51
|
Wu Z, Lei T, Shen C, Wang Z, Cao D, Hou T. ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches. J Chem Inf Model 2019; 59:4587-4601. [DOI: 10.1021/acs.jcim.9b00801] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, P. R. China
| | | |
Collapse
|
52
|
Murray M, Gillani TB, Rawling T, Nair PC. Inhibition of Hepatic CYP2D6 by the Active N-Oxide Metabolite of Sorafenib. AAPS JOURNAL 2019; 21:107. [PMID: 31637538 DOI: 10.1208/s12248-019-0374-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 11/30/2022]
Abstract
The multikinase inhibitor sorafenib (SOR) is used to treat patients with hepatocellular and renal carcinomas. SOR undergoes CYP-mediated biotransformation to a pharmacologically active N-oxide metabolite (SNO) that has been shown to accumulate to varying extents in individuals. Kinase inhibitors like SOR are frequently coadministered with a range of other drugs to improve the efficacy of anticancer drug therapy and to treat comorbidities. Recent evidence has suggested that SNO is more effective than SOR as an inhibitor of CYP3A4-mediated midazolam 1'-hydroxylation. CYP2D6 is also reportedly inhibited by SOR. The present study assessed the possibility that SNO might contribute to CYP2D6 inhibition. The inhibition kinetics of CYP2D6-mediated dextromethorphan O-demethylation were analyzed in human hepatic microsomes, with SNO found to be ~ 19-fold more active than SOR (Kis 1.8 ± 0.3 μM and 34 ± 11 μM, respectively). Molecular docking studies of SOR and SNO were undertaken using multiple crystal structures of CYP2D6. Both molecules mediated interactions with key amino acid residues in putative substrate recognition sites of CYP2D6. However, a larger number of H-bonding interactions was noted between the N-oxide moiety of SNO and active site residues that account for its greater inhibition potency. These findings suggest that SNO has the potential to contribute to pharmacokinetic interactions involving SOR, perhaps in those individuals in whom SNO accumulates.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Tina B Gillani
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
53
|
Manoharan A, Shewade DG, Ravindranath PA, Rajkumar RP, Ramprasad VL, Adithan S, Damodaran SE. Resequencing CYP2D6 gene in Indian population: CYP2D6*41 identified as the major reduced function allele. Pharmacogenomics 2019; 20:719-729. [PMID: 31368850 DOI: 10.2217/pgs-2019-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The CYP2D6 gene is highly polymorphic and harbors population specific alleles that define its predominant metabolizer phenotype. This study aimed to identify polymorphisms in Indian population owing to scarcity of CYP2D6 data in this population. Materials & methods: The CYP2D6 gene was resequenced in 105 south Indians using next generation sequencing technology and haplotypes were reconstructed. Results & conclusion: Four novel missense variants have been designated as CYP2D6*110, *111, *112 and *113. The most common alleles were CYP2D6*1 (42%), *2 (32%), and *41 (12.3%) and diplotypes were CYP2D6*1/*2 (26%), *1/*1 (11%), *2/*41 (10%) and *1/*41 (7%) accounting for high incidence of extensive metabolizers in Indians.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Surendiran Adithan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Solai Elango Damodaran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| |
Collapse
|
54
|
Gutiérrez Rico EM, Kikuchi A, Saito T, Kumondai M, Hishinuma E, Kaneko A, Chan CW, Gitaka J, Nakayoshi T, Oda A, Saito S, Hirasawa N, Hiratsuka M. CYP2D6 genotyping analysis and functional characterization of novel allelic variants in a Ni-Vanuatu and Kenyan population by assessing dextromethorphan O-demethylation activity. Drug Metab Pharmacokinet 2019; 35:89-101. [PMID: 32037159 DOI: 10.1016/j.dmpk.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
While CYP2D6 allele and phenotype frequencies have been extensively studied, currently, very little ethnically specific data is available regarding the East African and South Pacific region, including Kenya and Vanuatu. The absence of information regarding gene polymorphisms and their resulting clinical effects in these populations may hinder treatment strategies and patient outcome. Given the scarceness of CYP2D6 related data in these populations, the purpose of this study was to perform a pharmacogenomic analysis of the Kenyan and Ni-Vanuatu population and ultimately characterize the enzymatic properties of eight novel CYP2D6 variant proteins expressed in 293FT cells in vitro using dextromethorphan as a substrate. Our study revealed a prevalence of functional alleles in both populations a low frequency for decreased function defining genotypes in the Ni-Vanuatu population, with approximately 36% of our Kenyan subjects presenting substrate-dependent decreased function alleles. Additionally, 6 variants (P171L, G306R, V402L, K1, K2, and K3) showed significantly reduced intrinsic clearance compared to wild-type CYP2D6.1. Our findings aid in efforts to bridge the gap between pharmacogenomic analysis and clinical application, by providing useful information in the development of ethnic-specific strategies as well as stressing the importance of population-specific genotyping when conducting multi-regional clinical trials and designing therapeutic strategies.
Collapse
Affiliation(s)
- Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aoi Kikuchi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takahiro Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8575, Japan
| | - Akira Kaneko
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chim Wai Chan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Sakae Saito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8575, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8575, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8575, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan.
| |
Collapse
|
55
|
Functional and structural characterisation of common cytochrome P450 2D6 allelic variants—roles of Pro34 and Thr107 in catalysis and inhibition. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1015-1029. [DOI: 10.1007/s00210-019-01651-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023]
|
56
|
Glass SM, Leddy SM, Orwin MC, Miller GP, Furge KA, Furge LL. Rolapitant Is a Reversible Inhibitor of CYP2D6. Drug Metab Dispos 2019; 47:567-573. [PMID: 30952677 DOI: 10.1124/dmd.118.085928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/25/2019] [Indexed: 11/22/2022] Open
Abstract
Rolapitant [(Varubi), 5S,8S)-8-[[(1R)-1-[3,5 bis(trifluoromethyl phenyl]ethoxy]methyl]-8-phenyl-1,7-diazaspiro[4.5]decan-2-one] is a high-affinity NK1 receptor antagonist that was approved in September 2015 as a treatment for nausea and vomiting caused by chemotherapy. In vivo rolapitant moderately inhibits CYP2D6 for at least 7 days after one 180 mg dose. Due to the long inhibition time, we investigated rolapitant as a possible mechanism-based inactivator of CYP2D6. Rolapitant docked in the active site of CYP2D6 and displayed type I binding to CYP2D6 with a K s value of 1.2 ± 0.4 µM. However, in NADPH-, time-, and concentration-dependent assays of CYP2D6 activity, no evidence for mechanism-based inactivation and no metabolites of rolapitant were observed. Stopped-flow binding studies yielded a kon /koff (K d) value of 6.2 µM. The IC50 value for rolapitant inhibition of CYP2D6 activity was 24 µM, suggesting that inhibition is not due to tight binding of rolapitant to CYP2D6. By Lineweaver-Burk analysis, rolapitant behaved as a mixed, reversible inhibitor. The K i values of 20 and 34 µM were determined by Dixon analysis, with bufuralol and dextromethorphan as reporter substrates, respectively, and drug-drug interaction modeling did not predict the reported in vivo inhibition. The interaction of rolapitant with CYP2D6 was also examined in 1 microsecond molecular dynamics simulations. Rolapitant adopted multiple low-energy binding conformations near the active site, but at distances not consistent with metabolism. Given these findings, we do not see evidence that rolapitant is a mechanism-based inactivator. Moreover, the reversible inhibition of CYP2D6 by rolapitant may not fully account for the moderate inhibition described in vivo.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Sabrina M Leddy
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Michael C Orwin
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Garret P Miller
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Kyle A Furge
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | |
Collapse
|
57
|
Gu M, Wang M, Guo J, Shi C, Deng J, Huang L, Huang L, Chang Z. Crystal structure of CYP76AH1 in 4-PI-bound state from Salvia miltiorrhiza. Biochem Biophys Res Commun 2019; 511:813-819. [DOI: 10.1016/j.bbrc.2019.02.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
|
58
|
Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int J Mol Sci 2019; 20:ijms20040987. [PMID: 30823507 PMCID: PMC6412807 DOI: 10.3390/ijms20040987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
We computed the network of channels of the 3A4 isoform of the cytochrome P450 (CYP) on the basis of 16 crystal structures extracted from the Protein Data Bank (PDB). The calculations were performed with version 2 of the CCCPP software that we developed for this research project. We identified the minimal cost paths (MCPs) output by CCCPP as probable ways to access to the buried active site. The algorithm of calculation of the MCPs is presented in this paper, with its original method of visualization of the channels. We found that these MCPs constitute four major channels in CYP3A4. Among the many channels proposed by Cojocaru et al. in 2007, we found that only four of them open in 3A4. We provide a refined description of these channels together with associated quantitative data.
