51
|
Li H, Li HF, Felder RA, Periasamy A, Jose PA. Rab4 and Rab11 coordinately regulate the recycling of angiotensin II type I receptor as demonstrated by fluorescence resonance energy transfer microscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:031206. [PMID: 18601530 PMCID: PMC3731076 DOI: 10.1117/1.2943286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The recycling of G-protein-coupled receptors (GPCR) to the cell surface after internalization plays an important role in the regulation of overall GPCR activity. The angiotensin II type I receptor (AT1R) belongs to class B GPCRs that recycle slowly back to the cell surface. Previous studies have proposed that Rab11 controls the recycling of AT1R; however, recent reports show that Rab4, a rapid recycling regulator, co-localizes also with internalized AT1R. Different from the subcellular co-localization provided by fluorescence microscopy, fluorescence resonance energy transfer (FRET) microscopy provided the spatial relationship of AT1R with Rab4 and Rab11 in the nanometer-range proximity during the entire course of AT1R recycling. During the early recycling stage, internalized AT1Rs were mainly associated with Rab4 in the cytoplasm. During the mid-recycling stage, AT1Rs were associated with both Rab4 and Rab11 in the perinuclear compartments. However, during the late-recycling stage, AT1Rs were mainly associated with Rab11, both in the perinuclear compartments and the plasma membrane. Co-immunoprecipitation data confirmed these dynamic associations, which were disrupted by silencing of either the Rab4 or Rab11 gene. Based on these observations, we propose a Rab4 and Rab11 coordinated model for AT1R recycling.
Collapse
Affiliation(s)
- Hewang Li
- Georgetown University Medical Center, Department of Pediatrics, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
52
|
Nakahata N. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 2008; 118:18-35. [PMID: 18374420 DOI: 10.1016/j.pharmthera.2008.01.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/02/2008] [Indexed: 12/22/2022]
Abstract
Thromboxane A(2) (TXA(2)), an unstable arachidonic acid metabolite, elicits diverse physiological/pathophysiological actions, including platelet aggregation and smooth muscle contraction. TXA(2) has been shown to be involved in allergies, modulation of acquired immunity, atherogenesis, neovascularization, and metastasis of cancer cells. The TXA(2) receptor (TP) communicates mainly with G(q) and G(13), resulting in phospholipase C activation and RhoGEF activation, respectively. In addition, TP couples with G(11), G(12), G(13), G(14), G(15), G(16), G(i), G(s) and G(h). TP is widely distributed in the body, and is expressed at high levels in thymus and spleen. The second extracellular loop of TP is an important ligand-binding site, and Asp(193) is a key amino acid. There are two alternatively spliced isoforms of TP, TPalpha and TPbeta, which differ only in their C-terminals. TPalpha and TPbeta communicate with different G proteins, and undergo hetero-dimerization, resulting in changes in intracellular traffic and receptor protein conformations. TP cross-talks with receptor tyrosine kinases, such as EGF receptor, to induce cell proliferation and differentiation. TP is glycosylated in the N-terminal region for recruitment to plasma membranes. Furthermore, TP conformation is changed by coupling to G proteins, showing several states of agonist binding. Finally, several drugs modify TP-mediated events; these include cyclooxygenase inhibitors, TXA(2) synthase inhibitors and TP antagonists. Some flavonoids of natural origin also have TP receptor antagonistic activity. Recent advances in TP research have clarified TXA(2)-mediated events in detail, and further study will supply more beneficial information about TXA(2) pathophysiology.
