51
|
Andersen AD, Poulsen KA, Lambert IH, Pedersen SF. HL-1 mouse cardiomyocyte injury and death after simulated ischemia and reperfusion: roles of pH, Ca2+-independent phospholipase A2, and Na+/H+ exchange. Am J Physiol Cell Physiol 2009; 296:C1227-42. [PMID: 19261908 DOI: 10.1152/ajpcell.00370.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ca(2+)-independent phospholipase A(2) VI (iPLA(2)-VI) and the Na(+)/H(+) exchanger isoform 1 (NHE1) are highly pH-sensitive proteins that exert both protective and detrimental effects in cardiac ischemia-reperfusion. Here, we investigated the role of extracellular pH (pH(o)) in ischemia-reperfusion injury and death and in regulation and function of iPLA(2)-VI and NHE1 under these conditions. HL-1 cardiomyocytes were exposed to simulated ischemia (SI; 0.5% O(2), 8 mM K(+), and 20 mM lactate) at pH(o) 6.0 and 7.4, with or without 4 or 8 h of reperfusion (SI/R). Cytochrome c release and caspase-3 activation were reduced after acidic compared with neutral SI, whereas necrotic death, estimated as glucose-6-phosphate dehydrogenase release, was similar in the two conditions. Inhibition of iPLA(2)-VI activity by bromoenol lactone (BEL) elicited cardiomyocyte necrosis during normoxia and after acidic, yet not after neutral, SI. The isoform-selective enantiomers R- and S-BEL both mimicked the effect of racemic BEL after acidic SI. In contrast, inhibition of NHE activity by EIPA had no significant effect on necrosis after SI. Both neutral and acidic SI were associated with a reversible loss of F-actin and cortactin integrity. Inhibition of iPLA(2)-VI disrupted F-actin, cortactin, and mitochondrial integrity, whereas inhibition of NHE slightly reduced stress fiber content. iPLA(2)-VIA and NHE1 mRNA levels were reduced during SI and upregulated in a pH(o)-dependent manner during SI/R. This also affected the subcellular localization of iPLA(2)-VIA. Thus, the mode of cell death and the roles and regulation of iPLA(2)-VI and NHE1 are at least in part determined by the pH(o) during SI. In addition to having clinically relevant implications, these findings can in part explain the contradictory results obtained from previous studies of iPLA(2)-VIA and NHE1 during cardiac I/R.
Collapse
Affiliation(s)
- Ann-Dorit Andersen
- Department of Biology, Univesity of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
52
|
Costa-Junior HM, Mendes AN, Davis GHNG, da Cruz CM, Ventura ALM, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio RDC, Persechini PM. ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 2008; 88:51-61. [PMID: 18984060 DOI: 10.1016/j.prostaglandins.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/16/2008] [Accepted: 09/29/2008] [Indexed: 01/10/2023]
Abstract
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X(7) receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP(e) in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6h after an induction period of 20 min in the presence of ATP. Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect on apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3), inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+)-independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X(7) in macrophages.
