51
|
Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY. Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer's disease. Neurobiol Aging 2012; 34:562-75. [PMID: 22717236 DOI: 10.1016/j.neurobiolaging.2012.05.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/24/2012] [Accepted: 05/20/2012] [Indexed: 01/19/2023]
Abstract
Increasing evidence indicates that a disturbance of normal iron homeostasis and an amyloid-β (Aβ)-iron interaction may contribute to the pathology of Alzheimer's disease (AD), whereas iron chelation could be an effective therapeutic intervention. In the present study, transgenic mice expressing amyloid precursor protein (APP) and presenilin 1 and watered with high-dose iron served as a model of AD. We evaluated the effects of intranasal administration of the high-affinity iron chelator deferoxamine (DFO) on Aβ neuropathology and spatial learning and memory deficits created in this AD model. The effects of Fe, DFO, and combined treatments were also evaluated in vitro using SHSY-5Y cells overexpressing the human APP Swedish mutation. In vivo, no significant differences in the brain concentrations of iron, copper, or zinc were found among the treatment groups. We found that high-dose iron (deionized water containing 10 mg/mL FeCl(3)) administered to transgenic mice increased protein expression and phosphorylation of APP695, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory. Chelation of iron via intranasal administration of DFO (200 mg/kg once every other day for 90 days) inhibited iron-induced amyloidogenic APP processing and reversed behavioral alterations. DFO treatment reduced the expression and phosphorylation of APP protein by shifting the processing of APP to the nonamyloidogenic pathway, and the reduction was accompanied by attenuating the Aβ burden, and then significantly promoted memory retention in APP/PS1 mice. The effects of DFO on iron-induced amyloidogenic APP cleavage were further confirmed in vitro. Collectively, the present data suggest that intranasal DFO treatment may be useful in AD, and amelioration of iron homeostasis is a potential strategy for prevention and treatment of this disease.
Collapse
Affiliation(s)
- Chuang Guo
- Department of Pathophysiology, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
52
|
Bareggi SR, Cornelli U. Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther 2012; 18:41-6. [PMID: 21199452 PMCID: PMC6493473 DOI: 10.1111/j.1755-5949.2010.00231.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Clioquinol was produced as a topical antiseptic and marketed as an oral intestinal amebicide in 1934, being used to treat a wide range of intestinal diseases. In the early 1970s, it was withdrawn from the market as an oral agent because of its association with subacute myelo-optic neuropathy (SMON), a syndrome that involves sensory and motor disturbances in the lower limbs and visual changes. The first methods for determining plasma and tissue clioquinol (5-chloro-7-iodo-8-quinolinol) levels were set up in the 1970s and involved HPLC separation with UV detection, these were followed by a more sensitive GC method with electron capture detection and a gaschromatographic-massspectrometric (GC-MS) method. Finally, an HPLC method using electrochemical detection has proved to be as highly sensitive and specific as the GC-MS. In rats, mice, rabbits, and hamsters, clioquinol is rapidily absorbed and undergoes first-pass metabolization to glucuronate and sulfate conjugates; the concentrations of the metabolites are higher than those of free clioquinol. Bioavailabilty versus intraperitoneal dosing is about 12%. Dogs and monkeys form fewer conjugates. In man, single-dose concentrations are dose related, and the drug's half-life is 11-14 h. There is no accumulation, and the drug is much less metabolized to conjugates. Clioquinol acts as a zinc and copper chelator. Metal chelation is a potential therapeutic strategy for Alzheimer's disease (AD) because zinc and copper are involved in the deposition and stabilization of amyloid plaques, and chelating agents can dissolve amyloid deposits in vitro and in vivo. In general, the ability of clioquinol to chelate and redistribute metals plays an important role in diseases characterised by Zn, Cu, Fe dyshomeostasis, such as AD and Parkinson's disease, as it reduces oxidation and the amyloid burden. Zinc chelators may also act as anticancer agents. Animal toxicity studies have revealed species-specific differences in neurotoxic responses that are related to the serum levels of clioquinol and metabolites. This is also true in humans, who form fewer conjugates. The results of studies of Alzheimer patients are conflicting and need further confirmation. The potential therapeutic role of the two main effects of MPACs (the regulation of the distribution of metals and antioxidants) has not yet been fully explored.
Collapse
Affiliation(s)
- Silvio R Bareggi
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, University of Milan, Italy.
| | | |
Collapse
|
53
|
Chasseigneaux S, Allinquant B. Functions of Aβ, sAPPα and sAPPβ : similarities and differences. J Neurochem 2011; 120 Suppl 1:99-108. [PMID: 22150401 DOI: 10.1111/j.1471-4159.2011.07584.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloid peptide (Aβ) is derived from the cleavage of amyloid precursor protein (APP), which also generates the soluble peptide APPβ (sAPPβ). An antagonist and major APP metabolic pathway involves cleavage by alpha secretase, which releases sAPPα. Although soluble Aβ oligomers are neurotoxic, Aβ monomers share similar properties with sAPPα. These include neurotrophic and neuroprotective effects, as well as stimulation of neural-progenitor proliferation. The properties of Aβ monomers and the neurotrophic capacity of sAPPβ to stimulate axonal outgrowth suggest that Aβ production is not deleterious per se. Consequently, therapeutic strategies for Alzheimer's disease that are targeted at Aβ-cleaving enzymes should modulate rather than inhibit Aβ generation. These strategies should focus on the factors that induce the conversion of Aβ monomers into toxic soluble oligomers. Another interesting therapeutic approach is to focus on the mechanisms of the different properties of sAPPα. Indeed, increasing sAPPα levels could shift proliferating cells towards tumorigenesis. In contrast to its neuroprotective effects, sAPPα is also able to activate microglia, leading to neurotoxicity. Understanding the mechanisms that underlie the different properties of sAPPα could therefore lead to the development of therapeutic strategies against Alzheimer's disease, which could be curative as well as preventive.
Collapse
Affiliation(s)
- Stéphanie Chasseigneaux
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Bernadette Allinquant
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
54
|
Kaden D, Bush AI, Danzeisen R, Bayer TA, Multhaup G. Disturbed copper bioavailability in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:345614. [PMID: 22145082 PMCID: PMC3227474 DOI: 10.4061/2011/345614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 01/13/2023] Open
Abstract
Recent data from in vitro, animal, and human studies have shed new light on the positive roles of copper in many aspects of AD. Copper promotes the non-amyloidogenic processing of APP and thereby lowers the Aβ production in cell culture systems, and it increases lifetime and decreases soluble amyloid production in APP transgenic mice. In a clinical trial with Alzheimer patients, the decline of Aβ levels in CSF, which is a diagnostic marker, is diminished in the verum group (8 mg copper/day), indicating a beneficial effect of the copper treatment. These observations are in line with the benefit of treatment with compounds aimed at normalizing metal levels in the brain, such as PBT2. The data reviewed here demonstrate that there is an apparent disturbance in metal homeostasis in AD. More research is urgently needed to understand how this disturbance can be addressed therapeutically.
