51
|
Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine 2009; 28:415-21. [PMID: 19837093 DOI: 10.1016/j.vaccine.2009.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/22/2022]
|
52
|
Pereira-Chioccola VL, Vidal JE, Su C. Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol 2009; 4:1363-79. [DOI: 10.2217/fmb.09.89] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cerebral toxoplasmosis is a major cause of morbidity and mortality among HIV-infected patients, particularly from developing countries. This article summarizes current literature on cerebral toxoplasmosis. It focuses on: Toxoplasma gondii genetic diversity and its possible relationship with disease presentation; host responses to the parasite antigens; host immunosupression in HIV and cerebral toxoplasmosis as well as different diagnostic methods; clinical and radiological features; treatment; and the direction that studies on cerebral toxoplasmosis will likely take in the future.
Collapse
Affiliation(s)
- Vera Lucia Pereira-Chioccola
- Laboratório de Parasitologia, Instituto Adolfo Lutz, Av. Dr Arnaldo, 351, 8 andar, CEP 01246-902, São Paulo, SP, Brazil
| | - José Ernesto Vidal
- Departamento de Neurologia, Instituto de Infectologia Emílio Ribas, Av. Dr Arnaldo, 165 CEP 05411-000, Sao Paulo, SP, BrazilandServiço de Extensão ao atendimento de Pacientes HIV/AIDS, Divisão de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Rua Frei Caneca 557, Sao Paulo, SP, Brazil
| | - Chunlei Su
- Department of Microbiology F409, Walters Life Sciences Building, The University of Tennessee, 1414 W. Cumberland Ave., Knoxville, TN 37996-0845, USA
| |
Collapse
|
53
|
Larson ET, Parussini F, Huynh MH, Giebel JD, Kelley AM, Zhang L, Bogyo M, Merritt EA, Carruthers VB. Toxoplasma gondii cathepsin L is the primary target of the invasion-inhibitory compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl. J Biol Chem 2009; 284:26839-50. [PMID: 19596863 PMCID: PMC2785372 DOI: 10.1074/jbc.m109.003780] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/18/2009] [Indexed: 11/06/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii relies on post-translational modification, including proteolysis, of proteins required for recognition and invasion of host cells. We have characterized the T. gondii cysteine protease cathepsin L (TgCPL), one of five cathepsins found in the T. gondii genome. We show that TgCPL is the primary target of the compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS), which was previously shown to inhibit parasite invasion by blocking the release of invasion proteins from microneme secretory organelles. As shown by fluorescently labeled LHVS and TgCPL-specific antibodies, TgCPL is associated with a discrete vesicular structure in the apical region of extracellular parasites but is found in multiple puncta throughout the cytoplasm of intracellular replicating parasites. LHVS fails to label cells lacking TgCPL due to targeted disruption of the TgCPL gene in two different parasite strains. We present a structural model for the inhibition of TgCPL by LHVS based on a 2.0 A resolution crystal structure of TgCPL in complex with its propeptide. We discuss possible roles for TgCPL as a protease involved in the degradation or limited proteolysis of parasite proteins involved in invasion.
Collapse
Affiliation(s)
- Eric T. Larson
- From the Medical Structural Genomics of Pathogenic Protozoa Consortium and
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7742
| | - Fabiola Parussini
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - My-Hang Huynh
- the Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109-5620, and
| | - Jonathan D. Giebel
- the Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109-5620, and
| | - Angela M. Kelley
- From the Medical Structural Genomics of Pathogenic Protozoa Consortium and
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7742
| | - Li Zhang
- From the Medical Structural Genomics of Pathogenic Protozoa Consortium and
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7742
| | - Matthew Bogyo
- the **Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Ethan A. Merritt
- From the Medical Structural Genomics of Pathogenic Protozoa Consortium and
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7742
| | - Vern B. Carruthers
- the Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109-5620, and
| |
Collapse
|
54
|
Abstract
Toxoplasma gondii is a ubiquitous, Apicomplexan parasite that, in humans, can cause several clinical syndromes, including encephalitis, chorioretinitis and congenital infection. T. gondii was described a little over 100 years ago in the tissues of the gundi (Ctenodoactylus gundi). There are a large number of applicable experimental techniques available for this pathogen and it has become a model organism for the study of intracellular pathogens. With the completion of the genomes for a type I (GT-1), type II (ME49) and type III (VEG) strains, proteomic studies on this organism have been greatly facilitated. Several subcellular proteomic studies have been completed on this pathogen. These studies have helped elucidate specialized invasion organelles and their composition, as well as proteins associated with the cytoskeleton. Global proteomic studies are leading to improved strategies for genome annotation in this organism and an improved understanding of protein regulation in this pathogen. Web-based resources, such as EPIC-DB and ToxoDB, provide proteomic data and support for studies on T. gondii. This review will summarize the current status of proteomic research on T. gondii.
Collapse
Affiliation(s)
- Louis M Weiss
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 504, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
55
|
Abstract
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.
