51
|
Zhang D, Huang J, Zhang W, Pan L, Zhang D, Zhao P, Wang F, Luo H, He J, Qin Y, Qu Y, Guo T, Niu T, Zheng Y. Young female patients with multiple myeloma have low occurrence of osteolytic lesion. Bone 2018; 110:21-28. [PMID: 29414597 DOI: 10.1016/j.bone.2018.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Osteolytic lesion (OL) and bone damage are common complications in multiple myeloma (MM). This study aimed to analyze the occurrence of OL in MM patient groups of different ages and genders. PATIENTS AND METHODS We performed a retrospective study of 762 MM patients admitted to West China Hospital from 2009 to 2014 to investigate the association between OL occurrence with patients' ages and genders. The presence or absence of OL was confirmed by X-ray, computed tomography (CT) or magnetic resonance imaging (MRI) examination. We also downloaded MM patients' published gene expression profiles and performed microarray-based analyses to identify differentially regulated genes and signaling pathways. Finally, we examined target gene expressions in MM bone marrow (BM) biopsies through immunohistochemistry (IHC). RESULTS We calculated the frequency of OL in female and male MM patients with different age cut-offs. From West China Hospital data, we found that in young female MM patients aged under 55, the frequency of OL was 16.67%, significantly lower than the frequencies in other groups of patients (young males: 34.38%; old males: 31.04%; old females: 29.24%; p < .05). The same was true in another independent MM cohort. Microarray-based analyses showed that Microtubule Associated Serine/Threonine Kinase Family Member 4 (MAST4), an estrogen-responsive gene, expression was up-regulated in MM patients without OL and in young female MM patients (p < .05). The expression of MAST4 in MM BM was confirmed by IHC. The perspective of cell signaling network suggested that MAST4 might interact with phosphatase and tensin homolog (PTEN) and control the expression of a panel of osteoclast-regulatory cytokines, such as TNFSF11 and CCL2. CONCLUSIONS Young female (<55 years) MM patients have significantly lower OL frequency than other groups. MAST4 gene expression is thought to be associated with this phenomenon.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, China
| | - Ling Pan
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Dan Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Pan Zhao
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jin He
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Qin
- Department of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Tingting Guo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, China.
| |
Collapse
|
52
|
González-Sánchez A, Jaraíz-Rodríguez M, Domínguez-Prieto M, Herrero-González S, Medina JM, Tabernero A. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes. Oncotarget 2018; 7:49819-49833. [PMID: 27391443 PMCID: PMC5226550 DOI: 10.18632/oncotarget.10454] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/26/2016] [Indexed: 11/30/2022] Open
Abstract
Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition.
Collapse
Affiliation(s)
- Ana González-Sánchez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Marta Domínguez-Prieto
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Sandra Herrero-González
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - José M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
53
|
Hendriks W, Bourgonje A, Leenders W, Pulido R. Proteinaceous Regulators and Inhibitors of Protein Tyrosine Phosphatases. Molecules 2018; 23:molecules23020395. [PMID: 29439552 PMCID: PMC6016963 DOI: 10.3390/molecules23020395] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Proper control of the phosphotyrosine content in signal transduction proteins is essential for normal cell behavior and is lost in many pathologies. Attempts to normalize aberrant tyrosine phosphorylation levels in disease states currently involve either the application of small compounds that inhibit tyrosine kinases (TKs) or the addition of growth factors or their mimetics to boost receptor-type TK activity. Therapies that target the TK enzymatic counterparts, the multi-enzyme family of protein tyrosine phosphatases (PTPs), are still lacking despite their undisputed involvement in human diseases. Efforts to pharmacologically modulate PTP activity have been frustrated by the conserved structure of the PTP catalytic core, providing a daunting problem with respect to target specificity. Over the years, however, many different protein interaction-based regulatory mechanisms that control PTP activity have been uncovered, providing alternative possibilities to control PTPs individually. Here, we review these regulatory principles, discuss existing biologics and proteinaceous compounds that affect PTP activity, and mention future opportunities to drug PTPs via these regulatory concepts.
Collapse
Affiliation(s)
- Wiljan Hendriks
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Annika Bourgonje
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - William Leenders
- Department of Biochemistry, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
54
|
Verrastro I, Tveen-Jensen K, Spickett CM, Pitt AR. The effect of HOCl-induced modifications on phosphatase and tensin homologue (PTEN) structure and function. Free Radic Res 2018; 52:232-247. [DOI: 10.1080/10715762.2018.1424333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | - Andrew R. Pitt
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
55
|
Targeting PTEN in Colorectal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:55-73. [DOI: 10.1007/978-3-030-02771-1_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
56
|
Shinde SR, Maddika S. PTEN Regulates Glucose Transporter Recycling by Impairing SNX27 Retromer Assembly. Cell Rep 2017; 21:1655-1666. [PMID: 29117568 PMCID: PMC5695913 DOI: 10.1016/j.celrep.2017.10.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor PTEN executes cellular functions predominantly through its phosphatase activity. Here we identified a phosphatase-independent role for PTEN during vesicular trafficking of the glucose transporter GLUT1. PTEN physically interacts with SNX27, a component of the retromer complex that recycles transmembrane receptors such as GLUT1 from endosomes to the plasma membrane. PTEN binding with SNX27 prevents GLUT1 accumulation at the plasma membrane because of defective recycling and thus reduces cellular glucose uptake. Mechanistically, PTEN blocks the association of SNX27 with VPS26 and thereby hinders assembly of a functional retromer complex during the receptor recycling process. Importantly, we found a PTEN somatic mutation (T401I) that is defective in disrupting the association between SNX27 and VPS26, suggesting a critical role for PTEN in controlling optimal GLUT1 levels at the membrane to prevent tumor progression. Together, our results reveal a fundamental role of PTEN in the regulation of the SNX27 retromer pathway, which governs glucose transport and might contribute to PTEN tumor suppressor function.