Collapse
Affiliation(s)
- Daniela Kaden
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
55
|
Hua H, Münter L, Harmeier A, Georgiev O, Multhaup G, Schaffner W. Toxicity of Alzheimer's disease-associated Aβ peptide is ameliorated in a Drosophila model by tight control of zinc and copper availability. Biol Chem 2011; 392:919-26. [PMID: 21801085 DOI: 10.1515/bc.2011.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Amyloid plaques consisting of aggregated Aβ peptide are a hallmark of Alzheimer's disease. Among the different forms of Aβ, the one of 42aa length (Aβ42) is most aggregation-prone and also the most neurotoxic. We find that eye-specific expression of human Aβ42 in Drosophila results in a degeneration of eye structures that progresses with age. Dietary supplements of zinc or copper ions exacerbate eye damage. Positive effects are seen with zinc/copper chelators, or with elevated expression of MTF-1, a transcription factor with a key role in metal homeostasis and detoxification, or with human or fly transgenes encoding metallothioneins, metal scavenger proteins. These results show that a tight control of zinc and copper availability can minimize cellular damage associated with Aβ42 expression.
Collapse
Affiliation(s)
- Haiqing Hua
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
56
|
Duce JA, Bush AI, Adlard PA. Role of amyloid-β–metal interactions in Alzheimer’s disease. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is an evolving field of metallobiology that has begun to describe a key role for bioavailable metals (particularly copper, zinc and iron) in the pathogenesis of Alzheimer’s disease (AD). In particular, there is an apparent failure in metal ion homeostasis, potentially caused by a pathological mislocalization of the metals in the brain, which appears to be an obligatory step in both the precipitation and potentiation of the disease. A number of both preclinical and clinical studies have also provided a strong burden of proof that normalizing metal ion homeostasis represents a valid therapeutic target, and may indeed represent the first disease-modifying strategy for AD. The role of metals in the pathophysiology of AD will be discussed in this article.
Collapse
Affiliation(s)
- James A Duce
- The Mental Health Research Institute, 155 Oak Street, Parkville, Victoria 3052, Australia
- Center for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Ashley I Bush
- The Mental Health Research Institute, 155 Oak Street, Parkville, Victoria 3052, Australia
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
57
|
Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience 2011; 189:345-58. [DOI: 10.1016/j.neuroscience.2011.03.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/06/2011] [Accepted: 03/18/2011] [Indexed: 11/20/2022]
|
58
|
Bandyopadhyay S, Huang X, Lahiri DK, Rogers JT. Novel drug targets based on metallobiology of Alzheimer's disease. Expert Opin Ther Targets 2011; 14:1177-97. [PMID: 20942746 DOI: 10.1517/14728222.2010.525352] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Increased localization of Zn, Fe, Cu and Al within the senile plaques (SP) exacerbates amyloid beta (Aβ)-mediated oxidative damage, and acts as catalyst for Aβ aggregation in Alzheimer's disease (AD). Thus, disruption of aberrant metal-peptide interactions via chelation therapy holds considerable promise as a rational therapeutic strategy against Alzheimer's amyloid pathogenesis. AREAS COVERED IN THIS REVIEW The complexities of metal-induced genesis of SP are reviewed. The recent advances in the molecular mechanism of action of metal chelating agents are discussed with critical assessment of their potential to become drugs. WHAT THE READER WILL GAIN Taking into consideration the interaction of metals with the metal-responsive elements on the Alzheimer's amyloid precursor protein (APP), readers will gain understanding of several points to bear in mind when developing a screening campaign for AD-therapeutics. TAKE HOME MESSAGE A functional iron-responsive element (IRE) RNA stem loop in the 5' untranslated region (UTR) of the APP transcript regulates neural APP translation. Desferrioxamine, clioquinol, tetrathiolmolybdate, dimercaptopropanol, VK-28, and natural antioxidants, such as curcumin and ginko biloba need critical evaluation as AD therapeutics. There is a necessity for novel screens (related to metallobiology) to identify therapeutics effective in AD.
Collapse
|
59
|
Murakami K, Shimizu T, Irie K. Formation of the 42-mer Amyloid β Radical and the Therapeutic Role of Superoxide Dismutase in Alzheimer's Disease. JOURNAL OF AMINO ACIDS 2011; 2011:654207. [PMID: 22332002 PMCID: PMC3276080 DOI: 10.4061/2011/654207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
Oxidative stress is closely involved in age-related diseases and ageing itself. There is evidence of the leading contribution of oxidative damage to neurodegenerative disease, in contrast to other diseases where oxidative stress plays a secondary role. The 42-mer amyloid β (Aβ42) peptide is thought to be a culprit in the pathogenesis of Alzheimer's disease (AD). Aβ42 aggregates form the oligomeric assembly and show neurotoxicity, causing synaptic dysfunction. Aβ42 also induces tissue oxidation (DNA/RNA, proteins, and lipids) through trace metals (Cu, Zn, and Fe), which can be protected by antioxidant enzymes, vitamin C, and vitamin E. Superoxide dismutase catalyzes the conversion of toxic superoxide radical to less reactive hydrogen peroxide, contributing to protection from AD. Here we review the involvement of oxidative stress in AD progression induced from an imbalance between the radical formation of Aβ42 itself together with unique turn structure at positions Glu22 and Asp23 and several defense systems.
Collapse
Affiliation(s)
- Kazuma Murakami
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiko Shimizu
- Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kazuhiro Irie
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
60
|
Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, Rembach A, Roberts B, Masters CL, Bush AI, Camakaris J. Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem 2010; 286:8252-8262. [PMID: 21177866 DOI: 10.1074/jbc.m110.128512] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation of the amyloid β peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid β peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells and primary cortical neurons, copper promoted a redistribution of APP from a perinuclear localization to a wider distribution, including neurites. Importantly, a change in APP localization was not attributed to an up-regulation of APP protein synthesis. Using live cell imaging and endocytosis assays, we found that copper promotes an increase in cell surface APP by increasing its exocytosis and reducing its endocytosis, respectively. This study identifies a novel mechanism by which copper regulates the localization and presumably the function of APP, which is of major significance for understanding the role of APP in copper homeostasis and the role of copper in Alzheimer disease.
