51
|
Fernandez F, Torres V, Zamorano P. An evolutionarily conserved mechanism for presynaptic trapping. Cell Mol Life Sci 2010; 67:1751-4. [PMID: 20336344 PMCID: PMC11115947 DOI: 10.1007/s00018-010-0343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/05/2010] [Accepted: 03/05/2010] [Indexed: 11/24/2022]
Abstract
Presynaptic differentiation takes place over three interrelated acts involving the biogenesis and trafficking of molecular complexes of active zone material, the "trapping" or stabilization of active zone sites, and the subsequent development of mature synapses. Although the identities of proteins involved with establishing presynaptic specializations have been increasingly delineated, the exact functional mechanisms by which the active zone is assembled remain poorly understood. Here, we discuss a theoretical model for how the trapping stage of presynaptic differentiation might occur in developing neurons. We suggest that subsets of active zone proteins containing polyglutamine domains undergo concentration-dependent prion-like conversions as they accumulate at the plasma membrane. This conversion might serve to aggregate the proteins into a singular structure, which is then able to recruit scaffolding agents necessary for regulated synaptic transmission. A brief informatics analysis in support of this 'Q' assembly hypothesis--across commonly used models of synaptogenesis--is presented.
Collapse
Affiliation(s)
- Fabian Fernandez
- Laboratorio de Neurobiología, Department of Biomedicine, Universidad de Antofagasta, Avenida Angamos 601, 1270300, Antofagasta, Chile.
| | | | | |
Collapse
|
52
|
Goswami C, Rademacher N, Smalla KH, Kalscheuer V, Ropers HH, Gundelfinger ED, Hucho T. TRPV1 acts as a synaptic protein and regulates vesicle recycling. J Cell Sci 2010; 123:2045-57. [PMID: 20483957 DOI: 10.1242/jcs.065144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters.
Collapse
Affiliation(s)
- Chandan Goswami
- Signal Transduction in Pain and Mental Retardation, Department for Molecular Human Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
53
|
Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc Natl Acad Sci U S A 2010; 107:6504-9. [PMID: 20332206 DOI: 10.1073/pnas.1002307107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Piccolo and bassoon are highly homologous multidomain proteins of the presynaptic cytomatrix whose function is unclear. Here, we generated piccolo knockin/knockout mice that either contain wild-type levels of mutant piccolo unable to bind Ca(2+) (knockin), approximately 60% decreased levels of piccolo that is C-terminally truncated (partial knockout), or <5% levels of piccolo (knockout). All piccolo mutant mice were viable and fertile, but piccolo knockout mice exhibited increased postnatal mortality. Unexpectedly, electrophysiology and electron microscopy of piccolo-deficient synapses failed to uncover a major phenotype either in acute hippocampal slices or in cultured cortical neurons. To unmask potentially redundant functions of piccolo and bassoon, we thus acutely knocked down expression of bassoon in wild-type and piccolo knockout neurons. Despite a nearly complete loss of piccolo and bassoon, however, we still did not detect an electrophysiological phenotype in cultured piccolo- and bassoon-deficient neurons in either GABAergic or glutamatergic synaptic transmission. In contrast, electron microscopy revealed a significant reduction in synaptic vesicle clustering in double bassoon/piccolo-deficient synapses. Thus, we propose that piccolo and bassoon play a redundant role in synaptic vesicle clustering in nerve terminals without directly participating in neurotransmitter release.