Collapse
Affiliation(s)
- Helio Miranda Costa-Junior
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Scuderi MR, Anfuso CD, Lupo G, Motta C, Romeo L, Guerra L, Cappellani A, Ragusa N, Cantarella G, Alberghina M. Expression of Ca2+-independent and Ca2+-dependent phospholipases A2 and cyclooxygenases in human melanocytes and malignant melanoma cell lines. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:635-42. [DOI: 10.1016/j.bbalip.2008.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
|
54
|
Cheng H, Mancuso DJ, Jiang X, Guan S, Yang J, Yang K, Sun G, Gross RW, Han X. Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodeling. Biochemistry 2008; 47:5869-80. [PMID: 18454555 DOI: 10.1021/bi7023282] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Large-scale neuronal remodeling through apoptosis occurs shortly after birth in all known mammalian species. Apoptosis, in large part, depends upon critical interactions between mitochondrial membranes and cytochrome c. Herein, we examined the hypothesis that the large-scale reorganization of neuronal circuitry after birth is accompanied by profound alterations in cardiolipin (CL) content and molecular species distribution. During embryonic development, over 100 CL molecular species were identified and quantitated in murine neuronal tissues. The embryonic CL profile was notable for the presence of abundant amounts of relatively short aliphatic chains (e.g., palmitoleic and oleic acids). In sharp contrast, after birth, the CL profile contained a remarkably complex repertoire of CL molecular species, in which the signaling fatty acids (i.e., arachidonic and docosahexaenoic acids) were markedly increased. These results identify the rapid remodeling of CL in the perinatal period with resultant alterations in the physical properties of the mitochondrial membrane. The complex distribution of aliphatic chains in the neuronal CL pool is separate and distinct from that in other organs (e.g., heart, liver, etc.), where CL molecular species contain predominantly only one major type of aliphatic chain (e.g., linoleic acid). Analyses of mRNA levels by real-time quantitative polymerase chain reactions suggested that the alterations in CL content were due to the combined effects of both attenuation of de novo CL biosynthesis and decreased remodeling of CL. Collectively, these results provide a new perspective on the complexity of CL in neuronal signaling, mitochondrial bioenergetics, and apoptosis.
Collapse
Affiliation(s)
- Hua Cheng
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Cohen D, Papillon J, Aoudjit L, Li H, Cybulsky AV, Takano T. Role of calcium-independent phospholipase A2 in complement-mediated glomerular epithelial cell injury. Am J Physiol Renal Physiol 2008; 294:F469-79. [DOI: 10.1152/ajprenal.00372.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In experimental membranous nephropathy, complement C5b-9-induced glomerular epithelial cell (GEC) injury leads to morphological changes in GEC and proteinuria, in association with phospholipase A2 (PLA2) activation. The present study addresses the role of calcium-independent PLA2 (iPLA2) in GEC injury. iPLA2β short and iPLA2γ were expressed in cultured rat GEC and normal rat glomeruli. To determine whether iPLA2 is involved in complement-mediated arachidonic acid (AA) release, GEC were stably transfected with iPLA2γ or iPLA2β cDNAs (GEC-iPLA2γ; GEC-iPLA2β). Compared with control cells (GEC-Neo), GEC-iPLA2γ and GEC-iPLA2β demonstrated greater expression of iPLA2 proteins and activities. Complement-mediated release of [3H]AA was augmented significantly in GEC-iPLA2γ compared with GEC-Neo, and the augmented [3H]AA release was inhibited by the iPLA2-directed inhibitor bromoenol lactone (BEL). For comparison, overexpression of iPLA2γ also amplified [3H]AA release after incubation of GEC with H2O2, or chemical anoxia followed by reexposure to glucose (in vitro ischemia-reperfusion injury). In parallel with release of [3H]AA, complement-mediated production of prostaglandin E2 was amplified in GEC-iPLA2γ. Complement-mediated cytotoxicity was attenuated significantly in GEC-iPLA2γ compared with GEC-Neo, and the cytoprotective effect of iPLA2γ was reversed by BEL, and in part by indomethacin. Overexpression of iPLA2β did not amplify complement-dependent [3H]AA release, but nonetheless attenuated complement-mediated cytotoxicity. Thus iPLA2γ may be involved in complement-mediated release of AA. Expression of iPLA2γ or iPLA2β induces cytoprotection against complement-dependent GEC injury. Modulation of iPLA2 activity may prove to be a novel approach to reducing GEC injury.