Collapse
Affiliation(s)
- Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-0815, Japan
| |
Collapse
|
53
|
Laroche G, Giguère PM, Dupré E, Dupuis G, Parent JL. The N-terminal coiled-coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with Galphaq. Mol Cell Biochem 2007; 306:141-52. [PMID: 17846866 DOI: 10.1007/s11010-007-9564-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 01/06/2023]
Abstract
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Galphaq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO. Here, we report that Galphaq can directly interact with cytohesin-1, another Arf-GEF of the ARNO/cytohesin family. Cytohesin-1 preferentially associated with a constitutively active mutant of Galphaq (Galphaq-Q209L) compared to wild-type Galphaq in HEK293 cells. Stimulation of TPbeta, a Galphaq-coupled receptor, to activate Galphaq resulted in the promotion of a protein complex between Galphaq and cytohesin-1. Confocal immunofluorescence microscopy revealed that wild-type Galphaq and cytohesin-1 co-localized in intracellular compartments and at or near the plasma membrane. In contrast, expression of Galphaq-Q209L induced a drastic increase in the localization of cytohesin-1 at the plasma membrane. Expression of a dominant-negative mutant of cytohesin-1 reduced by 40% the agonist-induced internalization of TPbeta, a process that we previously demonstrated to be dependent on Galphaq-mediated signaling and Arf6 activation. Using deletion mutants, we show that cytohesin-1 interacts with Galphaq through its N-terminal coiled-coil domain. Cytohesin-1 and cytohesin-2/ARNO mutants lacking the coiled-coil domain were unable to relay Galphaq-mediated activation of Arf6. This is the first report of an interaction between the coiled-coil domain of the cytohesin/ARNO family of Arf-GEFs and a member of the heterotrimeric G proteins.
Collapse
Affiliation(s)
- Geneviève Laroche
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, Centre de Recherche Clinique Etienne-Lebel, University of Sherbrooke, 3001, 12th Avenue North, J1H 5N4 Fleurimont, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
54
|
Giguère P, Turcotte ME, Hamelin E, Parent A, Brisson J, Laroche G, Labrecque P, Dupuis G, Parent JL. Peroxiredoxin-4 interacts with and regulates the thromboxane A(2) receptor. FEBS Lett 2007; 581:3863-8. [PMID: 17644091 DOI: 10.1016/j.febslet.2007.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/06/2007] [Accepted: 07/03/2007] [Indexed: 12/16/2022]
Abstract
We identified peroxiredoxin-4 (Prx-4) as a protein interacting with the beta isoform of the thromboxane A(2) receptor (TPbeta) by yeast two-hybrid analysis. Prx-4 co-immunoprecipitated constitutively with TPbeta in HEK293 cells. The second and third intracellular loops as well as the C-terminus of TPbeta interacted directly with Prx-4. Co-expression of Prx-4 caused a 60% decrease in cell surface expression of TPbeta. Prx-4 and TPbeta predominantly co-localized in the endoplasmic reticulum. Co-expression of Prx-4 in cells treated with H(2)O(2) targeted TPbeta for degradation. We show for the first time an interaction between a receptor involved in oxidative stress and Prx-4, an anti-oxidative enzyme.
Collapse
Affiliation(s)
- Patrick Giguère
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine and Centre de Recherche Clinique-Etienne Lebel, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.
