51
|
Palomo GM, Granatiero V, Kawamata H, Konrad C, Kim M, Arreguin AJ, Zhao D, Milner TA, Manfredi G. Parkin is a disease modifier in the mutant SOD1 mouse model of ALS. EMBO Mol Med 2018; 10:e8888. [PMID: 30126943 PMCID: PMC6180298 DOI: 10.15252/emmm.201808888] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Mutant Cu/Zn superoxide dismutase (SOD1) causes mitochondrial alterations that contribute to motor neuron demise in amyotrophic lateral sclerosis (ALS). When mitochondria are damaged, cells activate mitochondria quality control (MQC) mechanisms leading to mitophagy. Here, we show that in the spinal cord of G93A mutant SOD1 transgenic mice (SOD1-G93A mice), the autophagy receptor p62 is recruited to mitochondria and mitophagy is activated. Furthermore, the mitochondrial ubiquitin ligase Parkin and mitochondrial dynamics proteins, such as Miro1, and Mfn2, which are ubiquitinated by Parkin, and the mitochondrial biogenesis regulator PGC1α are depleted. Unexpectedly, Parkin genetic ablation delays disease progression and prolongs survival in SOD1-G93A mice, as it slows down motor neuron loss and muscle denervation and attenuates the depletion of mitochondrial dynamics proteins and PGC1α. Our results indicate that Parkin is a disease modifier in ALS, because chronic Parkin-mediated MQC activation depletes mitochondrial dynamics-related proteins, inhibits mitochondrial biogenesis, and worsens mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gloria M Palomo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Veronica Granatiero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michelle Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrea J Arreguin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Dazhi Zhao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
52
|
Fujikake N, Shin M, Shimizu S. Association Between Autophagy and Neurodegenerative Diseases. Front Neurosci 2018; 12:255. [PMID: 29872373 PMCID: PMC5972210 DOI: 10.3389/fnins.2018.00255] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a phylogenetically conserved mechanism that controls the degradation of subcellular constituents, including misfolded proteins, and damaged organelles. The progression of many neurodegenerative diseases is thought to be driven by the aggregation of misfolded proteins; therefore, autophagic activity is thought to affect disease severity to some extent. In some neurodegenerative diseases, the suppression of autophagic activity accelerates disease progression. Given that the induction of autophagy can potentially mitigate disease severity, various autophagy-inducing compounds have been developed and their efficacy has been evaluated in several rodent models of neurodegenerative diseases.
Collapse
|
53
|
Ma H, Li X, Wang J, Hornicek F, Garbutt C, Chang X, Duan Z. Expression and Clinical Implication of Autophagy-Associated Protein p62 in Osteosarcoma. Oncology 2018; 95:52-60. [DOI: 10.1159/000487437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
|
54
|
Genetic aberrations in macroautophagy genes leading to diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524522 DOI: 10.1016/j.bbamcr.2018.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The catabolic process of macroautophagy, through the rapid degradation of unwanted cellular components, is involved in a multitude of cellular and organismal functions that are essential to maintain homeostasis. Those functions include adaptation to starvation, cell development and differentiation, innate and adaptive immunity, tumor suppression, autophagic cell death, and maintenance of stem cell stemness. Not surprisingly, an impairment or block of macroautophagy can lead to severe pathologies. A still increasing number of reports, in particular, have revealed that mutations in the autophagy-related (ATG) genes, encoding the key players of macroautophagy, are either the cause or represent a risk factor for the development of several illnesses. The aim of this review is to provide a comprehensive overview of the diseases and disorders currently known that are or could be caused by mutations in core ATG proteins but also in the so-called autophagy receptors, which provide specificity to the process of macroautophagy. Our compendium underlines the medical relevance of this pathway and underscores the importance of the eventual development of therapeutic approaches aimed at modulating macroautophagy.
Collapse
|
55
|
Zhou L, Hao Z, Wang G, Xu G. Cereblon suppresses the formation of pathogenic protein aggregates in a p62-dependent manner. Hum Mol Genet 2017; 27:667-678. [DOI: 10.1093/hmg/ddx433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023] Open
Affiliation(s)
- Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
56
|
Perera ND, Sheean RK, Lau CL, Shin YS, Beart PM, Horne MK, Turner BJ. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 2017; 14:534-551. [PMID: 28980850 PMCID: PMC5915012 DOI: 10.1080/15548627.2017.1385674] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.