Collapse
|
54
|
Bouvier D, Tremblay ME, Riad M, Corera AT, Gingras D, Horn KE, Fotouhi M, Girard M, Murai KK, Kennedy TE, McPherson PS, Pasquale EB, Fon EA, Doucet G. EphA4 is localized in clathrin-coated and synaptic vesicles in adult mouse brain. J Neurochem 2010; 113:153-65. [PMID: 20067584 DOI: 10.1111/j.1471-4159.2010.06582.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
EphA4, a receptor tyrosine kinase, is expressed in various pre-, post- and peri-synaptic organelles and implicated in the regulation of morphological and physiological properties of synapses. It regulates synaptic plasticity by acting as a binding partner for glial ephrin-A3 and possibly other pre- or post-synaptic ephrins. Now, its trafficking mechanisms remain unknown. In this study, we examine the association of EphA4 with transport, clathrin-coated and synaptic vesicles using cell fractionation, vesicle immunoisolation and electron microscopy. EphA4 was found in highly purified fractions of clathrin-coated or synaptic vesicles. It was also detected in vesicles immuno-isolated with antibodies anti-synaptophysin, anti-vesicular glutamate transporter or anti-vesicular GABA transporter; demonstrating its presence in synaptic vesicles. However, it was not detected in immuno-isolated piccolo-bassoon transport vesicles. In vivo and in dissociated cultures, EphA4 was localized by immunoelectron microscopy in vesicular glutamate transporter 1-positive terminals of hippocampal neurons. Remarkably, the cell surface immunofluorescence of EphA4 increased markedly in cultured hippocampal neurons following KCl depolarization. These observations indicate that EphA4 is present in subsets of synaptic vesicles, can be externalized during depolarization, and internalized within clathrin-coated vesicles. This trafficking itinerary may serve to regulate the levels of EphA4 in the synaptic plasma membrane and thereby modulate signaling events that contribute to synaptic plasticity.
Collapse
Affiliation(s)
- David Bouvier
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1. J Neurosci 2009; 29:12584-96. [PMID: 19812333 DOI: 10.1523/jneurosci.1255-09.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Multidomain scaffolding proteins organize the molecular machinery of neurotransmitter vesicle dynamics during synaptogenesis and synaptic activity. We find that domains of five active zone proteins converge on an interaction node that centers on the N-terminal region of Munc13-1 and includes the zinc-finger domain of Rim1, the C-terminal region of Bassoon, a segment of CAST1/ELKS2, and the third coiled-coil domain (CC3) of either Aczonin/Piccolo or Bassoon. This multidomain complex may constitute a center for the physical and functional integration of the protein machinery at the active zone. An additional connection between Aczonin and Bassoon is mediated by the second coiled-coil domain of Aczonin. Recombinant Aczonin-CC3, expressed in cultured neurons as a green fluorescent protein fusion protein, is targeted to synapses and suppresses vesicle turnover, suggesting involvements in synaptic assembly as well as activity. Our findings show that Aczonin, Bassoon, CAST1, Munc13, and Rim are closely and multiply interconnected, they indicate that Aczonin-CC3 can actively participate in neurotransmitter vesicle dynamics, and they highlight the N-terminal region of Munc13-1 as a hub of protein interactions by adding three new binding partners to its mechanistic potential in the control of synaptic vesicle priming.
Collapse
|
56
|
Grabrucker A, Vaida B, Bockmann J, Boeckers TM. Synaptogenesis of hippocampal neurons in primary cell culture. Cell Tissue Res 2009; 338:333-41. [PMID: 19885679 DOI: 10.1007/s00441-009-0881-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Hippocampal neurons in dissociated cell culture are one of the most extensively used model systems in the field of molecular and cellular neurobiology. Only limited data are however available on the normal time frame of synaptogenesis, synapse number and ultrastructure of excitatory synapses during early development in culture. Therefore, we analyzed the synaptic ultrastructure and morphology and the localization of presynaptic (Bassoon) and postsynaptic (ProSAP1/Shank2) marker proteins in cultures established from rat embryos at embryonic day 19, after 3, 7, 10, 14, and 21 days in culture. First excitatory synapses were identified at day 7 with a clearly defined postsynaptic density and presynaptically localized synaptic vesicles. Mature synapses on dendritic spines were seen from day 10 onward, and the number of synapses steeply increased in the third week. Fenestrated or multiple synapses were found after 14 or 21 days, respectively. So-called dense-core vesicles, responsible for the transport of proteins to the active zone of the presynaptic specialization, were seen on cultivation day 3 and 7 and could be detected in axons and especially in the presynaptic subcompartments. The expression and localization of the presynaptic protein Bassoon and of the postsynaptic molecule ProSAP1/Shank2 was found to correlate nicely with the ultrastructural results. This regular pattern of development and maturation of excitatory synapses in hippocampal culture starting from day 7 in culture should ease the comparison of synapse number and morphology of synaptic contacts in this widely used model system.