Collapse
Affiliation(s)
- Catherine A C Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
56
|
Kelley-Hickie LP, O'Keeffe MB, Reid HM, Kinsella BT. Homologous desensitization of signalling by the alpha (alpha) isoform of the human thromboxane A2 receptor: a specific role for nitric oxide signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:970-89. [PMID: 17466390 PMCID: PMC2680961 DOI: 10.1016/j.bbamcr.2007.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 01/16/2023]
Abstract
Thromboxane (TX) A2 plays a central role in hemostasis, regulating platelet activation status and vascular tone. We have recently established that the TPβ isoform of the human TXA2 receptor (TP) undergoes rapid, agonist-induced homologous desensitization of signalling largely through a G protein-coupled receptor kinase (GRK) 2/3-dependent mechanism with a lesser role for protein kinase (PK) C. Herein, we investigated the mechanism of desensitization of signalling by the TPα isoform. TPα undergoes profound agonist-induced desensitization of signalling (intracellular calcium mobilization and inositol 1,4,5 trisphosphate generation) in response to the TXA2 mimetic U46619 but, unlike that of TPβ, this is independent of GRKs. Similar to TPβ, TPα undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, PKC mechanism where Ser145 within intracellular domain (IC)2 represents the key phospho-target. TPα also undergoes more profound sustained PKC- and PKG-dependent desensitization where Thr337 and Ser331, respectively, within its unique C-tail domain were identified as the phospho-targets. Desensitization was impaired by the nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC) and PKG inhibitors l-NAME, LY 83583 and KT5823, respectively, indicating that homologous desensitization of TPα involves nitric oxide generation and signalling. Consistent with this, U46619 led to rapid phosphorylation/activation of endogenous eNOS. Collectively, data herein suggest a mechanism whereby agonist-induced PKC phosphorylation of Ser145 partially and transiently impairs TPα signalling while PKG- and PKC-phosphorylation at both Ser331 and Thr337, respectively, within its C-tail domain profoundly desensitizes TPα, effectively terminating its signalling. Hence, in addition to the agonist-mediated PKC feedback mechanism, U46619-activation of the NOS/sGC/PKG pathway plays a significant role in inducing homologous desensitization of TPα.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line
- Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Enzyme Inhibitors/pharmacology
- G-Protein-Coupled Receptor Kinase 2
- G-Protein-Coupled Receptor Kinase 3
- Hemostasis/drug effects
- Hemostasis/physiology
- Humans
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Maleimides/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Platelet Activation/drug effects
- Platelet Activation/physiology
- Protein Isoforms/agonists
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Structure, Tertiary/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Thromboxane A2/metabolism
- Vasoconstrictor Agents/pharmacology
- beta-Adrenergic Receptor Kinases/metabolism
Collapse
|
57
|
Gallant MA, Slipetz D, Hamelin E, Rochdi MD, Talbot S, de Brum-Fernandes AJ, Parent JL. Differential regulation of the signaling and trafficking of the two prostaglandin D2 receptors, prostanoid DP receptor and CRTH2. Eur J Pharmacol 2007; 557:115-23. [PMID: 17207480 DOI: 10.1016/j.ejphar.2006.11.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/10/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022]
Abstract
Prostaglandin D2 (PGD2) exerts its actions on two G protein-coupled receptors, the prostanoid DP receptor and CRTH2 (chemoattractant homologous receptor expressed on TH2 cells). Here, we characterize the regulation of the signaling and trafficking of the prostanoid DP receptor and CRTH2. Time-course and dose-response curves showed that both receptors expressed in HEK293 cells internalized maximally after 2 h of stimulation with 1 microM PGD2. Co-expression of the G protein-coupled receptor kinases GRK2, GRK5 or GRK6 increased agonist-induced internalization of CRTH2, while only GRK2 had an effect on the internalization of the prostanoid DP receptor. Protein kinase C (PKC) activation stimulated the internalization of both receptors. Interestingly, only PGD2-induced internalization of CRTH2, and not of prostanoid DP receptor, was decreased by inhibition of PKC or protein kinase A (PKA). Our data also indicate that CRTH2 is subjected to basal phosphorylation by PKA, which appears to be involved in CRTH2 internalization. Prostanoid DP receptor internalization was promoted by co-expression of arrestin-2 and -3, while the internalization of CRTH2 was increased by co-expression of arrestin-3 only. The detection of prostanoid DP receptor and CRTH2 internalization was reduced by the co-expression of Rab4 and Rab11, respectively, suggesting differential regulation of receptor recycling. Moreover, immunofluorescence microscopy experiments showed that the prostanoid DP receptor specifically co-localized with Rab4, and CRTH2 with Rab11. The signaling of the prostanoid DP receptor was regulated by GRK2 overexpression, while that of CRTH2 was modulated by overexpression of GRK2, -5 and -6. Our results show a differential regulation of the prostanoid DP receptor and CRTH2, two receptors for PGD2.