Collapse
Affiliation(s)
| | - Ya Hui Hung
- the Centre for Neuroscience, and; the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | | | - Qiao-Xin Li
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; the Department of Pathology
| | - Katrina Laughton
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; the Department of Pathology
| | - Krutika Wikhe
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Alan Rembach
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; Commonwealth Scientific and Research Organization (CSIRO) Molecular and Health Technologies, Parkville, Victoria 3052, Australia
| | - Blaine Roberts
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Colin L Masters
- the Centre for Neuroscience, and; the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Ashley I Bush
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | | |
Collapse
|
61
|
Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MBH. Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 2010; 13:919-49. [PMID: 20095867 DOI: 10.1089/ars.2009.2929] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that many cytotoxic signals occurring in the neurodegenerative brain can initiate neuronal death processes, including oxidative stress, inflammation, and accumulation of iron at the sites of the neuronal deterioration. Neuroprotection by iron chelators has been widely recognized with respect to their ability to prevent hydroxyl radical formation in the Fenton reaction by sequestering redox-active iron. An additional neuroprotective mechanism of iron chelators is associated with their ability to upregulate or stabilize the transcriptional activator, hypoxia-inducible factor-1alpha (HIF-1alpha). HIF-1alpha stability within the cells is under the control of a class of iron-dependent and oxygen-sensor enzymes, HIF prolyl-4-hydroxylases (PHDs) that target HIF-1alpha for degradation. Thus, an emerging novel target for neuroprotection is associated with the HIF system to promote stabilization of HIF-1alpha and increase transcription of HIF-1-related survival genes, which have been reported to be regulated in patient's brains afflicted with diverse neurodegenerative diseases. In accordance, a new potential therapeutic strategy for neurodegenerative diseases is explored, by which iron chelators would inhibit PHDs, target the HIF-1-signaling pathway and ultimately activate HIF-1-dependent neuroprotective genes. This review discusses two interrelated approaches concerning therapy targets in neurodegeneration, sharing in common the implementation of iron chelation activity: antioxidation and HIF-1-pathway activation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | | | |
Collapse
|
62
|
Wang LM, Becker JS, Wu Q, Oliveira MF, Bozza FA, Schwager AL, Hoffman JM, Morton KA. Bioimaging of copper alterations in the aging mouse brain by autoradiography, laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry. Metallomics 2010; 2:348-53. [PMID: 21072380 DOI: 10.1039/c003875j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper may play an important role in the brain in aging and neurodegenerative diseases. We compare the active Cu uptake, Cu-containing enzyme levels, and total Cu distribution in the brains of young and aging mice. (67)Cu was administered intravenously to 2, 7-9, and 14 month old mice. Active uptake of (67)Cu in the brain was measured at 24 h by digital phosphor autoradiography. Cerebral superoxide dismutase-1 (SOD-1) and cytochrome-C oxidase subunit-1 (CCO-1) levels were analyzed by immunohistochemistry. The total Cu distribution in brain section was determined by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In aging mice, active (67)Cu uptake and SOD-1 levels were significantly decreased in the brain, whereas blood (67)Cu and CCO-1 levels were similar for all mice, irrespective of age. Paradoxically, global Cu cerebral content was increased in aged mice, suggesting that regulation of active Cu uptake by the brain may be linked to total Cu levels in an attempt to maintain Cu homeostasis. However, focal areas of both decreased Cu uptake and Cu content were noted in the striatum and ventral cortex in aging mice. These focal areas of Cu deficit correspond to the regions of greatest reduction in SOD-1 in the aged mice. In aging, dysregulated Cu homeostasis may result in decreased SOD-1 levels, which may contribute to oxidative vulnerability of the aging brain. This study illustrates the importance of a multi-modality approach in studying the biodistribution and homeostasis of Cu in the brain.
Collapse
Affiliation(s)
- Li-Ming Wang
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Dickens MG, Franz KJ. A prochelator activated by hydrogen peroxide prevents metal-induced amyloid Beta aggregation. Chembiochem 2010; 11:59-62. [PMID: 19937900 DOI: 10.1002/cbic.200900597] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
64
|
Jin H, Randazzo J, Zhang P, Kador PF. Multifunctional antioxidants for the treatment of age-related diseases. J Med Chem 2010; 53:1117-27. [PMID: 20078105 PMCID: PMC2826224 DOI: 10.1021/jm901381j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analogues of N,N-dimethyl-4-(pyrimidin-2-yl)piperazine-1-sulfonamide possessing a free radical scavenger group (FRS), chelating groups (CHL), or both (FRS + CHL) have been synthesized. Electrospray ionization mass spectrometry studies indicate that select members of this series bind ions in the relative order of Cu(1+) = Cu(2+) > Fe(2+) = Fe(3+) > Zn(2+) with no binding of Ca(2+) or Mg(2+) observed. In vitro evaluation of these compounds in human lens epithelial, human retinal pigmented epithelial, and human hippocampal astrocyte cell lines indicates that all analogues possessing the FRS group as well as the water-soluble vitamin E analogue 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid protect these cells against decreased cell viability and glutathione levels induced by hydrogen peroxide. In addition, those compounds possessing CHL groups also protected these cells against hydroxyl radicals generated by the Fenton reaction. These compounds are good candidates for the preventive treatment of cataract, age-related macular degeneration (AMD), and Alzheimer's dementia (AD).
Collapse
Affiliation(s)
- Hongxia Jin
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - James Randazzo
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - Peng Zhang
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - Peter F. Kador
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
65
|
Trampczynska A, Küpper H, Meyer-Klaucke W, Schmidt H, Clemens S. Nicotianamine forms complexes with Zn(ii)in vivo. Metallomics 2010; 2:57-66. [DOI: 10.1039/b913299f] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Matusch A, Depboylu C, Palm C, Wu B, Höglinger GU, Schäfer MKH, Becker JS. Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson's disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:161-171. [PMID: 19892565 DOI: 10.1016/j.jasms.2009.09.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/25/2009] [Accepted: 09/26/2009] [Indexed: 05/28/2023]
Abstract
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful technique for the determination of metal and nonmetal distributions within biological systems with high sensitivity. An imaging LA-ICP-MS technique for Fe, Cu, Zn, and Mn was developed to produce large series of quantitative element maps in native brain sections of mice subchronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) as a model of Parkinson's disease. Images were calibrated using matrix-matched laboratory standards. A software solution allowing a precise delineation of anatomical structures was implemented. Coronal brain sections were analyzed crossing the striatum and the substantia nigra, respectively. Animals sacrificed 2 h, 7 d, or 28 d after the last MPTP injection and controls were investigated. We observed significant decreases of Cu concentrations in the periventricular zone and the fascia dentata at 2 h and 7d and a recovery or overcompensation at 28 d, most pronounced in the rostral periventricular zone (+40%). In the cortex Cu decreased slightly to -10%. Fe increased in the interpeduncular nucleus (+40%) but not in the substantia nigra. This pattern is in line with a differential regulation of periventricular and parenchymal Cu, and with the histochemical localization of Fe, and congruent to regions of preferential MPTP binding described in the rodent brain. The LA-ICP-MS technique yielded valid and statistically robust results in the present study on 39 slices from 19 animals. Our findings underline the value of routine micro-local analytical techniques in the life sciences and affirm a role of Cu availability in Parkinson's disease.
