and proliferation of CD4(+) T cells independently of RBP-Jκ. Furthermore, differentiation to TH1 and iTreg lineages although Notch dependent, is RBP-Jκ independent. Our striking observations demonstrate that many of the cell-intrinsic functions of Notch occur independently of RBP-Jκ. Such non-canonical regulation of these processes likely occurs through NF-κ B. This reveals a previously unknown, novel role of non-canonical Notch signaling in regulating peripheral T cell responses.
Collapse
Affiliation(s)
- Anushka Dongre
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Lalitha Surampudi
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Rebecca G Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Abdul H Fauq
- PAR, Chemical Synthesis Core Facility, Mayo Clinic Florida , Jacksonville, FL , USA
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center , Jackson, MS , USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida , Gainesville, FL , USA
| | - Lisa M Minter
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Barbara A Osborne
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| |
Collapse
|
54
|
Koorella C, Nair JR, Murray ME, Carlson LM, Watkins SK, Lee KP. Novel regulation of CD80/CD86-induced phosphatidylinositol 3-kinase signaling by NOTCH1 protein in interleukin-6 and indoleamine 2,3-dioxygenase production by dendritic cells. J Biol Chem 2014; 289:7747-62. [PMID: 24415757 DOI: 10.1074/jbc.m113.519686] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DC) play a critical role in modulating antigen-specific immune responses elicited by T cells via engagement of the prototypic T cell costimulatory receptor CD28 by the cognate ligands CD80/CD86, expressed on DC. Although CD28 signaling in T cell activation has been well characterized, it has only recently been shown that CD80/CD86, which have no demonstrated binding domains for signaling proteins in their cytoplasmic tails, nonetheless also transduce signals to the DC. Functionally, CD80/CD86 engagement results in DC production of the pro-inflammatory cytokine IL-6, which is necessary for full T cell activation. However, ligation of CD80/CD86 by CTLA4 also induces DC production of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), which depletes local pools of the essential amino acid tryptophan, resulting in blockade of T cell activation. Despite the significant role of CD80/CD86 in immunological processes and the seemingly opposing roles they play by producing IL-6 and IDO upon their activation, how CD80/CD86 signal remains poorly understood. We have now found that cross-linking CD80/CD86 in human DC activates the PI3K/AKT pathway. This results in phosphorylation/inactivation of its downstream target, FOXO3A, and alleviates FOXO3A-mediated suppression of IL-6 expression. A second event downstream of AKT phosphorylation is activation of the canonical NF-κB pathway, which induces IL-6 expression. In addition to these downstream pathways, we unexpectedly found that CD80/CD86-induced PI3K signaling is regulated by previously unrecognized cross-talk with NOTCH1 signaling. This cross-talk is facilitated by NOTCH-mediated up-regulation of the expression of prolyl isomerase PIN1, which in turn increases enzyme activity of casein kinase II. Subsequently, phosphatase and tensin homolog (which suppresses PI3K activity) is inactivated via phosphorylation by casein kinase II. This results in full activation of PI3K signaling upon cross-linking CD80/CD86. Similar to IL-6, we have found that CD80/CD86-induced IDO production by DC at late time points is also dependent upon the PI3K → AKT → NF-κB pathway and requires cross-talk with NOTCH signaling. These data further suggest that the same signaling pathways downstream of DC CD80/CD86 cross-linking induce early IL-6 production to enhance T cell activation, followed by later IDO production to self-limit this activation. In addition to characterizing the pathways downstream of CD80/CD86 in IL-6 and IDO production, identification of a novel cross-talk between NOTCH1 and PI3K signaling may provide new insights in other biological processes where PI3K signaling plays a major role.
Collapse
Affiliation(s)
- Chandana Koorella
- From the Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263 and
| | | | | | | | | | | |
Collapse
|
55
|
Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: Targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 2014; 26:149-61. [DOI: 10.1016/j.cellsig.2013.09.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 02/01/2023]
|
56
|
Zhou W, Wang G, Guo S. Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta Rev Cancer 2013; 1836:304-20. [PMID: 24183943 DOI: 10.1016/j.bbcan.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, PR China.
| | | | | |
Collapse
|
57
|
Yu B, Song B. Notch 1 signalling inhibits cardiomyocyte apoptosis in ischaemic postconditioning. Heart Lung Circ 2013; 23:152-8. [PMID: 23948289 DOI: 10.1016/j.hlc.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 01/03/2023]
Abstract
AIM Recent studies have demonstrated that Notch signalling pathway is an important mediator of cardiac repair and regeneration after myocardial infarction. However, the mechanism by which Notch signalling pathway is mediating cardioprotection after ischaemic postconditioning (IPost) is still not understood thoroughly. The aim of the present study was to investigate the mechanism by which Notch signalling pathway mediated the cardioprotection effect after IPost. METHODS Rat heart-derived H9c2 cells were randomly divided into six groups as follows: Control group, hypoxia/reoxygenation group (H/R), H/R+N1ICD group, H-post group, H-post+Notch-1miRNA group, and Mock group. We used pcDNA3.1-Myc-His plasmid and RNA interference (RNAi) to activate/inhibit the expression of Notch-1 in H9c2 cell lines. The Bcl-2, Bax genes and proteins were assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. The effects of Notch 1 signalling on cell survival, proliferation and apoptosis were detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and flow cytometry analysis, respectively. Furthermore, Notch 1 signalling induced the disruption of mitochondrial membrane potential, thus leading to the activation of caspase-9/-3 measured using the colorimetric activity assay. RESULTS We found Notch 1 signalling reduced cardiomyocyte apoptosis in IPost through regulating the expression of Bcl-2, Bax and activation of caspase-9 and -3. We found that after transfected with pcDNA3.1-Myc-His plasmid, activation of the Notch 1 gene effectively promoted cell proliferation and inhibited apoptosis. The Notch 1 upregulation was accompanied by an upregulation of Bcl-2 and a downregulation of Bax. In addition, a paralled increase in caspase-9/-3 activities was observed. These effects were blunted by transfected with Notch-1 miRNA in the H9c2 cells. CONCLUSION Notch 1 signalling has a cardioprotection effect, which may result from cardiomyocyte apoptosis, by means of regulating the expression of cell apoptosis inhibiting proteins Bcl-2, Bax and the activation of caspase-9 and -3.
