51
|
Wang D, Fierke CA. The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 2013; 5:372-83. [PMID: 23446818 DOI: 10.1039/c3mt20217h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular zinc homeostasis is regulated by an extensive network of transporters, ligands and transcription factors. The zinc detoxification functions of three transporters and a periplasmic protein regulated by the BaeSR two-component system were explored in this work by evaluating the effect of single gene knockouts in the BaeSR regulon on the cell growth rate, free zinc, total zinc and total copper after zinc shock. Two exporters, MdtABC and MdtD, and the periplasmic protein, Spy, are involved in zinc detoxification based on the growth defects at high cell density and increases in free (>1000-fold) and total zinc/copper (>2-fold) that were observed in the single knockout strains upon exposure to zinc. These proteins complement the ATP-driven zinc export mediated by ZntA in E. coli to limit zinc toxicity. These results highlight the functions of the BaeSR regulon in metal homeostasis.
Collapse
Affiliation(s)
- Da Wang
- Department of Chemistry, The University of Michigan, 930 N University Ave, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
52
|
Safi S, Creff G, Jeanson A, Qi L, Basset C, Roques J, Solari PL, Simoni E, Vidaud C, Den Auwer C. Osteopontin: A Uranium Phosphorylated Binding-Site Characterization. Chemistry 2013; 19:11261-9. [DOI: 10.1002/chem.201300989] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 11/07/2022]
|
53
|
Rajarathnam K, Rösgen J. Isothermal titration calorimetry of membrane proteins - progress and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:69-77. [PMID: 23747362 DOI: 10.1016/j.bbamem.2013.05.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
Abstract
Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
54
|
Li C, Xu WC, Xie ZS, Pan K, Hu J, Chen J, Pang DW, Yang FQ, Liang Y. Cupric ions induce the oxidation and trigger the aggregation of human superoxide dismutase 1. PLoS One 2013; 8:e65287. [PMID: 23755211 PMCID: PMC3670862 DOI: 10.1371/journal.pone.0065287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/23/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neurons and copper can be a harmful pro-oxidant, we want to know whether aberrant copper biochemistry could underlie ALS pathogenesis. In this study, we have investigated and compared the effects of cupric ions on the aggregation of ALS-associated SOD1 mutant A4V and oxidized wild-type SOD1. METHODOLOGY/PRINCIPAL FINDINGS As revealed by 90° light scattering, dynamic light scattering, SDS-PAGE, and atomic force microscopy, free cupric ions in solution not only induce the oxidation of either apo A4V or Zn2-A4V and trigger the oligomerization and aggregation of oxidized A4V under copper-mediated oxidative conditions, but also trigger the aggregation of non-oxidized form of such a pathogenic mutant. As evidenced by mass spectrometry and SDS-PAGE, Cys-111 is a primary target for oxidative modification of pathological human SOD1 mutant A4V by either excess Cu(2+) or hydrogen peroxide. The results from isothermal titration calorimetry show that A4V possesses two sets of independent binding sites for Cu(2+): a moderate-affinity site (10(6) M(-1)) and a high-affinity site (10(8) M(-1)). Furthermore, Cu(2+) binds to wild-type SOD1 oxidized by hydrogen peroxide in a way similar to A4V, triggering the aggregation of such an oxidized form. CONCLUSIONS/SIGNIFICANCE We demonstrate that excess cupric ions induce the oxidation and trigger the aggregation of A4V SOD1, and suggest that Cu(2+) plays a key role in the mechanism of aggregation of both A4V and oxidized wild-type SOD1. A plausible model for how pathological SOD1 mutants aggregate in ALS-affected motor neurons with the disruption of copper homeostasis has been provided.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Chang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen-Sheng Xie
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kai Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiao Hu
- College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Fu-Quan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
55
|
Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2013; 110:2140-5. [PMID: 23341604 DOI: 10.1073/pnas.1215455110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YiiP is a dimeric Zn(2+)/H(+) antiporter from Escherichia coli belonging to the cation diffusion facilitator family. We used cryoelectron microscopy to determine a 13-Å resolution structure of a YiiP homolog from Shewanella oneidensis within a lipid bilayer in the absence of Zn(2+). Starting from the X-ray structure in the presence of Zn(2+), we used molecular dynamics flexible fitting to build a model consistent with our map. Comparison of the structures suggests a conformational change that involves pivoting of a transmembrane, four-helix bundle (M1, M2, M4, and M5) relative to the M3-M6 helix pair. Although accessibility of transport sites in the X-ray model indicates that it represents an outward-facing state, our model is consistent with an inward-facing state, suggesting that the conformational change is relevant to the alternating access mechanism for transport. Molecular dynamics simulation of YiiP in a lipid environment was used to address the feasibility of this conformational change. Association of the C-terminal domains is the same in both states, and we speculate that this association is responsible for stabilizing the dimer that, in turn, may coordinate the rearrangement of the transmembrane helices.
