51
|
Li ZH, Cintrón R, Koon NA, Moreno SNJ. The N-terminus and the chain-length determination domain play a role in the length of the isoprenoid product of the bifunctional Toxoplasma gondii farnesyl diphosphate synthase. Biochemistry 2012; 51:7533-40. [PMID: 22931372 DOI: 10.1021/bi3005335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Toxoplasma gondii possesses a bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS) that synthesizes C(15) and C(20) isoprenoid diphosphates from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This enzyme has a unique arrangement of the fourth and fifth amino acid upstream from the first aspartic rich motif (FARM) where the fourth amino acid is aromatic and the fifth is a cysteine. We mutated these amino acids, converting the enzyme to an absolute FPPS by changing the cysteine to a tyrosine. The enzyme could be converted to an absolute GGPPS by changing both the fourth and fifth amino acids to alanines. We also constructed four mutated TgFPPSs whose regions around the first aspartate rich motif were replaced with the corresponding regions of FPP synthases from Arabidopsis thaliana or Saccharomyces cerevisiae or with the corresponding regions of GGPP synthases from Homo sapiens or S. cerevisiae. We determined that the presence of a cysteine at the fifth position is essential for the TgFPPS bifunctionality. We also found that the length of the N-terminal domain plays a role in determining the specificity and the length of the isoprenoid product. Phylogenetic analysis supports the grouping of this enzyme with other type I FPPSs, but the biochemical data indicate that TgFPPS has unique characteristics that differentiate it from mammalian FPPSs and GGPPSs and is therefore an important drug target.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
52
|
Zhang J, Zhang X, Zhang R, Wu C, Guo Y, Mao X, Guo G, Zhang Y, Wang DC, Li D, Zou Q. Modeling studies with Helicobacter pylori octaprenyl pyrophosphate synthase reveal the enzymatic mechanism of trans-prenyltransferases. Int J Biochem Cell Biol 2012; 44:2116-23. [PMID: 22982238 DOI: 10.1016/j.biocel.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
Abstract
Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg(2+) mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.
Collapse
Affiliation(s)
- Jinyong Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: A cis-prenyltransferase for bacterial peptidoglycan biosynthesis. Bioorg Chem 2012; 43:51-7. [DOI: 10.1016/j.bioorg.2011.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
|
54
|
Dai Z, Liu Y, Huang L, Zhang X. Production of miltiradiene by metabolically engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2012; 109:2845-53. [DOI: 10.1002/bit.24547] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 11/09/2022]
|
55
|
Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 2011; 51:1124-37. [PMID: 22105807 DOI: 10.1002/anie.201103110] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 01/10/2023]
Abstract
Terpenes are the largest class of small-molecule natural products on earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are six main building blocks or modules (α, β, γ, δ, ε, and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C(5) precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri- and tetraterpene precursors of sterols, hopanoids, and carotenoids; the βγ di- and triterpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis; and finally the α, αβ, and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C(5) diphosphates in many bacteria, where again, highly modular structures are found.