Collapse
Affiliation(s)
- Marijo S Roiko
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
56
|
Blader IJ, Saeij JP. Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 2009; 117:458-76. [PMID: 19400868 DOI: 10.1111/j.1600-0463.2009.02453.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect most warm-blooded animals and cause severe and life-threatening disease in developing fetuses and in immune-compromised patients. Although Toxoplasma was discovered over 100 years ago, we are only now beginning to appreciate the importance of the role that parasite modulation of its host has on parasite growth, bradyzoite development, immune evasion, and virulence. The goal of this review is to highlight these findings, to develop an integrated model for communication between Toxoplasma and its host, and to discuss new questions that arise out of these studies.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
57
|
Singh M, Mukherjee P, Narayanasamy K, Arora R, Sen SD, Gupta S, Natarajan K, Malhotra P. Proteome analysis of Plasmodium falciparum extracellular secretory antigens at asexual blood stages reveals a cohort of proteins with possible roles in immune modulation and signaling. Mol Cell Proteomics 2009; 8:2102-18. [PMID: 19494339 DOI: 10.1074/mcp.m900029-mcp200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly co-evolved relationship of parasites and their hosts appears to include modulation of host immune signals, although the molecular mechanisms involved in the host-parasite interplay remain poorly understood. Characterization of these key genes and their cognate proteins related to the host-parasite interplay should lead to a better understanding of this intriguing biological phenomenon. The malaria agent Plasmodium falciparum is predicted to export a cohort of several hundred proteins to remodel the host erythrocyte. However, proteins actively exported by the asexual intracellular parasite beyond the host red blood cell membrane (before merozoite egress) have been poorly investigated so far. Here we used two complementary methodologies, two-dimensional gel electrophoresis/MS and LC-MS/MS, to examine the extracellular secreted antigens at asexual blood stages of P. falciparum. We identified 27 novel antigens exported by P. falciparum in the culture medium of which some showed clustering with highly polymorphic genes on chromosomes, suggesting that they may encode putative antigenic determinants of the parasite. Immunolocalization of four novel secreted proteins confirmed their export beyond the infected red blood cell membrane. Of these, preliminary functional characterization of two novel (Sel1 repeat-containing) parasite proteins, PfSEL1 and PfSEL2 revealed that they down-regulate expression of cell surface Notch signaling molecules in host cells. Also a novel protein kinase (PfEK) and a novel protein phosphatase (PfEP) were found to, respectively, phosphorylate/dephosphorylate parasite-specific proteins in the extracellular culture supernatant. Our study thus sheds new light on malaria parasite extracellular secreted antigens of which some may be essential for parasite development and could constitute promising new drug targets.
Collapse
Affiliation(s)
- Meha Singh
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR, Wastling JM, Tomley FM, Sinden RE. Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 2009; 9:1142-51. [PMID: 19206106 DOI: 10.1002/pmic.200800404] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Secretion of microneme proteins is essential to Plasmodium invasion but the molecular composition of these secretory organelles remains poorly defined. Here, we describe the first Plasmodium microneme proteome. Purification of micronemes by subcellular fractionation from cultured ookinetes was confirmed by enrichment of known micronemal proteins and electron microscopy. Quantitation of electron micrographs showed >14-fold microneme enrichment compared to the intact ookinete, such that micronemes comprised 85% of the identifiable organelles in the fraction. Gel LC-MS/MS of the most abundant protein constituents of the fraction identified three known micronemal proteins chitinase, CTRP, SOAP, together with protein disulphide isomerase (PDI) and HSP70. Highly sensitive MudPIT shotgun proteomics described a total of 345 proteins in the fraction. M1 aminopeptidase and PDI, the former a recognised target of drug development, were both shown to have a micronemal location by IFA. We further identified numerous proteins with established vesicle trafficking and signaling functions consistent with micronemes being part of a regulated secretory pathway. Previously uncharacterised proteins comprise the largest functional group of the microneme proteome and will include secreted proteins important to invasion.
Collapse
Affiliation(s)
- Kalpana Lal
- Division of Cell and Molecular Biology, Imperial College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86-94. [PMID: 19111576 PMCID: PMC2663568 DOI: 10.1016/j.molbiopara.2008.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.
Collapse
Affiliation(s)
- Robert Huang
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Ken Hirata
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| | - Linda S. Brinen
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Ji Hyun Lee
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Elizabeth Hansell
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Engel
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Mohammed Sajid
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Sharon Reed
- Department of Medicine, University of California, San Diego, San Diego, California 92103
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| |
Collapse
|
60
|
Ferguson DJP. Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore. Mem Inst Oswaldo Cruz 2009; 104:133-48. [DOI: 10.1590/s0074-02762009000200003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/20/2008] [Indexed: 01/19/2023] Open
|
61
|
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. EUKARYOTIC CELL 2009; 8:530-9. [PMID: 19218426 DOI: 10.1128/ec.00358-08] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
Collapse
|
62
|
Madrid-Aliste CJ, Dybas JM, Angeletti RH, Weiss LM, Kim K, Simon I, Fiser A. EPIC-DB: a proteomics database for studying Apicomplexan organisms. BMC Genomics 2009; 10:38. [PMID: 19159464 PMCID: PMC2652494 DOI: 10.1186/1471-2164-10-38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background High throughput proteomics experiments are useful for analyzing the protein expression of an organism, identifying the correct gene structure of a genome, or locating possible post-translational modifications within proteins. High throughput methods necessitate publicly accessible and easily queried databases for efficiently and logically storing, displaying, and analyzing the large volume of data. Description EPICDB is a publicly accessible, queryable, relational database that organizes and displays experimental, high throughput proteomics data for Toxoplasma gondii and Cryptosporidium parvum. Along with detailed information on mass spectrometry experiments, the database also provides antibody experimental results and analysis of functional annotations, comparative genomics, and aligned expressed sequence tag (EST) and genomic open reading frame (ORF) sequences. The database contains all available alternative gene datasets for each organism, which comprises a complete theoretical proteome for the respective organism, and all data is referenced to these sequences. The database is structured around clusters of protein sequences, which allows for the evaluation of redundancy, protein prediction discrepancies, and possible splice variants. The database can be expanded to include genomes of other organisms for which proteome-wide experimental data are available. Conclusion EPICDB is a comprehensive database of genome-wide T. gondii and C. parvum proteomics data and incorporates many features that allow for the analysis of the entire proteomes and/or annotation of specific protein sequences. EPICDB is complementary to other -genomics- databases of these organisms by offering complete mass spectrometry analysis on a comprehensive set of all available protein sequences.