Collapse
Affiliation(s)
- Maxime A Gallant
- Division of Rheumatology, Département de Médecine, Faculté de Médecine and Centre de Recherche Clinique-Etienne Lebel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
58
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
59
|
Reid HM, Kinsella BT. Palmitoylation of the TPbeta isoform of the human thromboxane A2 receptor. Modulation of G protein: effector coupling and modes of receptor internalization. Cell Signal 2006; 19:1056-70. [PMID: 17229546 PMCID: PMC2680975 DOI: 10.1016/j.cellsig.2006.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/28/2022]
Abstract
Palmitoylation is a prevalent feature amongst G protein-coupled receptors. In this study we sought to establish whether the TPα and TPβ isoforms of the human prostanoid thromboxane (TX) A2 receptor (TP) are palmitoylated and to assess the functional consequences thereof. Consistent with the presence of three cysteines within its unique carboxyl-terminal domain, metabolic labelling and site-directed mutagenesis confirmed that TPβ is palmitoylated at Cys347 and, to a lesser extent, at Cys373,377 whereas TPα is not palmitoylated. Impairment of palmitoylation did not affect TPβ expression or its ligand affinity. Conversely, agonist-induced [Ca2+]i mobilization by TPβC347S and the non-palmitoylated TPβC347,373,377S, but not by TPβC373S or TPβC373,377S, was significantly reduced relative to the wild type TPβ suggesting that palmitoylation at Cys347 is specifically required for efficient Gq/phospholipase Cβ effector coupling. Furthermore, palmitoylation at Cys373,377 is critical for TPβ internalization with TPβC373S, TPβC373,377S and TPβC347,373,377S failing to undergo either agonist-induced or temperature-dependent tonic internalization. On the other hand, whilst TPβC347S underwent reduced agonist-induced internalization, it underwent tonic internalization to a similar extent as TPβ. The deficiency in agonist-induced internalization by TPβC347S, but not by TPβC373,377 nor TPβC347,373,377S, was overcome by over-expression of either β-arrestin1 or β-arrestin2. Taken together, data herein suggest that whilst palmitoylation of TPβ at Cys373,377 is critical for both agonist- and tonic-induced internalization, palmitoylation at Cys347 has a role in determining which pathway is followed, be it by the β-arrestin-dependent agonist-induced pathway or by the β-arrestin-independent tonic internalization pathway.
Collapse
|
60
|
Wilson SJ, McGinley K, Huang AJ, Smyth. EM. Heterodimerization of the alpha and beta isoforms of the human thromboxane receptor enhances isoprostane signaling. Biochem Biophys Res Commun 2006; 352:397-403. [PMID: 17134677 PMCID: PMC1766557 DOI: 10.1016/j.bbrc.2006.11.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/07/2006] [Indexed: 11/29/2022]
Abstract
Isoprostanes are free radical catalyzed products of arachidonic acid that are elevated in pro-oxidant disease states. Two isoprostanes, 8-isoprostaglandin F(2alpha) (iPF(2alpha)III) and 8-isoprostaglandin E2 (iPE2III), act at the receptor for thromboxane A2 (the TP) to mediate pro-atherogenic effects in vivo. We confirmed dimerization of the human TP isoforms, TPalpha and TPbeta, and determined the impact on isoprostane signaling. No overt changes in ligand binding at the TP were observed as a result of TPalpha/TPbeta coexpression. The response to iPF(2alpha)III or iPE2III was enhanced in HEK293 cells stably coexpressing TPalpha and TPbeta, as measured by inositol phosphate generation or intracellular calcium mobilization, relative to cells expressing TPalpha or TPbeta individually. In contrast, the response to traditional thromboxane analogs was unaltered. Augmented isoprostane signaling was similarly observed in HEK 293 cell transiently transfected with TPalpha and TPbeta. These results indicate that TPalpha/TPbeta dimerization enhances isoprostane-mediated signal transduction.
Collapse
Affiliation(s)
| | | | | | - Emer M. Smyth.