Collapse
|
56
|
Flavopiridol causes early mitochondrial damage in chronic lymphocytic leukemia cells with impaired oxygen consumption and mobilization of intracellular calcium. Blood 2008; 111:3190-9. [PMID: 18192508 DOI: 10.1182/blood-2007-10-115733] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Effective administration of flavopiridol in advanced-stage chronic lymphocytic leukemia (CLL) is often associated with early biochemical evidence of tumor cell lysis. Previous work using other cell types showed that flavopiridol impacts mitochondria, and in CLL cells flavopiridol down-regulates the mitochondrial protein Mcl-1. We therefore investigated mitochondrial structure and function in flavopiridol-treated CLL patient cells and in the lymphoblastic cell line 697 using concentrations and times at which tumor lysis is observed in treated patients. Mitochondrial membrane depolarization was detected in flavopiridol-treated CLL cells by 6 hours, well before the onset of cell death. Flavopiridol-induced mitochondrial depolarization was not blocked by caspase inhibitors or by the calcium chelator EGTA, but was reduced by Bcl-2 overexpression. Intracellular calcium mobilization was noted at early time points using fluorescence microscopy. Furthermore, electron paramagnetic resonance oximetry showed a gradual but significant reduction in cellular oxygen consumption rate by 6 hours, corresponding with ultrastructural mitochondrial damage detected by electron microscopy. These observations suggest that in CLL and 697 cells, flavopiridol mediates its cytotoxic effects via induction of the mitochondrial permeability transition and changes in intracellular calcium.
Collapse
|
57
|
Poulsen KA, Pedersen SF, Kolko M, Lambert IH. Induction of group VIA phospholipase A2activity during in vitro ischemia in C2C12 myotubes is associated with changes in the level of its splice variants. Am J Physiol Cell Physiol 2007; 293:C1605-15. [PMID: 17804611 DOI: 10.1152/ajpcell.00012.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The involvement of group VI Ca2+-independent PLA2s (iPLA2-VI) in in vitro ischemia [oxygen and glucose deprivation (OGD)] in mouse C2C12 myotubes was investigated. OGD induced a time-dependent (0–6 h) increase in bromoenol lactone (BEL)-sensitive iPLA2activity, which was suppressed by specific short interfering (si)RNA knockdown of iPLA2-VIA. OGD was associated with an increase in iPLA2-VIA protein levels, whereas mRNA levels were unchanged. The levels of iPLA2-VIB mRNA and protein were not increased by OGD. RT-PCR and Western blot analysis identified a mouse iPLA2-VIA homolog to catalytically inactive 50-kDa iPLA2-VIA-ankyrin variants previously identified in humans. Both the mRNA and protein levels of this ∼50-kDa variant were reduced significantly within 1 h following OGD. In C2C12 myoblasts, iPLA2-VIA seemed to predominantly reside at the endoplasmatic reticulum, where it accumulated further during OGD. A time-dependent reduction in cell viability during the early OGD period (3 h) was partially prevented by iPLA2-VIA knockdown or pharmacological inhibition (10 μM BEL), whereas iPLA2-VIA overexpression had no effect on cell viability. Taken together, these data demonstrate that OGD in C2C12 myotubes is associated with an increase in iPLA2-VIA activity that decreases cell viability. iPLA2-VIA activation may be modulated by changes in the levels of active and inactive iPLA2-VIA isoforms.
Collapse
Affiliation(s)
- K A Poulsen
- Dept. of Molecular Biology, Univ. of Copenhagen, Universitetsparken 13, Copenhagen Ø DK-2100, Denmark.
| | | | | | | |
Collapse
|
58
|
Mancuso DJ, Sims HF, Han X, Jenkins CM, Guan SP, Yang K, Moon SH, Pietka T, Abumrad NA, Schlesinger PH, Gross RW. Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. J Biol Chem 2007; 282:34611-22. [PMID: 17923475 DOI: 10.1074/jbc.m707795200] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.