Collapse
|
59
|
Derayea SM, Tsujino H, Oyama Y, Ishikawa Y, Yamashita T, Uno T. Investigation on drug-binding in heme pocket of CYP2C19 with UV-visible and resonance Raman spectroscopies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:209-216. [PMID: 30399481 DOI: 10.1016/j.saa.2018.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Cytochrome P450 (CYP) is a class of heme-containing enzymes which mainly catalyze a monooxygenation reaction of various chemicals, and hence CYP plays a key role in the drug metabolism. Although CYP2C19 isoform is a minor hepatic CYP, it metabolizes clinically important drugs such as omeprazole and S‑mephenytoin. In this work, the interaction of purified CYP2C19 WT (CYP2C19) with seven drugs (phenytoin, S‑mephenytoin, omeprazole, lansoprazole, cimetidine, propranolol, and warfarin) was investigated using spectroscopic methods. The binding of each drug and the induced structural change in the heme distal environment were evaluated. Ferric form of CYP2C19 was revealed to contain a six-coordinate low-spin heme with a water molecule as a sixth ligand in a distal site, and the addition of each drug caused varied minor fraction of five-coordinate heme. It was suggested that the ligated water molecule was partly moved away from the heme distal environment and that the degree of water removal was dependent on the type of drugs. The effect on the coordination was varied with the studied drugs with wide variation in the dissociation constants from 2.6 μM for lansoprazole to 5400 μM for warfarin. Phenytoin and S‑mephenytoin showed that binding to CYP2C19 occurred in a stepwise manner and that the coordination of a water molecule was facilitated in the second binding step. In the ferrous CO-bound state, ν(FeCO) stretching mode was clearly observed at 471 cm-1 in the absence of drugs. The Raman line was greatly up-shifted by omeprazole (487 cm-1) and lansoprazole (477 cm-1) but was minimally affected by propranolol, phenytoin, and S‑mephenytoin. These results indicate that slight chemical modification of a drug greatly affects the heme distal environments upon binding.
Collapse
Affiliation(s)
- Sayed M Derayea
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan; Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Yukiko Oyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Kumamoto 862-0973, Japan
| | - Yoshinobu Ishikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien-Kyubancho, Nishinomiya 663-8179, Japan
| | - Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
60
|
Midlik A, Hutařová Vařeková I, Hutař J, Moturu TR, Navrátilová V, Koča J, Berka K, Svobodová Vařeková R. Automated Family-Wide Annotation of Secondary Structure Elements. Methods Mol Biol 2019; 1958:47-71. [PMID: 30945213 DOI: 10.1007/978-1-4939-9161-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secondary structure elements (SSEs) are inherent parts of protein structures, and their arrangement is characteristic for each protein family. Therefore, annotation of SSEs can facilitate orientation in the vast number of homologous structures which is now available for many protein families. It also provides a way to identify and annotate the key regions, like active sites and channels, and subsequently answer the key research questions, such as understanding of molecular function and its variability.This chapter introduces the concept of SSE annotation and describes the workflow for obtaining SSE annotation for the members of a selected protein family using program SecStrAnnotator.
Collapse
Affiliation(s)
- Adam Midlik
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
| | - Ivana Hutařová Vařeková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jan Hutař
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Taraka Ramji Moturu
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Veronika Navrátilová
- Faculty of Science, Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Faculty of Science, Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | - Radka Svobodová Vařeková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
61
|
Fischer A, Don CG, Smieško M. Molecular Dynamics Simulations Reveal Structural Differences among Allelic Variants of Membrane-Anchored Cytochrome P450 2D6. J Chem Inf Model 2018; 58:1962-1975. [PMID: 30126275 DOI: 10.1021/acs.jcim.8b00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an enzyme that is involved in the metabolism of roughly 25% of all marketed drugs and therefore belongs to the most important enzymes in drug metabolism. CYP2D6 features a high degree of genetic polymorphism that can significantly affect the metabolic activity of an individual. In extreme cases, structural changes at the level of single amino acids can either increase its enzymatic activity abolishing the drug therapeutic effect or completely disable the enzyme and elevate drug plasma level potentially leading to adverse effects. In this study, starting from the crystal structure, we built a full-length membrane-anchored all-atom model of the wild-type CYP2D6 as well as five of its variants differing in the enzymatic activity. We validated our models with available experimental data and compared their structural properties with molecular dynamics simulations. The main focus of this study was to identify differences that could mechanistically explain the altered activity of the variants and improve our understanding of their functioning. We observed differences in the opening frequencies and minimal diameters of tunnels that connect the buried active site to the surrounding solvent environment. The variants CYP2D6*4 and CYP2D6*10 associated with missing or decreased activity showed less frequent opening of the tunnels compared to the wild-type. Both CYP2D6*10 and CYP2D6*17 showed a deprivation of an important ligand tunnel suggesting a feasible reason for their altered substrate specificity. Next, the altered fold at the N-terminal anchor region and the decreased active site volume caused by the amino acid mutations of the CYP2D6*4 variant offer an explanation for the absence of its metabolic activity. The mutations in CYP2D6*53 contributed to a significant enlargement of an important ligand tunnel and an extension of the active site cavity. This could explain the altered metabolic profile as well as the enhanced metabolic rates of this particular variant supporting its designation as a possible cause for the ultrarapid metabolizer phenotype. We believe these novel structural insights could advance the fields of personalized medicine and enzyme engineering. Furthermore, they could aid in guiding laboratory as well as computational experiments in the future.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Charleen G Don
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
62
|
Williams I, Gatchie L, Bharate SB, Chaudhuri B. Biotransformation, Using Recombinant CYP450-Expressing Baker's Yeast Cells, Identifies a Novel CYP2D6.10 A122V Variant Which Is a Superior Metabolizer of Codeine to Morphine Than the Wild-Type Enzyme. ACS OMEGA 2018; 3:8903-8912. [PMID: 31459022 PMCID: PMC6644518 DOI: 10.1021/acsomega.8b00809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/30/2018] [Indexed: 05/29/2023]
Abstract
CYP2D6, a cytochrome P450 (CYP) enzyme, metabolizes codeine to morphine. Within the human body, 0-15% of codeine undergoes O-demethylation by CYP2D6 to form morphine, a far stronger analgesic than codeine. Genetic polymorphisms in wild-type CYP2D6 (CYP2D6-wt) are known to cause poor-to-extensive metabolism of codeine and other CYP2D6 substrates. We have established a platform technology that allows stable expression of human CYP genes from chromosomal loci of baker's yeast cells. Four CYP2D6 alleles, (i) chemically synthesized CYP2D6.1, (ii) chemically synthesized CYP2D6-wt, (iii) chemically synthesized CYP2D6.10, and (iv) a novel CYP2D6.10 variant CYP2D6-C (i.e., CYP2D6.10A122V) isolated from a liver cDNA library, were cloned for chromosomal integration in yeast cells. When expressed in yeast, CYP2D6.10 enzyme shows weak activity compared with CYP2D6-wt and CYP2D6.1 which have moderate activity, as reported earlier. Surprisingly, however, the CYP2D6-C enzyme is far more active than CYP2D6.10. More surprisingly, although CYP2D6.10 is a known low metabolizer of codeine, yeast cells expressing CYP2D6-C transform >70% of codeine to morphine, which is more than twice that of cells expressing the extensive metabolizers, CYP2D6.1, and CYP2D6-wt. The latter two enzymes predominantly catalyze formation of codeine's N-demethylation product, norcodeine, with >55% yield. Molecular modeling studies explain the specificity of CYP2D6-C for O-demethylation, validating observed experimental results. The yeast-based CYP2D6 expression systems, described here, could find generic use in CYP2D6-mediated drug metabolism and also in high-yield chemical reactions that allow the formation of regio-specific dealkylation products.