Collapse
Affiliation(s)
- Eric Oldfield
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
56
|
|
57
|
Ogawa T, Yoshimura T, Hemmi H. Connected cavity structure enables prenyl elongation across the dimer interface in mutated geranylfarnesyl diphosphate synthase from Methanosarcina mazei. Biochem Biophys Res Commun 2011; 409:333-7. [DOI: 10.1016/j.bbrc.2011.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
58
|
Structure and Mutation Analysis of Archaeal Geranylgeranyl Reductase. J Mol Biol 2011; 409:543-57. [DOI: 10.1016/j.jmb.2011.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/26/2011] [Accepted: 04/01/2011] [Indexed: 11/19/2022]
|
59
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 PMCID: PMC3268506 DOI: 10.1199/tab.0143] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sungbeom Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
60
|
Hsieh FL, Chang TH, Ko TP, Wang AHJ. Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. PLANT PHYSIOLOGY 2011; 155:1079-90. [PMID: 21220764 PMCID: PMC3046570 DOI: 10.1104/pp.110.168799] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/06/2011] [Indexed: 05/19/2023]
Abstract
Prenyltransferases (PTSs) are involved in the biosynthesis of terpenes with diverse functions. Here, a novel PTS from Arabidopsis (Arabidopsis thaliana) is identified as a trans-type polyprenyl pyrophosphate synthase (AtPPPS), which forms a trans-double bond during each homoallylic substrate condensation, rather than a homomeric C10-geranyl pyrophosphate synthase as originally proposed. Biochemical and genetic complementation analyses indicate that AtPPPS synthesizes C25 to C45 medium/long-chain products. Its close relationship to other long-chain PTSs is also uncovered by phylogenetic analysis. A mutant of contiguous surface polar residues was produced by replacing four charged surface amino acids with alanines to facilitate the crystallization of the enzyme. The crystal structures of AtPPPS determined here in apo and ligand-bound forms further reveal an active-site cavity sufficient to accommodate the medium/long-chain products. The two monomers in each dimer adopt different conformations at the entrance of the active site depending on the binding of substrates. Taken together, these results suggest that AtPPPS is endowed with a unique functionality among the known PTSs.
Collapse
|
61
|
Köksal M, Jin Y, Coates RM, Croteau R, Christianson DW. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 2010; 469:116-20. [PMID: 21160477 PMCID: PMC3059769 DOI: 10.1038/nature09628] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/29/2010] [Indexed: 11/26/2022]
Abstract
With more than 55,000 members identified to date in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A particularly eminent member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization1 and exhibits remarkable efficacy in cancer chemotherapy2. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia)3 is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene4, which is catalyzed by taxadiene synthase5. The full-length form of this diterpene cyclase contains 862-residues, but an ~80-residue N-terminal transit sequence is cleaved upon maturation in plastids6. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N-terminus, henceforth designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (ACP, 1.82 Å resolution) and 2-fluorogeranylgeranyl diphosphate (FGP, 2.25 Å resolution). The TXS structure is the first of a diterpene cyclase and reveals a modular assembly of three α-helical domains. The C-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. Surprisingly, the N-terminal domain and a third "insertion" domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | |
Collapse
|
62
|
Artz JD, Wernimont AK, Dunford JE, Schapira M, Dong A, Zhao Y, Lew J, Russell RGG, Ebetino FH, Oppermann U, Hui R. Molecular characterization of a novel geranylgeranyl pyrophosphate synthase from Plasmodium parasites. J Biol Chem 2010; 286:3315-22. [PMID: 21084289 PMCID: PMC3030337 DOI: 10.1074/jbc.m109.027235] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We present here a study of a eukaryotic trans-prenylsynthase from the malaria pathogen Plasmodium vivax. Based on the results of biochemical assays and contrary to previous indications, this enzyme catalyzes the production of geranylgeranyl pyrophosphate (GGPP) rather than farnesyl pyrophosphate (FPP). Structural analysis shows that the product length is constrained by a hydrophobic cavity formed primarily by a set of residues from the same subunit as the product as well as at least one other from the dimeric partner. Furthermore, Plasmodium GGPP synthase (GGPPS) can bind nitrogen-containing bisphosphonates (N-BPs) strongly with the energetically favorable cooperation of three Mg2+, resulting in inhibition by this class of compounds at IC50 concentrations below 100 nm. In contrast, human and yeast GGPPSs do not accommodate a third magnesium atom in the same manner, resulting in their insusceptibility to N-BPs. This differentiation is in part attributable to a deviation in a conserved motif known as the second aspartate-rich motif: whereas the aspartates at the start and end of the five-residue motif in FFPP synthases and P. vivax GGPPSs both participate in the coordination of the third Mg2+, an asparagine is featured as the last residue in human and yeast GGPPSs, resulting in a different manner of interaction with nitrogen-containing ligands.