Collapse
Affiliation(s)
- David J Mancuso
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Bao S, Li Y, Lei X, Wohltmann M, Jin W, Bohrer A, Semenkovich CF, Ramanadham S, Tabas I, Turk J. Attenuated free cholesterol loading-induced apoptosis but preserved phospholipid composition of peritoneal macrophages from mice that do not express group VIA phospholipase A2. J Biol Chem 2007; 282:27100-27114. [PMID: 17627946 PMCID: PMC2044506 DOI: 10.1074/jbc.m701316200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse macrophages undergo ER stress and apoptosis upon free cholesterol loading (FCL). We recently generated iPLA(2)beta-null mice, and here we demonstrate that iPLA(2)beta-null macrophages have reduced sensitivity to FCL-induced apoptosis, although they and wild-type (WT) cells exhibit similar increases in the transcriptional regulator CHOP. iPLA(2)beta-null macrophages are also less sensitive to apoptosis induced by the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin and the scavenger receptor A ligand fucoidan, and restoring iPLA(2)betaexpression with recombinant adenovirus increases apoptosis toward WT levels. WT and iPLA(2)beta-null macrophages incorporate [(3)H]arachidonic acid ([(3)H]AA]) into glycerophosphocholine lipids equally rapidly and exhibit identical zymosan-induced, cPLA(2)alpha-catalyzed [(3)H]AA release. In contrast, although WT macrophages exhibit robust [(3)H]AA release upon FCL, this is attenuated in iPLA(2)beta-null macrophages and increases toward WT levels upon restoring iPLA(2)beta expression. Recent reports indicate that iPLA(2)beta modulates mitochondrial cytochrome c release, and we find that thapsigargin and fucoidan induce mitochondrial phospholipid loss and cytochrome c release into WT macrophage cytosol and that these events are blunted in iPLA(2)beta-null cells. Immunoblotting studies indicate that iPLA(2)beta associates with mitochondria in macrophages subjected to ER stress. AA incorporation into glycerophosphocholine lipids is unimpaired in iPLA(2)beta-null macrophages upon electrospray ionization-tandem mass spectrometry analyses, and their complex lipid composition is similar to WT cells. These findings suggest that iPLA(2)beta participates in ER stress-induced macrophage apoptosis caused by FCL or thapsigargin but that deletion of iPLA(2)beta does not impair macrophage arachidonate incorporation or phospholipid composition.
Collapse
Affiliation(s)
- Shunzhong Bao
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Yankun Li
- Departments of Medicine and of Anatomy and Cell Biology, Columbia University, New York, New York 10032
| | - Xiaoyong Lei
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Mary Wohltmann
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Wu Jin
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Alan Bohrer
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Sasanka Ramanadham
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Ira Tabas
- Departments of Medicine and of Anatomy and Cell Biology, Columbia University, New York, New York 10032
| | - John Turk
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the.
| |
Collapse
|
60
|
Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y, Wu X, Li Y, Xue X, Ren J. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol Appl Pharmacol 2007; 222:105-10. [PMID: 17521691 DOI: 10.1016/j.taap.2007.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/26/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca(2+), AAI caused mitochondrial swelling, leakage of Ca(2+), membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.