Collapse
Affiliation(s)
- Ibidapo
S. Williams
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Bhabatosh Chaudhuri
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| |
Collapse
|
63
|
Geronimo I, Denning CA, Heidary DK, Glazer EC, Payne CM. Molecular Determinants of Substrate Affinity and Enzyme Activity of a Cytochrome P450 BM3 Variant. Biophys J 2018; 115:1251-1263. [PMID: 30224054 DOI: 10.1016/j.bpj.2018.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450BM3 catalyzes the hydroxylation and/or epoxidation of fatty acids, fatty amides, and alcohols. Protein engineering has produced P450BM3 variants capable of accepting drug molecules normally metabolized by human P450 enzymes. The enhanced substrate promiscuity has been attributed to the greater flexibility of the lid of the substrate channel. However, it is not well understood how structurally different and highly polar drug molecules can stably bind in the active site nor how the activity and coupling efficiency of the enzyme may be affected by the lack of enzyme-substrate complementarity. To address these important aspects of non-native small molecule binding, this study investigated the binding of drug molecules with different size, charge, polar surface area, and human P450 affinity on the promiscuous R47L/F87V/L188Q/E267V/F81I pentuple mutant of P450BM3. Binding free energy data and energy decomposition analysis showed that pentuple mutant P450BM3 stably binds (i.e., negative ΔGb°) a broad range of substrate and inhibitor types because dispersion interactions with active site residues overcome unfavorable repulsive and electrostatic effects. Molecular dynamics simulations revealed that 1) acidic substrates tend to disrupt the heme propionate A-K69 salt bridge, which may reduce heme oxidizing ability, and 2) the lack of complementarity leads to high substrate mobility and water density in the active site, which may lead to uncoupling. These factors must be considered in future developments of P450BM3 as a biocatalyst in the large-scale production of drug metabolites.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | | | - David K Heidary
- Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, Lexington, Kentucky.
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
64
|
Saito T, Gutiérrez Rico EM, Kikuchi A, Kaneko A, Kumondai M, Akai F, Saigusa D, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of 50 CYP2D6 allelic variants by assessing primaquine 5-hydroxylation. Drug Metab Pharmacokinet 2018; 33:250-257. [PMID: 30366777 DOI: 10.1016/j.dmpk.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is responsible for the metabolic activation of primaquine, an antimalarial drug. CYP2D6 is genetically polymorphic, and these polymorphisms are associated with interindividual variations observed in the therapeutic efficacy of primaquine. To further understand this association, we performed in vitro enzymatic analyses of the wild-type CYP2D6.1 and 49 CYP2D6 allelic variants, which were expressed in 293FT cells, using primaquine as a substrate. The concentrations of CYP2D6 variant holoenzymes were measured by using carbon monoxide (CO)-reduced difference spectroscopy, and the wild type and 27 variants showed a peak at 450 nm. The kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of primaquine 5-hydroxylation were characterized. The kinetic parameters of the wild type and 16 variants were measured, but the values for the remaining 33 variants could not be determined because of low metabolite concentrations. Among the variants, six (i.e., CYP2D6.17, .18, .35, .39, .53, and .70) showed significantly reduced intrinsic clearance compared with that of CYP2D6.1. Three-dimensional structural modeling analysis was performed to elucidate the mechanism of changes in the kinetics of CYP2D6 variants. Our findings provide insights into the allele-specific activity of CYP2D6 for primaquine, which could be clinically useful for malaria treatment and eradication efforts.
Collapse
Affiliation(s)
- Takahiro Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aoi Kikuchi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Akira Kaneko
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Fumika Akai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
65
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
66
|
Siu YA, Hao MH, Dixit V, Lai WG. Celecoxib is a substrate of CYP2D6: Impact on celecoxib metabolism in individuals with CYP2C9*3 variants. Drug Metab Pharmacokinet 2018; 33:219-227. [PMID: 30219715 DOI: 10.1016/j.dmpk.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Abstract
Celecoxib was characterized as a substrate of human cytochrome P450 (CYP) 2D6 in vitro. In recombinant CYP2D6, celecoxib hydroxylation showed atypical substrate inhibition kinetics with apparent Km, Ki, and Vmax of 67.2 μM, 12.6 μM, and 1.33 μM/min, respectively. In human liver microsomes (HLMs), a concentration-dependent inhibition of celecoxib hydroxylation by quinidine was observed after CYP2C9 and CYP3A4 were inhibited. In individual HLMs with variable CYP2D6 activities, a significant correlation was observed between celecoxib hydroxylation and CYP2D6-selective dextromethorphan O-demethylation when CYP2C9 and CYP3A4 activities were suppressed (r = 0.97, P < 0.0001). Molecular modeling showed two predominant docking modes of celecoxib with CYP2D6, resulting in either a substrate or an inhibitor. A second allosteric binding antechamber, which stabilized the inhibition mode, was revealed. Modeling results were consistent with the observed substrate inhibition kinetics. Using HLMs from individual donors, the relative contribution of CYP2D6 to celecoxib metabolism was found to be highly variable and dependent on CYP2C9 genotypes, ranging from no contribution in extensive metabolizers with CYP2C9*1*1 genotype to approximately 30% in slow metabolizers with allelic variants CYP2C9*1*3 and CYP2C9*3*3. These results demonstrate that celecoxib may become a potential victim of CYP2D6-associated drug-drug interactions, particularly in individuals with reduced CYP2C9 activity.
Collapse
Affiliation(s)
- Y Amy Siu
- Drug Metabolism and Pharmacokinetics Department, Eisai Inc., 4 Corporate Drive, Andover, MA 01810-2441, USA.
| | - Ming-Hong Hao
- Chemical Biology Department, Eisai Inc., 4 Corporate Drive, Andover, MA, USA.
| | - Vaishali Dixit
- Drug Metabolism and Pharmacokinetics Department, Eisai Inc., 4 Corporate Drive, Andover, MA 01810-2441, USA.
| | - W George Lai
- Drug Metabolism and Pharmacokinetics Department, Eisai Inc., 4 Corporate Drive, Andover, MA 01810-2441, USA.
| |
Collapse
|
67
|
Li X, Xu Y, Lai L, Pei J. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network. Mol Pharm 2018; 15:4336-4345. [DOI: 10.1021/acs.molpharmaceut.8b00110] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Youjun Xu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
68
|
Don CG, Smieško M. Out‐compute drug side effects: Focus on cytochrome P450 2D6 modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Charleen G. Don
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Martin Smieško
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
69
|
Dong AN, Pan Y, Palanisamy UD, Yiap BC, Ahemad N, Ong CE. Site-Directed Mutagenesis of Cytochrome P450 2D6 and 2C19 Enzymes: Expression and Spectral Characterization of Naturally Occurring Allelic Variants. Appl Biochem Biotechnol 2018. [DOI: 10.1007/s12010-018-2728-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
70
|
Fan JR, Li H, Zhang HX, Zheng QC. Exploring the structure characteristics and major channels of cytochrome P450 2A6, 2A13, and 2E1 with pilocarpine. Biopolymers 2018; 109:e23108. [PMID: 29484634 DOI: 10.1002/bip.23108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
The majority of cytochromes P450 play a critical role in metabolism of endogenous and exogenous substrates, some of its products are carcinogens. Therefore, inhibition of P450 enzymes activity can promote the detoxification and elimination of chemical carcinogens. In this study, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed to explore the structure features and channel dynamics of three P450 isoforms 2A6, 2A13, and 2E1 bound with the common inhibitor pilocarpine. The binding free energy results combined with the PMF calculations give a reasonable ranking of binding affinity, which are consistent with the experimental data. Our results uncover how a sequence divergence of different CYP2 enzymes causes individual variations in major channel selections. On the basis of channel bottleneck and energy decomposition analysis, we propose a gating mechanism of their respective major channels in three enzymes, which may be attributed to a reversal of Phe209 in CYP2A6/2A13, as well as the rotation of Phe116 and Phe298 in CYP2E1. The hydrophobic residues not only make strong hydrophobic interactions with inhibitor, but also act as gatekeeper to regulate the opening of channel. The present study provides important insights into the structure-function relationships of three cytochrome P450s and the molecular basis for development of potent inhibitors.