Collapse
Affiliation(s)
- Nirma D. Perera
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca K. Sheean
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Chew L. Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yea Seul Shin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip M. Beart
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm K. Horne
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J. Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
57
|
Rogers RS, Tungtur S, Tanaka T, Nadeau LL, Badawi Y, Wang H, Ni HM, Ding WX, Nishimune H. Impaired Mitophagy Plays a Role in Denervation of Neuromuscular Junctions in ALS Mice. Front Neurosci 2017; 11:473. [PMID: 28890682 PMCID: PMC5575151 DOI: 10.3389/fnins.2017.00473] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neurons in amyotrophic lateral sclerosis (ALS) patients and animal models show degeneration from the nerve terminal, known as dying-back neuropathy. To investigate the mechanism underlying this neuropathy, we analyzed the neuromuscular junctions (NMJs) and motor neuron cell bodies in SOD1G93A mice using electron microscopy. NMJs of SOD1G93A mice exhibited significantly higher numbers of autophagosomes and degenerated mitochondria compared to wild-type controls. Mitophagosomes were identified in the NMJ presynaptic terminals of wild-type mice and SOD1G93A mice. However, the number of mitophagosomes did not increase significantly in SOD1G93A NMJs indicating a defect in mitophagy, the autophagic process to degrade mitochondria. Consistent with this, proteins essential for mitophagy, p62/SQSTM1, Bnip3, Pink1, and Parkin were down-regulated in motor neurons in SOD1G93A mice. Importantly, SQSTM1 is one of the genes mutated in familial ALS patients. We evaluated the effect of impaired mitophagy on motor neurons by analyzing the double knockout mice of Pink1 and Parkin, two genes responsible for sensing depolarized mitochondria and delivering degenerated mitochondria to mitophagosomes. The double knockout mice exhibited NMJ degeneration, including axon swelling and NMJ fragmentation at 4 months of age. These phenotypes were rarely observed in wild-type control mice of the same age. The protein level of ATP synthase β subunit increased in the NMJ presynaptic terminals, suggesting the accumulation of mitochondria at NMJs of the double knockout mice. Importantly, NMJ denervation was observed in the double knockout mice. These data suggest that the reduced mitophagy function in motor neurons of SOD1G93A mice is one of the mechanisms causing degeneration of ALS NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Sudheer Tungtur
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Tomohiro Tanaka
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Lisa L Nadeau
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas School of MedicineKansas City, KS, United States
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas School of MedicineKansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas School of MedicineKansas City, KS, United States
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| |
Collapse
|
58
|
Mitophagy in neurodegenerative diseases. Neurochem Int 2017; 117:156-166. [PMID: 28797885 DOI: 10.1016/j.neuint.2017.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 08/05/2017] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), are a complex "family" of pathologies, characterised by the progressive loss of neurons and/or neuronal functions, leading to severe physical and cognitive inabilities in affected patients. These syndromes, despite differences in the causative events, the onset, and the progression of the disease, share as common features the presence of aggregate-prone neuro-toxic proteins, in the form of aggresomes and/or inclusion bodies, perturbing cellular homeostasis and neuronal function (Popovic et al., 2014), and the presence of dysfunctional mitochondria. The removal of protein aggregates and of damaged organelles, through the ubiquitin-proteasome system (UPS) and/or the autophagy/lysosome machinery, is a crucial step for the maintenance of neuronal homeostasis. Indeed, their impairment has been reported as associated with the development of these diseases. In this review, we focus on the role played by mitophagy, a specialised form of autophagy, in the onset and progression of major neurodegenerative diseases, as well as on possible therapeutic approaches involving mitophagy modulation.
Collapse
|
59
|
Madill M, McDonagh K, Ma J, Vajda A, McLoughlin P, O'Brien T, Hardiman O, Shen S. Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Mol Brain 2017; 10:22. [PMID: 28610619 PMCID: PMC5470320 DOI: 10.1186/s13041-017-0300-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis, a devastating neurodegenerative disease, is characterized by the progressive loss of motor neurons and the accumulation of misfolded protein aggregates. The latter suggests impaired proteostasis may be a key factor in disease pathogenesis, though the underlying mechanisms leading to the accumulation of aggregates is unclear. Further, recent studies have indicated that motor neuron cell death may be mediated by astrocytes. Herein we demonstrate that ALS patient iPSC-derived astrocytes modulate the autophagy pathway in a non-cell autonomous manner. We demonstrate cells treated with patient derived astrocyte conditioned medium demonstrate decreased expression of LC3-II, a key adapter protein required for the selective degradation of p62 and ubiquitinated proteins targeted for degradation. We observed an increased accumulation of p62 in cells treated with patient conditioned medium, with a concomitant increase in the expression of SOD1, a protein associated with the development of ALS. Activation of autophagic mechanisms with Rapamycin reduces the accumulation of p62 puncta in cells treated with patient conditioned medium. These data suggest that patient astrocytes may modulate motor neuron cell death by impairing autophagic mechanisms, and the autophagy pathway may be a useful target in the development of novel therapeutics.