Collapse
Affiliation(s)
- Carlos J Madrid-Aliste
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Winters MS, Spellman DS, Chan Q, Gomez FJ, Hernandez M, Catron B, Smulian AG, Neubert TA, Deepe GS. Histoplasma capsulatum proteome response to decreased iron availability. Proteome Sci 2008; 6:36. [PMID: 19108728 PMCID: PMC2645362 DOI: 10.1186/1477-5956-6-36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/24/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A fundamental pathogenic feature of the fungus Histoplasma capsulatum is its ability to evade innate and adaptive immune defenses. Once ingested by macrophages the organism is faced with several hostile environmental conditions including iron limitation. H. capsulatum can establish a persistent state within the macrophage. A gap in knowledge exists because the identities and number of proteins regulated by the organism under host conditions has yet to be defined. Lack of such knowledge is an important problem because until these proteins are identified it is unlikely that they can be targeted as new and innovative treatment for histoplasmosis. RESULTS To investigate the proteomic response by H. capsulatum to decreasing iron availability we have created H. capsulatum protein/genomic databases compatible with current mass spectrometric (MS) search engines. Databases were assembled from the H. capsulatum G217B strain genome using gene prediction programs and expressed sequence tag (EST) libraries. Searching these databases with MS data generated from two dimensional (2D) in-gel digestions of proteins resulted in over 50% more proteins identified compared to searching the publicly available fungal databases alone. Using 2D gel electrophoresis combined with statistical analysis we discovered 42 H. capsulatum proteins whose abundance was significantly modulated when iron concentrations were lowered. Altered proteins were identified by mass spectrometry and database searching to be involved in glycolysis, the tricarboxylic acid cycle, lysine metabolism, protein synthesis, and one protein sequence whose function was unknown. CONCLUSION We have created a bioinformatics platform for H. capsulatum and demonstrated the utility of a proteomic approach by identifying a shift in metabolism the organism utilizes to cope with the hostile conditions provided by the host. We have shown that enzyme transcripts regulated by other fungal pathogens in response to lowering iron availability are also regulated in H. capsulatum at the protein level. We also identified H. capsulatum proteins sensitive to iron level reductions which have yet to be connected to iron availability in other pathogens. These data also indicate the complexity of the response by H. capsulatum to nutritional deprivation. Finally, we demonstrate the importance of a strain specific gene/protein database for H. capsulatum proteomic analysis.
Collapse
|
64
|
Dybas JM, Madrid-Aliste CJ, Che FY, Nieves E, Rykunov D, Angeletti RH, Weiss LM, Kim K, Fiser A. Computational analysis and experimental validation of gene predictions in Toxoplasma gondii. PLoS One 2008; 3:e3899. [PMID: 19065262 PMCID: PMC2587701 DOI: 10.1371/journal.pone.0003899] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromised hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome. METHODOLOGY/PRINCIPAL FINDINGS We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%. CONCLUSIONS/SIGNIFICANCE This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes.
Collapse
Affiliation(s)
- Joseph M. Dybas
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Carlos J. Madrid-Aliste
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fa-Yun Che
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Edward Nieves
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dmitry Rykunov
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ruth Hogue Angeletti
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kami Kim
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Andras Fiser
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
65
|
Abstract
Apicomplexan parasites like Toxoplasma gondii are distinctive in their utilization of para site encoded motor systems to invade cells. Invasion results in the establishment of the parasitophorous vacuole (PV) within the infected cell. Most apicomplexans complete their intracellular tenure within the infected cell in the PV that is demarcated from the host cytoplasm by the parasitophorous vacuole membrane (PVM). In this chapter I focus on the events surrounding the formation of the PVM and selected activities attributed to it. Its central role as the interface between the parasite and its immediate environment, the host cytoplasm, is validated by the diversity of functions attributed to it. While functions in structural organization, nutrient acquisitions and signaling have been defined their molecular bases remain largely unknown. Several recent studies and the decoding of the Toxoplasma genome have set the stage for a rapid expansion in our understanding of the role of the PVM in parasite biology. Toxoplasma gondii, like all apicomplexan parasites are obligate intracellular pathogens. This family of parasites utilize their own actin-myosin based motor systems to gain entry into susceptible cells establishing themselves, in some cases transiently (e.g., Theileria spp) in specialized vacuolar compartment, the parasitophorous vacuole (PV). The T. gondii PV is highly dynamic compartment defining the replication permissive niche for the parasite. The delimiting membrane defining the parasitophorous vacuole, the parasitophorous vacuole membrane or PVM is increasingly being recognized as a specialized "organelle" that in the context of the infected cell is extracorporeal to the parent organism, the parasite. A systematic study of this enigmatic organelle has been severely limited by several issues. Primary among these is the fact that it is formed only in the context of the infected cell thereby limiting the amount of material. Secondly, unlike other cellular organelles that can often be purified by conventional approaches, the PVM, cannot be purified away from host cell organelles (see below). In spite of these significant obstacles considerable progress has been made in recent years toward understanding the biogenesis of the PVM, identification of its protein complement and the characterization of activities within it. These studies demonstrate that the PVM, on its own and by virtue of its interactions with cellular components, plays critical functions in the structural integrity of the vacuole, nutrient acquisition and the manipulation of cellular functions. In addition it appears that the repertoire of activities at the PVM is likely to be plastic reflecting temporal changes associated with the replicative phase of parasite growth. Finally, the PVM likely forms the foundation for the cyst wall as the parasite differentiates in the establishment of latent infection. As the critical border crossing between the parasite and invaded cell the study of the PVM provides a fertile area for new investigation aided by the recent decoding of the Toxoplasma genome (available at wwww.ToxoDB.org) and the application of proteomic analyses to basic questions in parasite biology.