Collapse
Affiliation(s)
- Bentong Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Baoquan Song
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
58
|
Yuan Y, Lu X, Chen X, Shao H, Huang S. Jagged1 contributes to the drug resistance of Jurkat cells in contact with human umbilical cord-derived mesenchymal stem cells. Oncol Lett 2013; 6:1000-1006. [PMID: 24137453 PMCID: PMC3796424 DOI: 10.3892/ol.2013.1523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/30/2013] [Indexed: 11/05/2022] Open
Abstract
Notch signaling, which is driven by the Notch1 receptor, plays an essential role in the pathogenesis and stroma-mediated drug resistance of T-cell acute lymphoblastic leukemia (T-ALL). However, little is known about the roles of Notch ligands in the survival or drug resistance of T-ALL cells. In the present study, isolated mesenchymal stem cells (MSCs) from human umbilical cord (hUC) samples, termed hUC-MSCs, were used as stromal cells for the Jurkat T-ALL cell line. The role of the Notch ligand, Jagged1, was assessed in the survival of Jurkat T-ALL cells using this co-culture system. hUC-MSCs and Jurkat cells were observed to express Jagged1. Furthermore, co-culture with hUC-MSCs led to a significant upregulation of Jagged1 and a more significant overexpression of its receptor, Notch1, in the Jurkat cells, indicating that the receptor and ligand pair may play a role in the reciprocal or autonomous activation of the Notch pathway. In addition, a higher level of CD28 expression was observed in the Jurkat cells that were co-cultured with hUC-MSCs. Blocking Jagged1 expression using neutralizing antibodies restored drug-induced apoptosis in the Jurkat cells that were co-cultured with hUC-MSCs, and also increased the drug sensitivity of the Jurkat cells that were cultured alone. By contrast, direct incubation with exogenously recombinant Jagged1 produced the same protective effects in Jurkat cells as those induced by hUC-MSCs. These results indicate a significant role for Jagged1 in hUC-MSC-induced survival and the self-maintenance of the Jurkat T-ALL cell line, making it a potential target for the treatment of human T-ALL.
Collapse
Affiliation(s)
- Yin Yuan
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China ; Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | | | | | | | | |
Collapse
|
59
|
Hales EC, Orr SM, Larson Gedman A, Taub JW, Matherly LH. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem 2013; 288:22836-48. [PMID: 23788636 PMCID: PMC3829367 DOI: 10.1074/jbc.m113.451625] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/18/2013] [Indexed: 01/22/2023] Open
Abstract
Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Taub
- Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201
- the Children's Hospital of Michigan, Detroit, Michigan 48201
| | - Larry H. Matherly
- From the Departments of Oncology
- Pharmacology, and
- the Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, and
| |
Collapse
|
60
|
Tumours with elevated levels of the Notch and Wnt pathways exhibit efficacy to PF-03084014, a γ-secretase inhibitor, in a preclinical colorectal explant model. Br J Cancer 2013; 109:667-75. [PMID: 23868008 PMCID: PMC3738122 DOI: 10.1038/bjc.2013.361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dysregulation of the Notch pathway has been identified to play an important role in the development and progression of colorectal cancer (CRC). In this study, we used a patient-derived CRC explant model to investigate the efficacy of the clinical γ-secretase inhibitor (GSI) PF-03084014. METHODS A total of 16 CRC explants were treated with PF-03084014. Knockdown of RBPjκ gene was used to determine the specificity of PF-03084014. Evaluation of the Notch and Wnt pathways in CRC explant tumours was performed by gene array and immunoblotting. RESULTS We identified a subset of CRC tumours that exhibited elevations of the Notch and Wnt pathways sensitive to PF-03084014. Treatment with the GSI resulted in a significant reduction in cleaved Notch, Axin2 (Wnt-dependent gene) and active β-catenin. In addition, knockdown of the RBPjκ gene showed that PF-03084014 has specificity for the Notch pathway in an HCT116 cell line xenograft model. Finally, an increase in apoptosis was observed in CRC001- and CRC021-sensitive tumours. CONCLUSION This study provides evidence that inhibition of γ-secretase may be beneficial in a subset of patients with elevated levels of the Wnt and Notch pathways.
Collapse
|
61
|
Irusta G, Maidana CP, Abramovich D, De Zúñiga I, Parborell F, Tesone M. Effects of an Inhibitor of the Gamma-Secretase Complex on Proliferation and Apoptotic Parameters in a FOXL2-Mutated Granulosa Tumor Cell Line (KGN)1. Biol Reprod 2013; 89:9. [DOI: 10.1095/biolreprod.113.108100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
62
|
Yang Y, Yan X, Duan W, Yan J, Yi W, Liang Z, Wang N, Li Y, Chen W, Yu S, Jin Z, Yi D. Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells. PLoS One 2013; 8:e62652. [PMID: 23671619 PMCID: PMC3643961 DOI: 10.1371/journal.pone.0062652] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/22/2013] [Indexed: 01/22/2023] Open
Abstract
Although pterostilbene (PTE) has been shown to have potent antitumor activities against various cancer types, the molecular mechanisms of these activities remain unclear. In this study, we investigated the antitumor activity of PTE against human lung adenocarcinoma in vitro and in vivo and explored the role of the Notch1 signaling pathway in this process. PTE treatment resulted in a dose- and time-dependent decrease in the viability of A549 cells. Additionally, PTE exhibited strong antitumor activity, as evidenced not only by a reduced mitochondrial membrane potential (MMP) and a decreased intracellular glutathione content but also by increases in the apoptotic index and the level of reactive oxygen species (ROS). Furthermore, PTE treatment induced the activation of the Notch1 Intracellular Domain (NICD) protein and activated Hes1. DAPT (a gamma secretase inhibitor) and Notch1 siRNA prevented the induction of NICD and Hes1 activation by PTE treatment and sensitized the cells to PTE treatment. The down-regulation of Notch signaling also prevented the activation of pro-survival pathways (most notably the PI3K/Akt pathway) after PTE treatment. In summary, lung adenocarcinoma cells may enhance Notch1 activation as a protective mechanism in response to PTE treatment. Combining a gamma secretase inhibitor with PTE treatment may represent a novel approach for treating lung adenocarcinoma by inhibiting the survival pathways of cancer cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Juanjuan Yan
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an City, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Zhenxin Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Ning Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Yue Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
- * E-mail: (ZJ); (DY)
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an City, China
- * E-mail: (ZJ); (DY)
| |
Collapse
|
63
|
Jones C. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis. J Cell Death 2013; 6:1-16. [PMID: 25278776 PMCID: PMC4147773 DOI: 10.4137/jcd.s10803] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts.
Collapse
Affiliation(s)
- Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morrison Life Science Center, Lincoln, NE
| |
Collapse
|
64
|
O'Toole SA, Beith JM, Millar EKA, West R, McLean A, Cazet A, Swarbrick A, Oakes SR. Therapeutic targets in triple negative breast cancer. J Clin Pathol 2013; 66:530-42. [DOI: 10.1136/jclinpath-2012-201361] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
65
|
Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol 2013; 14:262-70. [PMID: 23377202 PMCID: PMC3577985 DOI: 10.1038/ni.2538] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/24/2012] [Indexed: 01/24/2023]
Abstract
The physiological basis and mechanistic requirements for a large number of functional immunoreceptor tyrosine-based activation motifs (ITAMs; high ITAM multiplicity) in the complex of the T cell antigen receptor (TCR) and the invariant signaling protein CD3 remain obscure. Here we found that whereas a low multiplicity of TCR-CD3 ITAMs was sufficient to engage canonical TCR-induced signaling events that led to cytokine secretion, a high multiplicity of TCR-CD3 ITAMs was required for TCR-driven proliferation. This was dependent on the formation of compact immunological synapses, interaction of the adaptor Vav1 with phosphorylated CD3 ITAMs to mediate the recruitment and activation of the oncogenic transcription factor Notch1 and, ultimately, proliferation induced by the cell-cycle regulator c-Myc. Analogous mechanistic events were also needed to drive proliferation in response to weak peptide agonists. Thus, the TCR-driven pathways that initiate cytokine secretion and proliferation are separable and are coordinated by the multiplicity of phosphorylated ITAMs in TCR-CD3.