- Address correspondence to: Dr. Emer M Smyth, Institute of
Translational Medicine and Therapeutics, University of Pennsylvania, 808 BRB
II/III, 421 Curie Blvd, Philadelphia, PA 19104. Tel.: 215-573-2323 Fax:
215-573-9004,
| |
Collapse
|
61
|
Kelley-Hickie LP, Kinsella BT. Homologous desensitization of signalling by the beta (β) isoform of the human thromboxane A2 receptor. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1114-31. [PMID: 16956790 DOI: 10.1016/j.bbalip.2006.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Thromboxane (TX) A(2) is a potent stimulator of platelet activation/aggregation and smooth muscle contraction and contributes to a variety of pathologies within the vasculature. In this study, we investigated the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated by examining the mechanism of agonist-induced desensitization of intracellular signalling and second messenger generation by TPbeta. It was established that TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) has been identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs. TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. Thromboxane (TX) A(2) is a potent stimulator of platelet aggregation and smooth muscle contraction and contributes to a variety of vascular pathologies. Herein the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated was investigated by examining the mechanism of its agonist-induced desensitization of intracellular signalling and second messenger generation. TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) was identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Amino Acid Sequence
- Arrestins/metabolism
- Calcium/metabolism
- Cell Line
- G-Protein-Coupled Receptor Kinase 3
- Humans
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/metabolism
- Maleimides/pharmacology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Isoforms/agonists
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/metabolism
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Second Messenger Systems
- Serine/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Leanne P Kelley-Hickie
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
62
|
Wei J, Fain S, Harrison C, Feig LA, Baleja JD. Molecular dissection of Rab11 binding from coiled-coil formation in the Rab11-FIP2 C-terminal domain. Biochemistry 2006; 45:6826-34. [PMID: 16734419 PMCID: PMC2518868 DOI: 10.1021/bi052655o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rab11-family interacting protein (Rab11-FIP) group of effector proteins contain a highly conserved region in their C-termini that bind the GTPase, Rab11. Rab11 belongs to the largest family of small GTPases and is believed to regulate vesicle docking with target membranes and vesicle fusion. The amino acid sequence of the Rab11-FIP proteins predicts coiled-coil formation in the conserved C-terminal domain. In this study on Rab11-FIP2, we found experimental evidence for the coiled-coil and then defined the minimal structured core using limited proteolysis. We also showed that the Rab11-FIP2 coiled-coil domain forms a parallel homodimer in solution using cross-linking and mutagenesis and sedimentation equilibrium experiments. Various constructs representing the C-terminal domain of Rab11-FIP2 were characterized by circular dichroism, and their affinity with Rab11 was measured using isothermal titration calorimetry. The longest construct was both well-structured and bound Rab11. A construct truncated at the N-terminus was poorly structured but retained the same affinity for binding to Rab11. Conformational changes were also demonstrated upon complex formation between Rab11 and Rab11-FIP2. A construct truncated at the C-terminus, which was the minimal coiled-coil domain defined by limited proteolysis, did not retain the ability to interact with Rab11, although it was as well-structured as the longer peptide. These data show that coiled-coil formation and Rab11 binding are separable functions of the C-terminal domain of Rab11-FIP2. The dissection of Rab11 binding from the formation of defined structure in a coiled-coil provides a potential mechanism for regulating Rab11-dependent endosomal trafficking.