Collapse
|
66
|
Abstract
In this chapter, we outline the tools and techniques available to study the process of host cell invasion by apicomplexan parasites and we provide specific examples of how these methods have been used to further our understanding of apicomplexan invasive mechanisms. Throughout the chapter we focus our discussion on Toxoplasmagondii, because T. gondii is the most experimentally accessible model organism for studying apicomplexan invasion (discussed further in the section, "Toxoplasma as a Model Apicomplexan") and more is known about invasion in T. gondii than in any other apicomplexan.
Collapse
|
67
|
Frickel EM, Sahoo N, Hopp J, Gubbels MJ, Craver MPJ, Knoll LJ, Ploegh HL, Grotenbreg GM. Parasite stage-specific recognition of endogenous Toxoplasma gondii-derived CD8+ T cell epitopes. J Infect Dis 2008; 198:1625-33. [PMID: 18922097 PMCID: PMC4771975 DOI: 10.1086/593019] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND BALB/c mice control infection with the obligate intracellular parasite Toxoplasma gondii and develop a latent chronic infection in the brain, as do immunocompetent humans. Interferon-gamma-producing CD8+ T cells provide essential protection against T. gondii infection, but the epitopes recognized have so far remained elusive. METHODS We employed caged major histocompatibility complex molecules to generate approximately 250 H-2L(d) tetramers and to distinguish T. gondii-specific CD8+ T cells in BALB/c mice. RESULTS We identified 2 T. gondii-specific H-2L(d)-restricted T cell epitopes, one from dense granule protein GRA4 and the other from rhoptry protein ROP7. H-2L(d)/GRA4 reactive T cells from multiple organ sources predominated 2 weeks after infection, while the reactivity of the H-2L(d)/ROP7 T cells peaked 6-8 weeks after infection. BALB/c animals infected with T. gondii mutants defective in establishing a chronic infection showed altered levels of antigen-specific T cells, depending on the T. gondii mutant used. CONCLUSIONS Our results shed light on the identity and the parasite stage-specificity of 2 CD8+ T cell epitopes recognized in the acute and chronic phase of infection with T. gondii.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Nivedita Sahoo
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Johnathan Hopp
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Mary Patricia J. Craver
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Gijsbert M. Grotenbreg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
68
|
Costa-Silva TA, Meira CS, Ferreira IM, Hiramoto RM, Pereira-Chioccola VL. Evaluation of immunization with tachyzoite excreted–secreted proteins in a novel susceptible mouse model (A/Sn) for Toxoplasma gondii. Exp Parasitol 2008; 120:227-34. [DOI: 10.1016/j.exppara.2008.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 12/13/2022]
|
69
|
Wastling JM, Xia D, Sohal A, Chaussepied M, Pain A, Langsley G. Proteomes and transcriptomes of the Apicomplexa--where's the message? Int J Parasitol 2008; 39:135-43. [PMID: 18996390 DOI: 10.1016/j.ijpara.2008.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 11/19/2022]
Abstract
The Apicomplexa have some of the most comprehensive and integrated proteome datasets of all pathogenic micro-organisms. Coverage is currently at a level where these data can be used to help predict the potential biological function of proteins in these parasites, without having to defer to measurement of mRNA levels. Transcriptomic data for the Apicomplexa (microarrays, expressed sequence tag (EST) collections, serial analysis of gene expression (SAGE) and massively parallel signature sequencing (MPSS) tags) are also copious, enabling us to investigate the extent to which global mRNA levels correlate with proteomic data. Here, we present a proteomic and transcriptomic perspective of gene expression in key apicomplexan parasites, including Plasmodium spp., Toxoplasma gondii, Cryptosporidium parvum, Neospora caninum and Theileria spp., and discuss the alternative views of gene expression that they provide. Although proteomic evidence does not exist for every gene, many examples of readily detected proteins whose corresponding genes display little or no detectable transcription, are seen across the Apicomplexa. These examples are not easily explained by the "guilt by association", or "stock and go" hypotheses of gene transcription. With the advent of ultra-high-throughput sequencing technologies there will be a quantum shift in transcriptional analysis which, combined with improving quantitative proteome datasets, will provide a core component of a systems-wide approach to studying the Apicomplexa.
Collapse
Affiliation(s)
- J M Wastling
- Department of Pre-Clinical Veterinary Science, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | | | | | | | | | |
Collapse
|
70
|
Chen Z, Harb OS, Roos DS. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii. PLoS One 2008; 3:e3611. [PMID: 18974850 PMCID: PMC2575384 DOI: 10.1371/journal.pone.0003611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/06/2008] [Indexed: 12/04/2022] Open
Abstract
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.