Collapse
|
56
|
Evidence for zinc and cadmium binding in a CDF transporter lacking the cytoplasmic domain. FEBS Lett 2012; 586:4332-8. [PMID: 23127559 DOI: 10.1016/j.febslet.2012.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022]
Abstract
Cation diffusion facilitators (CDFs) have been described as requiring the C-terminal cytoplasmic domain for their function. With the identification of smaller proteins lacking the cytoplasmic portion but displaying sequential characteristics of CDFs, this assumption should be reconsidered. Here we describe the results showing that the MmCDF3, a 23-kDa protein lacking a C-terminal domain, interacts selectively with zinc and cadmium. Isothermal titration calorimetry (ITC) binding results indicate that the truncated CDF may have an alternative means of acquiring ions from the cytoplasm in the form of an extended N-terminus, a feature common to putative cation efflux proteins of a similar size.
Collapse
|
57
|
Russell D, Kolaj-Robin O, Soulimane T. Maricaulis maris cation diffusion facilitator: Achieving homogeneity through a mixed-micelle approach. Protein Expr Purif 2012; 85:173-80. [DOI: 10.1016/j.pep.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/22/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
58
|
Wöhri AB, Hillertz P, Eriksson PO, Meuller J, Dekker N, Snijder A. Thermodynamic studies of ligand binding to the human homopentameric glycine receptor using isothermal titration calorimetry. Mol Membr Biol 2012; 30:169-83. [DOI: 10.3109/09687688.2012.696733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
59
|
Kawachi M, Kobae Y, Kogawa S, Mimura T, Krämer U, Maeshima M. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1. FEBS J 2012; 279:2339-56. [DOI: 10.1111/j.1742-4658.2012.08613.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci U S A 2012; 109:7202-7. [PMID: 22529353 DOI: 10.1073/pnas.1200362109] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.
Collapse
|
61
|
|
62
|
Abstract
Magnetotactic bacteria are microaerophilic organisms found in sediments or stratified water columns at the oxic-anoxic transition zone or the anoxic regions below. They use magnetite-filled membrane vesicles, magnetosomes, to passively align with, and actively swim along, the geomagnetic field lines in a magneto-aerotactic search for the ideal concentration of molecular oxygen. Such an efficient chemotaxis needs magnetosomes that contain nearly perfect magnetite crystals. These magnetosomes originate as invaginations of the inner membrane and the empty vesicles are aligned in a chain by an actin-like protein. Subsequently, the vesicles are filled with iron, which then is converted to magnetite crystals. Until now it was unclear how such a process might be accomplished. In this issue, Uebe et al., 2011 unveil a part of this complicated bio-mineralization process. In Magnetospirillum gryphiswaldense, MamM and MamB, two members of the cation diffusion facilitator (CDF) transport protein family, are required for magnetite formation. MamM increases the stability of MamB by forming a heterodimer. The MamBM heterodimer strongly influences the biomineralization process by controlling the size and the shape of the crystals, and even the nature of the formed iron mineral. Thus, these two CDF proteins not only transport iron, but they also control the magnetite biomineralization.
Collapse
Affiliation(s)
- Dietrich H Nies
- Inst. Microbiology, University of Halle, Kurt-Mothes-Str. 3, Halle/Saale 06099, Germany.
| |
Collapse
|
63
|
Wan Q, Ahmad MF, Fairman J, Gorzelle B, de la Fuente M, Dealwis C, Maguire ME. X-ray crystallography and isothermal titration calorimetry studies of the Salmonella zinc transporter ZntB. Structure 2011; 19:700-10. [PMID: 21565704 PMCID: PMC3094545 DOI: 10.1016/j.str.2011.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022]
Abstract
The ZntB Zn(2+) efflux system is important for maintenance of Zn(2+) homeostasis in Enterobacteria. We report crystal structures of ZntB cytoplasmic domains from Salmonella enterica serovar Typhimurium (StZntB) in dimeric and physiologically relevant homopentameric forms at 2.3 Å and 3.1 Å resolutions, respectively. The funnel-like structure is similar to that of the homologous Thermotoga maritima CorA Mg(2+) channel and a Vibrio parahaemolyticus ZntB (VpZntB) soluble domain structure. However, the central α7 helix forming the inner wall of the StZntB funnel is oriented perpendicular to the membrane instead of the marked angle seen in CorA or VpZntB. Consequently, the StZntB funnel pore is cylindrical, not tapered, which may represent an "open" form of the ZntB soluble domain. Our crystal structures and isothermal titration calorimetry data indicate that there are three Zn(2+) binding sites in the full-length ZntB, two of which could be involved in Zn(2+) transport.