Collapse
Affiliation(s)
- Jennifer D Artz
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M, Koyama T, Miki K. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. J Biol Chem 2010; 286:3729-40. [PMID: 21068379 DOI: 10.1074/jbc.m110.147991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Hsieh FL, Chang TH, Ko TP, Wang AHJ. Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions. J Mol Biol 2010; 404:859-73. [PMID: 20965200 DOI: 10.1016/j.jmb.2010.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Isoprenoids, most of them synthesized by prenyltransferases (PTSs), are a class of important biologically active compounds with diverse functions. The mint geranyl pyrophosphate synthase (GPPS) is a heterotetramer composed of two LSU·SSU (large/small subunit) dimers. In addition to C(10)-GPP, the enzyme also produces geranylgeranyl pyrophosphate (C(20)-GGPP) in vitro, probably because of the conserved active-site structures between the LSU of mint GPPS and the homodimeric GGPP synthase from mustard. By contrast, the SSU lacks the conserved aspartate-rich motifs for catalysis. A major active-site cavity loop in the LSU and other trans-type PTSs is replaced by the regulatory R-loop in the SSU. Only C(10)-GPP, but not C(20)-GGPP, was produced when intersubunit interactions of the R-loop were disrupted by either deletion or multiple point mutations. The structure of the deletion mutant, determined in two different crystal forms, shows an intact (LSU·SSU)(2) heterotetramer, as previously observed in the wild-type enzyme. The active-site of LSU remains largely unaltered, except being slightly more open to the bulk solvent. The R-loop of SSU acts by regulating the product release from LSU, just as does its equivalent loop in a homodimeric PTS, which prevents the early reaction intermediates from escaping the active site of the other subunit. In this way, the product-retaining function of R-loop provides a more stringent control for chain-length determination, complementary to the well-established molecular ruler mechanism. We conclude that the R-loop may be used not only to conserve the GPPS activity but also to produce portions of C(20)-GGPP in mint.
Collapse
Affiliation(s)
- Fu-Lien Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
65
|
Aaron JA, Christianson DW. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases. ACTA ACUST UNITED AC 2010; 82:1585-1597. [PMID: 21562622 DOI: 10.1351/pac-con-09-09-37] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.
Collapse
Affiliation(s)
- Julie A Aaron
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | | |
Collapse
|
66
|
Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution. Biochem Biophys Res Commun 2010; 393:16-20. [DOI: 10.1016/j.bbrc.2010.01.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/21/2022]
|
67
|
Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. THE PLANT CELL 2010; 22:454-67. [PMID: 20139160 PMCID: PMC2845413 DOI: 10.1105/tpc.109.071738] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
68
|
Vandermoten S, Haubruge E, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 2009; 66:3685-95. [PMID: 19633972 PMCID: PMC11115643 DOI: 10.1007/s00018-009-0100-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/28/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C5) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C5). The reactions leading to the production of geranyl diphosphate (C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate (C20), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Sophie Vandermoten
- Department of Functional and Evolutionary Entomology, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | |
Collapse
|
69
|
Vandermoten S, Santini S, Haubruge E, Heuze F, Francis F, Brasseur R, Cusson M, Charloteaux B. Structural features conferring dual geranyl/farnesyl diphosphate synthase activity to an aphid prenyltransferase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:707-716. [PMID: 19720147 DOI: 10.1016/j.ibmb.2009.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 05/28/2023]
Abstract
In addition to providing lipid chains for protein prenylation, short-chain isoprenyl diphosphate synthases (scIPPSs) play a pivotal role in the biosynthesis of numerous mevalonate pathway end-products, including insect juvenile hormone and terpenoid pheromones. For this reason, they are being considered as targets for pesticide development. Recently, we characterized an aphid scIPPS displaying dual geranyl diphosphate (GPP; C(10))/farnesyl diphosphate (FPP; C(15)) synthase activity in vitro. To identify the mechanism(s) responsible for this dual activity, we assessed the product selectivity of aphid scIPPSs bearing mutations at Gln107 and/or Leu110, the fourth and first residue upstream from the "first aspartate-rich motif" (FARM), respectively. All but one resulted in significant changes in product chain-length selectivity, effectively increasing the production of either GPP (Q107E, L110W) or FPP (Q107F, Q107F-L110A); the other mutation (L110A) abolished activity. Although some of these effects could be attributed to changes in steric hindrance within the catalytic cavity, molecular dynamics simulations identified other contributing factors, including residue-ligand Van der Waals interactions and the formation of hydrogen bonds or salt bridges between Gln107 and other residues across the catalytic cavity, which constitutes a novel product chain-length determination mechanism for scIPPSs. Thus the aphid enzyme apparently evolved to maintain the capacity to produce both GPP and FPP through a balance between these mechanisms.