Collapse
Affiliation(s)
- ZhongQiang Chen
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Omar S. Harb
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (OSH)
| | - David S. Roos
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (OSH)
| |
Collapse
|
71
|
Toxoplasma gondii rhoptry discharge correlates with activation of the early growth response 2 host cell transcription factor. Infect Immun 2008; 76:4703-12. [PMID: 18678671 DOI: 10.1128/iai.01447-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite that can cause severe disease in fetuses and immune-compromised patients. Rhoptries, micronemes, and dense granules, which are secretory organelles unique to Toxoplasma and other apicomplexan parasites, play critical roles in parasite growth and virulence. To understand how these organelles modulate infected host cells, we sought to identify host cell transcription factors triggered by their release. Early growth response 2 (EGR2) is a host cell transcription factor that is rapidly upregulated and activated in Toxoplasma-infected cells but not in cells infected with the closely related apicomplexan parasite Neospora caninum. EGR2 upregulation occurred only when live parasites were in direct contact with the host cell and not from exposure to cell extracts that contain dense granule or micronemal proteins. When microneme-mediated attachment was blocked by pretreating parasites with a calcium chelator, EGR2 expression was significantly reduced. In contrast, when host cells were infected with parasites in the presence of cytochalasin D, which allows rhoptry secretion but prevents parasite invasion, EGR2 was activated. Finally, we demonstrate that Toxoplasma activation of host p38 mitogen-activated protein kinase is necessary but not sufficient for EGR2 activation. Collectively, these data indicate that EGR2 is specifically upregulated by a parasite-derived secreted factor that is most likely a resident rhoptry protein.
Collapse
|
72
|
Xia D, Sanderson SJ, Jones AR, Prieto JH, Yates JR, Bromley E, Tomley FM, Lal K, Sinden RE, Brunk BP, Roos DS, Wastling JM. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol 2008; 9:R116. [PMID: 18644147 PMCID: PMC2530874 DOI: 10.1186/gb-2008-9-7-r116] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/17/2008] [Accepted: 07/21/2008] [Indexed: 11/10/2022] Open
Abstract
A proteomics analysis identifies one third of the predicted Toxoplasma gondii proteins and integrates proteomics and genomics data to refine genome annotation. Background Although the genomes of many of the most important human and animal pathogens have now been sequenced, our understanding of the actual proteins expressed by these genomes and how well they predict protein sequence and expression is still deficient. We have used three complementary approaches (two-dimensional electrophoresis, gel-liquid chromatography linked tandem mass spectrometry and MudPIT) to analyze the proteome of Toxoplasma gondii, a parasite of medical and veterinary significance, and have developed a public repository for these data within ToxoDB, making for the first time proteomics data an integral part of this key genome resource. Results The draft genome for Toxoplasma predicts around 8,000 genes with varying degrees of confidence. Our data demonstrate how proteomics can inform these predictions and help discover new genes. We have identified nearly one-third (2,252) of all the predicted proteins, with 2,477 intron-spanning peptides providing supporting evidence for correct splice site annotation. Functional predictions for each protein and key pathways were determined from the proteome. Importantly, we show evidence for many proteins that match alternative gene models, or previously unpredicted genes. For example, approximately 15% of peptides matched more convincingly to alternative gene models. We also compared our data with existing transcriptional data in which we highlight apparent discrepancies between gene transcription and protein expression. Conclusion Our data demonstrate the importance of protein data in expression profiling experiments and highlight the necessity of integrating proteomic with genomic data so that iterative refinements of both annotation and expression models are possible.
Collapse
Affiliation(s)
- Dong Xia
- Department of Pre-clinical Veterinary Science, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
It has been 100 years since Toxoplasma gondii was initially described in Tunis by Nicolle and Manceaux (1908) in the tissues of the gundi (Ctenodoactylus gundi) and in Brazil by Splendore (1908) in the tissues of a rabbit. T. gondii is a ubiquitous, Apicomplexan parasite of warm-blooded animals that can cause several clinical syndromes including encephalitis, chorioretinitis and congenital infection. Due to the extensive repertoire of applicable experimental techniques available for this pathogen it has become a model organism for the study of intracellular pathogens. Data obtained from genome-wide expression studies, including ChIP on chip and proteomics surveys, are refining our understanding of the genetic networks involved in the developmental biology of this pathogen as well as the interactions of the parasite with its host. This review addresses recent advances in our understanding of the developmental biology and host-pathogen relationships of T. gondii.
Collapse
|
74
|
Meira CS, Costa-Silva TA, Vidal JE, Ferreira IMR, Hiramoto RM, Pereira-Chioccola VL. Use of the serum reactivity against Toxoplasma gondii excreted–secreted antigens in cerebral toxoplasmosis diagnosis in human immunodeficiency virus-infected patients. J Med Microbiol 2008; 57:845-850. [DOI: 10.1099/jmm.0.47687-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cristina S. Meira
- Department of Parasitology, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | | | - José E. Vidal
- Department of Neurology, Instituto de Infectologia Emílio Ribas, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
75
|
Expression quantitative trait locus mapping of toxoplasma genes reveals multiple mechanisms for strain-specific differences in gene expression. EUKARYOTIC CELL 2008; 7:1403-14. [PMID: 18552283 PMCID: PMC2519772 DOI: 10.1128/ec.00073-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Toxoplasma gondii is an intracellular parasite with a significant impact on human health, especially in cases where individuals are immunocompromised (e.g., due to human immunodeficiency virus/AIDS). In Europe and North America, only a few clonal genotypes appear to be responsible for the vast majority of Toxoplasma infections, and these clonotypes have been intensely studied to identify strain-specific phenotypes that may play a role in the manifestation of more-severe disease. To identify and genetically map strain-specific differences in gene expression, we have carried out expression quantitative trait locus analysis on Toxoplasma gene expression phenotypes by using spotted cDNA microarrays. This led to the identification of 16 Toxoplasma genes that had significant and mappable strain-specific variation in hybridization intensity. While the analysis should identify both cis- and trans-mapping hybridization profiles, we identified only loci with strain-specific hybridization differences that are most likely due to differences in the locus itself (i.e., cis mapping). Interestingly, a larger number of these cis-mapping genes than would be expected by chance encode either confirmed or predicted secreted proteins, many of which are known to localize to the specialized secretory organelles characteristic of members of the phylum Apicomplexa. For six of the cis-mapping loci, we determined if the strain-specific hybridization differences were due to true transcriptional differences or rather to strain-specific differences in hybridization efficiency because of extreme polymorphism and/or deletion, and we found examples of both scenarios.