Collapse
Affiliation(s)
- Qun Wan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - James Fairman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Bonnie Gorzelle
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - María de la Fuente
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Chris Dealwis
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Michael E. Maguire
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| |
Collapse
|
64
|
Costello LC, Fenselau CC, Franklin RB. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem 2011; 105:589-99. [PMID: 21440525 PMCID: PMC3081963 DOI: 10.1016/j.jinorgbio.2011.02.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
Abstract
In addition to its critical role in normal cell function, growth, and metabolism, zinc is implicated as a major factor in the development and progression of many pathological conditions and diseases. Despite this importance of zinc, many important factors, processes, and mechanisms of the physiology, biochemistry, and molecular biology of zinc remain unknown. Especially important is the unresolved issue regarding the mechanism and process of the trafficking, transport, and reactivity of zinc in cells; especially in mammalian cells. This presentation focuses on the concept that, due to the existence of a negligible pool of free Zn(2+) ions in the mammalian cell environment, the trafficking, transport and reactivity of zinc occurs via a direct exchange of zinc from donor Zn-ligands to acceptor ligands. This Zn exchange process occurs without the requirement for production of free Zn(2+) ions. The direct evidence from mammalian cell studies is presented in support of the operation of the direct Zn-ligand exchange mechanism. The paper also provides important information and conditions that should be considered and employed in the conduct of studies regarding the role and effects of zinc in biological/biomedical research; and in its clinical interpretation and application.
Collapse
Affiliation(s)
- Leslie C. Costello
- Department of Oncology and Diagnostic Sciences, Dental School; and The Greenebaum Cancer Center; University of Maryland; Baltimore, Maryland, USA 21201
| | - Catherine C. Fenselau
- Department of Chemistry and Biochemistry; University of Maryland; College Park, Maryland, USA 20742; and The Greenebaum Cancer Center; University of Maryland; Baltimore, Maryland, USA 21201
| | - Renty B. Franklin
- Department of Oncology and Diagnostic Sciences, Dental School; and The Greenebaum Cancer Center; University of Maryland; Baltimore, Maryland, USA 21201
| |
Collapse
|
65
|
Su X, Robbins TF, Aprahamian I. Switching through Coordination-Coupled Proton Transfer. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006982] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
66
|
Su X, Robbins TF, Aprahamian I. Switching through Coordination-Coupled Proton Transfer. Angew Chem Int Ed Engl 2011; 50:1841-4. [DOI: 10.1002/anie.201006982] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Indexed: 11/09/2022]
|
67
|
Kefala G, Ahn C, Krupa M, Esquivies L, Maslennikov I, Kwiatkowski W, Choe S. Structures of the OmpF porin crystallized in the presence of foscholine-12. Protein Sci 2010; 19:1117-25. [PMID: 20196071 DOI: 10.1002/pro.369] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.
Collapse
Affiliation(s)
- Georgia Kefala
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Bonar P, Casey JR. Purification of functional human Cl(-)/HCO(3)(-) exchanger, AE1, over-expressed in Saccharomyces cerevisiae. Protein Expr Purif 2010; 74:106-15. [PMID: 20609390 DOI: 10.1016/j.pep.2010.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 01/29/2023]
Abstract
There is no high-resolution structure for the membrane domain of the human erythrocyte anion exchanger, AE1 (Band 3). In this report, we have developed an expression and purification strategy for AE1 to be used in crystallization trials. Saccharomyces cerevisiae strain BJ5457 was transformed with an expression vector encoding the AE1 membrane domain (AE1MD, amino acids 388-911), fused C-terminally to an epitope tag, corresponding to the nine C-terminal amino acids of rhodopsin. The fusion protein, AE1MD-Rho, was expressed at a concentration of 0.3 mg/l of culture. Confocal immunofluorescence microscopy and sucrose gradient ultracentrifugation revealed that AE1MD-Rho did not process to the plasma membrane of S. cerevisiae, but was retained in an intracellular membrane fraction. Treatment with the endoglycosidase, PNGase F, showed that AE1MD-Rho is not N-glycosylated. AE1MD-Rho solubilized from yeast membranes, with Fos-choline detergent, was purified to 93% homogeneity in a single-step, using a 1D4 antibody affinity resin, in amounts up to 2.5 mg from 18 l of culture. The ability of purified AE1MD-Rho to transport sulfate was examined in reconstituted vesicles. The rate of sulfate efflux mediated by vesicles reconstituted with AE1MD-Rho was indistinguishable from vesicles with purified erythrocyte-source AE1. Using this purification strategy, sufficient amounts of functional, homogeneous AE1MD-Rho can be purified to enable crystallization trials.