Collapse
Affiliation(s)
- Swapnil Rohidas Shinde
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500001, Telangana, India; Graduate Studies, Manipal University, Manipal 576104, Karnataka, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500001, Telangana, India.
| |
Collapse
|
57
|
Chudinova EM, Karpov PA, Fokin AI, Yemets AI, Lytvyn DI, Nadezhdina ES, Blume YB. MAST-like protein kinase IREH1 from Arabidopsis thaliana co-localizes with the centrosome when expressed in animal cells. PLANTA 2017; 246:959-969. [PMID: 28717875 DOI: 10.1007/s00425-017-2742-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The similarity of IREH1 (Incomplete Root Hair Elongation 1) and animal MAST kinases was confirmed; IREH1cDNA was cloned while expressing in cultured animal cells co-localized with the centrosome. In mammals and fruit flies, microtubule-associated serine/threonine-protein kinases (MAST) are strongly involved in the regulation of the microtubule system. Higher plants also possess protein kinases homologous to MASTs, but their function and interaction with the cytoskeleton remain unclear. Here, we confirmed the sequence and structural similarity of MAST-related putative protein kinase IREH1 (At3g17850) and known animal MAST kinases. We report the first cloning of full-length cDNA of the IREH1 from Arabidopsis thaliana. Recombinant GFP-IREH1 protein was expressed in different cultured animal cells. It revealed co-localization with the centrosome without influencing cell morphology and microtubule arrangement. Structural N-terminal region of the IREH1 molecule co-localized with centrosome as well.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Sciences, Moscow, Russia.
| | - Pavel A Karpov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Artem I Fokin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro I Lytvyn
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
58
|
Kozakai T, Takahashi M, Higuchi M, Hara T, Saito K, Tanaka Y, Masuko M, Takizawa J, Sone H, Fujii M. MAGI-1 expression is decreased in several types of human T-cell leukemia cell lines, including adult T-cell leukemia. Int J Hematol 2017; 107:337-344. [DOI: 10.1007/s12185-017-2359-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 01/31/2023]
|
59
|
Li J, Chang WT, Li CQ, Lee C, Huang HH, Hsu CW, Chen WJ, Zhu X, Wang CZ, Vanden Hoek TL, Shao ZH. Baicalein Preventive Treatment Confers Optimal Cardioprotection by PTEN/Akt/NO Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:987-1001. [PMID: 28760044 DOI: 10.1142/s0192415x17500525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein is a flavonoid with excellent oxidant scavenging capability. It has been reported to protect against a variety of oxidative injuries including ischemia/reperfusion (I/R). However, the optimal treatment strategy for I/R injury and the protective mechanisms are not fully understood. In this study we employed an established chick cardiomyocyte model of I/R and investigated the effects of three baicalein treatment strategies on reactive oxygen species (ROS) scavenging, nitric oxide (NO) production and cell viability. The molecular signaling pathways were also explored. Compared to the I/R control (cell death 52.2[Formula: see text][Formula: see text][Formula: see text]2.0%), baicalein preventive treatment (25[Formula: see text][Formula: see text]M, pretreated for 72[Formula: see text]h and continued through I/R) conferred the best protection (19.5[Formula: see text][Formula: see text][Formula: see text]3.9%, [Formula: see text]), followed by I/R treatment (treated during I/R) and reperfusion treatment (treated at reperfusion only). Preventive and I/R treatments almost completely abolished ROS generation during both ischemic and reperfusion phases, and increased NO production and Akt phosphorylation. Reperfusion treatment reduced the ROS burst in the early reperfusion phase only, and had no effect on NO production and Akt activation. Further, the phosphorylation of phosphatase and tensin homolog (PTEN), a phosphatase negatively regulating Akt activation, was significantly increased by baicalein preventive treatment and slightly by the I/R treatment. PTEN protein expression was reduced in the same trend accordingly. Baicalein reperfusion treatment had no effects on PTEN phosphorylation and expression. Our results indicate that baicalein preventive treatment confers optimal cardioprotection against I/R injury, and this protection involves effective oxidant scavenging and the activation of PTEN/Akt/NO pathway.
Collapse
Affiliation(s)
- Jing Li
- * Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,† Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Wei-Tien Chang
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,‡ Department of Emergency Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Chang-Qing Li
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Chunpei Lee
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Hsien-Hao Huang
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,§ Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chin-Wan Hsu
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,¶ Department of Emergency Medicine, School of Medicine, College of Medicine; Department of Emergency and Critical Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wen-Jone Chen
- ‡ Department of Emergency Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Xiangdong Zhu
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Terry L Vanden Hoek
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Zuo-Hui Shao
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
60
|
Abstract
The cellular hypoxic response contributes to cell transformation and tumor progression. Hypoxia-inducible factor 1 (HIF-1) is a key transcription factor that mediates transcription of genes whose products are essential for cellular adaptation to hypoxia. The activity of HIF-1 is largely regulated by the abundance of its alpha subunit (HIF-1α), which is primarily regulated by an oxygen-dependent and ubiquitin/proteasome-mediated degradation process. The HIF-1α protein level is also regulated by protein kinases through phosphorylation. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase with a tumor suppressive function. Plk3 phosphorylates and destabilizes HIF-1α. Plk3 also phosphorylates and stabilizes PTEN, a known regulator of HIF-1α stability via the PI3K pathway. Our latest study showed that the Plk3 protein is suppressed by hypoxia or nickel treatment via the ubiquitin/proteasome system. We discovered that Seven in Absentia Homologue 2 (SIAH2) is the E3 ubiquitin ligase of Plk3 and that Plk3 in turn destabilizes SIAH2. Given the role of SIAH2 in promoting stability of HIF-1α, our work reveals a novel mutual regulatory mechanism between Plk3 and SIAH2, which may function to fine-tune the cellular hypoxic response. Here we discuss the role of Plk3 in the hypoxic response and tumorigenesis in light of these latest findings.