Collapse
Affiliation(s)
- Andreas Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
57
|
Jeyifous O, Waites CL, Specht CG, Fujisawa S, Schubert M, Lin EI, Marshall J, Aoki C, de Silva T, Montgomery JM, Garner CC, Green WN. SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci 2009; 12:1011-9. [PMID: 19620977 PMCID: PMC2779056 DOI: 10.1038/nn.2362] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
Synaptic plasticity is dependent upon the differential sorting, delivery and retention of neurotransmitter receptors, yet the mechanisms underlying these processes are poorly understood. In the present study, we have found that differential sorting of glutamate receptor subtypes begins within the endoplasmic reticulum (ER) of rat hippocampal neurons. While AMPARs are trafficked to the plasma membrane via the conventional somatic Golgi network, NMDARs are diverted from the somatic ER into a specialized ER sub-compartment that bypasses somatic Golgi, merging instead with dendritic Golgi outposts. Intriguingly, this ER sub-compartment is composed of highly mobile vesicles containing the NMDAR subunits NR1 and NR2B, the microtubule-dependent motor protein KIF17, and the postsynaptic adaptor proteins CASK and SAP97. Furthermore, our data demonstrate that the retention and trafficking of NMDARs within this ER sub-compartment requires both CASK and SAP97. These data indicate that NMDARs are sorted away from AMPARs via a non-conventional secretory pathway that utilizes dendritic Golgi outposts.
Collapse
Affiliation(s)
- Okunola Jeyifous
- Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Fejtova A, Davydova D, Bischof F, Lazarevic V, Altrock WD, Romorini S, Schöne C, Zuschratter W, Kreutz MR, Garner CC, Ziv NE, Gundelfinger ED. Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon. ACTA ACUST UNITED AC 2009; 185:341-55. [PMID: 19380881 PMCID: PMC2700376 DOI: 10.1083/jcb.200807155] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon-DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.
Collapse
Affiliation(s)
- Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J Neurosci 2009; 29:351-8. [PMID: 19144835 DOI: 10.1523/jneurosci.4777-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic sites typically appear as varicosities (boutons) distributed along axons. Ultrastructurally, presynaptic boutons lack obvious physical barriers that separate them from the axon proper, yet activity-related and constitutive dynamics continuously promote the "reshuffling" of presynaptic components and even their dispersal into flanking axonal segments. How presynaptic sites manage to maintain their organization and individual characteristics over long durations is thus unclear. Conceivably, presynaptic tenacity might depend on the active zone (AZ), an electron-dense specialization of the presynaptic membrane, and particularly on the cytoskeletal matrix associated with the AZ (CAZ) that could act as a relatively stable "core scaffold" that conserves and dictates presynaptic organization. At present, however, little is known on the molecular dynamics of CAZ molecules, and thus, the factual basis for this hypothesis remains unclear. To examine the stability of the CAZ, we studied the molecular dynamics of the major CAZ molecule Bassoon in cultured hippocampal neurons. Fluorescence recovery after photobleaching and photoactivation experiments revealed that exchange rates of green fluorescent protein and photoactivatable green fluorescent protein-tagged Bassoon at individual presynaptic sites are very low (tau > 8 h). Exchange rates varied between boutons and were only slightly accelerated by stimulation. Interestingly, photoactivation experiments revealed that Bassoon lost from one synapse was occasionally assimilated into neighboring presynaptic sites. Our findings indicate that Bassoon is engaged in relatively stable associations within the CAZ and thus support the notion that the CAZ or some of its components might constitute a relatively stable presynaptic core scaffold.