Collapse
Affiliation(s)
- Pamela Bonar
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada T6G 2H7
| | | |
Collapse
|
69
|
Matias MG, Gomolplitinant KM, Tamang DG, Saier MH. Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators. BMC Res Notes 2010; 3:158. [PMID: 20525303 PMCID: PMC2894845 DOI: 10.1186/1756-0500-3-158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/03/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting an immune response to pathogens. Defects in a CRAC (Orai) channel in humans gives rise to the hereditary Severe Combined Immune Deficiency (SCID) syndrome. We here report results that define the evolutionary relationship of the CRAC channel proteins of animals, and the ubiquitous Cation Diffusion Facilitator (CDF) carrier proteins. FINDINGS CDF antiporters derived from a primordial 2 transmembrane spanner (TMS) hairpin structure by intragenic triplication to yield 6 TMS proteins. Four programs (IC/GAP, GGSEARCH, HMMER and SAM) were evaluated for identifying sequence similarity and establishing homology using statistical means. Overall, the order of sensitivity (similarity detection) was IC/GAP = GGSEARCH > HMMER > SAM, but the use of all four programs was superior to the use of any two or three of them. Members of the CDF family appeared to be homologous to members of the 4 TMS Orai channel proteins. CONCLUSIONS CRAC channels derived from CDF carriers by loss of the first two TMSs of the latter. Based on statistical analyses with multiple programs, TMSs 3-6 in CDF carriers are homologous to TMSs 1-4 in CRAC channels, and the former was the precursor of the latter. This is an unusual example of how a functionally and structurally more complex protein may have predated a simpler one.
Collapse
Affiliation(s)
- Madeleine G Matias
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Kenny M Gomolplitinant
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Dorjee G Tamang
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| |
Collapse
|
70
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
71
|
Lu M, Chai J, Fu D. Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 2009; 16:1063-7. [PMID: 19749753 PMCID: PMC2758918 DOI: 10.1038/nsmb.1662] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/30/2009] [Indexed: 01/28/2023]
Abstract
Zinc transporters play critical roles in cellular zinc homeostatic control. The 2.9-Å resolution structure of the zinc transporter YiiP from Escherichia coli reveals a richly charged dimer-interface stabilized by zinc binding. Site-directed fluorescent resonance energy transfer (FRET) measurements and mutation-activity analysis suggest that zinc binding triggers hinge movements of two electrically repulsive cytoplasmic domains pivoting around four salt-bridges situated at the juncture of the cytoplasmic and transmembrane domains. These highly conserved salt-bridges interlock transmembrane helices at the dimer-interface, well positioned to transmit zinc-induced inter-domain movements to reorient transmembrane helices, thereby modulating coordination geometry of the active-site for zinc transport. The cytoplasmic domain of YiiP is a structural mimic of metal trafficking proteins and the metal-binding domains of metal-transporting P-type ATPases. The use of this common structural module to regulate metal coordination chemistry may enable a tunable transport activity in response to cytoplasmic metal fluctuations.
Collapse
Affiliation(s)
- Min Lu
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | | |
Collapse
|
72
|
Scherer J, Nies DH. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 2009; 73:601-21. [PMID: 19602147 DOI: 10.1111/j.1365-2958.2009.06792.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cupriavidus metallidurans CH34 possesses a multitude of metal efflux systems. Here, the function of the novel P(IB4)-type ATPase CzcP is characterized, which belongs to the plasmid pMOL30-mediated cobalt-zinc-cadmium (Czc) resistance system. Contribution of CzcP to transition metal resistance in C. metallidurans was compared with that of three P(IB2)-type ATPases (CadA, ZntA, PrbA) and to other efflux proteins by construction and characterization of multiple deletion mutants. These data also yielded additional evidence for an export of metal cations from the periplasm to the outside of the cell rather than from the cytoplasm to the outside. Moreover, metal-sensitive Escherichia coli strains were functionally substituted in trans with CzcP and the three P(IB2)-type ATPases. Metal transport kinetics performed with inside-out vesicles identified the main substrates for these four exporters, the K(m) values and apparent turn-over numbers. In combination with the mutant data, transport kinetics indicated that CzcP functions as 'resistance enhancer': this P(IB4)-type ATPase exports transition metals Zn(2+), Cd(2+) and Co(2+) much more rapidly than the three P(IB2)-type proteins. However, a basic resistance level has to be provided by the P(IB2)-type efflux pumps because CzcP may not be able to reach all different speciations of these metals in the cytoplasm.