Collapse
Affiliation(s)
- Andreas Matusch
- Institute of Neurosciences and Medicine (INM-1 and -2), Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
67
|
Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, Srinivas P, Sambamurti K, Rao KJ, Scancar J, Messori L, Zecca L, Zatta P. Challenges associated with metal chelation therapy in Alzheimer's disease. J Alzheimers Dis 2009; 17:457-68. [PMID: 19363258 DOI: 10.3233/jad-2009-1068] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A close association between brain metal dishomeostasis and the onset and/or progression of Alzheimer's disease (AD) has been clearly established in a number of studies, although the underlying biochemical mechanisms remain obscure. This observation renders chelation therapy an attractive pharmacological option for the treatment of this disease. However, a number of requirements must be fulfilled in order to adapt chelation therapy to AD so that the term "metal targeted strategies" seems now more appropriate. Indeed, brain metal redistribution rather than brain metal scavenging and removal is the major goal of this type of intervention. The most recent developments in metal targeted strategies for AD will be discussed using, as useful examples, clioquinol, curcumin, and epigallocatechin, and the future perspectives will also be outlined.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
69
|
Zhai S, Yang L, Cui QC, Sun Y, Dou QP, Yan B. Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. J Biol Inorg Chem 2009; 15:259-69. [PMID: 19809836 DOI: 10.1007/s00775-009-0594-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high-copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of the copper dependence of these events has not been elucidated experimentally. In the current study, using chemical probe molecules that mimic the structures of 8-OHQ and CQ, but have no copper-binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu and CQ-Cu mixtures and revealed that copper binding to 8-OHQ or CQ is required for transportation of the copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive, and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step-copper binding-in this chain of events mediated by 8-OHQ-Cu or CQ-Cu.
Collapse
Affiliation(s)
- Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
70
|
Overexpression of amyloid precursor protein increases copper content in HEK293 cells. Biochem Biophys Res Commun 2009; 382:740-4. [DOI: 10.1016/j.bbrc.2009.03.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022]
|
71
|
Treiber C, Quadir MA, Voigt P, Radowski M, Xu S, Munter LM, Bayer TA, Schaefer M, Haag R, Multhaup G. Cellular Copper Import by Nanocarrier Systems, Intracellular Availability, and Effects on Amyloid β Peptide Secretion. Biochemistry 2009; 48:4273-84. [DOI: 10.1021/bi900290c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carina Treiber
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Mohiuddin Abdul Quadir
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Philipp Voigt
- Molekulare Pharmakologie and Zellbiologie, Neurowissenschaftliches Forschungszentrum, Charité-Universitätsmedizin Berlin, D-14195 Berlin, Germany
| | - Michal Radowski
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Shangjie Xu
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Lisa-Marie Munter
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Universität Göttingen, Göttingen, Germany
| | - Michael Schaefer
- Molekulare Pharmakologie and Zellbiologie, Neurowissenschaftliches Forschungszentrum, Charité-Universitätsmedizin Berlin, D-14195 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Gerd Multhaup
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| |
Collapse
|
72
|
Hawkes CA, Ng V, McLaurin J. Small molecule inhibitors of Aβ-aggregation and neurotoxicity. Drug Dev Res 2009. [DOI: 10.1002/ddr.20290] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
73
|
Kitazawa M, Cheng D, Laferla FM. Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 2009; 108:1550-60. [PMID: 19183260 DOI: 10.1111/j.1471-4159.2009.05901.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excess copper exposure is thought to be linked to the development of Alzheimer's disease (AD) neuropathology. However, the mechanism by which copper affects the CNS remains unclear. To investigate the effect of chronic copper exposure on both beta-amyloid and tau pathologies, we treated young triple transgenic (3xTg-AD) mice with 250 ppm copper-containing water for a period of 3 or 9 months. Copper exposure resulted in altered amyloid precursor protein processing; increased accumulation of the amyloid precursor protein and its proteolytic product, C99 fragment, along with increased generation of amyloid-beta peptides and oligomers. These changes were found to be mediated via up-regulation of BACE1 as significant increases in BACE1 levels and deposits were detected around plaques in mice following copper exposure. Furthermore, tau pathology within hippocampal neurons was exacerbated in copper-exposed 3xTg-AD group. Increased tau phosphorylation was closely correlated with aberrant cdk5/p25 activation, suggesting a role for this kinase in the development of copper-induced tau pathology. Taken together, our data suggest that chronic copper exposure accelerates not only amyloid pathology but also tau pathology in a mouse model of AD.
Collapse
Affiliation(s)
- Masashi Kitazawa
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA.
| | | | | |
Collapse
|
74
|
Kaden D, Voigt P, Munter LM, Bobowski KD, Schaefer M, Multhaup G. Subcellular localization and dimerization of APLP1 are strikingly different from APP and APLP2. J Cell Sci 2009; 122:368-77. [PMID: 19126676 DOI: 10.1242/jcs.034058] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular association between APP and its mammalian homologs has hardly been explored. In systematically addressing this issue, we show by live cell imaging that APLP1 mainly localizes to the cell surface, whereas APP and APLP2 are mostly found in intracellular compartments. Homo- and heterotypic cis interactions of APP family members could be detected by FRET and co-immunoprecipitation analysis and occur in a modular mode. Only APLP1 formed trans interactions, supporting the argument for a putative specific role of APLP1 in cell adhesion. Deletion mutants of APP family members revealed two highly conserved regions as important for the protein crosstalk. In particular, the N-terminal half of the ectodomain was crucial for APP and APLP2 interactions. By contrast, multimerization of APLP1 was only partially dependent on this domain but strongly on the C-terminal half of the ectodomain. We further observed that coexpression of APP with APLP1 or APLP2 leads to diminished generation of Abeta42. The current data suggest that this is due to the formation of heteromeric complexes, opening the way for novel therapeutic strategies targeting these complexes.
Collapse
Affiliation(s)
- Daniela Kaden
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Bica L, Crouch PJ, Cappai R, White AR. Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer’s disease. ACTA ACUST UNITED AC 2009; 5:134-42. [DOI: 10.1039/b816577g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
77
|
Effect of copper intake on CSF parameters in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial. J Neural Transm (Vienna) 2008; 115:1651-9. [PMID: 18972062 DOI: 10.1007/s00702-008-0136-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/05/2008] [Indexed: 12/20/2022]
Abstract
A plethora of reports suggest that copper (Cu) homeostasis is disturbed in Alzheimer's disease (AD). In the present report we evaluated the efficacy of oral Cu supplementation on CSF biomarkers for AD. In a prospective, randomized, double-blind, placebo-controlled phase 2 clinical trial (12 months long) patients with mild AD received either Cu-(II)-orotate-dihydrate (verum group; 8 mg Cu daily) or placebo (placebo group). The primary outcome measures in CSF were Abeta42, Tau and Phospho-Tau. The clinical trial demonstrates that long-term oral intake of 8 mg Cu can be excluded as a risk factor for AD based on CSF biomarker analysis. Cu intake had no effect on the progression of Tau and Phospho-Tau levels in CSF. While Abeta42 levels declined by 30% in the placebo group (P = 0.001), they decreased only by 10% (P = 0.04) in the verum group. Since decreased CSF Abeta42 is a diagnostic marker for AD, this observation may indicate that Cu treatment had a positive effect on a relevant AD biomarker. Using mini-mental state examination (MMSE) and Alzheimer disease assessment scale-cognitive subscale (ADAS-cog) we have previously demonstrated that there are no Cu treatment effects on cognitive performance, however. Finally, CSF Abeta42 levels declined significantly in both groups within 12 months supporting the notion that CSF Abeta42 may be valid not only for diagnostic but also for prognostic purposes in AD.