Collapse
Affiliation(s)
- Xinming Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Mancuso DJ, Han X, Jenkins CM, Lehman JJ, Sambandam N, Sims HF, Yang J, Yan W, Yang K, Green K, Abendschein DR, Saffitz JE, Gross RW. Dramatic Accumulation of Triglycerides and Precipitation of Cardiac Hemodynamic Dysfunction during Brief Caloric Restriction in Transgenic Myocardium Expressing Human Calcium-independent Phospholipase A2γ. J Biol Chem 2007; 282:9216-27. [PMID: 17213206 DOI: 10.1074/jbc.m607307200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified calcium-independent phospholipase A2gamma (iPLA2gamma) with multiple translation initiation sites and dual mitochondrial and peroxisomal localization motifs. To determine the role of iPLA2gamma in integrating lipid and energy metabolism, we generated transgenic mice containing the alpha-myosin heavy chain promoter (alphaMHC) placed proximally to the human iPLA2gamma coding sequence that resulted in cardiac myocyte-restricted expression of iPLA2gamma (TGiPLA2gamma). TGiPLA2gamma mice possessed multiple phenotypes including: 1) a dramatic approximately 35% reduction in myocardial phospholipid mass in both the fed and mildly fasted states; 2) a marked accumulation of triglycerides during brief caloric restriction that represented 50% of total myocardial lipid mass; and 3) acute fasting-induced hemodynamic dysfunction. Biochemical characterization of the TGiPLA2gamma protein expressed in cardiac myocytes demonstrated over 25 distinct isoforms by two-dimensional SDS-PAGE Western analysis. Immunohistochemistry identified iPLA2gamma in the peroxisomal and mitochondrial compartments in both wild type and transgenic myocardium. Electron microscopy revealed the presence of loosely packed and disorganized mitochondrial cristae in TGiPLA2gamma mice that were accompanied by defects in mitochondrial function. Moreover, markedly elevated levels of 1-hydroxyl-2-arachidonoyl-sn-glycero-3-phosphocholine and 1-hydroxyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine were prominent in the TGiPLA2gamma myocardium identifying the production of signaling metabolites by this enzyme in vivo. Collectively, these results identified the participation of iPLA2gamma in the remarkable lipid plasticity of myocardium, its role in generating signaling metabolites, and its prominent effects in modulating energy storage and utilization in myocardium in different metabolic contexts.
Collapse
Affiliation(s)
- David J Mancuso
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kinsey GR, McHowat J, Patrick KS, Schnellmann RG. Role of Ca2+-independent phospholipase A2gamma in Ca2+-induced mitochondrial permeability transition. J Pharmacol Exp Ther 2007; 321:707-15. [PMID: 17312185 DOI: 10.1124/jpet.107.119545] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our laboratory previously demonstrated Ca2+-independent phospholipase A2gamma (iPLA2gamma) is localized to mitochondria and that iPLA2 inhibition blocks cisplatin-induced caspase-mediated apoptosis. Whereas the mitochondrial permeability transition (MPT) is a key control point for apoptosis, the role of mitochondrial iPLA2gamma in MPT has not been established. In the present study, we addressed this issue. Ca2+-induced renal cortex mitochondrial (RCM) swelling was blocked by the MPT inhibitor cyclosporine A. The R-isomer of bromoenol lactone (R-BEL), which enantiospecifically inhibits iPLA2gamma, inhibited Ca2+-induced RCM MPT, whereas S-BEL (negative control) had no effect. Ca2+ treatment resulted in a significant increase in free arachidonic acid (AA) (>50 microM) in the RCM suspension that was blocked by pretreatment with BEL. No increases in free myristic, palmitic, stearic, oleic, linoleic, or docosahexaenoic acid were detected after Ca2+ treatment. The addition of AA (18 microM) to Ca2+-treated RCM with inhibited iPLA2gamma activity restored MPT. We also determined that RCM iPLA2gamma displays higher activity against plasmenylcholine with AA in the sn-2 position than oleic acid. Ca2+ exposure significantly increased RCM iPLA2gamma activity; however, the Ca2+-induced activation of iPLA2gamma was not the result of mitochondrial membrane potential dissipation, opening of the MPT pore, or mitochondrial swelling. Taken together these findings provide strong evidence that Ca2+-induced RCM MPT is mediated by iPLA2gamma-catalyzed AA liberation.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Medical University of South Carolina, Department of Pharmaceutical Sciences, 280 Calhoun St., Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
63
|