Collapse
Affiliation(s)
- Martin Madill
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Katya McDonagh
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Alice Vajda
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Paul McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sanbing Shen
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
60
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
61
|
Corcia P, Couratier P, Blasco H, Andres C, Beltran S, Meininger V, Vourc’h P. Genetics of amyotrophic lateral sclerosis. Rev Neurol (Paris) 2017; 173:254-262. [DOI: 10.1016/j.neurol.2017.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
|
62
|
Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 2016; 21:29. [PMID: 28536631 PMCID: PMC5415757 DOI: 10.1186/s11658-016-0031-z] [Citation(s) in RCA: 596] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
The ubiquitin–proteasome system (UPS) and autophagy are two distinct and interacting proteolytic systems. They play critical roles in cell survival under normal conditions and during stress. An increasing body of evidence indicates that ubiquitinated cargoes are important markers of degradation. p62, a classical receptor of autophagy, is a multifunctional protein located throughout the cell and involved in many signal transduction pathways, including the Keap1–Nrf2 pathway. It is involved in the proteasomal degradation of ubiquitinated proteins. When the cellular p62 level is manipulated, the quantity and location pattern of ubiquitinated proteins change with a considerable impact on cell survival. Altered p62 levels can even lead to some diseases. The proteotoxic stress imposed by proteasome inhibition can activate autophagy through p62 phosphorylation. A deficiency in autophagy may compromise the ubiquitin–proteasome system, since overabundant p62 delays delivery of the proteasomal substrate to the proteasome despite proteasomal catalytic activity being unchanged. In addition, p62 and the proteasome can modulate the activity of HDAC6 deacetylase, thus influencing the autophagic degradation.
Collapse
Affiliation(s)
- Wei Jing Liu
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700 China
| | - Lin Ye
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| | - Wei Fang Huang
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| | - Lin Jie Guo
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| | - Zi Gan Xu
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| | - Hong Luan Wu
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| | - Chen Yang
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| | - Hua Feng Liu
- The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong 524001 China
| |
Collapse
|
63
|
Gal J, Kuang L, Barnett KR, Zhu BZ, Shissler SC, Korotkov KV, Hayward LJ, Kasarskis EJ, Zhu H. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol 2016; 132:563-76. [PMID: 27481264 PMCID: PMC5023729 DOI: 10.1007/s00401-016-1601-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.
Collapse
|
64
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
65
|
Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc Natl Acad Sci U S A 2016; 113:E6209-E6218. [PMID: 27681617 DOI: 10.1073/pnas.1605964113] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments.
Collapse
|
66
|
Liebl MP, Hoppe T. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin. Am J Physiol Cell Physiol 2016; 311:C166-78. [PMID: 27225656 DOI: 10.1152/ajpcell.00074.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases.
Collapse
Affiliation(s)
- Martina P Liebl
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
67
|
Ra EA, Lee TA, Won Kim S, Park A, Choi HJ, Jang I, Kang S, Hee Cheon J, Cho JW, Eun Lee J, Lee S, Park B. TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nat Commun 2016; 7:11726. [PMID: 27216961 PMCID: PMC4890305 DOI: 10.1038/ncomms11726] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023] Open
Abstract
Autophagy is responsible for the bulk degradation of cytosolic constituents and plays an essential role in the intestinal epithelium by controlling beneficial host-bacterial relationships. Atg5 and Atg7 are thought to be critical for autophagy. However, Atg5- or Atg7-deficient cells still form autophagosomes and autolysosomes, and are capable of removing proteins or bacteria. Here, we report that human TRIM31 (tripartite motif), an intestine-specific protein localized in mitochondria, is essential for promoting lipopolysaccharide-induced Atg5/Atg7-independent autophagy. TRIM31 directly interacts with phosphatidylethanolamine in a palmitoylation-dependent manner, leading to induction of autolysosome formation. Depletion of endogenous TRIM31 significantly increases the number of intestinal epithelial cells containing invasive bacteria. Crohn's disease patients display TRIM31 downregulation. Human cytomegalovirus-infected intestinal cells show a decrease in TRIM31 expression as well as a significant increase in bacterial load, reversible by the introduction of wild-type TRIM31. We provide insight into an alternative autophagy pathway that protects against intestinal pathogenic bacterial infection.