Collapse
|
78
|
Bolognin S, Zatta P, Drago D, Parnigotto PP, Ricchelli F, Tognon G. Mutual Stimulation of Beta-Amyloid Fibrillogenesis by Clioquinol and Divalent Metals. Neuromolecular Med 2008; 10:322-32. [DOI: 10.1007/s12017-008-8046-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/30/2008] [Indexed: 01/06/2023]
|
79
|
Kessler H, Bayer TA, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, Haber M, Multhaup G, Falkai P, Pajonk FG. Intake of copper has no effect on cognition in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial. J Neural Transm (Vienna) 2008; 115:1181-7. [PMID: 18587525 PMCID: PMC2516533 DOI: 10.1007/s00702-008-0080-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/05/2008] [Indexed: 01/21/2023]
Abstract
Disturbed copper (Cu) homeostasis may be associated with the pathological processes in Alzheimer's disease (AD). In the present report, we evaluated the efficacy of oral Cu supplementation in the treatment of AD in a prospective, randomized, double-blind, placebo-controlled phase 2 clinical trial in patients with mild AD for 12 months. Sixty-eight subjects were randomized. The treatment was well-tolerated. There were however no significant differences in primary outcome measures (Alzheimer's Disease Assessment Scale, Cognitive subscale, Mini Mental Status Examination) between the verum [Cu-(II)-orotate-dihydrate; 8 mg Cu daily] and the placebo group. Despite a number of findings supporting the hypothesis of environmental Cu modulating AD, our results demonstrate that oral Cu intake has neither a detrimental nor a promoting effect on the progression of AD.
Collapse
Affiliation(s)
- Holger Kessler
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Leary SC, Winge DR, Cobine PA. "Pulling the plug" on cellular copper: the role of mitochondria in copper export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:146-53. [PMID: 18522804 DOI: 10.1016/j.bbamcr.2008.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
Mitochondria contain two enzymes, Cu,Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondrial copper handling with other, extramitochondrial copper trafficking pathways. The recent finding that mitochondrial proteins with established roles in CcO assembly can also effect changes in cellular copper levels by modulating copper efflux from the cell supports a mechanistic link between organellar and cellular copper metabolism. However, the proteins and molecular mechanisms that link trafficking of copper to and from the organelle with other cellular copper trafficking pathways are unknown. This review documents our current understanding of copper trafficking to, and within, the mitochondrion for metallation of CcO and Sod1; the pathways by which the two copper centers in CcO are formed; and, the interconnections between mitochondrial function and the regulation of cellular copper homeostasis.
Collapse
Affiliation(s)
- Scot C Leary
- Montreal Neurological Institute and McGill University, Montreal, Canada H3A 2B4.
| | | | | |
Collapse
|
81
|
Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR. Insights into Zn2+homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 2008; 294:C726-42. [DOI: 10.1152/ajpcell.00541.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the mechanisms of neuronal Zn2+homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein,65Zn2+uptake and release, and intracellular free Zn2+levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+transients and total Zn2+content observed under these conditions. Only a model that incorporated a muffler with high affinity for Zn2+, trafficking Zn2+to intracellular storage sites, was able to reproduce the experimental results, both qualitatively and quantitatively. This “muffler model” estimated the resting intracellular free Zn2+concentration to be 1.07 nM. If metallothionein were to function as the exclusive cytosolic Zn2+muffler, the muffler model predicts that the cellular concentration required to match experimental data is greater than the measured resting concentration of metallothionein. Thus Zn2+buffering in resting cultured neurons requires additional high-affinity cytosolic metal binding moieties. Added CQ, as low as 1 μM, was shown to selectively increase Zn2+influx. Simulations reproduced these data by modeling CQ as an ionophore. We conclude that maintenance of neuronal Zn2+homeostasis, when challenged with Zn2+loads, relies heavily on the function of a high-affinity muffler, the characteristics of which can be effectively studied with computational models.
Collapse
|
82
|
Price KA, Filiz G, Caragounis A, Du T, Laughton KM, Masters CL, Sharples RA, Hill AF, Li QX, Donnelly PS, Barnham KJ, Crouch PJ, White AR. Activation of epidermal growth factor receptor by metal-ligand complexes decreases levels of extracellular amyloid beta peptide. Int J Biochem Cell Biol 2008; 40:1901-17. [DOI: 10.1016/j.biocel.2008.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/24/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
83
|
Clioquinol inhibits peroxide-mediated toxicity through up-regulation of phosphoinositol-3-kinase and inhibition of p53 activity. Int J Biochem Cell Biol 2008; 40:1030-42. [DOI: 10.1016/j.biocel.2007.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 01/22/2023]
|
84
|
Abstract
Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain
| |
Collapse
|
85
|
Affiliation(s)
- Lawrence M. Sayre
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - George Perry
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Mark A. Smith
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
86
|
Copper binding to the Alzheimer's disease amyloid precursor protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:269-79. [PMID: 18030462 PMCID: PMC2921068 DOI: 10.1007/s00249-007-0234-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in Aβ production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer’s disease.
Collapse
|
87
|
Macreadie IG. Copper transport and Alzheimer's disease. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:295-300. [PMID: 18004558 DOI: 10.1007/s00249-007-0235-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 12/01/2022]
Abstract
This brief review discusses copper transport in humans, with an emphasis on knowledge learned from one of the simplest model organisms, yeast. There is a further focus on copper transport in Alzheimer's Disease (AD). Copper homeostasis is essential for the well-being of all organisms, from bacteria to yeast to humans: survival depends on maintaining the required supply of copper for the many enzymes, dependent on copper for activity, while ensuring that there is no excess free copper, which would cause toxicity. A virtual orchestra of proteins are required to achieve copper homeostasis. For copper uptake, Cu(II) is first reduced to Cu(I) via a membrane-bound reductase. The reduced copper can then be internalised by a copper transporter where it is transferred to copper chaperones for transport and specific delivery to various organelles. Of significance are internal copper transporters, ATP7A and ATP7B, notable for their role in disorders of copper deficiency and toxicity, Menkes and Wilson's disease, respectively. Metallothioneins and Cu/Zn superoxide dismutase can protect against excess copper in cells. It is clear too, increasing age, environmental and lifestyle factors impact on brain copper. Studies on AD suggest an important role for copper in the brain, with some AD therapies focusing on mobilising copper in AD brains. The transport of copper into the brain is complex and involves numerous players, including amyloid precursor protein, A beta peptide and cholesterol.