Collapse
Affiliation(s)
- Jing-Rong Fan
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Heng Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, People's Republic of China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
71
|
Yang HC, Yang CH, Huang MY, Lu JF, Wang JS, Yeh YQ, Jeng US. Homology Modeling and Molecular Dynamics Simulation Combined with X-ray Solution Scattering Defining Protein Structures of Thromboxane and Prostacyclin Synthases. J Phys Chem B 2017; 121:11229-11240. [PMID: 29168638 DOI: 10.1021/acs.jpcb.7b08299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A combination of molecular dynamics (MD) simulations and X-ray scattering (SAXS) has emerged as the approach of choice for studying protein structures and dynamics in solution. This approach has potential applications for membrane proteins that neither are soluble nor form crystals easily. We explore the water-coupled dynamic structures of thromboxane synthase (TXAS) and prostacyclin synthase (PGIS) from scanning HPLC-SAXS measurements combined with MD ensemble analyses. Both proteins are heme-containing enzymes in the cytochrome P450 family, known as prostaglandin H2 (PGH2) isomerase, with counter-functions in regulation of platelet aggregation. Currently, the X-ray crystallographic structures of PGIS are available, but those for TXAS are not. The use of homology modeling of the TXAS structure with ns-μs explicit water solvation MD simulations allows much more accurate estimation of the configuration space with loop motion and origin of the protein behaviors in solution. In contrast to the stability of the conserved PGIS structure in solution, the pronounced TXAS flexibility has been revealed to have unstructured loop regions in connection with the characteristic P450 structural elements. The MD-derived and experimental-solution SAXS results are in excellent agreement. The significant protein internal motions, whole-molecule structures, and potential problems with protein folding, crystallization, and functionality are examined.
Collapse
Affiliation(s)
- Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | - Cheng-Han Yang
- Department of Chemistry, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | - Ming-Yi Huang
- Department of Chemistry, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | - Jyh-Feng Lu
- School of Medicine, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | - Jinn-Shyan Wang
- School of Medicine, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center , Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , Hsinchu Science Park, Hsinchu 30076, Taiwan.,Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| |
Collapse
|
72
|
Ur Rasheed MS, Mishra AK, Singh MP. Cytochrome P450 2D6 and Parkinson's Disease: Polymorphism, Metabolic Role, Risk and Protection. Neurochem Res 2017; 42:3353-3361. [PMID: 28871472 DOI: 10.1007/s11064-017-2384-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 (CYP) 2D6 is one of the most highly active, oxidative and polymorphic enzymes known to metabolize Parkinsonian toxins and clinically established anti-Parkinson's disease (PD) drugs. Albeit CYP2D6 gene is not present in rodents, its orthologs perform almost the similar function with imprecise substrate and inhibitor specificity. CYP2D6 expression and catalytic activity are found to be regulated at every stage of the central dogma except replication as well as at the epigenetic level. CYP2D6 gene codes for a set of alternate splice variants that give rise to a range of enzymes possessing variable catalytic activity. Case-control studies, meta-analysis and systemic reviews covering CYP2D6 polymorphism and PD risk have demonstrated that poor metabolizer phenotype possesses a considerable genetic susceptibility. Besides, ultra-rapid metabolizer offers protection against the risk in some populations while lack of positive or inverse association is also reported in other inhabitants. CYP2D6 polymorphisms resulting into deviant protein products with differing catalytic activity could lead to inter-individual variations, which could be explained to certain extent on the basis of sample size, life style factors, food habits, ethnicity and tools used for statistical analysis across various studies. Current article describes the role played by polymorphic CYP2D6 in the metabolism of anti-PD drugs/Parkinsonian toxins and how polymorphisms determine PD risk or protection. Moreover, CYP2D6 orthologs and their roles in rodent models of Parkinsonism have also been mentioned. Finally, a perspective on inconsistency in the findings and futuristic relevance of CYP2D6 polymorphisms in disease diagnosis and treatment has also been highlighted.
Collapse
Affiliation(s)
- Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, 226001, India
| | - Abhishek Kumar Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, 226001, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, 226001, India.
| |
Collapse
|
73
|
A combinatorial approach for the discovery of cytochrome P450 2D6 inhibitors from nature. Sci Rep 2017; 7:8071. [PMID: 28808272 PMCID: PMC5556109 DOI: 10.1038/s41598-017-08404-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The human cytochrome P450 2D6 (CYP2D6) enzyme is part of phase-I metabolism and metabolizes at least 20% of all clinically relevant drugs. Therefore, it is an important target for drug-drug interaction (DDI) studies. High-throughput screening (HTS) assays are commonly used tools to examine DDI, but show certain drawbacks with regard to their applicability to natural products. We propose an in silico - in vitro workflow for the reliable identification of natural products with CYP2D6 inhibitory potential. In order to identify candidates from natural product-based databases that share similar structural features with established inhibitors, a pharmacophore model was applied. The virtual hits were tested for the inhibition of recombinant human CYP2D6 in a bioluminescence-based assay. By controlling for unspecific interferences of the test compounds with the detection reaction, the number of false positives were reduced. The success rate of the reported workflow was 76%, as most of the candidates identified in the in silico approach were able to inhibit CYP2D6 activity. In summary, the workflow presented here is a suitable and cost-efficient strategy for the discovery of new CYP2D6 inhibitors with natural product libraries.
Collapse
|
74
|
Peterson A, Xia Z, Chen G, Lazarus P. In vitro metabolism of exemestane by hepatic cytochrome P450s: impact of nonsynonymous polymorphisms on formation of the active metabolite 17 β-dihydroexemestane. Pharmacol Res Perspect 2017; 5:e00314. [PMID: 28603633 PMCID: PMC5464343 DOI: 10.1002/prp2.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022] Open
Abstract
Exemestane (EXE) is an endocrine therapy commonly used by postmenopausal women with hormone‐responsive breast cancer due to its potency in inhibiting aromatase‐catalyzed estrogen synthesis. Preliminary in vitro studies sought to identify phase I EXE metabolites and hepatic cytochrome P450s (CYP450s) that participate in EXE biotransformation. Phase I metabolites were identified by incubating EXE with HEK293‐overexpressed CYP450s. CYP450s 1A2, 2C8, 2C9, 2C19, 2D6, 3A4, and 3A5 produce 17β‐dihydroexemestane (17β‐DHE), an active major metabolite, as well as two inactive metabolites. 17β‐DHE formation in pooled human liver microsomes subjected to isoform‐specific CYP450 inhibition was also monitored using tandem mass spectrometry. 17β‐DHE production in human liver microsomes was unaffected by isoform‐specific inhibition of CYP450s 2A6, 2B6, and 2E1 but decreased 12–39% following inhibition of drug‐metabolizing enzymes from CYP450 subfamilies 1A, 2C, 2D, and 3A. These results suggest that redundancy exists in the EXE metabolic pathway with multiple hepatic CYP450s catalyzing 17β‐DHE formation in vitro. To further expand the knowledge of phase I EXE metabolism, the impact of CYP450 genetic variation on 17β‐DHE formation was assessed via enzyme kinetic parameters. Affinity for EXE substrate and enzyme catalytic velocity were calculated for hepatic wild‐type CYP450s and their common nonsynonymous variants by monitoring the reduction of EXE to 17β‐DHE. Several functional polymorphisms in xenobiotic‐metabolizing CYP450s 1A2, 2C8, 2C9, and 2D6 resulted in deviant enzymatic activity relative to wild‐type enzyme. Thus, it is possible that functional polymorphisms in EXE‐metabolizing CYP450s contribute to inter‐individual variability in patient outcomes by mediating overall exposure to the drug and its active metabolite, 17β‐DHE.