Collapse
Affiliation(s)
- Eun A. Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Taeyun A. Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hyun jin Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Insook Jang
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea
| | - Ji Eun Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
- Samsung Genome Institute (SGI), Samsung Medical Center, Seoul 06351, South Korea
| | - Sungwook Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
68
|
Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 2016; 12:1094-104. [PMID: 27158844 PMCID: PMC4990988 DOI: 10.1080/15548627.2016.1170257] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growing evidence implicates impairment of autophagy as a candidate pathogenic mechanism in the spectrum of neurodegenerative disorders which includes amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS-FTLD). SQSTM1, which encodes the autophagy receptor SQSTM1/p62, is genetically associated with ALS-FTLD, although to date autophagy-relevant functional defects in disease-associated variants have not been described. A key protein-protein interaction in autophagy is the recognition of a lipid-anchored form of LC3 (LC3-II) within the phagophore membrane by SQSTM1, mediated through its LC3-interacting region (LIR), and notably some ALS-FTLD mutations map to this region. Here we show that although representing a conservative substitution and predicted to be benign, the ALS-associated L341V mutation of SQSTM1 is defective in recognition of LC3B. We place our observations on a firm quantitative footing by showing the L341V-mutant LIR is associated with a ∼3-fold reduction in LC3B binding affinity and using protein NMR we rationalize the structural basis for the effect. This functional deficit is realized in motor neuron-like cells, with the L341V mutant EGFP-mCherry-SQSTM1 less readily incorporated into acidic autophagic vesicles than the wild type. Our data supports a model in which the L341V mutation limits the critical step of SQSTM1 recruitment to the phagophore. The oligomeric nature of SQSTM1, which presents multiple LIRs to template growth of the phagophore, potentially gives rise to avidity effects which amplify the relatively modest impact of any single mutation on LC3B binding. Over the lifetime of a neuron, impaired autophagy could expose a vulnerability, which ultimately tips the balance from cell survival toward cell death.
Collapse
Affiliation(s)
- Alice Goode
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Kevin Butler
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Jed Long
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - James Cavey
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Daniel Scott
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Barry Shaw
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Jill Sollenberger
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Christopher Gell
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Terje Johansen
- d Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway , Tromsø , Norway
| | - Neil J Oldham
- b School of Chemistry, University of Nottingham , Nottingham , UK
| | - Mark S Searle
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Robert Layfield
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| |
Collapse
|
69
|
Protein folding alterations in amyotrophic lateral sclerosis. Brain Res 2016; 1648:633-649. [PMID: 27064076 DOI: 10.1016/j.brainres.2016.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Protein misfolding leads to the formation of aggregated proteins and protein inclusions, which are associated with synaptic loss and neuronal death in neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that targets motor neurons in the brain, brainstem and spinal cord. Several proteins misfold and are associated either genetically or pathologically in ALS, including superoxide dismutase 1 (SOD1), Tar DNA binding protein-43 (TDP-43), Ubiquilin-2, p62, VCP, and dipeptide repeat proteins produced by unconventional repeat associated non-ATG translation of the repeat expansion in C9ORF72. Chaperone proteins, including heat shock proteins (Hsp׳s) and the protein disulphide isomerase (PDI) family, assist in protein folding and therefore can prevent protein misfolding, and have been implicated as being protective in ALS. In this review we provide an overview of the current literature regarding the molecular mechanisms of protein misfolding and aggregation in ALS, and the role of chaperones as potential targets for therapeutic intervention. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
70
|
Sergin I, Bhattacharya S, Emanuel R, Esen E, Stokes CJ, Evans TD, Arif B, Curci JA, Razani B. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis. Sci Signal 2016; 9:ra2. [PMID: 26732762 DOI: 10.1126/scisignal.aad5614] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages deficient for the critical autophagy protein ATG5. We showed that exposure of macrophages to lipids that promote atherosclerosis increased the abundance of the autophagy chaperone p62 and that p62 colocalized with polyubiquitinated proteins in cytoplasmic inclusions, which are characterized by insoluble protein aggregates. ATG5-null macrophages developed further p62 accumulation at the sites of large cytoplasmic ubiquitin-positive inclusion bodies. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that colocalized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. Lipid-loaded p62-null macrophages also exhibited increased secretion of interleukin-1β (IL-1β) and had an increased tendency to undergo apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted.