Collapse
Affiliation(s)
- Ian G Macreadie
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
88
|
Caragounis A, Du T, Filiz G, Laughton K, Volitakis I, Sharples R, Cherny R, Masters C, Drew S, Hill A, Li QX, Crouch P, Barnham K, White A. Differential modulation of Alzheimer's disease amyloid beta-peptide accumulation by diverse classes of metal ligands. Biochem J 2007; 407:435-50. [PMID: 17680773 PMCID: PMC2275059 DOI: 10.1042/bj20070579] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biometals have an important role in AD (Alzheimer's disease) and metal ligands have been investigated as potential therapeutic agents for treatment of AD. In recent studies the 8HQ (8-hydroxyquinoline) derivative CQ (clioquinol) has shown promising results in animal models and small clinical trials; however, the actual mode of action in vivo is still being investigated. We previously reported that CQ-metal complexes up-regulated MMP (matrix metalloprotease) activity in vitro by activating PI3K (phosphoinositide 3-kinase) and JNK (c-jun N-terminal kinase), and that the increased MMP activity resulted in enhanced degradation of secreted Abeta (amyloid beta) peptide. In the present study, we have further investigated the biochemical mechanisms by which metal ligands affect Abeta metabolism. To achieve this, we measured the effects of diverse metal ligands on cellular metal uptake and secreted Abeta levels in cell culture. We report that different classes of metal ligands including 8HQ and phenanthroline derivatives and the sulfur compound PDTC (pyrrolidine dithiocarbamate) elevated cellular metal levels (copper and zinc), and resulted in substantial loss of secreted Abeta. Generally, the ability to inhibit Abeta levels correlated with a higher lipid solubility of the ligands and their capacity to increase metal uptake. However, we also identified several ligands that potently inhibited Abeta levels while only inducing minimal change to cellular metal levels. Metal ligands that inhibited Abeta levels [e.g. CQ, 8HQ, NC (neocuproine), 1,10-phenanthroline and PDTC] induced metal-dependent activation of PI3K and JNK, resulting in JNK-mediated up-regulation of metalloprotease activity and subsequent loss of secreted Abeta. The findings in the present study show that diverse metal ligands with high lipid solubility can elevate cellular metal levels resulting in metalloprotease-dependent inhibition of Abeta. Given that a structurally diverse array of ligands was assessed, the results are consistent with the effects being due to metal transport rather than the chelating ligand interacting directly with a receptor.
Collapse
Affiliation(s)
- Aphrodite Caragounis
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Tai Du
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Gulay Filiz
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Katrina M. Laughton
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Irene Volitakis
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Robyn A. Sharples
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
- ∥Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010, Australia
| | - Robert A. Cherny
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Colin L. Masters
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Simon C. Drew
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
| | - Andrew F. Hill
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
- ∥Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010, Australia
| | - Qiao-Xin Li
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Peter J. Crouch
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Kevin J. Barnham
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
| | - Anthony R. White
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
89
|
Du T, Filiz G, Caragounis A, Crouch PJ, White AR. Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages. J Pharmacol Exp Ther 2007; 324:360-7. [PMID: 17940196 DOI: 10.1124/jpet.107.130377] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Copper has an important role in cancer growth, angiogenesis, and metastasis. Previous studies have shown that cell-permeable metal ligands, including clioquinol (CQ) and pyrrolidine dithiocarbamate, inhibit cancer cell growth in cell culture and in vivo. The mechanism of action has not been fully determined but may involve metal-mediated inhibition of cancer cell proteasome activity. However, these studies do not fully account for the ability of cell-permeable metal ligands to inhibit cancer cell growth without affecting normal cells. In this study, we examined the effect of CQ on macrophage-mediated inhibition of HeLa cancer cell growth in vitro. When CQ was added to RAW 264.7 macrophage-HeLa cell cocultures, a substantial increase in HeLa cell toxicity was observed compared with CQ treatment of HeLa cells cultured alone. Transfer of conditioned medium from CQ-treated macrophages to HeLa cells also induced HeLa cell toxicity, demonstrating the role of secreted factors in the macrophage-mediated effect. Further investigation revealed that CQ induced copper-dependent activation of macrophages and release of tumor necrosis factor (TNF) alpha. In studies with recombinant TNFalpha, we showed that the level of TNFalpha released by CQ-treated macrophages was sufficient to induce HeLa cell toxicity. Moreover, the toxic effect of conditioned medium from CQ-treated macrophages could be prevented by addition of neutralizing antibodies to TNFalpha. These studies demonstrate that CQ can induce cancer cell toxicity through metal-dependent release of TNFalpha from macrophages. Our results may help to explain the targeted inhibition of tumor growth in vivo by CQ.
Collapse
Affiliation(s)
- Tai Du
- Centre for Neuroscience and Department of Pathology, University of Melbourne, Victoria, Australia 3010.
| | | | | | | | | |
Collapse
|
90
|
Stoltenberg M, Bush AI, Bach G, Smidt K, Larsen A, Rungby J, Lund S, Doering P, Danscher G. Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 2007; 150:357-69. [PMID: 17949919 DOI: 10.1016/j.neuroscience.2007.09.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/20/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
The ZnT3 zinc transporter is uniquely expressed in cortical glutamatergic synapses where it organizes zinc release into the synaptic cleft and mediates beta-amyloid deposition in transgenic mice. We studied the association of zinc in plaques in relation to cytoarchitectural zinc localization in the APP/PS1 transgenic mouse model of Alzheimer's disease. The effects of low dietary zinc for 3 months upon brain pathology were also studied. We determined that synaptic zinc distribution within cortical layers is paralleled by amyloid burden, which is heaviest for both in layers 2-3 and 5. ZnT3 immunoreactivity is prominent in dystrophic neurites within amyloid plaques. Low dietary zinc caused a significant 25% increase in total plaque volume in Alzheimer's mice using stereological measures. The level of oxidized proteins in brain tissue did not changed in animals on a zinc-deficient diet compared with controls. No obvious changes were observed in the autometallographic pattern of zinc-enriched terminals in the neocortex or in the expression levels of zinc transporters, zinc importers or metallothioneins. A small decrease in plasma zinc induced by the low-zinc diet was consistent with the subclinical zinc deficiency that is common in older human populations. While the mechanism remains uncertain, our findings indicate that subclinical zinc deficiency may be a risk factor for Alzheimer's pathology.