Collapse
Affiliation(s)
- Dazhong Xu
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| | - Wei Dai
- b Department of Environmental Medicine , New York University Langone Medical Center , Tuxedo , NY , USA
| | - Cen Li
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| |
Collapse
|
61
|
Bhat HF, Mir SS, Dar KB, Bhat ZF, Shah RA, Ganai NA. ABC of multifaceted dystrophin glycoprotein complex (DGC). J Cell Physiol 2017; 233:5142-5159. [DOI: 10.1002/jcp.25982] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Hina F. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| | - Saima S. Mir
- Department of BiotechnologyUniversity of KashmirHazratbal, SrinagarJammu and KashmirIndia
| | - Khalid B. Dar
- Department of BiochemistryUniversity of KashmirHazratbal, SrinagarJammu and KashmirIndia
| | - Zuhaib F. Bhat
- Division of Livestock Products and TechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST‐J), R.S. PoraJammuJammu and KashmirIndia
| | - Riaz A. Shah
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| | - Nazir A. Ganai
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| |
Collapse
|
62
|
Musante V, Li L, Kanyo J, Lam TT, Colangelo CM, Cheng SK, Brody AH, Greengard P, Le Novère N, Nairn AC. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. eLife 2017; 6. [PMID: 28613156 PMCID: PMC5515580 DOI: 10.7554/elife.24998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition. DOI:http://dx.doi.org/10.7554/eLife.24998.001
Collapse
Affiliation(s)
- Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Lu Li
- The Babraham Institute, Cambridge, United Kingdom
| | - Jean Kanyo
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Tukiet T Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Christopher M Colangelo
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Shuk Kei Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | - A Harrison Brody
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
63
|
Involvement of Tight Junction Plaque Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
Li J, Zhang J, Tang M, Xin J, Xu Y, Volk A, Hao C, Hu C, Sun J, Wei W, Cao Q, Breslin P, Zhang J. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells 2016; 34:2130-44. [PMID: 27096933 DOI: 10.1002/stem.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/19/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Minghui Tang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Quichan Cao
- Department of Public Health Sciences, Loyola University Chicago, Chicago, Illinois, USA
| | - Peter Breslin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Molecular and Cellular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
65
|
Ma M, He M, Jiang Q, Yan Y, Guan S, Zhang J, Yu Z, Chen Q, Sun M, Yao W, Zhao H, Jin F, Wei M. MiR-487a Promotes TGF-β1-induced EMT, the Migration and Invasion of Breast Cancer Cells by Directly Targeting MAGI2. Int J Biol Sci 2016; 12:397-408. [PMID: 27019625 PMCID: PMC4807160 DOI: 10.7150/ijbs.13475] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/29/2015] [Indexed: 01/14/2023] Open
Abstract
Tumor metastasis is a complex and multistep process and its exact molecular mechanisms remain unclear. We attempted to find novel microRNAs (miRNAs) contributing to the migration and invasion of breast cancer cells. In this study, we found that the expression of miR-487a was higher in MDA-MB-231breast cancer cells with high metastasis ability than MCF-7 breast cancer cells with low metastasis ability and the treatment with transforming growth factor β1 (TGF-β1) significantly increased the expression of miR-487a in MCF-7 and MDA-MB-231 breast cancer cells. Subsequently, we found that the transfection of miR-487a inhibitor significantly decreased the expression of vimentin, a mesenchymal marker, while increased the expression of E-cadherin, an epithelial marker, in both MCF-7 cells and MDA-MB-231 cells. Also, the inactivation of miR-487a inhibited the migration and invasion of breast cancer cells. Furthermore, our findings demonstrated that miR-487a directly targeted the MAGI2 involved in the stability of PTEN. The down-regulation of miR-487a increased the expression of p-PTEN and PTEN, and reduced the expression of p-AKT in both cell lines. In addition, the results showed that NF-kappaB (p65) significantly increased the miR-487a promoter activity and expression, and TGF-β1 induced the increased miR-487a promoter activity via p65 in MCF-7 cells and MDA-MB-231 cells. Moreover, we further confirmed the expression of miR-487a was positively correlated with the lymph nodes metastasis and negatively correlated with the expression of MAGI2 in human breast cancer tissues. Overall, our results suggested that miR-487a could promote the TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2.
Collapse
Affiliation(s)
- Mengtao Ma
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qian Jiang
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yuanyuan Yan
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Shu Guan
- 2. Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing Zhang
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Zhaojin Yu
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiuchen Chen
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mingli Sun
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Weifan Yao
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Haishan Zhao
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- 2. Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Minjie Wei
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
66
|
Valdano MB, Cavatorta AL, Morale MG, Marziali F, de Souza Lino V, Steenbergen RDM, Boccardo E, Gardiol D. Disc large 1 expression is altered by human papillomavirus E6/E7 proteins in organotypic cultures of human keratinocytes. J Gen Virol 2016; 97:453-462. [DOI: 10.1099/jgv.0.000364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- M. Bugnon Valdano
- Instituto de Biología Molecular y Celular de Rosario – CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - A. L. Cavatorta
- Instituto de Biología Molecular y Celular de Rosario – CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - M. G. Morale
- Deparment of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - F. Marziali
- Instituto de Biología Molecular y Celular de Rosario – CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - V. de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - R. D. M. Steenbergen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - E. Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - D. Gardiol
- Instituto de Biología Molecular y Celular de Rosario – CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| |
Collapse
|
67
|
Knafo S, Sánchez-Puelles C, Palomer E, Delgado I, Draffin JE, Mingo J, Wahle T, Kaleka K, Mou L, Pereda-Perez I, Klosi E, Faber EB, Chapman HM, Lozano-Montes L, Ortega-Molina A, Ordóñez-Gutiérrez L, Wandosell F, Viña J, Dotti CG, Hall RA, Pulido R, Gerges NZ, Chan AM, Spaller MR, Serrano M, Venero C, Esteban JA. PTEN recruitment controls synaptic and cognitive function in Alzheimer's models. Nat Neurosci 2016; 19:443-53. [DOI: 10.1038/nn.4225] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/03/2015] [Indexed: 11/09/2022]
|
68
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
69
|
Elboudwarej E, Cole M, Briggs FBS, Fouts A, Fain PR, Quach H, Quach D, Sinclair E, Criswell LA, Lane JA, Steck AK, Barcellos LF, Noble JA. Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun 2016; 68:23-9. [PMID: 26782299 DOI: 10.1016/j.jaut.2015.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 02/08/2023]
Abstract
Genetic susceptibility to type 1 diabetes (T1D) is well supported by epidemiologic evidence; however, disease risk cannot be entirely explained by established genetic variants identified so far. This study addresses the question of whether epigenetic modification of the inherited DNA sequence may contribute to T1D susceptibility. Using the Infinium HumanMethylation450 BeadChip array (450k), a total of seven long-term disease-discordant monozygotic (MZ) twin pairs and five pairs of HLA-identical, disease-discordant non-twin siblings (NTS) were examined for associations between DNA methylation (DNAm) and T1D. Strong evidence for global hypomethylation of CpG sites within promoter regions in MZ twins with TID compared to twins without T1D was observed. DNA methylation data were then grouped into three categories of CpG sites for further analysis, including those within: 1) the major histocompatibility complex (MHC) region, 2) non-MHC genes with reported T1D association through genome wide association studies (GWAS), and 3) the epigenome, or remainder of sites that did not include MHC and T1D associated genes. Initial results showed modest methylation differences between discordant MZ twins for the MHC region and T1D-associated CpG sites, BACH2, INS-IGF2, and CLEC16A (DNAm difference range: 2.2%-5.0%). In the epigenome CpG set, the greatest methylation differences were observed in MAGI2, FANCC, and PCDHB16, (DNAm difference range: 6.9%-16.1%). These findings were not observed in the HLA-identical NTS pairs. Targeted pyrosequencing of five candidate CpG loci identified using the 450k array in the original discordant MZ twins produced similar results using control DNA samples, indicating strong agreement between the two DNA methylation profiling platforms. However, findings for the top five candidate CpG loci were not replicated in six additional T1D-discordant MZ twin pairs. Our results indicate global DNA hypomethylation within gene promoter regions may contribute to T1D; however, findings do not support the involvement of large DNAm differences at single CpG sites alone in T1D.