Collapse
Affiliation(s)
- Amity Peterson
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Zuping Xia
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| |
Collapse
|
75
|
Effect of 22 CYP2D6 variants found in the Chinese population on tolterodine metabolism in vitro. Chem Biol Interact 2017; 264:10-15. [PMID: 28087463 DOI: 10.1016/j.cbi.2017.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an important member of the cytochrome P450 enzyme superfamily. We recently identified 22 novel variants in the Chinese population using PCR and bidirectional sequencing methods. The aim of this study is to characterize the enzymatic activity of these variants and their effects on the metabolism of the antimuscarinic drug tolterodine in vitro. A baculovirus-mediated expression system was used to express wild-type CYP2D6 and 24 variants (CYP2D6*2, CYP2D6*10, and 22 novel CYP2D6 variants) at high levels. The insect microsomes expressing CYP2D6 proteins were incubated with 0.1-50 μM tolterodine at 37 °C for 30 min and the metabolites were analyzed by high-performance liquid chromatography-tandem mass spectrometry system. Of the 24 CYP2D6 variants tested, 2 variants (CYP2D6*92 and CYP2D6*96) were found to be catalytically inactive, 4 variants (CYP2D6*94, F164L, F219S and D336N) exhibited markedly increased intrinsic clearance values (Vmax/Km) compared with the wild-type (from 66.34 to 99.79%), whereas 4 variants (CYP2D6*10, *93, *95 and E215K) exhibited significantly decreased values (from 49.02 to 98.50%). This is the first report of all these rare alleles for tolterodine metabolism and these findings suggest that more attention should be paid to subjects carrying these infrequent CYP2D6 alleles when administering tolterodine in the clinic.
Collapse
|
76
|
Park SH, Phuc NM, Lee J, Wu Z, Kim J, Kim H, Kim ND, Lee T, Song KS, Liu KH. Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 24:134-140. [PMID: 28160853 DOI: 10.1016/j.phymed.2016.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. PURPOSE The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. STUDY DESIGN The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. METHOD Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. RESULTS Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (Ki = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. CONCLUSION Taken together, our present study elucidates acetylshikonin displays the inhibitory effects against CYP2J2 in HLMs and anti-cancer activity in human hepatocellular carcinoma HepG2 cells.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Nguyen Minh Phuc
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhexue Wu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jieun Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyunkyoung Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Sik Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
77
|
Davydov DR, Yang Z, Davydova N, Halpert JR, Hubbell WL. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Biophys J 2016; 110:1485-1498. [PMID: 27074675 DOI: 10.1016/j.bpj.2016.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington; V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | - Zhongyu Yang
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Nadezhda Davydova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
78
|
Venkatachalam A, Parashar A, Manoj KM. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacol 2016; 4:2. [PMID: 26894412 PMCID: PMC4760962 DOI: 10.1186/s40203-016-0016-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The currently held mechanistic understanding of microsomal cytochrome P450s (CYPs) seeks that diverse drug molecules bind within the deep-seated distal heme pocket and subsequently react at the heme centre. To explain a bevy of experimental observations and meta-analyses, we indulge a hypothesis that involves a "diffusible radical mediated" mechanism. This new hypothesis posits that many substrates could also bind at alternate loci on/within the enzyme and be reacted without the pertinent moiety accessing a bonding proximity to the purported catalytic Fe-O enzyme intermediate. METHODS Through blind and heme-distal pocket centered dockings of various substrates and non-substrates (drug molecules of diverse sizes, classes, topographies etc.) of microsomal CYPs, we explored the possibility of access of substrates via the distal channels, its binding energies, docking orientations, distance of reactive moieties (or molecule per se) to/from the heme centre, etc. We investigated specific cases like- (a) large drug molecules as substrates, (b) classical marker drug substrates, (c) class of drugs as substrates (Sartans, Statins etc.), (d) substrate preferences between related and unrelated CYPs, (e) man-made site-directed mutants' and naturally occurring mutants' reactivity and metabolic disposition, (f) drug-drug interactions, (g) overall affinities of drug substrate versus oxidized product, (h) meta-analysis of in silico versus experimental binding constants and reaction/residence times etc. RESULTS It was found that heme-centered dockings of the substrate/modulator drug molecules with the available CYP crystal structures gave poor docking geometries and distances from Fe-heme centre. In conjunction with several other arguments, the findings discount the relevance of erstwhile hypothesis in many CYP systems. Consequently, the newly proposed hypothesis is deemed a viable alternate, as it satisfies Occam's razor. CONCLUSIONS The new proposal affords expanded scope for explaining the mechanism, kinetics and overall phenomenology of CYP mediated drug metabolism. It is now understood that the heme-iron and the hydrophobic distal pocket of CYPs serve primarily to stabilize the reactive intermediate (diffusible radical) and the surface or crypts of the apoprotein bind to the xenobiotic substrate (and in some cases, the heme distal pocket could also serve the latter function). Thus, CYPs enhance reaction rates and selectivity/specificity via a hitherto unrecognized modality.
Collapse
Affiliation(s)
- Avanthika Venkatachalam
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
| | - Abhinav Parashar
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
| | - Kelath Murali Manoj
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Kerala, 679122, India.
| |
Collapse
|
79
|
McClary WD, Sumida JP, Scian M, Paço L, Atkins WM. Membrane Fluidity Modulates Thermal Stability and Ligand Binding of Cytochrome P4503A4 in Lipid Nanodiscs. Biochemistry 2016; 55:6258-6268. [PMID: 27782404 DOI: 10.1021/acs.biochem.6b00715] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytochrome P4503A4 (CYP3A4) is a peripheral membrane protein that plays a major role in enzymatic detoxification of many drugs and toxins. CYP3A4 has an integral membrane N-terminal helix and a localized patch comprised of the G' and F' helix regions that are embedded in the membrane, but the effects of membrane composition on CYP3A4 function are unknown. Here, circular dichroism and differential scanning calorimetry were used to compare the stability of CYP3A4 in lipid bilayer nanodiscs with varying ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These lipids differ in the acyl-chain length and their degree of unsaturation. The thermal denaturation of CYP3A4 in nanodiscs occurs in a temperature range distinct from that of the nanodisc denaturation so it can be monitored calorimetrically. Melting temperatures (Tm), heat capacities (ΔCp), and calorimetric enthalpies (ΔHcal) for denaturation of CYP3A4 each increased with an increasing fraction of DMPC, with a maximum at 50% DMPC, before decreasing at 75% DMPC. Addition of the inhibitor ketoconazole results in increased thermal stability, and larger ΔCp and ΔHcal values, with different sensitivities to lipid composition. Effects of lipid composition on ligand binding dynamics were also studied. Equilibrium binding affinities of both ketoconazole (KTZ) and testosterone (TST) were minimally affected by lipid composition. However, stopped-flow analyses indicate that the rates of KTZ binding reach a maximum in membranes containing 50% DMPC, whereas the rate of TST binding decreases continuously with an increasing DMPC concentration. These results indicate that CYP3A4 is highly sensitive to the acyl-chain composition of the lipids and fluidity of the membrane in which it is embedded.