López-Sánchez N, Rodríguez JR, Frade JM. Mitochondrial c-Jun NH2-terminal kinase prevents the accumulation of reactive oxygen species and reduces necrotic damage in neural tumor cells that lack trophic support. Mol Cancer Res 2007; 5:47-60. [PMID: 17210797 DOI: 10.1158/1541-7786.mcr-06-0233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to different stress signals, the c-Jun NH(2)-terminal kinase (JNK) can trigger cell death. However, JNK also facilitates the survival and cell cycle progression of tumor cells by mechanisms that are poorly defined. Here, we show that schwannoma RN22 cells can survive and proliferate under serum-free conditions although serum withdrawal rapidly induces mitochondrial fission and swelling. Although the morphologic changes observed in the mitochondria did not trigger cytochrome c release, they were accompanied by an increase in the mitochondrial membrane potential (DeltaPsi(M)) and of immunoreactivity for active JNK in these organelles. Pharmacologic inhibition of JNK provoked a further increase of the DeltaPsi(M), an increase in reactive oxygen species (ROS) production, and a sustained decrease in cell viability due to necrosis. This increase in necrosis was prevented by the presence of ROS scavengers. Immunoreactivity for active JNK was also observed in the mitochondria of neuroblastoma 1E-115 and neuroblastoma 2a neuroblastoma cell lines on serum withdrawal, whereas active JNK was barely detected in serum-deprived fibroblasts. Accordingly, the reduction in neural tumor cell viability induced by JNK inhibition was largely attenuated in serum-deprived fibroblasts. These data indicate that local activation of JNK in the mitochondria can protect against necrotic cell death associated with ROS production, facilitating the growth of neural tumor cells subjected to serum deprivation.
Collapse
Affiliation(s)
- Noelia López-Sánchez
- Department of developmental Neurobiology, Consejo Superior de Investigaciones Cientificas, Avda Doctor Arce 37, E-28002 Madrid, Spain
| | | | | |
Collapse
|
64
|
Abstract
Physiological stimuli causing an increase of cytosolic free Ca2+ [Ca2+], or the release of Ca2+ from the endoplasmic reticulum invariably induce mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free [Ca2+] ([Ca2+]m). The [Ca2+]m rise occurs despite the low affinity of the mitochondrial Ca2+ uptake systems measured in vitro and the often limited amplitude of the cytoplasmic [Ca2+]c increases. The [Ca2+]m increase is typically in the 0.2-3 microM range, which allows the activation of Ca2(+)-regulated enzymes of the Krebs cycle; and it rapidly returns to the resting level if the [Ca2+], rise recedes due to activation of mitochondrial efflux mechanisms and matrix Ca2+ buffering. Mitochondria thus accumulate Ca2+ and efficiently control the spatial and temporal shape of cellular Ca2+ signals, yet this situation exposes them to the hazards of Ca2+ overload. Indeed, mitochondrial Ca2+, which is so important for metabolic regulation, can become a death factor by inducing opening of the permeability transition pore (PTP), a high conductance inner membrane channel. Persistent PTP opening is followed by depolarization with Ca2+ release, cessation of oxidative phosphorylation, matrix swelling with inner'membrane remodeling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Understanding the mechanisms through which the Ca2+ signal can be shifted from a physiological signal into a pathological effector is an unresolved problem of modern pathophysiology that holds great promise for disease treatment.
Collapse
Affiliation(s)
- P Bernardi
- Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, 35121 Padova, Italy
| | | |
Collapse
|
65
|
Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JCM. Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 2006; 26:11111-9. [PMID: 17065451 PMCID: PMC6674660 DOI: 10.1523/jneurosci.3505-06.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathophysiology of Alzheimer's disease (AD) brains. To unravel the mechanism(s) underlying this dysfunction, we demonstrate that phospholipases A2 (PLA2s), namely the cytosolic and the calcium-independent PLA2s (cPLA2 and iPLA2), are key enzymes mediating oligomeric amyloid-beta peptide (Abeta(1-42))-induced loss of mitochondrial membrane potential and increase in production of reactive oxygen species from mitochondria in astrocytes. Whereas the action of iPLA2 is immediate, the action of cPLA2 requires a lag time of approximately 12-15 min, probably the time needed for initiating signaling pathways for the phosphorylation and translocation of cPLA2 to mitochondria. Western blot analysis indicated the ability of oligomeric Abeta(1-42) to increase phosphorylation of cPLA2 in astrocytes through the NADPH oxidase and mitogen-activated protein kinase pathways. The involvement of PLA2 in Abeta(1-42)-mediated perturbations of mitochondrial function provides new insights to the decline in mitochondrial function, leading to impairment in ATP production and increase in oxidative stress in AD brains.