Collapse
|
66
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
67
|
Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y, Funakoshi S, Adachi M, Hamamoto Y, Kawachi S, Aiura K, Kitagawa Y, Sakamoto M, Hibi T. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci 2013; 104:157-64. [PMID: 23121112 DOI: 10.1111/cas.12059] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 01/20/2023] Open
Abstract
Cancer-associated fibroblasts contribute to cancer progression that is caused by epithelial-mesenchymal transition (EMT). Recently, mesenchymal stem cells (MSCs) were found to be the major candidate involved in the development of tumor-promoting cancer stroma. Here we report that α-smooth muscle actin-positive myofibroblast-like cells originating from MSCs contribute to inducing EMT in side population cells of pancreatic cancer. More importantly, MSC-derived myofibroblasts function to maintain tumor-initiating stem cell-like characteristics, including augmenting expression levels of various stemness-associated genes, enhancing sphere- forming activity, promoting tumor formation in a mouse xenograft model, and showing resistance to anticancer drugs. Furthermore, both γ-secretase inhibitor and siRNA directed against Jagged-1 attenuated MSC-associated E-cadherin suppression and sphere formation in pancreatic cancer side population cells. Thus, our results suggest that MSC-derived myofibroblasts play important roles in regulating EMT and tumor-initiating stem cell-like properties of pancreatic cancer cells through an intermediating Notch signal.
Collapse
Affiliation(s)
- Ayano Kabashima-Niibe
- Division of Gastroenterology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Esfandiari F, Fathi A, Gourabi H, Kiani S, Nemati S, Baharvand H. Glycogen synthase kinase-3 inhibition promotes proliferation and neuronal differentiation of human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 2012; 21:3233-43. [PMID: 22642687 DOI: 10.1089/scd.2011.0678] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human-induced pluripotent stem cell-derived neural progenitors (hiPSC-NPs) have the ability to self-renew and differentiate into glial and neuronal lineages, which makes them an invaluable source in cell replacement therapy for neurological diseases. Therefore, their enhanced proliferation and neuronal differentiation are pivotal features that can be used in repairing neurological injuries. One of the main regulators of neural development is Wnt signaling, which results in the inhibition of glycogen synthase kinase 3 (GSK-3). Here, we assess the impact of GSK-3 inhibition by the small molecule CHIR99021 on the expansion and differentiation of hiPSC-NPs in an adherent condition and a defined medium. Cell proliferation analyses have revealed that inhibition of GSK-3 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) increased the proliferation of hiPSC-NPs across 10 passages. The inhibition of β-catenin signaling by XAV and NOTCH signaling by DAPT reversed CHIR impact on hiPSC-NPs proliferation. The target genes of β-catenin, C-MYC and CYCLIN D1 as well as NOTCH target genes, HES1 and HES5 were upregulated. The treatment of NPs by CHIR in the absence of bFGF and EGF resulted in an increase of neuronal differentiation rather than proliferation by stabilization of β-catenin regardless of the NOTCH pathway. Thus, GSK-3 inhibition has been shown to promote proliferation of the NPs by activating β-catenin and NOTCH-related cell cycle genes in the presence of bFGF and EGF. Additionally, during GSK-3 inhibition, an absence of these growth factors allows for the switch to neuronal differentiation with a bias toward a dopaminergic fate. This may provide desired cells that can be used in therapeutic applications and offer insights into the etiology of some neurological disorders.
Collapse
Affiliation(s)
- Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
70
|
Minter LM, Osborne BA. Notch and the survival of regulatory T cells: location is everything! Sci Signal 2012; 5:pe31. [PMID: 22827995 DOI: 10.1126/scisignal.2003358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling through the T cell receptor induces T lymphocytes to divide, differentiate, and perform numerous effector functions. Once activated, effector T cells are exquisitely sensitive to changes in available cytokines, particularly the survival cytokine interleukin-2 (IL-2). Removal of IL-2 rapidly initiates apoptosis in response to cytokine withdrawal. In contrast to effector T cells, regulatory T cells (T(regs)) are resistant to apoptosis induced by cytokine withdrawal. A study exploring the differences between these two T cell subsets reveals a role for Notch1 in protecting T(regs) from apoptosis. Protection from apoptosis induced by cytokine withdrawal correlated with Notch1 localization in the cytosol of T(regs) and its association with phosphatidylinositol 3-kinase and Rictor, a component of the mammalian target of rapamycin complex. Notch1 localization in the nucleus in effector T cells, on the other hand, was correlated with susceptibility to apoptosis induced by cytokine withdrawal. This study highlights how Notch1 can deliver opposing signals in different cellular contexts and suggests that localization of Notch1 can have a substantial influence on life-and-death decisions in T lymphocytes.
Collapse
Affiliation(s)
- Lisa M Minter
- Department of Veterinary and Animal Sciences, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
71
|
Gentle ME, Rose A, Bugeon L, Dallman MJ. Noncanonical Notch signaling modulates cytokine responses of dendritic cells to inflammatory stimuli. THE JOURNAL OF IMMUNOLOGY 2012; 189:1274-84. [PMID: 22753939 DOI: 10.4049/jimmunol.1103102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendritic cell (DC)-derived cytokines play a key role in specifying adaptive immune responses tailored to the type of pathogen encountered and the local tissue environment. However, little is known about how DCs perceive the local environment. We investigated whether endogenous Notch signaling could affect DC responses to pathogenic stimuli. We demonstrate that concurrent Notch and TLR stimulation results in a unique cytokine profile in mouse bone-marrow derived DCs characterized by enhanced IL-10 and IL-2, and reduced IL-12 expression compared with TLR ligation alone. Unexpectedly, modulation of cytokine production occurred through a noncanonical Notch signaling pathway, independent of γ-secretase activity. Modulation required de novo protein synthesis, and PI3K, JNK, and ERK activity were necessary for enhanced IL-2 expression, whereas modulation of IL-10 required only PI3K activity. Further, we show that this γ-secretase-independent Notch pathway can induce PI3K activity. In contrast, expression of the canonical Notch target gene Hes1 was suppressed in DCs stimulated with Notch and TLR ligands simultaneously. Thus, our data suggest that Notch acts as an endogenous signal that modulates cytokine expression of DCs through a noncanonical pathway and therefore has the potential to tailor the subsequent adaptive immune response in a tissue- and/or stage-dependent manner.