Collapse
Affiliation(s)
- Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Somashubhra Bhattacharya
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roy Emanuel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emel Esen
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carl J Stokes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Batool Arif
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John A Curci
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
71
|
Endolysosomal Deficits Augment Mitochondria Pathology in Spinal Motor Neurons of Asymptomatic fALS Mice. Neuron 2015; 87:355-70. [PMID: 26182418 DOI: 10.1016/j.neuron.2015.06.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/05/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
One pathological hallmark in ALS motor neurons (MNs) is axonal accumulation of damaged mitochondria. A fundamental question remains: does reduced degradation of those mitochondria by an impaired autophagy-lysosomal system contribute to mitochondrial pathology? We reveal MN-targeted progressive lysosomal deficits accompanied by impaired autophagic degradation beginning at asymptomatic stages in fALS-linked hSOD1(G93A) mice. Lysosomal deficits result in accumulation of autophagic vacuoles engulfing damaged mitochondria along MN axons. Live imaging of spinal MNs from the adult disease mice demonstrates impaired dynein-driven retrograde transport of late endosomes (LEs). Expressing dynein-adaptor snapin reverses transport defects by competing with hSOD1(G93A) for binding dynein, thus rescuing autophagy-lysosomal deficits, enhancing mitochondrial turnover, improving MN survival, and ameliorating the disease phenotype in hSOD1(G93A) mice. Our study provides a new mechanistic link for hSOD1(G93A)-mediated impairment of LE transport to autophagy-lysosomal deficits and mitochondrial pathology. Understanding these early pathological events benefits development of new therapeutic interventions for fALS-linked MN degeneration.
Collapse
|
72
|
Ruffoli R, Bartalucci A, Frati A, Fornai F. Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis. Front Cell Neurosci 2015; 9:341. [PMID: 26388731 PMCID: PMC4555074 DOI: 10.3389/fncel.2015.00341] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
The key role of mitochondria in patients affected by amyotrophic lateral sclerosis (ALS) is well documented by electron microscopy studies of motor neurons within spinal cord and brainstem. Nonetheless, recent studies challenged the role of mitochondria placed within the cell body of motor neuron. In fact, it was demonstrated that, despite preservation of mitochondria placed within this compartment, there is no increase in the lifespan of transgenic mouse models of ALS. Thus, the present mini-review comments on morphological findings of mitochondrial alterations in ALS patients in connection with novel findings about mitochondrial dynamics within various compartments of motor neurons. The latter issue was recently investigated in relationship with altered calcium homeostasis and autophagy, which affect mitochondria in ALS. In fact, it was recently indicated that a pathological mitophagy, mitochondriogenesis and calcium homeostasis produce different ultrastructural effects within specific regions of motor neurons. This might explain why specific compartments of motor neurons possess different thresholds to mitochondrial damage. In particular, it appears that motor axons represent the most sensitive compartment which undergoes the earliest and most severe alterations in the course of ALS. It is now evident that altered calcium buffering is compartment-dependent, as well as mitophagy and mitochondriogenesis. On the other hand, mitochondrial homeostasis strongly relies on calcium handling, the removal of altered mitochondria through the autophagy flux (mitophagy) and the biogenesis of novel mitochondria (mitochondriogenesis). Thus, recent findings related to altered calcium storage and impaired autophagy flux in ALS may help to understand the occurrence of mitochondrial alterations as a hallmark in ALS patients. At the same time, the compartmentalization of such dysfunctions may be explained considering the compartments of calcium dynamics and autophagy flux within motor neurons.
Collapse
Affiliation(s)
- Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Alessia Bartalucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy ; I.R.C.C.S., Neuromed Pozzilli, Italy
| |
Collapse
|
73
|
Nicot AS, Lo Verso F, Ratti F, Pilot-Storck F, Streichenberger N, Sandri M, Schaeffer L, Goillot E. Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy 2015; 10:1036-53. [PMID: 24879152 PMCID: PMC4091167 DOI: 10.4161/auto.28479] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.