Collapse
Affiliation(s)
- Emon Elboudwarej
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA, USA
| | - Michael Cole
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA, USA
| | - Farren B S Briggs
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA, USA
| | - Alexandra Fouts
- University of Colorado Denver, Barbara Davis Center for Childhood Diabetes, Denver, CO, USA
| | - Pamela R Fain
- University of Colorado Denver, Barbara Davis Center for Childhood Diabetes, Denver, CO, USA
| | - Hong Quach
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA, USA
| | - Diana Quach
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA, USA
| | - Elizabeth Sinclair
- San Francisco General Hospital and University of California, San Francisco (UCSF), San Francisco, CA, USA
| | | | - Julie A Lane
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Andrea K Steck
- University of Colorado Denver, Barbara Davis Center for Childhood Diabetes, Denver, CO, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA, USA
| | - Janelle A Noble
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| |
Collapse
|
70
|
Luna S, Mingo J, Aurtenetxe O, Blanco L, Amo L, Schepens J, Hendriks WJ, Pulido R. Tailor-Made Protein Tyrosine Phosphatases: In Vitro Site-Directed Mutagenesis of PTEN and PTPRZ-B. Methods Mol Biol 2016; 1447:79-93. [PMID: 27514801 DOI: 10.1007/978-1-4939-3746-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vitro site-directed mutagenesis (SDM) of protein tyrosine phosphatases (PTPs) is a commonly used approach to experimentally analyze PTP functions at the molecular and cellular level and to establish functional correlations with PTP alterations found in human disease. Here, using the tumor-suppressor PTEN and the receptor-type PTPRZ-B (short isoform from PTPRZ1 gene) phosphatases as examples, we provide a brief insight into the utility of specific mutations in the experimental analysis of PTP functions. We describe a standardized, rapid, and simple method of mutagenesis to perform single and multiple amino acid substitutions, as well as deletions of short nucleotide sequences, based on one-step inverse PCR and DpnI restriction enzyme treatment. This method of SDM is generally applicable to any other protein of interest.
Collapse
Affiliation(s)
- Sandra Luna
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain
| | - Janire Mingo
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain
| | - Olaia Aurtenetxe
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain
| | - Lorena Blanco
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain
| | - Laura Amo
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain
| | - Jan Schepens
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Wiljan J Hendriks
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Rafael Pulido
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
71
|
Mirzadeh Azad F, Naeli P, Malakootian M, Baradaran A, Tavallaei M, Ghanei M, Mowla SJ. Two lung development-related microRNAs, miR-134 and miR-187, are differentially expressed in lung tumors. Gene 2015; 577:221-6. [PMID: 26642897 DOI: 10.1016/j.gene.2015.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are involved in various cellular events needed for embryonic development and tumorigenesis. As some of the development-specific gene expression patterns could be observed in cancers, we speculated that the expression pattern of lung development-specific miRNAs miR-134 and miR-187 might be altered in lung tumor samples. Lung cancer is the first cause of cancer related deaths worldwide, mostly due to its late diagnosis. Therefore, finding a reliable diagnostic tumor marker, based on molecular profile of tumorigenesis, would be critical in lowering lung cancer mortality. METHODS We employed a real-time RT-PCR approach to evaluate the expression alteration of two lung development-related miRNAs in lung tumor tissues. The suitability of miRs expression alterations as lung tumor biomarkers was tested by receiver operating characteristic (ROC) curve analysis. The effect of miR-187 overexpression on a lung carcinoma cell cycle was assessed using flow cytometry analysis. RESULTS Our data revealed a significant upregulation (7.8 times, p<0.02) of miR-134 in lung tumors. However, its expression level failed to discriminate different tumor types and grades of malignancies from each other. Moreover, the ROC curves analysis did not give it a good score as a reliable biomarker (AUC=0.522, P=0.729). In contrast, miR-187 showed a significant down-regulation (P=0.008) in lung tumors. Similarly, its expression level failed to differentiate different tumor types or grades of malignancies. Nevertheless, ROC curve analysis gave it an AUC score of 0.669 (P=0.012), which suggests its suitability as a potential biomarker for lung cancer. Furthermore, ectopic expression of miR-187 in A549 cells caused a cell cycle arrest in G1 phase (P=0.013). CONCLUSION Altogether, our data demonstrated an altered expression of two development-related miRNAs namely miR-134 and miR-187 in lung tumors for the first time. Moreover we have shown that miR-134 and miR-187 expression alternation were in accordance with their approved regulatory roles, therefore these miRNAs could serve as new biomarkers with potential usefulness in lung cancer diagnosis and treatments. In addition, miR-187 expression in tumor cells could perturb cell cycle which supported its possible role as tumor suppressor.
Collapse
Affiliation(s)
- F Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - P Naeli
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Malakootian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - A Baradaran
- Department of Pathology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Tavallaei
- Genetic Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| | - M Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S J Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
72
|
Li N, Wang Z, Lin J. Up-regulated expression of PTEN after splenetomy may prevent the progression of liver fibrosis in rats. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 23:50-56. [PMID: 26545563 DOI: 10.1002/jhbp.300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND/PURPOSE To investigate the mechanisms of delaying progression of liver fibrosis by splenectomy. METHODS Liver fibrosis was induced by common bile duct ligation. Rats were divided into 3 groups randomly: group A with common bile duct ligation and splenectomy (n = 45), group B with common bile duct ligation and spleen sham operation (n = 45), group C with sham common bile duct ligation and spleen sham operation (n = 45). Liver samples were collected at the 1st, 3rd and 5th week. H&E staining and Sirius staining were used to evaluate the degree of liver fibrosis, immunohistochemical staining was used to measure the expression of α-SMA and PTEN. PTEN mRNA and protein expression was measured by real-time PCR and Western-blot. RESULTS Over time, liver fibrosis developed gradually in group A and B. The expression of PTEN mRNA and protein in group A was higher than that in group B (P < 0.05), while the expression of α-SMA was higher in group B (P < 0.05). The expression of PTEN was negatively correlated with α-SMA (r = -0.86, P < 0.05). CONCLUSIONS In this study, splenectomy can up-regulate the expression of PTEN and reduce the secretion of α-SMA, thereby deterring the progression of liver fibrosis.