Collapse
|
76
|
Sanderson SJ, Xia D, Prieto H, Yates J, Heiges M, Kissinger JC, Bromley E, Lal K, Sinden RE, Tomley F, Wastling JM. Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics 2008; 8:1398-414. [PMID: 18306179 DOI: 10.1002/pmic.200700804] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The genome of the intracellular parasite Cryptosporidium parvum has recently been sequenced, but protein expression data for the invasive stages of this important zoonotic gastrointestinal pathogen are limited. In this paper a comprehensive analysis of the expressed protein repertoire of an excysted oocyst/sporozoite preparation of C. parvum is presented. Three independent proteome platforms were employed which yielded more than 4800 individual protein identifications representing 1237 nonredundant proteins, corresponding to approximately 30% of the predicted proteome. Peptide data were mapped to the corresponding locations on the C. parvum genome and a publicly accessible interface for proteome data was developed for data-mining and visualisation at CryptoDB (http://cryptodb.org). These data provide a timely and valuable resource for improved annotation of the genome, verification of predicted hypothetical proteins and identification of proteins not predicted by current gene models. The data indicated the expression of proteins likely to be important to the invasion and intracellular establishment of the parasite, including surface proteins, constituents of the remnant mitochondrion and apical organelles. Comparison of the expressed proteome with existing transcriptional data indicated only a weak correlation. For approximately half the proteome there was limited functional and structural information, highlighting the limitations in the current understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- Sanya J Sanderson
- Departments of Pre-clinical Veterinary Science and Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Dautu G, Ueno A, Miranda A, Mwanyumba S, Munyaka B, Carmen G, Kariya T, Omata Y, Saito A, Xuan X, Igarashi M. Toxoplasma gondii: Detection of MIC10 antigen in sera of experimentally infected mice. Exp Parasitol 2008; 118:362-71. [DOI: 10.1016/j.exppara.2007.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/20/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
78
|
Garcia CRS, de Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:85-156. [PMID: 18544493 DOI: 10.1016/s1937-6448(07)66003-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.
Collapse
Affiliation(s)
- Celia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
79
|
Cortez E, Stumbo AC, Saldanha-Gama R, Villela CG, Barja-Fidalgo C, Rodrigues CA, das Graças Henriques M, Benchimol M, Barbosa HS, Porto LC, Carvalho L. Immunolocalization of an osteopontin-like protein in dense granules of Toxoplasma gondii tachyzoites and its association with the parasitophorous vacuole. Micron 2008; 39:25-31. [DOI: 10.1016/j.micron.2007.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/20/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
|
80
|
Abstract
Microneme secretion supports several key cellular processes including gliding motility, active cell invasion and migration through cells, biological barriers, and tissues. The modular design of microneme proteins enables these molecules to assist each other in folding and passage through the quality control system, accurately target to the micronemes, oligimerizing with other parasite proteins, and engaging a variety of host receptors for migration and cell invasion. Structural and biochemical analyses of MIC domains is providing new perspectives on how adhesion is regulated and the potentially distinct roles MICs might play in long or short range interactions during parasite attachment and entry. New access to complete genome sequences and ongoing advances in genetic manipulation should provide fertile ground for refining current models and defining exciting new roles for MICs in apicomplexan biology.
Collapse
Affiliation(s)
- Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
81
|
Kawase O, Nishikawa Y, Bannai H, Zhang H, Zhang G, Jin S, Lee EG, Xuan X. Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii. Proteomics 2007; 7:3718-25. [PMID: 17880006 DOI: 10.1002/pmic.200700362] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins.
Collapse
Affiliation(s)
- Osamu Kawase
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Sakata T, Winzeler EA. Genomics, systems biology and drug development for infectious diseases. MOLECULAR BIOSYSTEMS 2007; 3:841-8. [PMID: 18000561 DOI: 10.1039/b703924g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a variety of drugs are available for many infectious diseases that predominantly affect the developing world reasons remain for continuing to search for new chemotherapeutics. First, the development of microbial resistance has made some of the most effective and inexpensive drug regimes unreliable and dangerous to use on severely ill patients. Second, many existing antimicrobial drugs show toxicity or are too expensive for countries where the per capita income is in the order of hundreds of dollars per year. In recognition of this, new publicly and privately financed drug discovery efforts have been established to identify and develop new therapies for diseases such as tuberculosis, malaria and AIDS. This in turn, has intensified the need for tools to facilitate drug identification for those microbes whose molecular biology is poorly understood, or which are difficult to grow in the laboratory. While much has been written about how functional genomics can be used to find novel protein targets for chemotherapeutics this review will concentrate on how genome-wide, systems biology approaches may be used following whole organism, cell-based screening to understand the mechanism of drug action or to identify biological targets of small molecules. Here we focus on protozoan parasites, however, many of the approaches can be applied to pathogenic bacteria or parasitic helminths, insects or disease-causing fungi.