Collapse
|
60
|
Lee SH, Peng IF, Ng YG, Yanagisawa M, Bamji SX, Elia LP, Balsamo J, Lilien J, Anastasiadis PZ, Ullian EM, Reichardt LF. Synapses are regulated by the cytoplasmic tyrosine kinase Fer in a pathway mediated by p120catenin, Fer, SHP-2, and beta-catenin. ACTA ACUST UNITED AC 2008; 183:893-908. [PMID: 19047464 PMCID: PMC2592841 DOI: 10.1083/jcb.200807188] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.
Collapse
Affiliation(s)
- Seung-Hye Lee
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Information processing in the nervous system relies on properly localized and organized synaptic structures at the correct locations. The formation of synapses is a long and intricate process involving multiple interrelated steps. Decades of research have identified a large number of molecular components of the presynaptic compartment. In addition to neurotransmitter-containing synaptic vesicles, presynaptic terminals are defined by cytoskeletal and membrane specializations that allow highly regulated exo- and endocytosis of synaptic vesicles and that maintain precise registration with postsynaptic targets. Functional studies at multiple levels have revealed complex interactions between the transport of vesicular intermediates, the presynaptic cytoskeleton, growth cone navigation, and synaptic targets. With the advent of finer anatomical, physiological, and molecular tools, great insights have been gained toward the mechanistic dissection of functionally redundant processes controlling the specificity and dynamics of synapses. This review highlights the recent findings pertaining to the cellular and molecular regulation of presynaptic differentiation.
Collapse
Affiliation(s)
- Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
62
|
Spiwoks-Becker I, Maus C, tom Dieck S, Fejtová A, Engel L, Wolloscheck T, Wolfrum U, Vollrath L, Spessert R. Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes. Cell Tissue Res 2008; 333:185-95. [PMID: 18523806 PMCID: PMC2757586 DOI: 10.1007/s00441-008-0627-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/18/2008] [Indexed: 11/30/2022]
Abstract
Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation.
Collapse
Affiliation(s)
- Isabella Spiwoks-Becker
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, Becherweg 13, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Jevnaker AM, Osmundsen H. MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland. Arch Oral Biol 2008; 53:629-45. [PMID: 18346711 DOI: 10.1016/j.archoralbio.2008.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/21/2008] [Accepted: 01/25/2008] [Indexed: 01/27/2023]
Abstract
Using microarrays, miRNA expression profiles have been established at selected times during development (E15.5, P0 and P5) of the murine first molar mandibular tooth germ and the right submandibular salivary gland (E15.5, P0, P5 and P25). Microarray data was validated using real-time PCR, also facilitating RT-PCR profiling of nine selected miRNAs. In general, good agreement between microarray data and real-time PCR data was found. Further, miRNA expression profiles of foetal and adult liver were also investigated, and found to agree with published data. In tooth germ and salivary gland up to 88 different miRNAs were detected. In all tissues examined miRNA expression was highly dynamic; miRNA profiles changing extensively with time of development. Additionally, the expression of some miRNAs was tissue-specific. Bioinformatic analysis of clusters of miRNAs was attempted using the miRGate software, the results suggesting miRNAs to be involved in the regulation of essential developmental processes, e.g., epithelical cell proliferation, mesodermal cell fate determination and salivary gland morphogenesis.