Collapse
Affiliation(s)
- Madeleine E Gentle
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
72
|
Jiang X, Xing H, Kim TM, Jung Y, Huang W, Yang HW, Song S, Park PJ, Carroll RS, Johnson MD. Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity. Stem Cells 2012; 30:1313-26. [PMID: 22553175 PMCID: PMC3963835 DOI: 10.1002/stem.1120] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glioblastoma contains a hierarchy of stem-like cancer cells, but how this hierarchy is established is unclear. Here, we show that asymmetric Numb localization specifies glioblastoma stem-like cell (GSC) fate in a manner that does not require Notch inhibition. Numb is asymmetrically localized to CD133-hi GSCs. The predominant Numb isoform, Numb4, decreases Notch and promotes a CD133-hi, radial glial-like phenotype. However, upregulation of a novel Numb isoform, Numb4 delta 7 (Numb4d7), increases Notch and AKT activation while nevertheless maintaining CD133-hi fate specification. Numb knockdown increases Notch and promotes growth while favoring a CD133-lo, glial progenitor-like phenotype. We report the novel finding that Numb4 (but not Numb4d7) promotes SCF(Fbw7) ubiquitin ligase assembly and activation to increase Notch degradation. However, both Numb isoforms decrease epidermal growth factor receptor (EGFR) expression, thereby regulating GSC fate. Small molecule inhibition of EGFR activity phenocopies the effect of Numb on CD133 and Pax6. Clinically, homozygous NUMB deletions and low Numb mRNA expression occur primarily in a subgroup of proneural glioblastomas. Higher Numb expression is found in classical and mesenchymal glioblastomas and correlates with decreased survival. Thus, decreased Numb promotes glioblastoma growth, but the remaining Numb establishes a phenotypically diverse stem-like cell hierarchy that increases tumor aggressiveness and therapeutic resistance.
Collapse
Affiliation(s)
- Xiuli Jiang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hongyan Xing
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tae-Min Kim
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuchae Jung
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Huang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Wei Yang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shengye Song
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter J. Park
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rona S. Carroll
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark D. Johnson
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Program in Neuro-Oncology, Dana Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
73
|
Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ, He LY. siRNA-mediated Silencing of Notch-1 Enhances Docetaxel Induced Mitotic Arrest and Apoptosis in PCa Cells. Asian Pac J Cancer Prev 2012; 13:2485-9. [DOI: 10.7314/apjcp.2012.13.6.2485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
74
|
Notch controls the magnitude of T helper cell responses by promoting cellular longevity. Proc Natl Acad Sci U S A 2012; 109:9041-6. [PMID: 22615412 DOI: 10.1073/pnas.1206044109] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Generation of effective immune responses requires expansion of rare antigen-specific CD4(+) T cells. The magnitude of the responding population is ultimately determined by proliferation and survival. Both processes are tightly controlled to limit responses to innocuous antigens. Sustained expansion occurs only when innate immune sensors are activated by microbial stimuli or by adjuvants, which has important implications for vaccination. The molecular identity of the signals controlling sustained T-cell responses is not fully clear. Here, we describe a prominent role for the Notch pathway in this process. Coactivation of Notch allows accumulation of far greater numbers of activated CD4(+) T cells than stimulation via T-cell receptor and classic costimulation alone. Notch does not overtly affect cell cycle entry or progression of CD4(+) T cells. Instead, Notch protects activated CD4(+) T cells against apoptosis after an initial phase of clonal expansion. Notch induces a broad antiapoptotic gene expression program that protects against intrinsic, as well as extrinsic, apoptosis pathways. Both Notch1 and Notch2 receptors and the canonical effector RBPJ (recombination signal binding protein for immunoglobulin kappa J region) are involved in this process. Correspondingly, CD4(+) T-cell responses to immunization with protein antigen are strongly reduced in mice lacking these components of the Notch pathway. Our findings, therefore, show that Notch controls the magnitude of CD4(+) T-cell responses by promoting cellular longevity.
Collapse
|
75
|
|
76
|
Bar Y, Russ HA, Sintov E, Anker-Kitai L, Knoller S, Efrat S. Redifferentiation of expanded human pancreatic β-cell-derived cells by inhibition of the NOTCH pathway. J Biol Chem 2012; 287:17269-17280. [PMID: 22457355 DOI: 10.1074/jbc.m111.319152] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In vitro expansion of β-cells from adult human pancreatic islets would overcome donor β-cell shortage for cell replacement therapy for diabetes. Using a β-cell-specific labeling system we have shown that β-cell expansion is accompanied by dedifferentiation resembling epithelial-mesenchymal transition and loss of insulin expression. Epigenetic analyses indicate that key β-cell genes maintain open chromatin structure in expanded β-cell-derived (BCD) cells, although they are not transcribed. In the developing pancreas important cell-fate decisions are regulated by NOTCH receptors, which signal through the Hairy and Enhancer of Split 1 (HES1) transcription regulator. We have reported that BCD cell dedifferentiation and proliferation in vitro correlate with reactivation of the NOTCH pathway. Inhibition of HES1 expression using shRNA during culture initiation results in reduced β-cell replication and dedifferentiation, suggesting that HES1 inhibition may also affect BCD cell redifferentiation following expansion. Here, we used HES1 shRNA to down-regulate HES1 expression in expanded human BCD cells, showing that HES1 inhibition is sufficient to induce BCD cell redifferentiation, as manifested by a significant increase in insulin expression. Combined treatment with HES1 shRNA, cell aggregation in serum-free medium, and a mixture of soluble factors further stimulated the redifferentiation of BCD cells. In vivo analyses demonstrated the ability of the redifferentiated cells to replace β-cell function in hyperglycemic immunodeficient mice. These findings demonstrate the redifferentiation potential of ex vivo expanded BCD cells and the reproducible differentiating effect of HES1 inhibition in these cells.
Collapse
Affiliation(s)
- Yael Bar
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Holger A Russ
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Elad Sintov
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Leeat Anker-Kitai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Sarah Knoller
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|
77
|
Gude N, Sussman M. Notch signaling and cardiac repair. J Mol Cell Cardiol 2012; 52:1226-32. [PMID: 22465038 DOI: 10.1016/j.yjmcc.2012.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
Abstract
Notch signaling is critical for proper heart development and recently has been reported to participate in adult cardiac repair. Notch resides at the cell surface as a single pass transmembrane receptor, transits through the cytoplasm following activation, and acts as a transcription factor upon entering the nucleus. This dynamic and widespread cellular distribution allows for potential interactions with many signaling and binding partners. Notch displays temporal as well as spatial versatility, acting as a strong developmental signal, controlling cell fate determination and lineage commitment, and playing a pivotal role in embryonic and adult stem cell proliferation and differentiation. This review serves as an update of recent literature addressing Notch signaling in the heart, with attention to findings from noncardiac research that provide clues for further interpretation of how the Notch pathway influences cardiac biology. Specific areas of focus include Notch signaling in adult myocardium following pathologic injury, the role of Notch in cardiac progenitor cells with respect to differentiation and cardiac repair, crosstalk between Notch and other cardiac signaling pathways, and emerging aspects of noncanonical Notch signaling in heart.