Collapse
Affiliation(s)
- Judith Scherer
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | | |
Collapse
|
73
|
Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem 2009; 284:17677-86. [PMID: 19366695 DOI: 10.1074/jbc.m109.007203] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vesicular zinc transporters (ZnTs) play a critical role in regulating Zn2+ homeostasis in various cellular compartments and are linked to major diseases ranging from Alzheimer disease to diabetes. Despite their importance, the intracellular localization of ZnTs poses a major challenge for establishing the mechanisms by which they function and the identity of their ion binding sites. Here, we combine fluorescence-based functional analysis and structural modeling aimed at elucidating these functional aspects. Expression of ZnT5 was followed by both accelerated removal of Zn2+ from the cytoplasm and its increased vesicular sequestration. Further, activity of this zinc transport was coupled to alkalinization of the trans-Golgi network. Finally, structural modeling of ZnT5, based on the x-ray structure of the bacterial metal transporter YiiP, identified four residues that can potentially form the zinc binding site on ZnT5. Consistent with this model, replacement of these residues, Asp599 and His451, with alanine was sufficient to block Zn2+ transport. These findings indicate, for the first time, that Zn2+ transport mediated by a mammalian ZnT is catalyzed by H+/Zn2+ exchange and identify the zinc binding site of ZnT proteins essential for zinc transport.
Collapse
Affiliation(s)
- Ehud Ohana
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
74
|
Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 2008; 96:115-39. [DOI: 10.1007/s10482-008-9284-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
75
|
Abstract
Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters, transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.
Collapse
Affiliation(s)
- Hao Xie
- Department of Biological Science and Biotechnology, Institute of Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
76
|
Wilcox DE. Isothermal titration calorimetry of metal ions binding to proteins: An overview of recent studies. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.10.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Hattori M, Tanaka Y, Ishitani R, Nureki O. Crystallization and preliminary X-ray diffraction analysis of the cytosolic domain of a cation diffusion facilitator family protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:771-3. [PMID: 17768351 PMCID: PMC2376318 DOI: 10.1107/s1744309107038948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/07/2007] [Indexed: 11/11/2022]
Abstract
The cation diffusion facilitator (CDF) family proteins are ubiquitously distributed in the three domains of life and transport metals such as zinc and various heavy metals. Prokaryotic CDF proteins consists of an N-terminal putative six-transmembrane domain followed by a C-terminal cytosolic domain. The cytosolic domain of the CDF-family protein from Thermotoga maritima has been overexpressed, purified and crystallized. The selenomethionine-substituted crystals diffracted X-rays to 2.5 A resolution using synchrotron radiation, belonged to space group R32, with unit-cell parameters a = b = 97.7, c = 83.4 A, and are expected to contain one molecule in each asymmetric unit.
Collapse
Affiliation(s)
- Motoyuki Hattori
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Yoshiki Tanaka
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Ryuichiro Ishitani
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Osamu Nureki
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
- SORST, JST, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
78
|
Abstract
YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm.
Collapse
Affiliation(s)
- Min Lu
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
79
|
Singh VK, Zhou Y, Marsh JA, Uversky VN, Forman-Kay JD, Liu J, Jia Z. Synuclein-gamma targeting peptide inhibitor that enhances sensitivity of breast cancer cells to antimicrotubule drugs. Cancer Res 2007; 67:626-33. [PMID: 17234772 DOI: 10.1158/0008-5472.can-06-1820] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synuclein-gamma (SNCG) plays oncogenic roles in breast carcinogenesis. Although the expression of SNCG is abnormally high in advanced and metastatic breast carcinomas, SNCG is not expressed in normal or benign breast tissues. SNCG is an intrinsically disordered protein known to interact with BubR1, a mitotic checkpoint kinase. The SNCG-BubR1 interaction inhibits mitotic checkpoint control upon spindle damage caused by anticancer drugs, such as nocodazole and taxol. Antimicrotubule drugs that cause mitotic arrest and subsequent apoptosis of cancer cells are frequently used to treat breast cancer patients with advanced or metastatic diseases. However, patient response rates to this class of chemotherapeutic agents vary significantly. In this study, we have designed a novel peptide (ANK) and shown its interaction with SNCG using fluorometry, surface plasmon resonance, and isothermal titration calorimetry. Binding of the ANK peptide did not induce folding of SNCG, suggesting that SNCG can function biologically in its intrinsically disordered state. Microinjection of the ANK peptide in breast cancer cell line overexpressing SNCG (MCF7-SNCG) exhibited a similar cell killing response by nocodazole as in the SNCG-negative MCF7 cells. Overexpression of enhanced green fluorescent protein-tagged ANK reduces SNCG-mediated resistance to paclitaxel treatment by approximately 3.5-fold. Our coimmunoprecipitation and colocalization results confirmed the intracellular association of the ANK peptide with SNCG. This is likely due to the disruption of the interaction of SNCG with BubR1 interaction. Our findings shed light on the molecular mechanism of the ANK peptide in releasing SNCG-mediated drug resistance.