Collapse
|
64
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
65
|
Abstract
A substantial fraction of the noradrenergic innervation targeting the mammalian ovary is provided by neurons of the celiac ganglion. Although studies in the rat have shown that noradrenergic nerves reach the ovary near the time of birth, it is unknown how the functional capacity of this innervation unfolds during postnatal ovarian development. To address this issue, we assessed the ability of the developing ovary to incorporate and release (3)H-norepinephrine. Incorporation of (3)H-norepinephrine was low during the first 3 wk of postnatal life, but pharmacological inhibition of norepinephrine (NE) neuronal uptake with cocaine showed that an intact transport mechanism for NE into nerve terminals is already in place by the first week after birth. Consistent with this functional assessment, the mRNA encoding the NE transporter was also expressed in the celiac ganglion at this time. During neonatal-infantile development [postnatal (PN) d 5-20], the spontaneous, vesicle-independent outflow of recently taken up NE was high, but the NE output in response to K(+)-induced depolarization was low. After PN d 20, spontaneous outflow decreased and the response to K(+) increased markedly, reaching maximal values by the time of puberty. Tyramine-mediated displacement of NE stored in vesicles, which displace vesicular NE, showed that vesicle-dependent NE storage becomes functional by PN d 12 and that vesicular release increases during the juvenile-peripubertal phases of sexual development. These results indicate that vesicular release of NE from ovarian noradrenergic nerves begins to operate by the third week of postnatal life, becoming fully functional near the time of puberty.
Collapse
Affiliation(s)
- Manuel Ricu
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, P.O. Box 233, Santiago-1 838-0492, Chile
| | | | | | | | | |
Collapse
|
66
|
Investigating interactions mediated by the presynaptic protein bassoon in living cells by Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 2007; 94:1483-96. [PMID: 17933880 DOI: 10.1529/biophysj.107.111674] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal synapses are highly specialized structures for communication between nerve cells. Knowledge about their molecular organization and dynamics is still incomplete. The large multidomain protein Bassoon plays a major role in scaffolding and organizing the cytomatrix at the active zone of neurotransmitter release in presynaptic boutons. Utilizing immunofluorescence techniques, we show that Bassoon is essential for corecruitment of its synaptic interaction partners, C-terminal binding protein 1/brefeldin A-dependent ADP-ribosylation substrate and CAZ-associated structural protein, into protein complexes upon heterologous expression in COS-7 cells. A combination of Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy in the time domain was adopted to investigate the potential for the association of these proteins in the same complexes. A direct physical association between Bassoon and CtBP1 could also be observed at synapses of living hippocampal neurons. Simultaneous analysis of fluorescence decays of the donor and the acceptor probes along with their decay-associated spectra allowed a clear discrimination of energy transfer.
Collapse
|
67
|
Tao-Cheng JH. Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience 2007; 150:575-84. [PMID: 17977664 DOI: 10.1016/j.neuroscience.2007.09.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Although it has been suggested that presynaptic active zone (AZ) may be preassembled, it is still unclear which entities carry the various proteins to the AZ during synaptogenesis. Here, I propose that aggregates of dense core vesicles (DCV) and small clear vesicles in the axons of young rat hippocampal cultures are carriers containing preformed AZ and synaptic vesicle (SV) components on their way to developing synapses. The aggregates were positively labeled with antibodies against Bassoon and Piccolo (two AZ cytomatrix proteins), VAMP, SV2, synaptotagmin (three SV membrane proteins), and synapsin I (a SV-associated protein). Bassoon and Piccolo labeling were localized at dense material both in the aggregates and at the AZ. In addition to the SV at the synapses, the SV membrane proteins labeled the clear vesicles in the aggregate as well as many other SV-like and pleiomorphic vesicular structures in the axons, and synapsin I labeling was associated with the vesicles in the aggregates. In single sections, these axonal vesicle aggregates were approximately 0.22 by 0.13 microm in average dimensions and contain one to two DCV and five to six small clear vesicles. Serial sections confirmed that the aggregates were not synaptic junctions sectioned en face. Labeling intensities of Bassoon and Piccolo measured from serially sectioned transport aggregates and AZ were within range of each other, suggesting that one or a few aggregates, but not individual DCV, can carry sufficient Bassoon and Piccolo to form an AZ. The present findings provide the first ultrastructural evidence localizing various AZ and SV proteins in a preassembled multi-vesicle transport aggregate that has the potential to quickly form a functional active zone.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- NINDS EM Facility, NIH, Building 49, Room 3A50, Bethesda, MD 20892-4477, USA.