Collapse
Affiliation(s)
- Tomoyo Sakata
- The Genomics Institute of the Novartis Research Foundation, 10660 John Jay Hopkins Dr., San Diego, CA 92121, USA
| | | |
Collapse
|
83
|
Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J. Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:1-31. [PMID: 17113834 DOI: 10.1016/j.jchromb.2006.10.040] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Sample preparation is one of the most crucial processes in proteomics research. The results of the experiment depend on the condition of the starting material. Therefore, the proper experimental model and careful sample preparation is vital to obtain significant and trustworthy results, particularly in comparative proteomics, where we are usually looking for minor differences between experimental-, and control samples. In this review we discuss problems associated with general strategies of samples preparation, and experimental demands for these processes.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Neurobiochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena St. 3, 30-060 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Teo CF, Zhou XW, Bogyo M, Carruthers VB. Cysteine protease inhibitors block Toxoplasma gondii microneme secretion and cell invasion. Antimicrob Agents Chemother 2006; 51:679-88. [PMID: 17145790 PMCID: PMC1797762 DOI: 10.1128/aac.01059-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii enters host cells via an active, self-driven process to fulfill its need for intracellular replication and survival. Successful host cell invasion is governed by sequential release of secretory proteins from three specialized organelles, including the micronemes, which contribute adhesive proteins necessary for parasite attachment and penetration. Cumulative evidence from studies of Trypanosoma species and malaria parasites has shown that cysteine protease inhibitors represent potent anti-parasitic agents capable of curing infections in vivo. In this study, we screened a series of selective cysteine protease inhibitors for their effects on T. gondii cell invasion. Two of these compounds, morpholinourea-leucyl-homophenolalaninyl-phenyl-vinyl-sulfone and N-benzoxycarbonyl-(leucyl)3-phenyl-vinyl-sulfone, impaired T. gondii invasion and gliding motility at low-micromolar concentrations. Unexpectedly, these inhibitors did not affect surface proteolysis of microneme products but instead impaired an earlier step by precluding the secretion of microneme-derived adhesins to the parasite surface. Our findings suggest that cysteine protease activity is required for microneme secretion and cell invasion by T. gondii.
Collapse
Affiliation(s)
- Chin Fen Teo
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
85
|
Zhang H, Compaore MKA, Lee EG, Liao M, Zhang G, Sugimoto C, Fujisaki K, Nishikawa Y, Xuan X. Apical membrane antigen 1 is a cross-reactive antigen between Neospora caninum and Toxoplasma gondii, and the anti-NcAMA1 antibody inhibits host cell invasion by both parasites. Mol Biochem Parasitol 2006; 151:205-12. [PMID: 17156863 DOI: 10.1016/j.molbiopara.2006.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 10/31/2006] [Accepted: 11/08/2006] [Indexed: 11/21/2022]
Abstract
The cross-reactive antigens of Neospora caninum and Toxoplasma gondii are important in the exploration to determine the common mechanisms of parasite-host interaction. In this study, a gene encoding N. caninum apical membrane antigen 1 (NcAMA1) was identified by immunoscreening of a N. caninum tachyzoite cDNA expression library with antisera from mice immunized with recombinant T. gondii apical membrane antigen 1 (TgAMA1). NcAMA1 was encoded by an open reading frame of 1695 bp, which encoded a protein of 564 amino acids. The single-copy NcAMA1 gene was interrupted by seven introns. NcAMA1 showed 73.6% amino acid identity to TgAMA1. Mouse polyclonal antibodies raised against the recombinant NcAMA1 (rNcAMA1) recognized a 69-kDa native parasite protein by Western blotting. Immunofluorescence analysis showed that NcAMA1 was localized to the apical end of tachyzoites. Two-dimensional electrophoresis and Western blotting indicated that an approximately 57-kDa cleavage product was released into the excretory/secretory products of N. caninum. Preincubation of free tachyzoites with anti-rNcAMA1 IgG antibodies inhibited the invasion into host cells by N. caninum and T. gondii. These results indicated that AMA1 is a cross-reactive antigen between N. caninum and T. gondii and a potential common vaccine candidate to control two parasites.
Collapse
Affiliation(s)
- Houshuang Zhang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Brydges SD, Zhou XW, Huynh MH, Harper JM, Mital J, Adjogble KDZ, Däubener W, Ward GE, Carruthers VB. Targeted deletion of MIC5 enhances trimming proteolysis of Toxoplasma invasion proteins. EUKARYOTIC CELL 2006; 5:2174-83. [PMID: 16980407 PMCID: PMC1694808 DOI: 10.1128/ec.00163-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Limited proteolysis of proteins transiently expressed on the surface of the opportunistic pathogen Toxoplasma gondii accompanies cell invasion and facilitates parasite migration across cell barriers during infection. However, little is known about what factors influence this specialized proteolysis or how these proteolytic events are regulated. Here we show that genetic ablation of the micronemal protein MIC5 enhances the normal proteolytic processing of several micronemal proteins secreted by Toxoplasma tachyzoites. Restoring MIC5 expression by genetic complementation reversed this phenotype, as did treatment with the protease inhibitor ALLN, which was previously shown to block the activity of a hypothetical parasite surface protease called MPP2. We show that, despite its lack of obvious membrane association signals, MIC5 occupies the parasite surface during invasion in the vicinity of the proteins affected by enhanced processing. Proteolysis of other secretory proteins, including GRA1, was also enhanced in MIC5 knockout parasites, indicating that the phenotype is not strictly limited to proteins derived from micronemes. Together, our findings suggest that MIC5 either directly regulates MPP2 activity or it influences MPP2's ability to access substrate cleavage sites on the parasite surface.