Collapse
Affiliation(s)
- Vinay K Singh
- Department of Biochemistry, Queen's University, Kingston, Ontario, and Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
80
|
Wei Y, Fu D. Binding and Transport of Metal Ions at the Dimer Interface of the Escherichia coli Metal Transporter YiiP. J Biol Chem 2006; 281:23492-502. [PMID: 16790427 DOI: 10.1074/jbc.m602254200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YiiP is a representative member of the cation diffusion facilitator (CDF) family, a class of ubiquitous metal transporters that play an essential role in metal homeostasis. Recently, a pair of Zn2+/Cd2+-selective binding sites has been localized to two highly conserved aspartyl residues (Asp157), each in a 2-fold-symmetry-related transmembrane segment 5 (TM5) of a YiiP homodimer. Here we report the functional and structural interactions between Asp157 and yet another highly conserved Asp49 in the TM2. Calorimetric binding analysis indicated that Asp49 and Asp157 contribute to a common Cd2+ binding site in each subunit. Copper phenanthroline oxidation of YiiP(D49C), YiiP(D157C), and YiiP(D49C/D157C) yielded inter- and intra-subunit cross-links among Cys49 and Cys157, consistent with the spatial proximity of two (Asp49-Asp157) sites at the dimer interface. Hg2+ binding to YiiP(D49C) or YiiP(D49C/D157C) also yielded a Cys49-Hg2+-Cys49 biscysteinate complex across the dimer interface, further establishing the interfacial location of a (Asp49-Asp157)2 bimetal binding center. Two bound Cd2+ ions were found transported cooperatively with a sigmoidal dependence on the Cd2+ concentration (n = 1.4). The binding affinity, transport cooperativity, and rate were modestly reduced by either a D49C or D157C mutation, but greatly diminished when all the bidentate aspartate O-ligands in (Asp49-Asp157)2 were replaced by the monodentate cysteine S-ligands. The functional significance of these findings is discussed based on the unique coordination chemistry of aspartyl residues and a model for the translocation pathway of metal ions at the YiiP dimer interface.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | |
Collapse
|
81
|
Grass G. Iron Transport in Escherichia Coli: All has not been said and Done. Biometals 2006; 19:159-72. [PMID: 16718601 DOI: 10.1007/s10534-005-4341-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/24/2005] [Indexed: 11/30/2022]
Abstract
During recent years new systems involved in iron transport were identified in the old workhorse Escherichia coli (and in other enterobacteria). This came as a bit of a surprise because one might think transport of this essential trace element was already thoroughly studied. Moreover, it appears that iron homeostasis consists not only of uptake but also of efflux of this potentially toxic redox-active metal. New findings in E. coli will be discussed and compared to the situation in other bacteria.
Collapse
Affiliation(s)
- Gregor Grass
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
82
|
Silver S, Phung LT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 2005; 32:587-605. [PMID: 16133099 DOI: 10.1007/s10295-005-0019-6] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.
Collapse
Affiliation(s)
- Simon Silver
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA.
| | | |
Collapse
|
83
|
Wei Y, Fu D. Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). J Biol Chem 2005; 280:33716-24. [PMID: 16049012 DOI: 10.1074/jbc.m506107200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cation diffusion facilitators (CDF) are a ubiquitous family of metal transporters that play important roles in homeostasis of a wide range of divalent metal cations. Molecular identities of substrate-binding sites and their metal selectivity in the CDF family are thus far unknown. By using isothermal titration calorimetry and stopped-flow spectrofluorometry, we directly examined metal binding to a highly conserved aspartate in the Escherichia coli CDF transporter YiiP (FieF). A D157A mutation abolished a Cd2+-binding site and impaired the corresponding Cd2+ transport. In contrast, substitution of Asp-157 with a cysteinyl coordination residue resulted in intact Cd2+ binding as well as full transport activity. A similar correlation was found for Zn2+ binding and transport, suggesting that Asp-157 is a metal coordination residue required for binding and transport of Cd2+ and Zn2+. The location of Asp-157 was mapped topologically to the hydrophobic core of transmembrane segment 5 (TM-5) where D157C was found partially accessible to thiol-specific labeling of maleimide polyethylene-oxide biotin. Binding of Zn2+ and Cd2+, but not Fe2+, Hg2+, Co2+, Ni2+, Mn2+, Ca2+, and Mg2+, protected D157C from maleimide polyethylene-oxide biotin labeling in a concentration-dependent manner. Furthermore, isothermal titration calorimetry analysis of YiiP(D157A) showed no detectable change in Fe2+ and Hg2+ calorimetric titrations, indicating that Asp-157 is not a coordination residue for Fe2+ and Hg2+ binding. Our results provided direct evidence for selective binding of Zn2+ and Cd2+ for to the highly conserved Asp-157 and defined its functional role in metal transport.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | |
Collapse
|
84
|
Haney CJ, Grass G, Franke S, Rensing C. New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 2005; 32:215-26. [PMID: 15889311 DOI: 10.1007/s10295-005-0224-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Accepted: 03/19/2005] [Indexed: 11/28/2022]
Abstract
Cation diffusion facilitator (CDF) proteins are a phylogenetically ubiquitous family of intermembrane transporters generally believed to play a role in the homeostasis of a wide range divalent metal cations. CDFs are found in a host of membranes, including the bacterial cell membrane, the vacuolar membrane of both plants and yeast, and the golgi apparatus of animals. As such, they are potentially useful in the engineering of hyperaccumulative phytoremediation systems. While not yet sufficient for reliable biotechnological manipulation, characterization of this family is proceeding briskly. Experimental data suggests that CDFs are generally homodimers that use proton antiport to drive substrate translocation across a membrane. This translocation of both substrate and protons is likely mediated by a combination of histidines, aspartates, and glutamates. Functional data has suggested that CDFs are not limited to metal homeostasis roles, as some appear to be determinants in the operation of high-volume metal resistance systems, and others may facilitate cation-donation as a means of signal transduction. This review seeks to give an overview of the data prompting these conclusions, while presenting additional data whose interpretation is still contentious.