| |
Collapse
|
68
|
Cai Q, Pan PY, Sheng ZH. Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 2007; 27:7284-96. [PMID: 17611281 PMCID: PMC6794594 DOI: 10.1523/jneurosci.0731-07.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which microtubule-based axonal transport regulates activity-dependent presynaptic plasticity in developing neurons remains mostly unknown. Our previous studies established that syntabulin is an adaptor capable of conjoining the kinesin family member 5B (KIF5B) motor and syntaxin-1. We now report that the complex of syntaxin-1-syntabulin-KIF5B mediates axonal transport of the active zone (AZ) components essential for presynaptic assembly. Syntabulin associates with AZ precursor carriers and colocalizes and comigrates with green fluorescent protein (GFP)-Bassoon-labeled AZ transport cargos within developing axons. Knock-down of syntabulin or disruption of the syntaxin-1-syntabulin-KIF5B complex impairs the anterograde transport of GFP-Bassoon out of the soma and reduces the axonal densities of synaptic vesicle (SV) clusters and FM4-64 [N-(3-triethylammoniumpropyl)-4-(p-dibutylaminostyryl)pyridinium, dibromide] loading. Furthermore, syntabulin loss of function results in a reduction in both the amplitude of postsynaptic currents and the frequency of asynchronous quantal events, and abolishes the activity-induced recruitment of new GFP-Bassoon into the axons and subsequent coclustering with SVs. Consequently, syntabulin loss of function blocks the formation of new presynaptic boutons during activity-dependent synaptic plasticity in developing neurons. These studies establish that a kinesin motor-adaptor complex is critical for the anterograde axonal transport of AZ components, thus contributing to activity-dependent presynaptic assembly during neuronal development.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Ping-Yue Pan
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Zu-Hang Sheng
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
69
|
Liebau S, Vaida B, Storch A, Boeckers TM. Maturation of synaptic contacts in differentiating neural stem cells. Stem Cells 2007; 25:1720-9. [PMID: 17379760 DOI: 10.1634/stemcells.2006-0823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NSCs are found in the developing brain, as well as in the adult brain. They are self-renewing cells that maintain the capacity to differentiate into all major brain-specific cell types, such as glial cells and neurons. However, it is still unclear whether these cells are capable of gaining full functionality, which is one of the major prerequisites for NSC-based cell replacement strategies of neurological diseases. The ability to establish and maintain polarized excitatory synaptic contacts would be one of the basic requirements for intercellular communication and functional integration into existing neuronal networks. In primary cultures of hippocampal neurons, it has already been shown that synaptogenesis is characterized by a well-ordered, time-dependent targeting and recruitment of pre- and postsynaptic proteins. In this study, we investigated the expression and localization of important pre- and postsynaptic proteins, including Bassoon and synaptophysin, as well as proteins of the ProSAP/Shank family, in differentiating rat fetal mesencephalic NSCs. Moreover, we analyzed the ultrastructural features of neuronal cell-cell contacts during synaptogenesis. We show that NSCs express and localize cytoskeletal and scaffolding molecules of the pre- and postsynaptic specializations in a well-defined temporal order, leading to mature synaptic contacts after 14 days of differentiation. The temporal and spatial pattern of synaptic maturation is comparable to synaptogenesis of hippocampal neurons grown in primary culture. Therefore, with respect to the general ability to create mature synaptic contacts, NSCs seem to be well equipped to potentially compensate for lost or injured brain tissue. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Stefan Liebau