Collapse
Affiliation(s)
- Natalie Gude
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|
78
|
A role for bcl-2 in notch1-dependent transcription in thymic lymphoma cells. Adv Hematol 2012; 2012:435241. [PMID: 22319533 PMCID: PMC3272787 DOI: 10.1155/2012/435241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 12/24/2022] Open
Abstract
Notch1 is a transcription factor important for T-cell development. Notch1 is active in double negative (DN) thymocytes, while being depressed in double positive (DP) thymocytes. Synchronously, the expression of Bcl-2 becomes downregulated during the transition from DN to DP thymocytes. We previously observed that overexpression of an intracellular active Notch1 (ICN) in Bcl-2-positive 2B4 T cells leads to the transcription of Notch1-regulated genes. However, these genes were not induced in Bcl-2-negative DP PD1.6 thymic lymphoma cells overexpressing ICN. Here we show that, when Bcl-2 is simultaneously introduced into these cells, Notch-regulated genes are transcribed. Only in the presence of both Bcl-2 and ICN, PD1.6 thymic lymphoma cells become resistant to glucocorticoid (GC)-induced apoptosis. Our data suggest that Bcl-2 plays a role in modulating Notch1 function in T cells.
Collapse
|
79
|
Wang J, Sullenger BA, Rich JN. Notch Signaling in Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:174-85. [DOI: 10.1007/978-1-4614-0899-4_13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Abstract
Proper embryonic development and normal tissue homeostasis require a series of molecular processes, regulating cell growth, differentiation and apoptosis. Perturbation in any of these processes invariably contributes to the development of cancer. In particular, defects in apoptosis are seen in virtually all types of human cancers. The Notch pathway plays an important role in cell fate determination in both embryonic development and organ homeostasis. Not surprisingly, Notch also plays a role in cancer when it is dysregulated. In this chapter, we will explore how Notch signaling interacts with key pathways that regulate apoptosis in cancer. Particularly, we will focus on the relationship between Notch and proteins responsible for activation of the caspase pathway. Notch regulates apoptosis through extensive networks, involving cell cycle, growth and survival pathways. Thus, we will also examine how apoptosis is modulated by the crosstalk between Notch and other signaling pathways such as p53, NF-κB and PI3K-Akt pathways.
Collapse
|
81
|
Tzoneva G, Ferrando AA. Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol 2012; 360:163-82. [PMID: 22673746 DOI: 10.1007/82_2012_232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NOTCH1 receptor signaling plays a central role in T-cell lineage specification and in supporting the growth and proliferation of immature T-cell progenitors in the thymus during lymphoid development. In T-cell acute lymphoblastic leukemia (T-ALL), a tumor resulting from the malignant transformation of T-cell progenitors, aberrant and constitutively active NOTCH1 signaling triggered by activating mutations in the NOTCH1 gene contributes to oncogenic transformation and is a hallmark of this disease. Most notably, small molecule γ-secretase inhibitors (GSIs) can effectively block NOTCH1 signaling in T-ALL, and could be exploited as a targeted therapy in this disease. In addition, a number of emerging anti-NOTCH therapeutic strategies including anti-NOTCH1 inhibitory antibodies, small peptide inhibitors of NOTCH signaling and combination therapies with GSIs and glucocorticoids, have recently been proposed. Finally, the identification of NOTCH1 mutations in solid tumors and chronic lymphocytic leukemias has increased even further the clinical relevance of NOTCH signaling as a therapeutic target in human cancer. Here we review our current understanding of NOTCH1-induced transformation, the mechanisms of action of oncogenic NOTCH1 in T-ALL and the therapeutic and prognostic implications of NOTCH1 mutations in T-ALL.
Collapse
Affiliation(s)
- Gannie Tzoneva
- Institute for Cancer Genetics and Graduate Program in Pathobiology and Molecular Medicine, Columbia University Medical Center, New York 10032, USA
| | | |
Collapse
|
82
|
Jones C, da Silva LF, Sinani D. Regulation of the latency-reactivation cycle by products encoded by the bovine herpesvirus 1 (BHV-1) latency-related gene. J Neurovirol 2011; 17:535-45. [PMID: 22139602 DOI: 10.1007/s13365-011-0060-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 01/04/2023]
Abstract
Like other α-herpesvirinae subfamily members, the primary site for bovine herpesvirus 1 (BHV-1) latency is ganglionic sensory neurons. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Transcription from the latency-related (LR) gene is readily detected in neurons of trigeminal ganglia (TG) of calves or rabbits latently infected with BHV-1. Two micro-RNAs and a transcript encompassing a small open reading frame (ORF-E) located within the LR promoter can also be detected in TG of latently infected calves. A BHV-1 mutant that contains stop codons near the beginning of the first open reading frame (ORF2) within the major LR transcript (LR mutant virus) has been characterized. The LR mutant virus does not express ORF2, a reading frame that lacks an initiating ATG (reading frame B), and has reduced expression of ORF1 during productive infection. The LR mutant virus does not reactivate from latency following dexamethasone treatment suggesting that LR protein expression regulates the latency-reactivation cycle. Higher levels of apoptosis occur in TG neurons of calves infected with the LR mutant viruses when compared to wild-type BHV-1 indicating that the anti-apoptotic properties of the LR gene is necessary for the latency-reactivation cycle. ORF2 inhibits apoptosis and regulates certain viral promoters, in part, because it interacts with three cellular transcription factors (C/EBP-alpha, Notch1, and Notch3). Although ORF2 is important for the latency-reactivation cycle, we predict that other LR gene products play a supportive role during life-long latency in cattle.
Collapse
Affiliation(s)
- Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, RM 234, Morisson Life Science Center, Lincoln, NE 68583, USA.