Collapse
Affiliation(s)
- Naishu Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziming Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Lin
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
73
|
ZHENG JUNFANG, DAI YUANPING, YANG ZHIYU, YANG LONGYAN, PENG ZHIQIANG, MENG RAN, XIONG YING, HE JUNQI. Ezrin-radixin-moesin-binding phosphoprotein-50 regulates EGF-induced AKT activation through interaction with EGFR and PTEN. Oncol Rep 2015; 35:530-7. [DOI: 10.3892/or.2015.4375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
|
74
|
Chia YCJ, Catimel B, Lio DSS, Ang CS, Peng B, Wu H, Zhu HJ, Cheng HC. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate. Arch Biochem Biophys 2015; 587:48-60. [PMID: 26471078 DOI: 10.1016/j.abb.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates.
Collapse
Affiliation(s)
- Yeong-Chit Joel Chia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bruno Catimel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin Peng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hong Wu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
75
|
Trefely S, Khoo PS, Krycer JR, Chaudhuri R, Fazakerley DJ, Parker BL, Sultani G, Lee J, Stephan JP, Torres E, Jung K, Kuijl C, James DE, Junutula JR, Stöckli J. Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway. J Biol Chem 2015; 290:25834-46. [PMID: 26342081 DOI: 10.1074/jbc.m115.658815] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 01/02/2023] Open
Abstract
The insulin/insulin-like growth factor (IGF)-1 signaling pathway (ISP) plays a fundamental role in long term health in a range of organisms. Protein kinases including Akt and ERK are intimately involved in the ISP. To identify other kinases that may participate in this pathway or intersect with it in a regulatory manner, we performed a whole kinome (779 kinases) siRNA screen for positive or negative regulators of the ISP, using GLUT4 translocation to the cell surface as an output for pathway activity. We identified PFKFB3, a positive regulator of glycolysis that is highly expressed in cancer cells and adipocytes, as a positive ISP regulator. Pharmacological inhibition of PFKFB3 suppressed insulin-stimulated glucose uptake, GLUT4 translocation, and Akt signaling in 3T3-L1 adipocytes. In contrast, overexpression of PFKFB3 in HEK293 cells potentiated insulin-dependent phosphorylation of Akt and Akt substrates. Furthermore, pharmacological modulation of glycolysis in 3T3-L1 adipocytes affected Akt phosphorylation. These data add to an emerging body of evidence that metabolism plays a central role in regulating numerous biological processes including the ISP. Our findings have important implications for diseases such as type 2 diabetes and cancer that are characterized by marked disruption of both metabolism and growth factor signaling.
Collapse
Affiliation(s)
- Sophie Trefely
- From the Garvan Institute of Medical Research, Sydney 2010 NSW, Australia
| | - Poh-Sim Khoo
- From the Garvan Institute of Medical Research, Sydney 2010 NSW, Australia, Genentech Inc., South San Francisco, California 94080
| | - James R Krycer
- the Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney 2006 NSW, Australia, and
| | - Rima Chaudhuri
- the Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney 2006 NSW, Australia, and
| | - Daniel J Fazakerley
- the Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney 2006 NSW, Australia, and
| | - Benjamin L Parker
- the Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney 2006 NSW, Australia, and
| | - Ghazal Sultani
- From the Garvan Institute of Medical Research, Sydney 2010 NSW, Australia
| | - James Lee
- Genentech Inc., South San Francisco, California 94080
| | | | - Eric Torres
- Genentech Inc., South San Francisco, California 94080
| | - Kenneth Jung
- Genentech Inc., South San Francisco, California 94080
| | | | - David E James
- the Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney 2006 NSW, Australia, and the Sydney Medical School, University of Sydney, Sydney 2006 NSW, Australia
| | | | - Jacqueline Stöckli
- the Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney 2006 NSW, Australia, and
| |
Collapse
|
76
|
Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling. JOURNAL OF SIGNAL TRANSDUCTION 2015; 2015:282567. [PMID: 26339505 PMCID: PMC4539077 DOI: 10.1155/2015/282567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/06/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022]
Abstract
Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration.
Collapse
|
77
|
Bermúdez Brito M, Goulielmaki E, Papakonstanti EA. Focus on PTEN Regulation. Front Oncol 2015; 5:166. [PMID: 26284192 PMCID: PMC4515857 DOI: 10.3389/fonc.2015.00166] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.
Collapse
Affiliation(s)
- Miriam Bermúdez Brito
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | | |
Collapse
|
78
|
Germline mutations causing familial lung cancer. J Hum Genet 2015; 60:597-603. [PMID: 26178433 DOI: 10.1038/jhg.2015.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022]
Abstract
Genetic factors are important in lung cancer, but as most lung cancers are sporadic, little is known about inherited genetic factors. We identified a three-generation family with suspected autosomal dominant inherited lung cancer susceptibility. Sixteen individuals in the family had lung cancer. To identify the gene(s) that cause lung cancer in this pedigree, we extracted DNA from the peripheral blood of three individuals and from the blood of one cancer-free control family member and performed whole-exome sequencing. We identified 41 alterations in 40 genes in all affected family members but not in the unaffected member. These were considered candidate mutations for familial lung cancer. Next, to identify somatic mutations and/or inherited alterations in these 40 genes among sporadic lung cancers, we performed exon target enrichment sequencing using 192 samples from sporadic lung cancer patients. We detected somatic 'candidate' mutations in multiple sporadic lung cancer samples; MAST1, CENPE, CACNB2 and LCT were the most promising candidate genes. In addition, the MAST1 gene was located in a putative cancer-linked locus in the pedigree. Our data suggest that several genes act as oncogenic drivers in this family, and that MAST1 is most likely to cause lung cancer.
Collapse
|
79
|
Deciphering the unconventional peptide binding to the PDZ domain of MAST2. Biochem J 2015; 469:159-68. [DOI: 10.1042/bj20141198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/05/2015] [Indexed: 11/17/2022]
Abstract
Peptide binding on to microtubule-associated serine threonine kinase 2 (MAST2)—PDZ (PSD-95, Dlg1, Zo-1) prevents dimerization of the domain without directly competing with the monomer interface. Peptide binding affects positions distal from the binding groove through a network of residues undergoing subtle changes of conformation and dynamics.
Collapse
|
80
|
Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nat Methods 2015; 12:787-93. [PMID: 26053890 PMCID: PMC4521981 DOI: 10.1038/nmeth.3438] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
Abstract
Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes.