- Institute of Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
70
|
Kalla S, Stern M, Basu J, Varoqueaux F, Reim K, Rosenmund C, Ziv NE, Brose N. Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J Neurosci 2007; 26:13054-66. [PMID: 17167095 PMCID: PMC6674949 DOI: 10.1523/jneurosci.4330-06.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GFP (green fluorescent protein) fusion proteins have revolutionized research on protein dynamics at synapses. However, corresponding analyses usually involve protein expression methods that override endogenous regulatory mechanisms, and therefore cause overexpression and temporal or spatial misexpression of exogenous fusion proteins, which may seriously compromise the physiological validity of such experiments. These problems can be circumvented by using knock-in mutagenesis of the endogenous genomic locus to tag the protein of interest with a fluorescent protein. We generated knock-in mice expressing a fusion protein of the presynaptic active zone protein Munc13-1 and enhanced yellow fluorescent protein (EYFP) from the Munc13-1 locus. Munc13-1-EYFP-containing nerve cells and synapses are functionally identical to those of wild-type mice. However, their presynaptic active zones are distinctly fluorescent and readily amenable for imaging. We demonstrated the usefulness of these mice by studying the molecular dynamics of Munc13-1-EYFP at individual presynaptic sites. Fluorescence recovery after photobleaching (FRAP) experiments revealed that Munc13-1-EYFP is rapidly and continuously lost from and incorporated into active zones (tau1 approximately 3 min; tau2 approximately 80 min). Munc13-1-EYFP steady-state levels and exchange kinetics were not affected by proteasome inhibitors or acute synaptic stimulation, but exchange kinetics were reduced by chronic suppression of spontaneous activity. These experiments, performed in a minimally perturbed system, provide evidence that presynaptic active zones of mammalian CNS synapses are highly dynamic structures. They demonstrate the usefulness of the knock-in approach in general and of Munc13-1-EYFP knock-in mice in particular for imaging synaptic protein dynamics.
Collapse
Affiliation(s)
| | - Michal Stern
- Department of Physiology and Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa 31096, Israel, and
| | - Jayeeta Basu
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | | | - Christian Rosenmund
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Noam E. Ziv
- Department of Physiology and Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa 31096, Israel, and
| | - Nils Brose
- Department of Molecular Neurobiology
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Max-Planck-Institute of Experimental Medicine, D-37075 Göttingen, Germany
| |
Collapse
|
71
|
Abstract
The mammalian central nervous system (CNS) requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between thousands of differentiating neurons. Proper synapse formation during childhood provides the substrate for cognition, whereas improper formation or function of these synapses leads to neurodevelopmental disorders, including mental retardation and autism. Recent work has begun to identify some of the early cellular events in synapse formation as well as the molecular signals that initiate this process. However, despite the wealth of information published on this topic in the past few years, some of the most fundamental questions about how, whether, and where glutamatergic synapses form in the mammalian CNS remain unanswered. This review focuses on the dynamic aspects of the early cellular and molecular events in the initial assembly of glutamatergic synapses in the mammalian CNS.