Collapse
Affiliation(s)
- Sophie Vandermoten
- Gembloux Agricultural University, Department of Functional and Evolutionary Entomology, Passage des Déportés 2, Gembloux, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Singkaravanit S, Kinoshita H, Ihara F, Nihira T. Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi. Appl Microbiol Biotechnol 2009; 85:1463-72. [PMID: 19690851 DOI: 10.1007/s00253-009-2171-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Based on comparative amino-acid sequence alignment of geranylgeranyl diphosphate (GGPP) synthase from filamentous fungi, degenerated oligonucleotide primers were designed for searching GGPP synthase gene(s) in entomopathogenic fungi. Polymerase chain reaction with the designed primers amplified GGPP synthase homologues from five representative entomopathogenic fungi: Metarhizium anisopliae, Beauveria bassiana, Verticillium lecanii, Paecilomyces farinosus, and Nomuraea rileyi. Sequence comparison of the amplified of GGPP synthase homologue fragments revealed that M. anisopliae and B. bassiana have at least two different types of the GGPP synthase gene homologues. The first type (designated as ggs1), which is highly conserved among the five strains, has a unique Ser-rich region, SSXSSVSGSSS (X refers to L, A, V, or S), and is constitutively expressed throughout growth. In contrast, the second type of GGPP synthase gene homologue (ggs2) was discovered only in some strains, and genes of this type possessed high similarity to each other but showed relatively weak similarity to the ggs1 genes, with no detectable transcription under the cultivation conditions applied in this experiment. The ggs1 cloned from M. anisopliae, which encoded a putative protein of 359 amino acid residues, was heterologously expressed in E. coli. The recombinant protein showed activity to synthesize GGPP from farnesyl diphosphate and isopentenyl diphosphate. These results strongly suggested that the ggs1 gene encodes a GGPP synthase involved in primary metabolism.
Collapse
|
71
|
Liang PH. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 2009; 48:6562-70. [PMID: 19537817 DOI: 10.1021/bi900371p] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isoprenoids comprise a family of more than 55000 natural products with great structural variety derived from five-carbon isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Allylic diphosphates such as farnesyl diphosphate (FPP) synthesized from DMAPP and IPP serve as outlet points for a great variety of products. A group of prenyltransferases catalyzing chain elongation of FPP to designated lengths by consecutive condensation reactions with specific numbers of IPP are classified as cis and trans types according to the stereochemistry of the double bonds formed by IPP condensation. The complete kinetics of the multistep IPP condensation reactions by both types of enzymes has been determined using steady-state and pre-steady-state approaches. Because their crystal structures were determined in conjunction with biochemical studies, a more thorough understanding of their catalytic mechanisms, protein conformational changes, and product chain-length determination mechanisms has been gained recently. Since these prenyltransferases play important roles, potent inhibitors have been identified and their cocrystal structures have been determined for drug development. In this review, the current knowledge of these prenyltransferases that synthesize prenyl oligomers or polymers is summarized.