| | | | | |
Collapse
|
83
|
Vo K, Amarasinghe B, Washington K, Gonzalez A, Berlin J, Dang TP. Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Mol Cancer 2011; 10:138. [PMID: 22074495 PMCID: PMC3253061 DOI: 10.1186/1476-4598-10-138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 11/10/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pancreas cancer is one of most aggressive human cancers with the survival rate for patients with metastatic pancreas cancer at 5-6 months. The poor survival demonstrates a clear need for better target identification, drug development and new therapeutic strategies. Recent discoveries have shown that the role for Notch pathway is important in both development and cancer. Its contribution to oncogenesis also involves crosstalks with other growth factor pathways, such as Akt and its modulator, PTEN. The mounting evidence supporting a role for Notch in cancer promotion and survival suggests that targeting this pathway alone or in combination with other therapeutics represents a promising therapeutic strategy. RESULTS Using a pancreas cancer tissue microarray, we noted that Jagged1, Notch3 and Notch4 are overexpressed in pancreas tumors (26%, 84% and 31% respectively), whereas Notch1 is expressed in blood vessels. While there was no correlation between Notch receptor expression and survival, stage or tumor grade, Notch3 was associated with Jagged1 and EGFR expression, suggesting a unique relationship between Notch3 and Jagged1. Inhibition of the Notch pathway genetically and with gamma-secretase inhibitor (GSI) resulted in tumor suppression and enhanced cell death. The observed anti-tumor activity appeared to be through Akt and modulation of PTEN phosphorylation. We discovered that transcriptional regulation of RhoA by Notch is important for PTEN phosphorylation. Finally, the mTOR inhibitor Rapamycin enhanced the effect of GSI on RhoA expression, resulting in down regulation of phospho-Akt and increased in vitro tumor cytotoxity. CONCLUSIONS Notch pathway plays an important role in maintaining pancreas tumor phenotype. Targeting this pathway represents a reasonable strategy for the treatment of pancreas cancers. Notch modulates the Akt pathway through regulation of PTEN phosphorylation, an observation that has not been made previously. Furthermore, we discovered that this regulation is dependent on RhoA/Rock1 activation. Enhanced phospho-Akt suppression when GSI is combined with rapamycin suggests that targeting both pathways will lead to a greater efficacy in the treatment of patients with pancreas cancer.
Collapse
Affiliation(s)
- Kevin Vo
- College of Pharmacy, The University of Tennessee, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
84
|
Notch-ing from T-cell to B-cell lymphoid malignancies. Cancer Lett 2011; 308:1-13. [PMID: 21652011 DOI: 10.1016/j.canlet.2011.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/08/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
Abstract
Notch receptors are transmembrane proteins critically determining cell fate and maintenance of progenitor cells in many developmental systems. Notch signaling is involved in stem cell self-renewal and regulates the main functions of cell life at different levels of development: cell proliferation, differentiation and apoptosis. By virtue of its involvement in the regulation of cell physiology, it is not surprising that a deregulation of the Notch pathway leads to the development of different tumors. In this review, we critically discuss the latest findings concerning Notch roles in hematologic oncology, with a special focus on T-cell acute lymphoblastic leukemia and B-cell malignancies. We also describe the molecular mediators of Notch-driven oncogenic effects and the current pharmacological approaches targeting Notch signaling.
Collapse
|
85
|
Abstract
Granzyme-mediated cell death is the main pathway for cytotoxic lymphocytes to kill virus-infected and tumour cells. A major player in this process is GrB (granzyme B), which triggers apoptosis in both caspase-dependent and caspase-independent pathways. A caspase-independent substrate of GrB is the highly conserved transmembrane receptor Notch1. The GrB cleavage sites in Notch1 and functional consequences of Notch1 cleavage by GrB were unknown. In the present study, we confirmed that Notch1 is a direct and caspase-independent substrate of GrB. We demonstrate that GrB cleaved the intracellular Notch1 domain at least twice at two distinct aspartic acids, Asp1860 and Asp1961. GrB cleavage of Notch1 can occur in all subcellular compartments, during maturation of the receptor, at the membrane, and in the nucleus. GrB also displayed perforin-independent functions by cleaving the extracellular domain of Notch1. Overall, cleavage of Notch1 by GrB resulted in a loss of transcriptional activity, independent of Notch1 activation. We conclude that GrB disables Notch1 function, probably resulting in anti-cellular proliferation and cell death signals.
Collapse
|
86
|
Koch U, Radtke F. Notch in T-ALL: new players in a complex disease. Trends Immunol 2011; 32:434-42. [DOI: 10.1016/j.it.2011.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/29/2022]
|
87
|
Qin X, Zhang Z, Xu H, Wu Y. Notch signaling protects retina from nuclear factor-κB- and poly-ADP-ribose-polymerase-mediated apoptosis under high-glucose stimulation. Acta Biochim Biophys Sin (Shanghai) 2011; 43:703-11. [PMID: 21813561 DOI: 10.1093/abbs/gmr069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferative diabetic retinopathy, the primary cause of vision loss in adults, is one of serious microvascular complications caused by diabetes. Both poly-ADP-ribose-polymerase (PARP) and nuclear factor (NF)-κB signaling are involved in the injury process. Injury activates PARP, which in turn potentiates NF-κB activation and causes cell apoptosis. Like the NF-κB pathway, Notch1 signaling plays a key role in the regulation of cell proliferation, differentiation, and apoptosis. However, the connections between these signaling pathways are not well understood. In this study, we used both streptozotocin (STZ)-induced diabetic mice and human retinal vascular endothelial cells (HRVECs) cultured in high glucose to detect these relationships. We found that apoptosis was increased in both STZ-induced diabetic mice and high-glucose-treated HRVECs, which was due to increased activation of PARP, cleaved caspase3, and reduced expression of Notch1 and p-Akt. The results of Notch1 overexpression and knockdown indicated that Notch1 signaling participated in the interaction of PARP and p50, and inhibited PARP- and p50-mediated apoptosis directly. These phenomena could be blocked by pretreatment with the PI3K inhibitor wortmannin via reducing p-Akt levels. Thus, our study demonstrated that Notch1 signaling protects cells from PARP- and NF-κB-induced apoptosis under high glucose through the activation of Akt.
Collapse
Affiliation(s)
- Xiuhong Qin
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | | | | | | |
Collapse
|
88
|
Critical roles of NOTCH1 in acute T-cell lymphoblastic leukemia. Int J Hematol 2011; 94:118-125. [PMID: 21814881 DOI: 10.1007/s12185-011-0899-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
NOTCH1 plays a central role in T-cell development and, when aberrantly activated, in acute T-cell lymphoblastic leukemia (T-ALL). As a transmembrane receptor that is ultimately converted into a transcription factor, NOTCH1 directly activates a spectrum of target genes, which function to mediate NOTCH1 signaling in normal or transformed T cells. During physiologic T-cell development, NOTCH1 has important functions in cell fate determination, proliferation, survival and metabolism. Activating NOTCH1 mutations occur in more than half of human patients with T-ALL, suggesting an important role for aberrant NOTCH1 signaling in the pathogenesis of this disease. Inhibiting NOTCH1 signaling in patient-derived cell lines and murine T-ALLs leads to growth arrest and/or apoptosis suggesting that NOTCH1 inhibitors can improve T-ALL treatment. However, there are challenges to translate NOTCH1 inhibitors to the clinic because of toxicity and resistance. This review focuses on molecular mechanisms of oncogenic NOTCH1 signaling, molecular and functional analysis of NOTCH1 transcriptional targets in T-ALL, and recent advances in therapeutic targeting of NOTCH1.