Collapse
|
72
|
Tang VW. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules. Biol Direct 2006; 1:37. [PMID: 17156438 PMCID: PMC1712231 DOI: 10.1186/1745-6150-1-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zonula occludens, also known as the tight junction, is a specialized cell-cell interaction characterized by membrane "kisses" between epithelial cells. A cytoplasmic plaque of approximately 100 nm corresponding to a meshwork of densely packed proteins underlies the tight junction membrane domain. Due to its enormous size and difficulties in obtaining a biochemically pure fraction, the molecular composition of the tight junction remains largely unknown. RESULTS A novel biochemical purification protocol has been developed to isolate tight junction protein complexes from cultured human epithelial cells. After identification of proteins by mass spectroscopy and fingerprint analysis, candidate proteins are scored and assessed individually. A simple algorithm has been devised to incorporate transmembrane domains and protein modification sites for scoring membrane proteins. Using this new scoring system, a total of 912 proteins have been identified. These 912 hits are analyzed using a bioinformatics approach to bin the hits in 4 categories: configuration, molecular function, cellular function, and specialized process. Prominent clusters of proteins related to the cytoskeleton, cell adhesion, and vesicular traffic have been identified. Weaker clusters of proteins associated with cell growth, cell migration, translation, and transcription are also found. However, the strongest clusters belong to synaptic proteins and signaling molecules. Localization studies of key components of synaptic transmission have confirmed the presence of both presynaptic and postsynaptic proteins at the tight junction domain. To correlate proteomics data with structure, the tight junction has been examined using electron microscopy. This has revealed many novel structures including end-on cytoskeletal attachments, vesicles fusing/budding at the tight junction membrane domain, secreted substances encased between the tight junction kisses, endocytosis of tight junction double membranes, satellite Golgi apparatus and associated vesicular structures. A working model of the tight junction consisting of multiple functions and sub-domains has been generated using the proteomics and structural data. CONCLUSION This study provides an unbiased proteomics and bioinformatics approach to elucidate novel functions of the tight junction. The approach has revealed an unexpected cluster associating with synaptic function. This surprising finding suggests that the tight junction may be a novel epithelial synapse for cell-cell communication. REVIEWERS This article was reviewed by Gáspár Jékely, Etienne Joly and Neil Smalheiser.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Schoch S, Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue Res 2006; 326:379-91. [PMID: 16865347 DOI: 10.1007/s00441-006-0244-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/10/2006] [Indexed: 11/26/2022]
Abstract
The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-alpha), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.
Collapse
Affiliation(s)
- Susanne Schoch
- Emmy Noether Research Group, Institute of Neuropathology and Department of Epileptology, University of Bonn Medical Center, Sigmund Freud Strasse 25, 53105 Bonn, Germany.
| | | |
Collapse
|
74
|
Tao-Cheng JH. Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience 2006; 141:1217-24. [PMID: 16757121 DOI: 10.1016/j.neuroscience.2006.04.061] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 11/23/2022]
Abstract
Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 49, Room 3A50, Bethesda, MD 40892, USA.
| |
Collapse
|
75
|
Fejtova A, Gundelfinger ED. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results Probl Cell Differ 2006; 43:49-68. [PMID: 17068967 DOI: 10.1007/400_012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
At chemical synapses, neurotransmitter is released at a restricted region of the presynaptic plasma membrane, called the active zone. At the active zone, a matrix of proteins is assembled, which is termed the presynaptic grid or cytomatrix at the active zone (CAZ). Components of the CAZ are thought to localize and organize the synaptic vesicle cycle, a series of membrane trafficking events underlying regulated neurotransmitter exocytosis. This review is focused on a set of specific proteins involved in the structural and functional organization of the CAZ. These include the multi-domain Rab3-effector proteins RIM1alpha and RIM2alpha; Bassoon and Piccolo, two multi-domain CAZ scaffolding proteins of enormous size; as well as members of the CAST/ERC family of CAZ-specific structural proteins. Studies on ribbon synapses of retinal photoreceptor cells have fostered understanding the molecular design of the CAZ. In addition, the analysis of the delivery pathways for Bassoon and Piccolo to presynaptic sites during development has produced new insights into assembly mechanisms of brain synapses during development. Based on these studies, the active zone transport vesicle hypothesis was formulated, which postulates that active zones, at least in part, are pre-assembled in neuronal cell bodies and transported as so-called Piccolo-Bassoon transport vesicles (PTVs) to sites of synaptogenesis. Several PTVs can fuse on demand with the presynaptic membrane to rapidly form an active zone.
Collapse
Affiliation(s)
- Anna Fejtova
- Leibniz Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Magdeburg, Germany.
| | | |
Collapse
|