Collapse
Affiliation(s)
- Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
72
|
Lo CH, Chang YH, Wright JD, Chen SH, Kan D, Lim C, Liang PH. Combined experimental and theoretical study of long-range interactions modulating dimerization and activity of yeast geranylgeranyl diphosphate synthase. J Am Chem Soc 2009; 131:4051-62. [PMID: 19245203 DOI: 10.1021/ja808699c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present here how two amino acid residues in the first helix distal from the main dimer interface modulate the dimerization and activity of a geranylgeranyl diphosphate synthase (GGPPs). The enzyme catalyzes condensation of farnesyl diphosphate and isopentenyl diphosphate to generate a C(20) product as a precursor for chlorophylls, carotenoids, and geranylgeranylated proteins. The 3D structure of GGPPs from Saccharomyces cerevisiae reveals an unique positioning of the N-terminal helix A, which protrudes into the other subunit and stabilizes dimerization, although it is far from the main dimer interface. Through a series of mutants that were characterized by analytic ultracentrifugation (AUC), the replacement of L8 and I9 at this helix with Gly was found sufficient to disrupt the dimer into a monomer, leading to at least 10(3)-fold reduction in activity. Molecular dynamics simulations and free energy decomposition analyses revealed the possible effects of the mutations on the protein structures and several critical interactions for maintaining dimerization. Further site-directed mutagenesis and AUC studies elucidated the molecular mechanism for modulating dimerization and activity by long-range interactions.
Collapse
Affiliation(s)
- Chia-Hsiang Lo
- Institute of Biochemical Sciences, National Taiwan University, Taipei
| | | | | | | | | | | | | |
Collapse
|
73
|
Noike M, Katagiri T, Nakayama T, Nishino T, Hemmi H. Effect of mutagenesis at the region upstream from the G(Q/E) motif of three types of geranylgeranyl diphosphate synthase on product chain-length. J Biosci Bioeng 2009; 107:235-9. [DOI: 10.1016/j.jbiosc.2008.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/21/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022]
|
74
|
Targeting a Uniquely Nonspecific Prenyl Synthase with Bisphosphonates to Combat Cryptosporidiosis. ACTA ACUST UNITED AC 2008; 15:1296-306. [DOI: 10.1016/j.chembiol.2008.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/19/2022]
|
75
|
K-M Chen C, Hudock MP, Zhang Y, Guo RT, Cao R, No JH, Liang PH, Ko TP, Chang TH, Chang SC, Song Y, Axelson J, Kumar A, Wang AHJ, Oldfield E. Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation. J Med Chem 2008; 51:5594-607. [PMID: 18800762 DOI: 10.1021/jm800325y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the X-ray structures of several bisphosphonate inhibitors of geranylgeranyl diphosphate synthase, a target for anticancer drugs. Bisphosphonates containing unbranched side chains bind to either the farnesyl diphosphate (FPP) substrate site, the geranylgeranyl diphosphate (GGPP) product site, and in one case, both sites, with the bisphosphonate moiety interacting with 3 Mg (2+) that occupy the same position as found in FPP synthase. However, each of three "V-shaped" bisphosphonates bind to both the FPP and GGPP sites. Using the Glide program, we reproduced the binding modes of 10 bisphosphonates with an rms error of 1.3 A. Activities of the bisphosphonates in GGPPS inhibition were predicted with an overall error of 2x by using a comparative molecular similarity analysis based on a docked-structure alignment. These results show that some GGPPS inhibitors can occupy both substrate and product site and that binding modes as well as activity can be accurately predicted, facilitating the further development of GGPPS inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Cammy K-M Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, Chen HH. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:719-33. [PMID: 18466308 DOI: 10.1111/j.1365-313x.2008.03547.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina. The cDNA of P. bellina GDP synthase (PbGDPS) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg(2+) and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer.