Collapse
|
89
|
Abstract
T cells are the key mediators in cell-mediated immunity. Their development and maturation involve a complex variety of interactions with nonlymphoid cell products and receptors. Highly specialized to defend against bacterial and viral infections, T cells also mediate immune surveillance against tumor cells and react to foreign tissues. T cell progenitors originate in the bone marrow and, through a series of defined and coordinated developmental stages, enter the thymus, differentiate, undergo selection, and eventually mature into functional T cells. The steps in this process are regulated through a complex transcriptional network, specific receptor-ligand pair interactions, and sensitization to trophic factors, which mediate the homing, proliferation, survival, and differentiation of developing T cells. This review examines the processes and pathways involved in the highly orchestrated development of T cell fate specification under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | | |
Collapse
|
90
|
Hamidi H, Gustafason D, Pellegrini M, Gasson J. Identification of novel targets of CSL-dependent Notch signaling in hematopoiesis. PLoS One 2011; 6:e20022. [PMID: 21637838 PMCID: PMC3102675 DOI: 10.1371/journal.pone.0020022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/08/2011] [Indexed: 12/13/2022] Open
Abstract
Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which is consistent with our previous biological characterization.
Collapse
Affiliation(s)
- Habib Hamidi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Derek Gustafason
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Judith Gasson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Hematology-Oncology, Department of Medicine, and Department of Biological Chemistry and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
91
|
Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. ACTA ACUST UNITED AC 2011; 208:663-75. [PMID: 21464222 PMCID: PMC3135352 DOI: 10.1084/jem.20102384] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-451 represses expression of Myc and acts as a tumor suppressor in murine and human T cell acute lymphoblastic leukemia. The NOTCH1 signaling pathway is a critical determinant of cell fate decisions and drives oncogenesis through mechanisms that are incompletely understood. Using an established mouse model of T cell acute lymphoblastic leukemia (T-ALL), here we report that induction of intracellular Notch1 (ICN1) leads to repression of miR-451 and miR-709. ICN1 decreases expression of these miRNAs by inducing degradation of the E2a tumor suppressor, which transcriptionally activates the genes encoding miR-451 and miR-709. Both miR-451 and miR-709 directly repress Myc expression. In addition, miR-709 directly represses expression of the Akt and Ras-GRF1 oncogenes. We also show that repression of miR-451 and miR-709 expression is required for initiation and maintenance of mouse T-ALL. miR-451 but not miR-709 is conserved in humans, and human T-ALLs with activating NOTCH1 mutations have decreased miR-451 and increased MYC levels compared with T-ALLs with wild-type NOTCH1. Thus, miR-451 and miR-709 function as potent suppressors of oncogenesis in NOTCH1-induced mouse T-ALL, and miR-451 influences MYC expression in human T-ALL bearing NOTCH1 mutations.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
92
|
Guo D, Teng Q, Ji C. NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52:1200-10. [PMID: 21463127 DOI: 10.3109/10428194.2011.564696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activating mutations in NOTCH1 consitute the most prominent genetic abnormality in T-cell acute lymphoblastic leukemia (T-ALL). However, most T-ALL cell lines with NOTCH1 mutations are resistant to treatment with γ-secretase inhibitors (GSIs). The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome ten (PTEN)/AKT/mammalian target of rapamycin (mTOR) pathway as another key potential target. These two signaling routes are deregulated in many types of cancer. In this review we discuss these two pathways with respect to their signaling mechanisms, functions during T-cell development, and their mutual roles in the development of T-ALL.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, The Central Hospital of Taian, Taian, Shandong, P R China.
| | | | | |
Collapse
|
93
|
Perruisseau-Carrier C, Jurga M, Forraz N, McGuckin CP. miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol 2011; 43:215-27. [PMID: 21541853 DOI: 10.1007/s12035-011-8179-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/10/2011] [Indexed: 12/15/2022]
Abstract
Mimicking the natural brain environment during neurogenesis represents the main challenge for efficient in vitro neuronal differentiation of stem cells. The discovery of miRNAs opens new possibilities in terms of modulation of stem cells lineage commitment and differentiation. Many studies demonstrated that in vitro transient overexpression or inhibition of brain-specific miRNAs in stem cells significantly directed differentiation along neuronal cell lineages. Modulating miRNA expression offers new pathways for post-transcriptional gene regulation and stem cell commitment. Neurotrophins and neuropoietins signaling pathways are the main field of investigation for neuronal commitment, differentiation, and maturation. This review will highlight examples of crosstalk between stem-cell-specific and brain-specific signaling pathways and key miRNA candidates for neuronal commitment. Recent progress on understanding miRNAs genetic networks offers promising prospects for their increasing application in the development of new cellular therapies in humans.
Collapse
Affiliation(s)
- Claire Perruisseau-Carrier
- CTI-LYON, Cell Therapy Research Institute, Parc Technologique de Lyon Saint-Priest, Saint-Priest, Lyon, France
| | | | | | | |
Collapse
|
94
|
Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW. DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem 2011; 286:17672-81. [PMID: 21398698 DOI: 10.1074/jbc.m111.236612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DDR1 (discoidin domain receptor tyrosine kinase 1) kinase s highly expressed in a variety of human cancers and occasionally mutated in lung cancer and leukemia. It is now clear that aberrant signaling through the DDR1 receptor is closely associated with various steps of tumorigenesis, although little is known about the molecular mechanism(s) underlying the role of DDR1 in cancer. Besides the role of DDR1 in tumorigenesis, we previously identified DDR1 kinase as a transcriptional target of tumor suppressor p53. DDR1 is functionally activated as determined by its tyrosine phosphorylation, in response to p53-dependent DNA damage. In this study, we report the characterization of the Notch1 protein as an interacting partner of DDR1 receptor, as determined by tandem affinity protein purification. Upon ligand-mediated DDR1 kinase activation, Notch1 was activated, bound to DDR1, and activated canonical Notch1 targets, including Hes1 and Hey2. Moreover, DDR1 ligand (collagen I) treatment significantly increased the active form of Notch1 receptor in the nuclear fraction, whereas DDR1 knockdown cells show little or no increase of the active form of Notch1 in the nuclear fraction, suggesting a novel intracellular mechanism underlying autocrine activation of wild-type Notch signaling through DDR1. DDR1 activation suppressed genotoxic-mediated cell death, whereas Notch1 inhibition by a γ-secretase inhibitor, DAPT, enhanced cell death in response to stress. Moreover, the DDR1 knockdown cancer cells showed the reduced transformed phenotypes in vitro and in vivo xenograft studies. The results suggest that DDR1 exerts prosurvival effect, at least in part, through the functional interaction with Notch1.