Collapse
Affiliation(s)
- M Stoltenberg
- Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Cappai R, Barnham KJ. Molecular determinants of Alzheimer’s disease Aβ peptide neurotoxicity. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Alzheimer’s disease amyloid precursor protein is sequentially processed to yield the neurotoxic amyloid-β (Aβ) peptide, which is the principal component of the senile plaques in Alzheimer’s disease brains. This review will outline the current thinking on how Aβ mediates neurotoxicity or neuronal dysfunction. In particular, this article will focus on the key residues that modulate Aβ’s activity and the cellular pathways and mechanisms involved. It will detail how Aβ–metal interactions are a key determinate in Alzheimer’s disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Cappai
- The University of Melbourne, Department of Pathology, Bio21 Molecular Science & Biotechnology Institute, Victoria, 3010, Australia, and, The Mental Health Research Institute of Victoria, Parkville, Victoria, 3052, Australia
| | - Kevin J Barnham
- The University of Melbourne, Department of Pathology, Bio21 Molecular Science & Biotechnology Institute, Victoria, 3010, Australia, and, The Mental Health Research Institute of Victoria, Parkville, Victoria, 3052, Australia
| |
Collapse
|
92
|
Zatta P, Frank A. Copper deficiency and neurological disorders in man and animals. ACTA ACUST UNITED AC 2007; 54:19-33. [PMID: 17270275 DOI: 10.1016/j.brainresrev.2006.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/29/2022]
Abstract
Copper metabolism in the brain is far from being completely understood and further studies are needed on the role of copper in the CNS, starting with careful measurements, metal and biological speciation of metabolites on the molecular level, and combining copper concentration in different brain areas with morphological as well as biochemical alteration after Cu-depletion/deficiency. So far a pathological role for copper has been clearly demonstrated in some human genetic diseases (e.g., Menkes' and Wilson's diseases), but other pathological features connected with metal depletion are under investigation in several laboratories. The metabolic interaction between copper and other metal ions in some neurological disorders is also discussed in this contribution.
Collapse
Affiliation(s)
- Paolo Zatta
- CNR-Institute for Biomedical Technologies, Department of Biology, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
93
|
Kong GKW, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW. Structural Studies of the Alzheimer’s Amyloid Precursor Protein Copper-binding Domain Reveal How it Binds Copper Ions. J Mol Biol 2007; 367:148-61. [PMID: 17239395 DOI: 10.1016/j.jmb.2006.12.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the major cause of dementia. Amyloid beta peptide (Abeta), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces Abeta levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu(2+)-bound CuBD reveals that the metal ligands are His147, His151, Tyr168 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu(+)-bound CuBD is almost identical to the Cu(2+)-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu(+), thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.
Collapse
Affiliation(s)
- Geoffrey K-W Kong
- Biota Structural Biology Laboratory, St. Vincent's Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Currently, there are no disease-modifying therapies available for Alzheimer's disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets. The metabolism of the amyloid-precursor protein and the aggregation of its Abeta fragment are the focus of current studies. Abeta peptides are produced by the enzymes beta- and gamma-secretase. Inhibition of gamma-secretase has been shown to reduce Abeta production. However, gamma-secretase activity is also involved in other vital physiological pathways. Involvement of gamma-secretase in cell differentiation may preclude complete blockade of gamma-secretase for prolonged times in vivo. Inhibition of beta-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting beta-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Abeta sequence such as alpha-secretase and neprilysin. Stimulation of the expression or activity of alpha-secretase or neprilysin has been shown to enhance Abeta degradation. Furthermore, inhibitors of Abeta aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-gamma agonists and selected NSAIDs may be suitable to modulate both Abeta production and inflammatory activation. On the basis of autopsy reports, active immunisation against Abeta in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Abeta peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
95
|
Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro JP. Stoichiometry and conditional stability constants of Cu(II) or Zn(II) clioquinol complexes; implications for Alzheimer's and Huntington's disease therapy. Neurotoxicology 2007; 28:445-9. [PMID: 17382398 DOI: 10.1016/j.neuro.2007.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 02/04/2007] [Accepted: 02/05/2007] [Indexed: 11/21/2022]
Abstract
Successful trials with 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ) for Alzheimer's disease treatment prompted renewed interest in assessing whether its therapeutic action is related to the coordination of neurotoxic trace metals, such as Cu(II) and Zn(II). We now report conditional stability constants (K(C')) for CQ Cu(II) and Zn(II) complexes measured in a biological buffer containing Ca(II) and Mg(II) ions. UV-vis spectroscopy and polarography evidenced a 1:2 stoichiometry of Cu(II) and Zn(II) CQ complexes; the K(C')s calculated were: Cu(CQ)(2) 1.2x10(10), and Zn(CQ)(2) 7.0x10(8)M(-2); the CQ affinity for Cu(II) is at least an order of magnitude higher than for Zn(II). To test the possible functional relevance of the Cu(II) CQ complexes in the brain, we bioassayed free Cu(II) concentration by the metal-induced inhibition of ATP-gated currents of the P2X(4) receptor, a predominant brain P2X receptor. CQ reduced concentration-dependently the Cu(II) inhibition of the ATP-gated currents. In view that the stability constant of CQ for Zn(II) is similar to that of Abeta-amyloid for Zn(II), and the fact that CQ may form complexes with Cu(II), even in the presence of competing ions, the present results highlight that the formation of Cu(II) CQ complexes in the brain may act by diminishing free Cu(II) concentrations modifying thereby brain excitability, or favoring the degradation of beta-amyloid plaques or huntingtin, rather than through a specific effect of CQ itself.
Collapse
Affiliation(s)
- Evandro Ferrada
- Centro de Regulación Celular y Patología, Prof. J.V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento Fisiología, Facultad de Ciencias Biológicas y, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
96
|
Treiber C, Pipkorn R, Weise C, Holland G, Multhaup G. Copper is required for prion protein-associated superoxide dismutase-l activity in Pichia pastoris. FEBS J 2007; 274:1304-11. [PMID: 17263729 DOI: 10.1111/j.1742-4658.2007.05678.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prion protein (PrP) is the key protein implicated in transmissible spongiform encephalopathies. It is a metalloprotein that binds manganese and copper. The latter is involved in the physiological function of the protein. We have previously found that PrP expression in Pichia pastoris affects intracellular metal ion concentrations and that formation of protease-resistant PrP is induced by additional copper and/or manganese. In this study, we show that heterologously expressed PrP is post-translationally modified and transported to the cell wall. We found by combining three different test systems that PrP itself had gained superoxide dismutase-like activity in P. pastoris. However, this activity could not be inhibited by KCN and depended on additional copper in the medium. Thus, this study defines the conditions under which PrP exhibits superoxide dismutase-like activity by showing that copper must be present for the protein to participate in scavenging and detoxification of reactive oxygen species.