Collapse
Affiliation(s)
- Wynton D McClary
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - John P Sumida
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Michele Scian
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Lorela Paço
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| |
Collapse
|
80
|
Weng Q, Liang B, Zhou Y, Li X, Wang H, Zhan Y, Dai D, Cai J, Hu G. Effect of 24 cytochrome P450 2D6 variants found in the Chinese population on the N-demethylation of amitriptyline in vitro. PHARMACEUTICAL BIOLOGY 2016; 54:2475-2479. [PMID: 27097346 DOI: 10.3109/13880209.2016.1160250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Amitriptyline (AT), one of the tricyclic antidepressants, is still widely used for the treatment of the depression and control of anxiety states and panic disorders in the developing countries. OBJECTIVE This study evaluates the catalytic activities of CYP2D6*1, CYP2D6*2, CYP2D6*10 and 22 novel alleles in Han Chinese population and their effects on the N-demethylation of AT in vitro. MATERIALS AND METHODS CYP2D6*1 and 24 CYP2D6 allelic variants were highly expressed in insect cells, and all variants were characterized using AT as a substrate. Reactions were performed at 37 °C with 10-1000 μM substrate for 30 min. We established a HPLC method to quantify the levels of nortriptyline (NT). The kinetic parameters Km, Vmax and intrinsic clearance (Vmax/Km) of NT were calculated. RESULTS Among the 24 CYP2D6 variants, all variants exhibited decreased intrinsic clearance values compared with wild-type CYP2D6.1. Kinetic parameters of two CYP2D6 variants (CYP2D6*92, *96) could not be determined because of absent enzyme activities. CONCLUSIONS The comprehensive in vitro assessment of CYP2D6 variants provides significant insight into allele-specific activity towards AT in vivo.
Collapse
Affiliation(s)
- Qinghua Weng
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Bingqing Liang
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Yali Zhou
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Xiangyu Li
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Hao Wang
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Yunyun Zhan
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Dapeng Dai
- b The Key Laboratory of Geriatrics , Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health , Beijing , P.R. China
| | - JianPing Cai
- b The Key Laboratory of Geriatrics , Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health , Beijing , P.R. China
| | - Guoxin Hu
- a School of Pharmacy , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| |
Collapse
|
81
|
Rackelmann N, Matter H, Englert H, Follmann M, Maier T, Weston J, Arndt P, Heyse W, Mertsch K, Wirth K, Bialy L. Discovery and Optimization of 1-Phenoxy-2-aminoindanes as Potent, Selective, and Orally Bioavailable Inhibitors of the Na +/H + Exchanger Type 3 (NHE3). J Med Chem 2016; 59:8812-8829. [PMID: 27606885 DOI: 10.1021/acs.jmedchem.6b00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design, synthesis, and structure-activity relationship of 1-phenoxy-2-aminoindanes as inhibitors of the Na+/H+ exchanger type 3 (NHE3) are described based on a hit from high-throughput screening (HTS). The chemical optimization resulted in the discovery of potent, selective, and orally bioavailable NHE3 inhibitors with 13d as best compound, showing high in vitro permeability and lacking CYP2D6 inhibition as main optimization parameters. Aligning 1-phenoxy-2-aminoindanes onto the X-ray structure of 13d then provided 3D-QSAR models for NHE3 inhibition capturing guidelines for optimization. These models showed good correlation coefficients and allowed for activity estimation. In silico ADMET models for Caco-2 permeability and CYP2D6 inhibition were also successfully applied for this series. Moreover, docking into the CYP2D6 X-ray structure provided a reliable alignment for 3D-QSAR models. Finally 13d, renamed as SAR197, was characterized in vitro and by in vivo pharmacokinetic (PK) and pharmacological studies to unveil its potential for reduction of obstructive sleep apneas.
Collapse
Affiliation(s)
- Nils Rackelmann
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Hans Matter
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Heinrich Englert
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Markus Follmann
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Thomas Maier
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - John Weston
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Petra Arndt
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Winfried Heyse
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Katharina Mertsch
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Klaus Wirth
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Laurent Bialy
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| |
Collapse
|
82
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
83
|
Guengerich FP, Waterman MR, Egli M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci 2016; 37:625-640. [PMID: 27267697 PMCID: PMC4961565 DOI: 10.1016/j.tips.2016.05.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
84
|
Yamada A, Shimizu N, Hikima T, Takata M, Kobayashi T, Takahashi H. Effect of Cholesterol on the Interaction of Cytochrome P450 Substrate Drug Chlorzoxazone with the Phosphatidylcholine Bilayer. Biochemistry 2016; 55:3888-98. [DOI: 10.1021/acs.biochem.6b00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ayumi Yamada
- Biophysics
Laboratory, Division of Pure and Applied Science, Graduate School
of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Nobutaka Shimizu
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyougo 679-5148, Japan
| | - Masaki Takata
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyougo 679-5148, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Toshihide Kobayashi
- Lipid
Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Takahashi
- Biophysics
Laboratory, Division of Pure and Applied Science, Graduate School
of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyougo 679-5148, Japan
- Lipid
Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
85
|
Manenda MS, Hamel CJ, Masselot-Joubert L, Picard MÈ, Shi R. Androgen-metabolizing enzymes: A structural perspective. J Steroid Biochem Mol Biol 2016; 161:54-72. [PMID: 26924584 DOI: 10.1016/j.jsbmb.2016.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
Abstract
Androgen-metabolizing enzymes convert cholesterol, a relatively inert molecule, into some of the most potent chemical messengers in vertebrates. This conversion involves thermodynamically challenging reactions catalyzed by P450 enzymes and redox reactions catalyzed by Aldo-Keto Reductases (AKRs). This review covers the structures of these enzymes with a focus on active site interactions and proposed mechanisms. Due to their role in a number of diseases, particularly in cancer, androgen-metabolizing enzymes have been targets of drug design. Hence we will also highlight how existing knowledge of structure is being used to this end.
Collapse
Affiliation(s)
- Mahder Seifu Manenda
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Charles Jérémie Hamel
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Loreleï Masselot-Joubert
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
86
|
Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48:405-33. [PMID: 27320797 DOI: 10.1080/03602532.2016.1195403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.
Collapse
Affiliation(s)
- Sung-Mi Kim
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - YongQiang Wang
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Noushin Nabavi
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Yi Liu
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Maria Almira Correia
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;,b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;,c Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , San Francisco , CA , USA ;,d The Liver Center, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
87
|
Wang Z, Wang L, Xu RA, Zhan YY, Huang CK, Dai DP, Cai JP, Hu GX. Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1909-16. [PMID: 27354764 PMCID: PMC4907640 DOI: 10.2147/dddt.s106175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes the metabolism of a great number of therapeutic drugs. Up to now, >100 allelic variants of CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese population in these variants. The purpose of this study was to examine the enzymatic activity of the variants toward the CYP2D6 substrate carvedilol in vitro. The CYP2D6 proteins, including CYP2D6.1 (wild type), CYP2D6.2, CYP2D6.10, and 22 other novel CYP2D6 variants, were expressed from insect microsomes and incubated with carvedilol ranging from 1.0 μM to 50 μM at 37°C for 30 minutes. After termination, the carvedilol metabolites were extracted and detected using ultra-performance liquid chromatography tandem mass-spectrometry. Among the 24 CYP2D6 variants, CYP2D6.92 and CYP2D6.96 were catalytically inactive and the remaining 22 variants exhibited significantly decreased intrinsic clearance values (ranging from ~25% to 95%) compared with CYP2D6.1. The present data in vitro suggest that the newly found variants significantly reduced catalytic activities compared with CYP2D6.1. Given that CYP2D6 protein activities could affect carvedilol plasma levels, these findings are greatly relevant to personalized medicine.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pharmacy, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Li Wang
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China; Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yun-Yun Zhan
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Cheng-Ke Huang
- Department of Pharmacy, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, People's Republic of China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, People's Republic of China
| | - Guo-Xin Hu
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
88
|
Nair PC, McKinnon RA, Miners JO. Cytochrome P450 structure–function: insights from molecular dynamics simulations. Drug Metab Rev 2016; 48:434-52. [DOI: 10.1080/03602532.2016.1178771] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
89
|
Borkar RM, Bhandi MM, Dubey AP, Ganga Reddy V, Komirishetty P, Nandekar PP, Sangamwar AT, Kamal A, Banerjee SK, Srinivas R. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS. Biomed Chromatogr 2016; 30:1556-72. [PMID: 27006091 DOI: 10.1002/bmc.3721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Roshan M Borkar
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.,Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Murali Mohan Bhandi
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Ajay P Dubey
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Balanagar, Hyderabad, 500037, India
| | - V Ganga Reddy
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Balanagar, Hyderabad, 500037, India
| | - Prajwal P Nandekar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali), 160 062, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali), 160 062, Punjab, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Sanjay K Banerjee
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - R Srinivas
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.,Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Balanagar, Hyderabad, 500037, India
| |
Collapse
|
90
|
Borba MA, Melo-Neto RP, Leitão GM, Castelletti CH, Lima-Filho JL, Martins DB. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism? Pharmacogenomics 2016; 17:573-82. [PMID: 27043475 DOI: 10.2217/pgs-2015-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. AIM To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. MATERIALS & METHODS CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. RESULTS H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. CONCLUSION Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.