Collapse
Affiliation(s)
- Hyung-Gu Kim
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
95
|
Workman A, Sinani D, Pittayakhajonwut D, Jones C. A protein (ORF2) encoded by the latency-related gene of bovine herpesvirus 1 interacts with Notch1 and Notch3. J Virol 2011; 85:2536-46. [PMID: 21191019 PMCID: PMC3067920 DOI: 10.1128/jvi.01937-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Like other Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BHV-1) establishes latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) does not reactivate from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 is not the only viral product expressed during latency, but it is important for the latency reactivation cycle because it inhibits apoptosis. In this study, a yeast 2-hybrid screen revealed that ORF2 interacted with two cellular transcription factors, Notch1 and Notch3. These interactions were confirmed in mouse neuroblastoma cells by confocal microscopy and in an in vitro "pulldown" assay. During reactivation from latency, Notch3 RNA levels in trigeminal ganglia were higher than those during latency, suggesting that Notch family members promote reactivation from latency or that reactivation promotes Notch expression. A plasmid expressing the Notch1 intercellular domain (ICD) stimulated productive infection and promoters that encode the viral transcription factor bICP0. The Notch3 ICD did not stimulate productive infection as efficiently as the Notch1 ICD and had no effect on bICP0 promoter activity. Plasmids expressing the Notch1 ICD or the Notch3 ICD trans-activated a late promoter encoding glycoprotein C. ORF2 reduced the trans-activation potential of Notch1 and Notch3, suggesting that ORF2 interfered with the trans-activation potential of Notch. These studies provide evidence that ORF2, in addition to inhibiting apoptosis, has the potential to promote establishment and maintenance of latency by sequestering cellular transcription factors.
Collapse
Affiliation(s)
- Aspen Workman
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Devis Sinani
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Daraporn Pittayakhajonwut
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Clinton Jones
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| |
Collapse
|
96
|
New role of Notch-mediated signaling pathway in myocardial ischemic preconditioning. Med Hypotheses 2011; 76:427-8. [DOI: 10.1016/j.mehy.2010.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/07/2010] [Accepted: 11/13/2010] [Indexed: 11/18/2022]
|
97
|
Notch protection against apoptosis in T-ALL cells mediated by GIMAP5. Blood Cells Mol Dis 2010; 45:201-9. [PMID: 20817506 DOI: 10.1016/j.bcmd.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
Recent studies have highlighted the role of Notch signalling in the development of T cell acute lymphoblasic leukaemia (T-ALL). Over-expression of Notch3 and gain of function mutations in the Notch1 gene have been reported. The aims of this study were to determine the effect of Notch signalling on apoptosis in human T-ALL cell lines and to identify targets of Notch signalling that may mediate this effect. Functional studies showed that inhibition of Notch signalling using gamma secretase inhibitors promoted glucocorticoid-induced apoptosis in cells carrying gain of function mutations in Notch1. Moreover, ectopic expression of constitutively activated Notch provided protection against glucocorticoid-induced apoptosis, indicating that signalling via Notch may also contribute to the development of T-ALL by conferring resistance to apoptosis. Microarray analysis revealed that GIMAP5, a gene coding for an anti-apoptotic intracellular protein, is upregulated by Notch in T-ALL cell lines. Knockdown of GIMAP5 expression using siRNA promoted glucocorticoid-induced apoptosis in T-ALL cells carrying gain of function mutations in Notch1 and in T-ALL cells engineered to express ectopic constitutively activated Notch indicating that Notch signalling protects T-ALL cells from apoptosis by upregulating the expression of GIMAP5.
Collapse
|
98
|
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:197-213. [PMID: 21193018 DOI: 10.1016/j.bbcan.2010.12.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022]
Abstract
The Notch signaling plays a key role in cell differentiation, survival, and proliferation through diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis. Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders, including human malignancies. Notch signaling is activated by ligand binding, followed by ADAM/tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the nucleus induces the transcriptional activation of Notch target genes. The relationships between Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical drug target for breast and other cancers. Since current status of knowledge in this field changes quickly, our insight should be continuously revised. In this review, we will focus on recent advancements in identification of aberrant Notch signaling in breast cancer and the possible underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting Notch signaling for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | |
Collapse
|
99
|
Bansal K, Balaji KN. Intracellular pathogen sensor NOD2 programs macrophages to trigger Notch1 activation. J Biol Chem 2010; 286:5823-35. [PMID: 21156799 DOI: 10.1074/jbc.m110.192393] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intracellular pathogen sensor, NOD2, has been implicated in regulation of wide range of anti-inflammatory responses critical during development of a diverse array of inflammatory diseases; however, underlying molecular details are still imprecisely understood. In this study, we demonstrate that NOD2 programs macrophages to trigger Notch1 signaling. Signaling perturbations or genetic approaches suggest signaling integration through cross-talk between Notch1-PI3K during the NOD2-triggered expression of a multitude of immunological parameters including COX-2/PGE(2) and IL-10. NOD2 stimulation enhanced active recruitment of CSL/RBP-Jk on the COX-2 promoter in vivo. Intriguingly, nitric oxide assumes critical importance in NOD2-mediated activation of Notch1 signaling as iNOS(-/-) macrophages exhibited compromised ability to execute NOD2-triggered Notch1 signaling responses. Correlative evidence demonstrates that this mechanism operates in vivo in brain and splenocytes derived from wild type, but not from iNOS(-/-) mice. Importantly, NOD2-driven activation of the Notch1-PI3K signaling axis contributes to its capacity to impart survival of macrophages against TNF-α or IFN-γ-mediated apoptosis and resolution of inflammation. Current investigation identifies Notch1-PI3K as signaling cohorts involved in the NOD2-triggered expression of a battery of genes associated with anti-inflammatory functions. These findings serve as a paradigm to understand the pathogenesis of NOD2-associated inflammatory diseases and clearly pave a way toward development of novel therapeutics.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
100
|
Ahluwalia M, de Groot J, Liu W(M, Gladson CL. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett 2010; 298:139-49. [PMID: 20947248 PMCID: PMC3212431 DOI: 10.1016/j.canlet.2010.08.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/22/2010] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an extremely aggressive, infiltrative tumor with a poor prognosis. The regulatory approval of bevacizumab for recurrent GBM has confirmed that molecularly targeted agents have potential for GBM treatment. Preclinical data showing that SRC and SRC-family kinases (SFKs) mediate intracellular signaling pathways controlling key biologic/oncogenic processes provide a strong rationale for investigating SRC/SFK inhibitors, e.g., dasatinib, in GBM and clinical studies are underway. The activity of these agents against solid tumors suggests that they may also be useful in treating brain metastases. This article reviews the potential for using SRC/SFK inhibitors to treat GBM and brain metastases.
Collapse
Affiliation(s)
- Manmeet Ahluwalia
- Cleveland Clinic Main Campus, Mail Code ND40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-444-6145
| | - John de Groot
- The Brain Tumor Center, The University of Texas, M.D. Anderson Cancer Center, 1515, Holcombe Blvd., Unit 431, Houston, TX 77030, Phone: 713-792-7255
| | - Wei (Michael) Liu
- Lerner Research Institute, Department of Cancer Biology, Cleveland Clinic Mail Code NB40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-636-9494
| | - Candece L Gladson
- Lerner Research Institute, Department of Cancer Biology, Cleveland Clinic Mail Code NB40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-636-9493, Fax: 216-445-6269
| |
Collapse
|