Collapse
|
81
|
Fragoso R, Barata JT. Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 2015; 77-78:75-81. [PMID: 25448482 DOI: 10.1016/j.ymeth.2014.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation regulates the conformation, stability, homo- and heterotypic protein interactions, localization, and activity of the tumor suppressor PTEN. From a simple picture, at the beginning of this millennium, recognizing that CK2 phosphorylated PTEN at the C-terminus and thereby impacted on PTEN stability and activity, research has led to a significantly more complex scenario today, where for instance GSK3, Plk3, ATM, ROCK or Src-family kinases are also gaining the spotlight in this evolving play. Here, we review the current knowledge on the kinases that phosphorylate PTEN, and on the impact that specific phosphorylation events have on PTEN function.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
82
|
PTEN–PDZ domain interactions: Binding of PTEN to PDZ domains of PTPN13. Methods 2015; 77-78:147-56. [DOI: 10.1016/j.ymeth.2014.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
|
83
|
Quantitative and dynamic analysis of PTEN phosphorylation by NMR. Methods 2015; 77-78:82-91. [DOI: 10.1016/j.ymeth.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
|
84
|
Olaisen C, Müller R, Nedal A, Otterlei M. PCNA-interacting peptides reduce Akt phosphorylation and TLR-mediated cytokine secretion suggesting a role of PCNA in cellular signaling. Cell Signal 2015; 27:1478-87. [PMID: 25797046 DOI: 10.1016/j.cellsig.2015.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 01/14/2023]
Abstract
Proliferating cell nuclear antigen (PCNA), commonly known as a nuclear protein essential for regulation of DNA replication, DNA repair, and epigenetics, has recently been associated with multiple cytosolic functions. Many proteins containing one of the two known PCNA-interacting motifs, the AlkB homologue 2 PCNA interacting motif (APIM) and the PCNA-interacting peptide (PIP)-box, are considered to be mainly cytosolic. APIM is found in more than 20 kinases and/or associated proteins including several direct or indirect members of the mitogen-activated protein kinase (MAPK) and PI3K/Akt pathways. Mass spectrometry analysis of PCNA-pull downs verified that many cytosolic proteins involved in the MAPK and PI3K/Akt pathways are in complex with PCNA. Furthermore, treatment of cells with a PCNA-interacting APIM-containing peptide (APIM-peptide) reduced Akt phosphorylation in human peripheral blood monocytes and a human keratinocyte cell line (HaCaT). Additionally, the APIM-peptide strongly reduced the cytokine secretion from monocytes stimulated with toll like receptor (TLR) ligands and potentiated the effects of MAPK and PI3K/Akt inhibitors. Interestingly, the protein level of the APIM-containing PKR/RIG-1 activator protein (PACT) was initially strongly reduced in HaCaT cells stimulated with APIM-peptide in combination with the TLR ligand polyinosinic-polycytidylic acid (polyIC). Our results suggest that PCNA has a platform role in cytosol affecting cellular signaling.
Collapse
Affiliation(s)
- Camilla Olaisen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Rebekka Müller
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Aina Nedal
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| |
Collapse
|
85
|
Caillet-Saguy C, Maisonneuve P, Delhommel F, Terrien E, Babault N, Lafon M, Cordier F, Wolff N. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:53-9. [PMID: 25748547 DOI: 10.1016/j.pbiomolbio.2015.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
PDZ (PSD-95/Dlg/ZO-1) domains play a major role in neuronal homeostasis in which they act as scaffold domains regulating cellular trafficking, self-association and catalytic activity of essential proteins such as kinases and phosphatases. Because of their central role in cell signaling, cellular PDZ-containing proteins are preferential targets of viruses to hijack cellular function to their advantage. Here, we describe how the viral G protein of the rabies virus specifically targets the PDZ domain of neuronal enzymes during viral infection. By disrupting the complexes formed by cellular enzymes and their ligands, the virus triggers drastic effect on cell signaling and commitment of the cell to either survival (virulent strains) or death (vaccinal strains). We provide structural and biological evidences that the viral proteins act as competitors endowed with specificity and affinity in an essential cellular process by mimicking PDZ binding motif of cellular partners. Disruption of critical endogenous protein-protein interactions by viral protein drastically alters intracellular protein trafficking and catalytic activity of cellular proteins that control cell homeostasis. This work opens up many perspectives to mimic viral sequences and developing innovative therapies to manipulate cellular homeostasis.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Pierre Maisonneuve
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Florent Delhommel
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Docteur Roux, 75015 Paris, France
| | - Elouan Terrien
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Nicolas Babault
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Monique Lafon
- Unité de Neuroimmunologie Virale, Département de Virologie, Institut Pasteur, Paris, France
| | - Florence Cordier
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Nicolas Wolff
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France.
| |
Collapse
|
86
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
87
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
88
|
Rakshambikai R, Manoharan M, Gnanavel M, Srinivasan N. Typical and atypical domain combinations in human protein kinases: functions, disease causing mutations and conservation in other primates. RSC Adv 2015. [DOI: 10.1039/c4ra11685b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A twist in the evolution of human kinases resulting in kinases with hybrid and rogue properties.
Collapse
Affiliation(s)
| | - Malini Manoharan
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Mutharasu Gnanavel
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|
89
|
Exosome-mediated delivery of the intrinsic C-terminus domain of PTEN protects it from proteasomal degradation and ablates tumorigenesis. Mol Ther 2014; 23:255-69. [PMID: 25327178 DOI: 10.1038/mt.2014.202] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/11/2014] [Indexed: 12/21/2022] Open
Abstract
PTEN mutation is a frequent feature across a plethora of human cancers, the hot-spot being its C-terminus (PTEN-CT) regulatory domain resulting in a much diminished protein expression. In this study, the presence of C-terminus mutations was confirmed through sequencing of different human tumor samples. The kinase CKII-mediated phosphorylation of PTEN at these sites makes it a loopy structure competing with the E3 ligases for binding to its lipid anchoring C2 domain. Accordingly, it was found that PTEN-CT expressing stable cell lines could inhibit tumorigenesis in syngenic breast tumor models. Therefore, we designed a novel exosome-mediated delivery of the intrinsic PTEN domain, PTEN-CT into different cancer cells and observed reduced proliferation, migration, and colony forming ability. The delivery of exosome containing PTEN-CT to breast tumor mice model was found to result in significant regression in tumor size with the tumor sections showing increased apoptosis. Here, we also report for the first time an active PTEN when its C2 domain is bound by PTEN-CT, probably rendering its anti-tumorigenic activities through the protein phosphatase activity. Therefore, therapeutic interventions that focus on PTEN E3 ligase inhibition through exosome-mediated PTEN-CT delivery can be a probable route in treating cancers with low PTEN expression.