Collapse
Affiliation(s)
- Maria Acsm Borba
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Renato P Melo-Neto
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Glauber M Leitão
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil.,Clinical Hospital - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Hm Castelletti
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil.,Agronomic Institute of Pernambuco (IPA), Av. General San Martin 1371, 50761-000, Bongi, Recife, PE, Brazil
| | - José L Lima-Filho
- Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Danyelly Bg Martins
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil.,Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
91
|
Bostick CD, Hickey KM, Wollenberg LA, Flora DR, Tracy TS, Gannett PM. Immobilized Cytochrome P450 for Monitoring of P450-P450 Interactions and Metabolism. ACTA ACUST UNITED AC 2016; 44:741-9. [PMID: 26961240 DOI: 10.1124/dmd.115.067637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 (P450) protein-protein interactions have been shown to alter their catalytic activity. Furthermore, these interactions are isoform specific and can elicit activation, inhibition, or no effect on enzymatic activity. Studies show that these effects are also dependent on the protein partner cytochrome P450 reductase (CPR) and the order of protein addition to purified reconstituted enzyme systems. In this study, we use controlled immobilization of P450s to a gold surface to gain a better understanding of P450-P450 interactions between three key drug-metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to assess the favorability of homomeric/heteromeric P450 complex formation. P450 complex formation in vitro was analyzed in real time utilizing surface plasmon resonance. Finally, the effects of P450 complex formation were investigated utilizing our immobilized platform and reconstituted enzyme systems. Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4, in rank order.KDvalues obtained via surface plasmon resonance show strong binding, in the nanomolar range, for the above pairs, with CYP2C9-CYP2D6 yielding the lowestKD, followed by CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4. Metabolic incubations show that immobilized CYP2C9 metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism was activated by CYP2D6 at saturating CPR concentrations in solution but was inhibited when CYP2C9 was immobilized. The order of addition of proteins (CYP2C9, CYP2D6, CYP3A4, and CPR) influenced the magnitude of inhibition for CYP3A4 and CYP2D6. These results indicate isoform-specific P450 interactions and effects on P450-mediated metabolism.
Collapse
Affiliation(s)
- Chris D Bostick
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (C.D.B., K.M.H.); Array BioPharma, Boulder, Colorado (L.A.W.); Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.R.F.); College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida (P.M.G.)
| | - Katherine M Hickey
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (C.D.B., K.M.H.); Array BioPharma, Boulder, Colorado (L.A.W.); Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.R.F.); College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida (P.M.G.)
| | - Lance A Wollenberg
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (C.D.B., K.M.H.); Array BioPharma, Boulder, Colorado (L.A.W.); Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.R.F.); College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida (P.M.G.)
| | - Darcy R Flora
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (C.D.B., K.M.H.); Array BioPharma, Boulder, Colorado (L.A.W.); Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.R.F.); College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida (P.M.G.)
| | - Timothy S Tracy
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (C.D.B., K.M.H.); Array BioPharma, Boulder, Colorado (L.A.W.); Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.R.F.); College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida (P.M.G.)
| | - Peter M Gannett
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (C.D.B., K.M.H.); Array BioPharma, Boulder, Colorado (L.A.W.); Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.R.F.); College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida (P.M.G.)
| |
Collapse
|
92
|
Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4. Sci Rep 2016; 6:21316. [PMID: 26899743 PMCID: PMC4761960 DOI: 10.1038/srep21316] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/21/2016] [Indexed: 11/30/2022] Open
Abstract
We report a detailed computational and experimental study of the interaction of
single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450
enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model
compound, testosterone, to its major metabolite, 6β-hydroxy testosterone
was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also
provided. The inhibition of enzyme activity was alleviated when SWCNTs were
pre-coated with bovine serum albumin. Furthermore, covalent functionalization of
SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4
enzymatic activity. Molecular dynamics simulations suggested that inhibition of the
catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for
substrates/products through a complex binding mechanism. This work suggests that
SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a
molecular mechanism for this toxicity. Our study also suggests means to reduce this
toxicity, eg., by surface modification.
Collapse
|
93
|
Xu RA, Gu EM, Zhou Q, Yuan L, Hu X, Cai J, Hu G. Effects of 22 novel CYP2D6 variants found in Chinese population on the metabolism of dapoxetine. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:687-96. [PMID: 26937172 PMCID: PMC4762583 DOI: 10.2147/dddt.s97789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background CYP2D6 is one of the most important members of the cytochrome P450 superfamily. Its genetic polymorphism significantly influences the efficacy and safety of some drugs, which might cause adverse effects and therapeutic failure. Methods and results The aim of this research was mainly to explore the catalytic activities of 22 newly reported CYP2D6 isoforms (2D6*87, *88, *89, *90, *91, *92, *93, *94, *95, *96,*97, *98, *R25Q, F164L, E215K, F219S, V327M, D336N, V342M, R344Q, R440C, R497C) on dapoxetine in vitro. The research was designed with an appropriate incubation system in test tubes and carried out in the constant temperature water. Through detecting its two metabolites desmethyldapoxetine and dapoxetine-N-oxide, the available data were obtained to explain the influence of CYP2D6 polymorphism on the substrate drug dapoxetine. As a result, the intrinsic clearance (Vmax/Km) values of most variants were significantly altered when compared with the counterpart of CYP2D6*1, with most of these variants exhibiting either reduced Vmax and/or increased Km values. For dapoxetine demethylation pathway (which produces desmethyldapoxetine), 2D6*89 and E215K exhibited no markedly decreased relative clearance of 92.81% and 97.70%, respectively. The relative clearance of rest 20 variants exhibited decrease in different levels, ranging from 20.44% to 90.90%. For the dapoxetine oxidation pathway (which produces dapoxetine-N-oxide), the relative clearance values of three variants, 2D6*90, *94, and V342M, exhibited no markedly increased relative clearance of 106.17%, 107.78%, and 109.98%, respectively; the rest 19 variants exhibited significantly decreased levels ranging from 27.56% to 84.64%. In addition, the kinetic parameters of two CYP2D6 variants (2D6*92 and 2D6*96) could not be detected, due to the defect of the CYP2D6 gene. Conclusion As the first report of all aforementioned alleles for dapoxetine metabolism, these data may help in the clinical assessment of the metabolic elimination of dapoxetine and may provide fundamental information for further clinical studies.