Collapse
Affiliation(s)
- Jie Wei
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
63
|
Palmieri D, Bouadis A, Ronchetti R, Merino MJ, Steeg PS. Rab11a differentially modulates epidermal growth factor-induced proliferation and motility in immortal breast cells. Breast Cancer Res Treat 2006; 100:127-37. [PMID: 16791477 DOI: 10.1007/s10549-006-9244-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/03/2006] [Indexed: 12/25/2022]
Abstract
The development of cancer prevention strategies depends on the elucidation of molecular pathways underlying oncogenesis. In a previous proteomic study of matched normal breast ducts and Ductal Carcinoma in Situ (DCIS), we identified overexpression of Rab11a in DCIS. Rab11a is not well studied in cancer, but is known to regulate the recycling of internalized cell surface proteins and receptors from the early endosome through the trans-Golgi network. Using immunohistochemistry, we confirmed our observation, noting increased Rab11a expression in 19 of 22 (86%) DCIS cases compared to matched normal breast epithelium. To study the function of Rab11a, immortal, nontumorigenic MCF10A breast cells were stimulated with ligands to the EGF receptor (EGFR) after transfection with empty vector (control), Rab11a, or a S25N dominant-negative (DN) Rab11a. Using an iodinated ligand:receptor recycling assay, transfection of Rab11a accelerated, while DN-Rab11a postponed EGFR recycling in vitro. The signaling and in vitro phenotypic consequences of Rab11a expression and function were studied. Transfection of DN-Rab11a increased Erk1/2 activation downstream of EGF, but exerted no effect on the Akt pathway. Expression of DN-Rab11a inhibited MCF10A proliferation by 50-60%, and also inhibited anchorage-dependent colonization. Notably, DN-Rab11a transfection increased motility toward EGFR ligands. The data provide a first demonstration that Rab11a modulates EGFR recycling, and promotes the proliferation but inhibits the motility of an immortal breast line, consistent with the DCIS phenotype.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20874, USA.
| | | | | | | | | |
Collapse
|
64
|
van de Graaf SFJ, Hoenderop JGJ, Bindels RJM. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 2006; 290:F1295-302. [PMID: 16682485 DOI: 10.1152/ajprenal.00443.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Ca2+ channels TRPV5 and TRPV6 are the most Ca2+-selective members of the TRP channel superfamily. These channels are the prime target for hormonal control of the active Ca2+ flux from the urine space or intestinal lumen to the blood compartment. Insight into their regulation is, therefore, pivotal in our understanding of the (patho)physiology of Ca2+ homeostasis. The recent elucidation of TRPV5/6-associated proteins has provided new insight into the molecular mechanisms underlying the regulation of these channels. In this review, we describe the various means of TRPV5/6 regulation, the role of channel-associated proteins herein, and the relationship between both processes.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Radboud Univ. Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
65
|
Wilson SJ, Smyth EM. Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the delta subunit of cGMP phosphodiesterase 6. J Biol Chem 2006; 281:11780-6. [PMID: 16527812 DOI: 10.1074/jbc.m513110200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prostacyclin, the major cyclooxygenase-derived product of arachidonic acid formed in the vasculature, mediates its potent anti-thrombotic and anti-proliferative effects through its G protein-coupled receptor (GPCR) termed the IP. Unlike many GPCRs, agonist-induced internalization of the IP occurs in an arrestin/GPCR kinase-independent manner. However, deletion of the IP COOH-terminal region prevented internalization suggesting that protein interactions at this region are involved in IP regulation. Using the COOH-terminal region of IP as bait we identified the delta subunit of cGMP phosphodiesterase 6 (PDE6delta) as a novel hIP-interacting protein in two independent yeast two-hybrid screens. Interaction of IP and PDE6delta was confirmed by co-immunoprecipitation in HEK293 cells, and in HEPG2 cells, which endogenously express neither IP nor PDE6delta. IP isoprenylation was critical for this interaction, as PDE6delta was unable to associate with an isoprenylation-deficient mutant IP (IPSSLC). PDE6delta overexpression altered the temporal pattern of agonist-induced internalization of IP, but not IPSSLC, in HEPG2 cells, increasing initial internalization but facilitating the return of IP to the cell surface despite the continued presence of agonist. Depletion of PDE6delta using short interfering RNA abolished cicaprost-induced IP internalization in human aortic smooth muscle cells. Recycling of IP, but not IPSSLC, upon agonist removal was facilitated by overexpression of PDE6delta. Thus PDE6delta interacts specifically with IP to modulate receptor trafficking.
Collapse
Affiliation(s)
- Stephen J Wilson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|