Collapse
|
90
|
Malaney P, Uversky VN, Davé V. Identification of intrinsically disordered regions in PTEN and delineation of its function via a network approach. Methods 2014; 77-78:69-74. [PMID: 25449897 DOI: 10.1016/j.ymeth.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack stable higher order structures for the entire protein molecule or a significant portion of it. The discovery of IDPs evolved as an antithesis to the conventional structure-function paradigm wherein a higher order structure dictates protein function. Over the last decade, a number of proteins with functionally relevant unstructured regions have been discovered, which includes tumor suppressor PTEN. The protein domains that lack structure provide "hot-spots" for post-translational modifications (PTMs) and protein-protein interactions (PPIs), which facilitate their regulation and participation in multiple cellular processes. Consequently, dysregulation in IDPs contribute to aberrant cellular pathophysiology. Herein, we present PTEN and its translational isoform PTEN-L as a hybrid protein possessing ordered domain and intrinsically disordered C-terminal and an N-terminal tails. We review the role of intrinsic disorder in PTEN function and propose a methodology for the use of intrinsic disorder to study PTEN-regulated higher order protein-networks by associating basic principles of network biology to functional pathway analysis at the systems level.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
91
|
Abstract
Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn's disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution.
Collapse
|
92
|
Sewduth RN, Jaspard-Vinassa B, Peghaire C, Guillabert A, Franzl N, Larrieu-Lahargue F, Moreau C, Fruttiger M, Dufourcq P, Couffinhal T, Duplàa C. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat Commun 2014; 5:4832. [PMID: 25198863 DOI: 10.1038/ncomms5832] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/28/2014] [Indexed: 01/01/2023] Open
Abstract
Development and stabilization of a vascular plexus requires the coordination of multiple signalling processes. Wnt planar cell polarity (PCP) signalling is critical in vertebrates for diverse morphogenesis events, which coordinate cell orientation within a tissue-specific plane. However, its functional role in vascular morphogenesis is not well understood. Here we identify PDZRN3, an ubiquitin ligase, and report that Pdzrn3 deficiency impairs embryonic angiogenic remodelling and postnatal retinal vascular patterning, with a loss of two-dimensional polarized orientation of the intermediate retinal plexus. Using in vitro and ex vivo Pdzrn3 loss-of-function and gain-of-function experiments, we demonstrate a key role of PDZRN3 in endothelial cell directional and coordinated extension. PDZRN3 ubiquitinates Dishevelled 3 (Dvl3), to promote endocytosis of the Frizzled/Dvl3 complex, for PCP signal transduction. These results highlight the role of PDZRN3 to direct Wnt PCP signalling, and broadly implicate this pathway in the planar orientation and highly branched organization of vascular plexuses.
Collapse
Affiliation(s)
- Raj N Sewduth
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Béatrice Jaspard-Vinassa
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Claire Peghaire
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Aude Guillabert
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Nathalie Franzl
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | | | - Catherine Moreau
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | | | - Pascale Dufourcq
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Thierry Couffinhal
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [3] CHU de Bordeaux, Service des Maladies Cardiaques et Vasculaires, F-33000 Bordeaux, France
| | - Cécile Duplàa
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| |
Collapse
|
93
|
Hain D, Langlands A, Sonnenberg HC, Bailey C, Bullock SL, Müller HAJ. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 2014; 141:2119-30. [PMID: 24803657 PMCID: PMC4011086 DOI: 10.1242/dev.104711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly understood. Here we show that mutations in drop out (dop) disturb the segregation of membrane cortical compartments and the clustering of E-cadherin into basal adherens junctions in early cellularisation. dop is required for normal furrow formation and controls the tight localisation of furrow canal proteins and the formation of F-actin foci at the incipient furrows. We show that dop encodes the single Drosophila homologue of microtubule-associated Ser/Thr (MAST) kinases. dop interacts genetically with components of the dynein/dynactin complex and promotes dynein-dependent transport in the embryo. Loss of dop function reduces phosphorylation of Dynein intermediate chain, suggesting that dop is involved in regulating cytoplasmic dynein activity through direct or indirect mechanisms. These data suggest that Dop impinges upon the initiation of furrow formation through developmental regulation of cytoplasmic dynein.
Collapse
Affiliation(s)
- Daniel Hain
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
94
|
The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase. PLoS Pathog 2014; 10:e1004102. [PMID: 24788832 PMCID: PMC4006922 DOI: 10.1371/journal.ppat.1004102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/18/2014] [Indexed: 12/19/2022] Open
Abstract
Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K). While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1), a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells. Adenoviruses cause acute illnesses in people, and are additionally utilized both as vehicles to cure genetic diseases, fight cancer, and deliver vaccines, and as tools to discover how cancers develop due to a capacity to generate tumors in experimental animals. The adenovirus E4-ORF1 protein reprograms cell metabolism to enhance virus production in infected cells and promotes cell survival and tumors by activating the important cellular protein phosphatidylinositol 3-kinase (PI3K). How E4-ORF1 activates PI3K is not known, though this function depends on E4-ORF1 binding to the membrane-associated cellular protein Discs Large 1 (Dlg1), which many different viruses evolved to target. In this study, we identify PI3K as a new direct target of E4-ORF1. Results further show that E4-ORF1 binds to PI3K in the cytoplasm and delivers it to Dlg1 at the membrane where the three proteins form a complex that activates PI3K and induces oncogenic growth in cells. This novel molecular mechanism in which adenovirus subverts Dlg1 to dysregulate PI3K may serve as a paradigm to understand PI3K activation mediated by other important pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 in infected cells.