Collapse
Affiliation(s)
| | - Yinzhi Lai
- Departments of Biological Engineering and
| | | | - Chunhua Hu
- Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Grace Y. Sun
- Biochemistry, University of Missouri, Columbia, Missouri 65211
| | | |
Collapse
|
66
|
Kinsey GR, McHowat J, Beckett CS, Schnellmann RG. Identification of calcium-independent phospholipase A2gamma in mitochondria and its role in mitochondrial oxidative stress. Am J Physiol Renal Physiol 2006; 292:F853-60. [PMID: 17047165 DOI: 10.1152/ajprenal.00318.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidant-induced lipid peroxidation and cell death mediate pathologies associated with ischemia-reperfusion and inflammation. Our previous work in rabbit renal proximal tubular cells (RPTC) demonstrated that inhibition of Ca(2+)-independent phospholipase A(2) (iPLA(2)) potentiates oxidant-induced lipid peroxidation and necrosis, implicating iPLA(2) in phospholipid repair. This study was conducted to identify a RPTC mitochondrial PLA(2) and determine the role of PLA(2) in oxidant-induced mitochondrial dysfunction. iPLA(2) activity was detected in Percoll-purified rabbit renal cortex mitochondria (RCM) and in isolated mitochondrial inner membrane fractions from rabbit and human RCM. Immunoblot analysis and inhibitor sensitivity profiles revealed that iPLA(2)gamma is the RCM iPLA(2) activity. RCM iPLA(2) activity was enhanced in the presence of ATP and was blocked by the PKCepsilon V1-2 inhibitor. Oxidant-induced mitochondrial lipid peroxidation and swelling were accelerated by pretreatment with R-BEL, but not S-BEL. Furthermore, oxidant treatment of isolated RCM resulted in decreased iPLA(2)gamma activity. These results reveal that RCM iPLA(2) is iPLA(2)gamma, RCM iPLA(2)gamma is regulated by phosphorylation by PKCepsilon, iPLA(2)gamma protects RCM from oxidant-induced lipid peroxidation and dysfunction, and that a strategy to preserve or enhance iPLA(2)gamma activity may be of therapeutic benefit.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Dept. of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
67
|
Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact 2006; 163:4-14. [PMID: 16730343 DOI: 10.1016/j.cbi.2006.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 01/17/2023]
Abstract
Mitochondria play a decisive role in the regulation of both apoptotic and necrotic cell death. Permeabilization of the outer mitochondrial membrane and subsequent release of intermembrane space proteins are important features of both models of cell death. The mechanisms by which these proteins are released depend presumably on cell type and the nature of stimuli. Of the mechanisms involved, mitochondrial permeability transition appears to be associated mainly with necrosis, whereas the release of caspase activating proteins during early apoptosis is regulated primarily by the Bcl-2 family of proteins. However, there is increasing evidence for interaction and co-operation between these two mechanisms. The multiple mechanisms of mitochondrial permeabilization may explain diversities in the response of mitochondria to numerous apoptotic stimuli in different types of cells.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
68
|
Kuba M, Higure Y, Susaki H, Hayato R, Kuba K. Bidirectional Ca2+ coupling of mitochondria with the endoplasmic reticulum and regulation of multimodal Ca2+ entries in rat brown adipocytes. Am J Physiol Cell Physiol 2006; 292:C896-908. [PMID: 16987997 DOI: 10.1152/ajpcell.00649.