Collapse
Affiliation(s)
- Ren-ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Er-min Gu
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Quan Zhou
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lingjing Yuan
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaoxia Hu
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, People's Republic of China
| | - Guoxin Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China; Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
94
|
Ghosh D, Lo J, Egbuta C. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure-Function Perspective. J Med Chem 2016; 59:5131-48. [PMID: 26689671 DOI: 10.1021/acs.jmedchem.5b01281] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human aromatase catalyzes the synthesis of estrogen from androgen with high substrate specificity. For the past 40 years, aromatase has been a target of intense inhibitor discovery research for the prevention and treatment of estrogen-dependent breast cancer. The so-called third generation aromatase inhibitors (AIs) letrozole, anastrozole, and the steroidal exemestane were approved in the U.S. in the late 1990s for estrogen-dependent postmenopausal breast cancer. Efforts to develop better AIs with higher selectivity and lower side effects were handicapped by the lack of an experimental structure of this unique P450. The year 2009 marked the publication of the crystal structure of aromatase purified from human placenta, revealing an androgen-specific active site. The structure has reinvigorated research activities on this fascinating enzyme and served as the catalyst for next generation AI discovery research. Here, we present an account of recent developments in the AI field from the perspective of the enzyme's structure-function relationships.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Jessica Lo
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Chinaza Egbuta
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| |
Collapse
|
95
|
Liang B, Zhan Y, Wang Y, Gu E, Dai D, Cai J, Hu G. Effect of 24 Cytochrome P450 2D6 Variants Found in the Chinese Population on Atomoxetine Metabolism in vitro. Pharmacology 2015; 97:78-83. [PMID: 26666748 DOI: 10.1159/000442952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this article was to assess the catalytic activities of 24 cytochrome P450 2D6 (CYP2D6) variants found in the Chinese population toward atomoxetine in vitro as well as CYP2D6.1. METHODS In this study, the co-expression enzyme of human recombinant CYPOR, CYPb5, and CYP2D6.1 or other CYP2D6 variants with the baculovirus-mediated insect cells (Sf21) was used to study the catalytic activities of 24 CYP2D6 variants toward atomoxetine metabolism. The metabolite of atomoxetine (4-hydroxyatomoxetine) was detected by ultra-high performance liquid chromatography-mass spectrometry method. RESULTS The intrinsic clearance (Vmax/Km) values of most variants were significantly altered when compared with CYP2D6.1. CYP2D6.94, CYP2D6.D336N, CYP2D6.R440C exhibited marked increased values 172, 126, 121% respectively. CYP2D6.89 and CYP2D6.98 exhibited similar catalytic activity as the wild type, whereas 17 variants exhibited significantly decreased values (from 5 to 87%) due to increase Km and/or decrease Vmax values. However, CYP2D6.92 and CYP2D6.96 showed no or few activity because of producing nothing. CONCLUSIONS Our results suggest that most of these newly found variants exhibit significantly changed catalytic activities compared with the wild type. And these findings provide valuable information for the growth and development of personalized medicine in China.
Collapse
Affiliation(s)
- Bingqing Liang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
96
|
Heath GR, Li M, Polignano IL, Richens JL, Catucci G, O’Shea P, Sadeghi SJ, Gilardi G, Butt JN, Jeuken LJC. Layer-by-Layer Assembly of Supported Lipid Bilayer Poly-l-Lysine Multilayers. Biomacromolecules 2015; 17:324-35. [DOI: 10.1021/acs.biomac.5b01434] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George R. Heath
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mengqiu Li
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Joanna L. Richens
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gianluca Catucci
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Paul O’Shea
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sheila J. Sadeghi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Gianfranco Gilardi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Biological Sciences,
and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Lars J. C. Jeuken
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
97
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
98
|
Cai J, Dai DP, Geng PW, Wang SH, Wang H, Zhan YY, Huang XX, Hu GX, Cai JP. Effects of 22 Novel CYP2D6 Variants Found in the Chinese Population on the Bufuralol and Dextromethorphan MetabolismsIn Vitro. Basic Clin Pharmacol Toxicol 2015; 118:190-9. [PMID: 26310775 DOI: 10.1111/bcpt.12478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/15/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Jie Cai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
- Department of Pharmacy; Traditional Chinese Medical Hospital of Wenling; Wenling China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| | - Pei-Wu Geng
- The Laboratory of Clinical Pharmacy; The People's Hospital of Lishui; Lishui China
| | - Shuang-Hu Wang
- The Laboratory of Clinical Pharmacy; The People's Hospital of Lishui; Lishui China
| | - Hao Wang
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Yun-Yun Zhan
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Xiang-Xin Huang
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Guo-Xin Hu
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| |
Collapse
|
99
|
Martiny VY, Carbonell P, Chevillard F, Moroy G, Nicot AB, Vayer P, Villoutreix BO, Miteva MA. Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6. Bioinformatics 2015; 31:3930-7. [PMID: 26315915 DOI: 10.1093/bioinformatics/btv486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery. RESULTS We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling. This approach includes structural information for CYP2D6 based on the available crystal structures and molecular dynamic simulations (MD) that we performed to take into account conformational changes of the binding site. We performed modeling using three learning algorithms--support vector machine, RandomForest and NaiveBayesian--and we constructed combined models based on topological information of known CYP2D6 inhibitors and predicted binding energies computed by docking on both X-ray and MD protein conformations. In addition, we identified three MD-derived structures that are capable all together to better discriminate inhibitors and non-inhibitors compared with individual CYP2D6 conformations, thus ensuring complementary ligand profiles. Inhibition models based on classical molecular descriptors and predicted binding energies were able to predict CYP2D6 inhibition with an accuracy of 78% on the training set and 75% on the external validation set.
Collapse
Affiliation(s)
- Virginie Y Martiny
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Pablo Carbonell
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Florent Chevillard
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France
| | - Gautier Moroy
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | | | - Philippe Vayer
- BioInformatic Modelling Department, Technologie Servier, 45007 Orléans Cedex1, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| |
Collapse
|
100
|
McDougle DR, Baylon JL, Meling DD, Kambalyal A, Grinkova YV, Hammernik J, Tajkhorshid E, Das A. Incorporation of charged residues in the CYP2J2 F-G loop disrupts CYP2J2-lipid bilayer interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2460-2470. [PMID: 26232558 DOI: 10.1016/j.bbamem.2015.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
CYP2J2 epoxygenase is an extrahepatic, membrane bound cytochrome P450 (CYP) that is primarily found in the heart and mediates endogenous fatty acid metabolism. CYP2J2 interacts with membranes through an N-terminal anchor and various non-contiguous hydrophobic residues. The molecular details of the motifs that mediate membrane interactions are complex and not fully understood. To gain better insights of these complex protein-lipid interactions, we employed molecular dynamics (MD) simulations using a highly mobile membrane mimetic (HMMM) model that enabled multiple independent spontaneous membrane binding events to be captured. Simulations revealed that CYP2J2 engages with the membrane at the F-G loop through hydrophobic residues Trp-235, Ille-236, and Phe-239. To explore the role of these residues, three F-G loop mutants were modeled from the truncated CYP2J2 construct (Δ34) which included Δ34-I236D, Δ34-F239H and Δ34-I236D/F239H. Using the HMMM coordinates of CYP2J2, the simulations were extended to a full POPC membrane which showed a significant decrease in the depth of insertion for each of the F-G loop mutants. The CYP2J2 F-G loop mutants were expressed in E. coli and were shown to be localized to the cytosolic fraction at a greater percentage relative to construct Δ34. Notably, the functional data demonstrated that the double mutant, Δ34-I236D/F239H, maintained native-like enzymatic activity. The membrane insertion characteristics were examined by monitoring CYP2J2 Trp-quenching fluorescence spectroscopy upon binding nanodiscs containing pyrene phospholipids. Relative to the Δ34 construct, the F-G loop mutants exhibited lower Trp quenching and membrane insertion. Taken together, the results suggest that the mutants exhibit a different membrane topology in agreement with the MD simulations and provide important evidence towards the involvement of key residues in the F-G loop of CYP2J2.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61801.,Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Javier L Baylon
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Amogh Kambalyal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Jared Hammernik
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801.,Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61801.,Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| |
Collapse
|