Collapse
|
95
|
NAKANISHI ATSUKO, KITAGISHI YASUKO, OGURA YASUNORI, MATSUDA SATORU. The tumor suppressor PTEN interacts with p53 in hereditary cancer. Int J Oncol 2014; 44:1813-9. [DOI: 10.3892/ijo.2014.2377] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/26/2014] [Indexed: 11/05/2022] Open
|
96
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: the long and the short of it. Trends Biochem Sci 2014; 39:183-90. [PMID: 24656806 DOI: 10.1016/j.tibs.2014.02.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
97
|
Ohtake Y, Park D, Abdul-Muneer PM, Li H, Xu B, Sharma K, Smith GM, Selzer ME, Li S. The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury. Biomaterials 2014; 35:4610-26. [PMID: 24630093 DOI: 10.1016/j.biomaterials.2014.02.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Knockout studies suggest that PTEN limits the regenerative capacities of CNS axons as a dominant antagonist of PI3 kinase, but the transgenic approach is not feasible for treating patients. Although application of bisperoxovanadium may block PTEN function, it is a general inhibitor of phosphotyrosine phosphatases and may target enzymes other than PTEN, causing side effects and preventing firm conclusions about PTEN inhibition on regulating neuronal growth. A pharmacological method to selectively suppress PTEN post-injury could be a valuable strategy for promoting CNS axon regeneration. We identified PTEN antagonist peptides (PAPs) by targeting PTEN critical functional domains and evaluated their efficacy for promoting axon growth. Four PAPs (PAP 1-4) bound to PTEN protein expressed in COS7 cells and blocked PTEN signaling in vivo. Subcutaneous administration of PAPs initiated two days after dorsal over-hemisection injury significantly stimulated growth of descending serotonergic fibers in the caudal spinal cord of adult mice. Systemic PAPs induce significant sprouting of corticospinal fibers in the rostral spinal cord and limited growth of corticospinal axons in the caudal spinal cord. More importantly, PAP treatment enhanced recovery of locomotor function in adult rodents with spinal cord injury. This study may facilitate development of effective therapeutic agents for CNS injuries.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dongsun Park
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - P M Abdul-Muneer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hui Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Bin Xu
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kartavya Sharma
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390-8813, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
98
|
Aoyama D, Hashimoto N, Sakamoto K, Kohnoh T, Kusunose M, Kimura M, Ogata R, Imaizumi K, Kawabe T, Hasegawa Y. Involvement of TGFβ-induced phosphorylation of the PTEN C-terminus on TGFβ-induced acquisition of malignant phenotypes in lung cancer cells. PLoS One 2013; 8:e81133. [PMID: 24278390 PMCID: PMC3838341 DOI: 10.1371/journal.pone.0081133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/18/2013] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor β (TGFβ) derived from the tumor microenvironment induces malignant phenotypes such as epithelial-mesenchymal transition (EMT) and aberrant cell motility in lung cancers. TGFβ-induced translocation of β-catenin from E-cadherin complexes into the cytoplasm is involved in the transcription of EMT target genes. PTEN (phosphatase and tensin homologue deleted from chromosome 10) is known to exert phosphatase activity by binding to E-cadherin complexes via β-catenin, and recent studies suggest that phosphorylation of the PTEN C-terminus tail might cause loss of this PTEN phosphatase activity. However, whether TGFβ can modulate both β-catenin translocation and PTEN phosphatase activity via phosphorylation of the PTEN C-terminus remains elusive. Furthermore, the role of phosphorylation of the PTEN C-terminus in TGFβ-induced malignant phenotypes has not been evaluated. To investigate whether modulation of phosphorylation of the PTEN C-terminus can regulate malignant phenotypes, here we established lung cancer cells expressing PTEN protein with mutation of phosphorylation sites in the PTEN C-terminus (PTEN4A). We found that TGFβ stimulation yielded a two-fold increase in the phosphorylated -PTEN/PTEN ratio. Expression of PTEN4A repressed TGFβ-induced EMT and cell motility even after snail expression. Our data showed that PTEN4A might repress EMT through complete blockade of β-catenin translocation into the cytoplasm, besides the inhibitory effect of PTEN4A on TGFβ-induced activation of smad-independent signaling pathways. In a xenograft model, the tumor growth ratio was repressed in cells expressing PTEN4A. Taken together, these data suggest that phosphorylation sites in the PTEN C-terminus might be a therapeutic target for TGFβ-induced malignant phenotypes in lung cancer cells.
Collapse
Affiliation(s)
- Daisuke Aoyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Kohnoh
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kusunose
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motohiro Kimura
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Ogata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and Allergy, Fujita Health University, Toyoake, Japan
| | - Tsutomu Kawabe
- Department of Medical Technology, Nagoya University Graduate School of Health Science, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
99
|
Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, Noro R, Minegishi Y, Kubota K, Gemma A. MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther 2013; 13:444-53. [PMID: 24258346 DOI: 10.1158/1535-7163.mct-13-0448] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non-small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA)-related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in NSCLC. miRNA expression profiles were examined before and after transforming growth factor β1 (TGF-β1) exposure in four human adenocarcinoma cell lines with or without EMT. Correlation between expressions of EMT-related miRNAs and resistance to EGFR-TKI gefitinib was evaluated. miRNA array and real-time quantitative reverse transcription PCR (qRT-PCR) revealed that TGF-β1 significantly induced overexpression of miR-134, miR-487b, and miR-655, which belong to the same cluster located on chromosome 14q32, in lung adenocarcinoma cells with EMT. MAGI2 (membrane-associated guanylate kinase, WW, and PDZ domain-containing protein 2), a predicted target of these miRNAs and a scaffold protein required for PTEN, was diminished in A549 cells with EMT after the TGF-β1 stimulation. Overexpression of miR-134 and miR-487b promoted the EMT phenomenon and affected the drug resistance to gefitinib, whereas knockdown of these miRNAs inhibited the EMT process and reversed TGF-β1-induced resistance to gefitinib. Our study demonstrated that the miR-134/487b/655 cluster contributed to the TGF-β1-induced EMT phenomenon and affected the resistance to gefitinib by directly targeting MAGI2, in which suppression subsequently caused loss of PTEN stability in lung cancer cells. The miR-134/miR-487b/miR-655 cluster may be a new therapeutic target in patients with advanced lung adenocarcinoma, depending on the EMT phenomenon.
Collapse
Affiliation(s)
- Kazuhiro Kitamura
- Corresponding Author: Masahiro Seike, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Sandoval GJ, Graham DB, Gmyrek GB, Akilesh HM, Fujikawa K, Sammut B, Bhattacharya D, Srivatsan S, Kim A, Shaw AS, Yang-Iott K, Bassing CH, Duncavage E, Xavier RJ, Swat W. Novel mechanism of tumor suppression by polarity gene discs large 1 (DLG1) revealed in a murine model of pediatric B-ALL. Cancer Immunol Res 2013; 1:426-37. [PMID: 24778134 DOI: 10.1158/2326-6066.cir-13-0065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster discs large (dlg) is an essential tumor suppressor gene (TSG) controlling epithelial cell growth and polarity of the fly imaginal discs in pupal development. A mammalian ortholog, Dlg1, is involved in embryonic urogenital morphogenesis, postsynaptic densities in neurons, and immune synapses in lymphocytes. However, a potential role for Dlg1 as a mammalian TSG is unknown. Here, we present evidence that loss of Dlg1 confers strong predisposition to the development of malignancies in a murine model of pediatric B-cell acute lymphoblastic leukemia (B-ALL). Using mice with conditionally deleted Dlg1 alleles, we identify a novel "pre-leukemic" stage of developmentally arrested early B-lineage cells marked by preeminent c-Myc expression. Mechanistically, we show that in B-lineage progenitors Dlg1 interacts with and stabilizes the PTEN protein, regulating its half-life and steady-state abundance. The loss of Dlg1 does not affect the level of PTEN mRNAs but results in a dramatic decrease in PTEN protein, leading to excessive phosphoinositide 3-kinase signaling and proliferation. Our data suggest a novel model of tumor suppression by a PDZ domain-containing polarity gene in hematopoietic cancers.
Collapse
|