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How the endoplasmic reticulum (ER) and mitochondria communicate with each other and how they regulate plasmalemmal Ca(2+) entry were studied in cultured rat brown adipocytes. Cytoplasmic Ca(2+) or Mg(2+) and mitochondrial membrane potential were measured by fluorometry. The sustained component of rises in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) produced by thapsigargin was abolished by removing extracellular Ca(2+), depressed by depleting extracellular Na(+), and enhanced by raising extracellular pH. FCCP, dinitrophenol, and rotenone caused bi- or triphasic rises in [Ca(2+)](i), in which the first phase was accompanied by mitochondrial depolarization. The FCCP-induced first phase was partially inhibited by oligomycin but not by ruthenium red, cyclosporine A, U-73122, a Ca(2+)-free EGTA solution, and an Na(+)-free solution. The FCCP-induced second phase paralleling mitochondrial repolarization was partially blocked by removing extracellular Ca(2+) and fully blocked by oligomycin but not by thapsigargin or an Na(+)-deficient solution, was accompanied by a rise in cytoplasmic Mg(2+) concentration, and was summated with a high pH-induced rise in [Ca(2+)](i), whereas the extracellular Ca(2+)-independent component was blocked by U-73122 and cyclopiazonic acid. The FCCP-induced third phase was blocked by removing Ca(2+) but not by thapsigargin, depressed by decreasing Na(+), and enhanced by raising pH. Cyclopiazonic acid-evoked rises in [Ca(2+)](i) in a Ca(2+)-free solution were depressed after FCCP actions. Thus mitochondrial uncoupling causes Ca(2+) release, activating Ca(2+) release from the ER and store-operated Ca(2+) entry, and directly elicits a novel plasmalemmal Ca(2+) entry, whereas Ca(2+) release from the ER activates Ca(2+) accumulation in, or release from, mitochondria, indicating bidirectional mitochondria-ER couplings in rat brown adipocytes.
Collapse
Affiliation(s)
- Masako Kuba
- Laboratory of Anatomy and Physiology, School of Nutritional Sciences, Nagoya Univ. of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nissin, Aichi 470-0196, Japan.
| | | | | | | | | |
Collapse
|
69
|
Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 2006; 292:C137-47. [PMID: 16971498 DOI: 10.1152/ajpcell.00270.2006] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are increasingly recognized as lynchpins in the evolution of cardiac injury during ischemia and reperfusion. This review addresses the emerging concept that modulation of mitochondrial respiration during and immediately following an episode of ischemia can attenuate the extent of myocardial injury. The blockade of electron transport and the partial uncoupling of respiration are two mechanisms whereby manipulation of mitochondrial metabolism during ischemia decreases cardiac injury. Although protection by inhibition of electron transport or uncoupling of respiration initially appears to be counterintuitive, the continuation of mitochondrial oxidative phosphorylation in the pathological milieu of ischemia generates reactive oxygen species, mitochondrial calcium overload, and the release of cytochrome c. The initial target of these deleterious mitochondrial-driven processes is the mitochondria themselves. Consequences to the cardiomyocyte, in turn, include oxidative damage, the onset of mitochondrial permeability transition, and activation of apoptotic cascades, all favoring cardiomyocyte death. Ischemia-induced mitochondrial damage carried forward into reperfusion further amplifies these mechanisms of mitochondrial-driven myocyte injury. Interruption of mitochondrial respiration during early reperfusion by pharmacologic blockade of electron transport or even recurrent hypoxia or brief ischemia paradoxically decreases cardiac injury. It increasingly appears that the cardioprotective paradigms of ischemic preconditioning and postconditioning utilize modulation of mitochondrial oxidative metabolism as a key effector mechanism. The initially counterintuitive approach to inhibit mitochondrial respiration provides a new cardioprotective paradigm to decrease cellular injury during both ischemia and reperfusion.
Collapse
Affiliation(s)
- Qun Chen
- Cardiology Section, Medical Service 111(W), Louis Stokes VA Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|