Collapse
Affiliation(s)
- Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Noike M, Katagiri T, Nakayama T, Koyama T, Nishino T, Hemmi H. The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase requires subunit interaction. FEBS J 2008; 275:3921-33. [PMID: 18616462 DOI: 10.1111/j.1742-4658.2008.06538.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Motoyoshi Noike
- Department of Biochemistry and Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
78
|
Zhang M, Luo J, Ogiyama Y, Saiki R, Kawamukai M. Heteromer formation of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and budding yeast Coq1*. FEBS J 2008; 275:3653-68. [DOI: 10.1111/j.1742-4658.2008.06510.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Lee S, Kim MH, Kang BS, Kim JS, Kim GH, Kim YG, Kim KJ. Crystal structure of Escherichia coli MazG, the regulator of nutritional stress response. J Biol Chem 2008; 283:15232-40. [PMID: 18353782 DOI: 10.1074/jbc.m800479200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MazG is a nucleoside triphosphate pyrophosphohydrolase that hydrolyzes all canonical nucleoside triphosphates. The mazG gene located downstream from the chromosomal mazEF "addiction module," that mediated programmed cell death in Escherichia coli. MazG activity is inhibited by the MazEF complex both in vivo and in vitro. Enzymatic activity of MazG in vivo affects the cellular level of guanosine 3',5'-bispyrophosphate (ppGpp), synthesized by RelA under amino acid starvation. The reduction of ppGpp, caused by MazG, may extend the period of cell survival under nutritional stress. Here we describe the first crystal structure of active MazG from E. coli, which is composed of two similarly folded globular domains in tandem. Among the two putative catalytic domains, only the C-terminal domain has well ordered active sites and exhibits an NTPase activity. The MazG-ATP complex structure and subsequent mutagenesis studies explain the peculiar active site environment accommodating all eight canonical NTPs as substrates. In vivo nutrient starvation experiments show that the C terminus NTPase activity is responsible for the regulation of bacterial cell survival under nutritional stress.
Collapse
Affiliation(s)
- Sujin Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | | | | | | | | | | | | |
Collapse
|
80
|
Unearthing the roots of the terpenome. Curr Opin Chem Biol 2008; 12:141-50. [PMID: 18249199 DOI: 10.1016/j.cbpa.2007.12.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/27/2007] [Indexed: 11/22/2022]
Abstract
Although terpenoid synthases catalyze the most complex reactions in biology, these enzymes appear to play little role in the chemistry of catalysis other than to trigger the ionization and chaperone the conformation of flexible isoprenoid substrates and carbocation intermediates through multistep reaction cascades. Fidelity and promiscuity in this chemistry (whether a terpenoid synthase generates one or several products), depends on the permissiveness of the active site template in chaperoning each step of an isoprenoid coupling or cyclization reaction. Structure-guided mutagenesis studies of terpenoid synthases such as farnesyl diphosphate synthase, 5-epi-aristolochene synthase, and gamma-humulene synthase suggest that the vast diversity of terpenoid natural products is rooted in the facile evolution of alpha-helical folds shared by terpenoid synthases in all forms of life.
Collapse
|
81
|
Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. ACTA ACUST UNITED AC 2008; 112:184-99. [DOI: 10.1016/j.mycres.2007.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
|
82
|
Guo RT, Cao R, Liang PH, Ko TP, Chang TH, Hudock MP, Jeng WY, Chen CKM, Zhang Y, Song Y, Kuo CJ, Yin F, Oldfield E, Wang AHJ. Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci U S A 2007; 104:10022-7. [PMID: 17535895 PMCID: PMC1877987 DOI: 10.1073/pnas.0702254104] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bisphosphonate drugs (e.g., Fosamax and Zometa) are thought to act primarily by inhibiting farnesyl diphosphate synthase (FPPS), resulting in decreased prenylation of small GTPases. Here, we show that some bisphosphonates can also inhibit geranylgeranyl diphosphate synthase (GGPPS), as well as undecaprenyl diphosphate synthase (UPPS), a cis-prenyltransferase of interest as a target for antibacterial therapy. Our results on GGPPS (10 structures) show that there are three bisphosphonate-binding sites, consisting of FPP or isopentenyl diphosphate substrate-binding sites together with a GGPP product- or inhibitor-binding site. In UPPS, there are a total of four binding sites (in five structures). These results are of general interest because they provide the first structures of GGPPS- and UPPS-inhibitor complexes, potentially important drug targets, in addition to revealing a remarkably broad spectrum of binding modes not seen in FPPS inhibition.