Collapse
Affiliation(s)
- Susannah D Brydges
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Brosson D, Kuhn L, Delbac F, Garin J, P Vivarès C, Texier C. Proteomic analysis of the eukaryotic parasite Encephalitozoon cuniculi (microsporidia): a reference map for proteins expressed in late sporogonial stages. Proteomics 2006; 6:3625-35. [PMID: 16691553 DOI: 10.1002/pmic.200500796] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microsporidian Encephalitozoon cuniculi is a unicellular obligate intracellular parasite considered as an emerging opportunistic human pathogen. The differentiation phase of its life cycle leads to the formation of stress-resistant spores. The E. cuniculi genome (2.9 Mbp) having been sequenced, we undertook a descriptive proteomic study of a spore-rich cell population isolated from culture supernatants. A combination of 2-DE and 2-DE-free techniques was applied to whole-cell protein extracts. Protein identification was performed using an automated MALDI-TOF-MS platform and a nanoLC-MS/MS instrument. A reference 2-DE map of about 350 major spots with multiple isoforms was obtained, and for the first time in microsporidia, a large set of unique proteins (177) including proteins with unknown function in a proportion of 25.6% was identified. The data are mainly discussed with reference to secretion and spore structural features, energy and carbohydrate metabolism, cell cycle control and parasite survival in the environment.
Collapse
Affiliation(s)
- Damien Brosson
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
88
|
Sauvage V, Millot JM, Aubert D, Visneux V, Marle-Plistat M, Pinon JM, Villena I. Identification and expression analysis of ABC protein-encoding genes in Toxoplasma gondii. Toxoplasma gondii ATP-binding cassette superfamily. Mol Biochem Parasitol 2006; 147:177-92. [PMID: 16600400 DOI: 10.1016/j.molbiopara.2006.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 11/22/2022]
Abstract
The ATP-binding cassette (ABC) transporters are one of the largest evolutionarily conserved families of proteins. They are characterized by the presence of nucleotide-binding domains (NBDs), which are highly conserved among organisms. In the present study, we used human and protozoan ABC sequences, and ATP-binding consensus motifs to screen the Toxoplasma gondii TwinScan2 predicted proteins database. We identified 24 ABC open reading frames (ORFs), whose deduced amino acid sequences exhibited all the typical biochemical features of the ABC family members. Fifteen of them clustered into five of the seven families of human ABC proteins: six ABCBs (drug, peptides and lipid export), two ABCCs (organic anion conjugates and drug export), one ABCE (Rnase L inhibitor, RLI, antibiotic resistance and translation regulation), one ABCF (drug resistance and regulation of gene expression) and five ABCGs (drug export and resistance). The nine other ORFs were represented by four ABCHs (energy-generating subunits), four SMCs (structural maintenance of chromosomes) and one member of unclear origin, whose closest homologue was the yeast Elf1 protein (mRNA export factor). A notable feature of the Toxoplasma ABC superfamily seems to be the absence of genes encoding ABCA and ABCD members. Expression analysis of ABC genes in tachyzoite and bradyzoite stages revealed the presence of ABC transcripts for all genes studied. Further research on the implication of these ABC proteins will increase our knowledge of the basic biology of Toxoplasma and provide the opportunity to identify novel therapeutic targets. To our knowledge, this is the first report of ABC transporters in T. gondii.
Collapse
Affiliation(s)
- Virginie Sauvage
- EA 3800, Interactions Cellules-Parasites, UFR de Médecine, IFR53, Reims, France
| | | | | | | | | | | | | |
Collapse
|
89
|
Hu K, Johnson J, Florens L, Fraunholz M, Suravajjala S, DiLullo C, Yates J, Roos DS, Murray JM. Cytoskeletal components of an invasion machine--the apical complex of Toxoplasma gondii. PLoS Pathog 2006; 2:e13. [PMID: 16518471 PMCID: PMC1383488 DOI: 10.1371/journal.ppat.0020013] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/18/2006] [Indexed: 11/22/2022] Open
Abstract
The apical complex of Toxoplasma gondii is widely believed to serve essential functions in both invasion of its host cells (including human cells), and in replication of the parasite. The understanding of apical complex function, the basis for its novel structure, and the mechanism for its motility are greatly impeded by lack of knowledge of its molecular composition. We have partially purified the conoid/apical complex, identified approximately 200 proteins that represent 70% of its cytoskeletal protein components, characterized seven novel proteins, and determined the sequence of recruitment of five of these proteins into the cytoskeleton during cell division. Our results provide new markers for the different subcompartments within the apical complex, and revealed previously unknown cellular compartments, which facilitate our understanding of how the invasion machinery is built. Surprisingly, the extreme apical and extreme basal structures of this highly polarized cell originate in the same location and at the same time very early during parasite replication.
Collapse
Affiliation(s)
- Ke Hu
- Department of Cell Biology, Scripps Research Institute, La Jolla, California, United States of America
| | - Jeff Johnson
- Department of Cell Biology, Scripps Research Institute, La Jolla, California, United States of America
| | - Laurence Florens
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Martin Fraunholz
- Institute of Microbiology, E.-M.-Arndt University, Greifswald, Germany
| | - Sapna Suravajjala
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camille DiLullo
- Department of Anatomy, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States of America
| | - John Yates
- Department of Cell Biology, Scripps Research Institute, La Jolla, California, United States of America
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John M Murray
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
90
|
Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005; 280:34245-58. [PMID: 16002398 DOI: 10.1074/jbc.m504158200] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.
Collapse
Affiliation(s)
- Peter J Bradley
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|