Collapse
Affiliation(s)
- Christopher J Haney
- Department of Soil, Water, and Environmental Science, University of Arizona, Shantz Bld number 38 Rm 424, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
85
|
Abstract
Inducible expression systems in which T7 RNA polymerase transcribes coding sequences cloned under control of a T7lac promoter efficiently produce a wide variety of proteins in Escherichia coli. Investigation of factors that affect stability, growth, and induction of T7 expression strains in shaking vessels led to the recognition that sporadic, unintended induction of expression in complex media, previously reported by others, is almost certainly caused by small amounts of lactose. Glucose prevents induction by lactose by well-studied mechanisms. Amino acids also inhibit induction by lactose during log-phase growth, and high rates of aeration inhibit induction at low lactose concentrations. These observations, and metabolic balancing of pH, allowed development of reliable non-inducing and auto-inducing media in which batch cultures grow to high densities. Expression strains grown to saturation in non-inducing media retain plasmid and remain fully viable for weeks in the refrigerator, making it easy to prepare many freezer stocks in parallel and use working stocks for an extended period. Auto-induction allows efficient screening of many clones in parallel for expression and solubility, as cultures have only to be inoculated and grown to saturation, and yields of target protein are typically several-fold higher than obtained by conventional IPTG induction. Auto-inducing media have been developed for labeling proteins with selenomethionine, 15N or 13C, and for production of target proteins by arabinose induction of T7 RNA polymerase from the pBAD promoter in BL21-AI. Selenomethionine labeling was equally efficient in the commonly used methionine auxotroph B834(DE3) (found to be metE) or the prototroph BL21(DE3).
Collapse
Affiliation(s)
- F William Studier
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
86
|
Salazar G, Craige B, Love R, Kalman D, Faundez V. Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells. J Cell Sci 2005; 118:1911-21. [PMID: 15860731 DOI: 10.1242/jcs.02319] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lumenal ionic content of an organelle is determined by its complement of channels and transporters. These proteins reach their resident organelles by adaptor-dependent mechanisms. This concept is illustrated in AP-3 deficiencies, in which synaptic vesicle zinc is depleted because the synaptic-vesicle-specific zinc transporter 3 does not reach synaptic vesicles. However, whether zinc transporter 3 is the only membrane protein defining synaptic-vesicle zinc content remains unknown. To address this question, we examined whether zinc transporter 3 and the vesicular glutamate transporter Vglut1 (a transporter that coexists with zinc transporter 3 in brain nerve terminals) were co-targeted to synaptic-like microvesicle fractions in PC12 cells. Deconvolution microscopy and subcellular fractionation demonstrated that these two transporters were present on the same vesicles in PC12 cells. Vglut1 content in synaptic-like microvesicle fractions and brain synaptic vesicles was partially sensitive to pharmacological and genetic perturbation of AP-3 function. Whole-cell flow-cytometry analysis of PC12 cell lines expressing zinc transporter 3, Vglut1 or both showed that vesicular zinc uptake was increased by Vglut1 expression. Conversely, production of zinc transporter 3 increased the vesicular uptake of glutamate in a zinc-dependent fashion. Our results suggest that the coupling of zinc transporter 3 and Vglut1 transport mechanisms regulates neurotransmitter content in secretory vesicles.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Center for Neurodegenerative Disease, and Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, Room 446, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
87
|
Ababou A, Ladbury JE. Survey of the year 2004: literature on applications of isothermal titration calorimetry. J Mol Recognit 2005; 19:79-89. [PMID: 16220545 DOI: 10.1002/jmr.750] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The market for commercially available isothermal titration calorimeters continues to grow as new applications and methodologies are developed. Concomitantly the number of users (and abusers) increases dramatically, resulting in a steady increase in the number of publications in which isothermal titration calorimetry (ITC) plays a role. In the present review, we will focus on areas where ITC is making a significant contribution and will highlight some interesting applications of the technique. This overview of papers published in 2004 also discusses current issues of interest in the development of ITC as a tool of choice in the determination of the thermodynamics of molecular recognition and interaction.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