Collapse
Affiliation(s)
- Carina Treiber
- Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, Thielallee 63, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
97
|
Schäfer S, Pajonk FG, Multhaup G, Bayer TA. Copper and clioquinol treatment in young APP transgenic and wild-type mice: effects on life expectancy, body weight, and metal-ion levels. J Mol Med (Berl) 2007; 85:405-13. [PMID: 17211610 DOI: 10.1007/s00109-006-0140-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/25/2006] [Accepted: 11/08/2006] [Indexed: 11/29/2022]
Abstract
There is mounting evidence that the amyloid precursor protein (APP), the key protein in Alzheimer's disease (AD) is involved in the copper (Cu) homeostasis in the brain. Conflicting results about the potential use of dietary Cu and clioquinol (CQ), a known Cu chelator, have been reported using APP transgenic mice. Previously, in vitro studies have demonstrated that CQ can act as a Cu transporter. To analyze the potential function of CQ as a Cu transporter in vivo, the nutritional effect of Cu and CQ was analyzed in young APP transgenic mice and nontransgenics with food pellets containing either Cu, CQ, Cu plus CQ (Cu + CQ), or without addition of supplements (control). The offspring were fed with corresponding food pellets until the age of 14 weeks. We observed an increased lethality of APP transgenics upon CQ treatment, which could be rescued by a co-treatment with Cu. The exposure of Cu + CQ led to a modest but significant increase in cerebral Cu levels, most likely due to an enhanced transport of CQ-Cu complexes. In CQ or Cu + CQ treatment groups, the plasma levels of Cu, zinc, and iron were reduced in all animals; moreover, Cu treatment alone reduced only plasma iron levels. We conclude not only that CQ has certain toxicity but also that the chelating effect, perhaps, plays a secondary role with respect to its properties as an intracellular Cu transporter, thus, counteracting the supposed therapeutic effects of CQ as an agent for chelating therapy in AD.
Collapse
Affiliation(s)
- Stephanie Schäfer
- Department of Psychiatry, Division of Neurobiology, Saarland University, Homburg, Germany
| | | | | | | |
Collapse
|
98
|
Abstract
AbstractWe appear to be on the brink of a new epoch of treatment for Alzheimer's disease. Compelling evidence suggests that Aβ42 secretion is the triggering event in the pathogenesis of Alzheimer's disease, and that tau aggregation may be an important secondary event linked to neurodegeneration. Prophylactic administration of anti-amyloid agents designed to prevent Aβ accumulation in persons with subclinical disease is likely to be more effective than therapeutic interventions in established Alzheimer's disease. Drug development programs in Alzheimer's disease focus primarily on agents with anti-amyloid disease-modifying properties, and many different pharmacologic approaches to reducing amyloid pathology and tauopathy are being studied. Classes of therapeutic modalities currently in advanced-stage clinical trial testing include forms of immunotherapy (activeβ-amyloid immunoconjugate and human intravenous immunoglobulin), a γ-secretase inhibitor, the selective Aβ42-lowering agent R-flurbiprofen, and the anti-aggregation agent tramiprosate. Non-traditional dementia therapies such as the HMG-CoA reductase inhibitors (statins), valproate, and lithium are now being assessed for clinical benefit as anti-amyloid disease-modifying treatments. Positive findings of efficacy and safety from clinical studies are necessary but not sufficient to demonstrate that a drug has disease-modifying properties. Definitive proof of disease-modification requires evidence from validated animal models of Alzheimer's disease; rigorously controlled clinical trials showing a significantly improved, stabilized, or slowed rate of decline in cognitive and global function compared to placebo; and prospectively obtained evidence from surrogate biomarkers that the treatment resulted in measurable biological changes associated with the underlying disease process.
Collapse
|
99
|
Treiber C, Simons A, Multhaup G. Effect of copper and manganese on the de novo generation of protease-resistant prion protein in yeast cells. Biochemistry 2006; 45:6674-80. [PMID: 16716078 DOI: 10.1021/bi060244h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prion protein (PrP) is the key protein implicated in diseases known as transmissible spongiform encephalopathies. PrP has been shown to bind manganese and copper, the latter being involved in the normal function of the protein. Indeed, upon expression in yeast we noted a major increase in intracellular copper and a decrease in manganese. Interestingly, protease-resistant PrP(Sc)-like protein (PrP(res)) formation was induced when PrP-expressing yeast cells were grown in copper- and/or manganese-supplemented media. The pattern of PrP banding in SDS-PAGE was dominantly determined by manganese. This conformational transition was stable against EDTA treatment but not in the presence of the copper chelators bathocuproinedisulfonic acid or clioquinol. Conclusively, PrP itself influences manganese and copper metabolism, and a replacement of copper in PrP complexes with manganese is highly likely under the condition of copper depletion or if excess amounts of copper and manganese are present. Taken together, our present study demonstrates the involvement of PrP in the regulation of intracellular metal ion homeostasis and uncovers copper and, more severely, manganese ions as in vivo risk factors for the conversion into PrP(Sc).
Collapse
Affiliation(s)
- Carina Treiber
- Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, Thielallee 63, D-14195 Berlin, Germany
| | | | | |
Collapse
|
100
|
Kessler H, Pajonk FG, Meisser P, Schneider-Axmann T, Hoffmann KH, Supprian T, Herrmann W, Obeid R, Multhaup G, Falkai P, Bayer TA. Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease. J Neural Transm (Vienna) 2006; 113:1763-9. [PMID: 16736242 DOI: 10.1007/s00702-006-0485-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 01/31/2006] [Indexed: 11/28/2022]
Abstract
Increasing evidence links Alzheimer's disease (AD) with misbalanced Cu homeostasis. Recently, we have shown that dietary Cu supplementation in a transgenic mouse model for AD increases bioavailable brain Cu levels, restores Cu, Zn-super oxide-1 activity, prevents premature death, and lowers A beta levels. In the present report we investigated AD patients with normal levels of A beta 42, Tau and Phospho-Tau in the cerebrospinal fluid (CSF) in comparison with AD patients exhibiting aberrant levels in these CSF biomarkers. The influence of these cerebrospinal fluid (CSF) diagnostic markers with primary dependent variables blood Cu, Zn and ceruloplasmin (CB) and secondary with CSF profiles of Cu, Zn and neurotransmitters was determined. Multivariate tests revealed a significant effect of factor diagnostic group (no AD diagnosis in CSF or AD diagnosis in CSF) for variables plasma Cu and CB (F=4.80; df=2, 23; p=0.018). Subsequent univariate tests revealed significantly reduced plasma Cu (-12.7%; F=7.05; df=1, 25; p=0.014) and CB (-14.1%; F=9.44; df=1, 24; p=0.005) levels in patients with aberrant CSF biomarker concentrations. Although only AD patients were included, the reduced plasma Cu and CB levels in patients with a CSF diagnosis of advanced AD supports previous observations that a mild Cu deficiency might contribute to AD progression.
Collapse
Affiliation(s)
- H Kessler
- Department of Psychiatry and Psychotherapy, Saarland University, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|