Collapse
Affiliation(s)
- Rey-Ting Guo
- *Taiwan International Graduate Program
- Institute of Biological Chemistry
- Core Facility for Protein Crystallography, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Rong Cao
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, 607 South Mathews Avenue, Urbana, IL 61801; and
| | - Po-Huang Liang
- *Taiwan International Graduate Program
- Institute of Biological Chemistry
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | - Tao-Hsin Chang
- Core Facility for Protein Crystallography, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Michael P. Hudock
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, 607 South Mathews Avenue, Urbana, IL 61801; and
| | - Wen-Yih Jeng
- Institute of Biological Chemistry
- Core Facility for Protein Crystallography, Academia Sinica, Taipei 115, Taiwan
| | - Cammy K.-M. Chen
- Institute of Biological Chemistry
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Yonghui Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yongcheng Song
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Chih-Jung Kuo
- *Taiwan International Graduate Program
- Institute of Biological Chemistry
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Fenglin Yin
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, 607 South Mathews Avenue, Urbana, IL 61801; and
| | - Eric Oldfield
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, 607 South Mathews Avenue, Urbana, IL 61801; and
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801
- **To whom correspondence may be addressed. E-mail: or
| | - Andrew H.-J. Wang
- *Taiwan International Graduate Program
- Institute of Biological Chemistry
- Core Facility for Protein Crystallography, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
83
|
Kavanagh KL, Dunford JE, Bunkoczi G, Russell RGG, Oppermann U. The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J Biol Chem 2006; 281:22004-22012. [PMID: 16698791 DOI: 10.1074/jbc.m602603200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of GTPases with isoprenoid molecules derived from geranylgeranyl pyrophosphate or farnesyl pyrophosphate is an essential requisite for cellular signaling pathways. The synthesis of these isoprenoids proceeds in mammals through the mevalonate pathway, and the final steps in the synthesis are catalyzed by the related enzymes farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase. Both enzymes play crucial roles in cell survival, and inhibition of farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates is an established concept in the treatment of bone disorders such as osteoporosis or certain forms of cancer in bone. Here we report the crystal structure of human geranylgeranyl pyrophosphate synthase, the first mammalian ortholog to have its x-ray structure determined. It reveals that three dimers join together to form a propeller-bladed hexameric molecule with a mass of approximately 200 kDa. Structure-based sequence alignments predict this quaternary structure to be restricted to mammalian and insect orthologs, whereas fungal, bacterial, archaeal, and plant forms exhibit the dimeric organization also observed in farnesyl pyrophosphate synthase. Geranylgeranyl pyrophosphate derived from heterologous bacterial expression is tightly bound in a cavity distinct from the chain elongation site described for farnesyl pyrophosphate synthase. The structure most likely represents an inhibitory complex, which is further corroborated by steady-state kinetics, suggesting a possible feedback mechanism for regulating enzyme activity. Structural comparisons between members of this enzyme class give deeper insights into conserved features important for catalysis.
Collapse
Affiliation(s)
- Kathryn L Kavanagh
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom.
| | - James E Dunford
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom; Institute of Musculoskeletal Sciences, Botnar Research Centre, Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Gabor Bunkoczi
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - R Graham G Russell
- Institute of Musculoskeletal Sciences, Botnar Research Centre, Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Udo Oppermann
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom.
| |
Collapse
|