88
|
Munkelt D, Grass G, Nies DH. The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 2004; 186:8036-43. [PMID: 15547276 PMCID: PMC529076 DOI: 10.1128/jb.186.23.8036-8043.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic sequencing of the beta-proteobacterium Wautersia (previously Ralstonia) metallidurans CH34 revealed the presence of three genes encoding proteins of the cation diffusion facilitator (CDF) family. One, CzcD, was previously found to be part of the high-level metal resistance system Czc that mediates the efflux of Co(II), Zn(II), and Cd(II) ions catalyzed by the CzcCBA cation-proton antiporter. The second CDF protein, FieF, is probably mainly a ferrous iron detoxifying protein but also mediated some resistance against other divalent metal cations such as Zn(II), Co(II), Cd(II), and Ni(II) in W. metallidurans or Escherichia coli. The third CDF protein, DmeF, showed the same substrate spectrum as FieF, but with different preferences. DmeF plays the central role in cobalt homeostasis in W. metallidurans, and a disruption of dmeF rendered the high-level metal cation resistance systems Czc and Cnr ineffective against Co(II). This is evidence for the periplasmic detoxification of substrates by RND transporters of the heavy metal efflux family subgroup.
Collapse
Affiliation(s)
- Doreen Munkelt
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | | | | |
Collapse
|
89
|
Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 2004; 183:9-18. [PMID: 15549269 DOI: 10.1007/s00203-004-0739-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 09/30/2004] [Accepted: 10/01/2004] [Indexed: 11/28/2022]
Abstract
The Escherichia coli yiiP gene encodes an iron transporter, ferrous iron efflux (FieF), which belongs to the cation diffusion facilitator family (CDF). Transcription of fieF correlated with iron concentration; however, expression appeared to be independent of the ferrous iron uptake regulator Fur. Absence of FieF led to decreased growth of E. coli cells in complex growth medium but only if fur was additionally deleted. The presence of EDTA was partially able to relieve this growth deficiency. Expression of fieF in trans rendered the double deletion strain more tolerant to iron. Furthermore, E. coli cells exhibited reduced accumulation of (55)Fe when FieF was expressed in trans. FieF catalyzed active efflux of Zn(II) in antiport with protons energized by NADH via the transmembrane pH gradient in everted membrane vesicles. Using the iron-sensitive fluorescent indicator PhenGreen-SK encapsulated in proteoliposomes, transmembrane fluxes of iron cations were measured with purified and reconstituted FieF by fluorescence quenching. This suggests that FieF is an iron and zinc efflux system, which would be the first example of iron detoxification by efflux in any organism.
Collapse
Affiliation(s)
- Gregor Grass
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, Halle 06120, Germany.
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
YiiP is a 32.9-kDa metal transporter found in the plasma membrane of Escherichia coli (Chao, Y., and Fu, D. (2004) J. Biol. Chem. 279, 17173-17180). Here we report the determination of the YiiP oligomeric state in detergent-lipid micelles and in membranes. Molecular masses of YiiP solubilized with dodecyl-, undecyl-, decyl-, or nonyl-beta-d-maltoside were measured directly using size-exclusion chromatography coupled with laser light-scattering photometry, yielding a mass distribution of YiiP homo-oligomers within a narrow range (68.0-68.8 kDa) that equals the predicted mass of a YiiP dimer within experimental error. The detergent-lipid masses associated with YiiP in the mixed micelles were found to increase from 135.5 to 232.6 kDa, with an apparent correlation with the alkyl chain length of the maltoside detergents. Cross-linking the detergent-solubilized YiiP with 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) resulted in a dimeric cross-linked product in an EDC concentration-dependent manner. The oligomeric state of the purified YiiP in reconstituted membranes was determined by electron microscopic analysis of two-dimensional YiiP crystals in negative stain. A projection structure calculated from measurable optical diffractions to 25 A revealed a pseudo-2-fold symmetry within a molecular boundary of approximately 75 x 40 A, indicative of the presence of YiiP dimers in membranes. These data provide direct structural evidence for a dimeric association of YiiP both in detergent-lipid micelles and in the reconstituted lipid bilayer. The functional relevance of the dimeric association in YiiP is discussed.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | |
Collapse
|