Collapse
Affiliation(s)
- Anne-Sophie Nicot
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Francesca Lo Verso
- Venetian Institute of Molecular Medicine and Department of Biomedical Science; University of Padova; Padova, Italy
| | - Francesca Ratti
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Fanny Pilot-Storck
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Nathalie Streichenberger
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France; Service de Neuropathologie; Groupement Hospitalier Est; Hospices Civils de Lyon; Lyon, France
| | - Marco Sandri
- Venetian Institute of Molecular Medicine and Department of Biomedical Science; University of Padova; Padova, Italy
| | - Laurent Schaeffer
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France; Centre de Biotechnologies Cellulaires; Groupement Hospitalier Est; Hospices Civils de Lyon; Lyon, France
| | - Evelyne Goillot
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
74
|
RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1. Mol Cell Biol 2015; 35:2385-99. [PMID: 25939382 DOI: 10.1128/mcb.00087-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulated in vitro in motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease.
Collapse
|
75
|
Kitaoka Y, Kojima K, Munemasa Y, Sase K, Takagi H. Axonal protection by brimonidine with modulation of p62 expression in TNF-induced optic nerve degeneration. Graefes Arch Clin Exp Ophthalmol 2015; 253:1291-6. [PMID: 25863674 PMCID: PMC4521096 DOI: 10.1007/s00417-015-3005-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
Purpose The p62, also called sequestosome 1 (SQSTM1), plays a crucial role in tumor necrosis factor (TNF)-induced optic nerve degeneration. Brimonidine has been shown to have protective effects on retinal ganglion cell bodies, although its role in their axons remains to be examined. We determined whether brimonidine modulates axonal loss induced by TNF and affects the expression of p62 in the optic nerve. Methods Experiments were performed on adult male Wistar rats that received an intravitreal injection of 10 ng TNF alone or simultaneous injection of TNF and 2, 20, or 200 pmol of brimonidine tartrate. The expression of p62 in the optic nerve was examined by immunoblot analysis. The effects of brimonidine on axons were evaluated by counting axon numbers 2 weeks after intravitreal injection. Results Intravitreal injection of brimonidine exerted substantial axonal protection against TNF-induced optic nerve degeneration. Immunoblot analysis showed that p62 was upregulated in the optic nerve after intravitreal injection of TNF, and that this increase was completely inhibited by brimonidine. Treatment with brimonidine alone also significantly decreased p62 protein levels in the optic nerve compared with the basal level. Conclusions These results suggest that the modulation of p62 levels in the optic nerve by brimonidine may be involved partly in its axonal protection.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan,
| | | | | | | | | |
Collapse
|
76
|
Salehi M, Nikkhah M, Ghasemi A, Arab SS. Mitochondrial membrane disruption by aggregation products of ALS-causing superoxide dismutase-1 mutants. Int J Biol Macromol 2015; 75:290-7. [DOI: 10.1016/j.ijbiomac.2015.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 11/24/2022]
|
77
|
Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 2015; 129:337-62. [PMID: 25367385 DOI: 10.1007/s00401-014-1361-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson's disease.
Collapse
|
78
|
Yang Y, Tang L, Zhang N, Pan L, Hadano S, Fan D. Six SQSTM1 mutations in a Chinese amyotrophic lateral sclerosis cohort. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:378-84. [PMID: 25708934 DOI: 10.3109/21678421.2015.1009466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to identify SQSTM1 gene mutations, estimate survival based on the progression rate of the revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R) score (ΔFS), and characterize the relationships between SQSTM1 mutations and clinical phenotypes in Chinese ALS patients. We sequenced the SQSTM1 gene in 35 familial ALS patients, 436 sporadic ALS patients, and 384 healthy controls. SQSTM1 gene mutations were screened with PCR and direct sequencing; the correlations between genotype and phenotype and the progressive ALSFRS-R ratio were analyzed. Results revealed six heterozygous missense mutations in 471 ALS patients: c.241 G> A (p.E81K), c.717 C> A (p.N239K), c.889 G> A (p.G297S), c.1116 G> C (p.E372D), c.1162 C> T (p.P388S) and c.1175 C> T (p.P392 L). The gender ratio was 1:1, and the limb was the site of disease onset in mutation-positive patients. Notably, the ΔFS analysis revealed that the risk of death or tracheostomy was significantly increased in SQSTM1 mutation carriers (p < 0.05). In conclusion, E81K, N239K, G297S, E372D, P388S and P392 L were detected in the PB1, TRAF6, PEST and UBA domains, which are important to p62 function and prone to ALS. The incidence of ALS caused by the SQSTM1 mutation has increased from 30 to 35 worldwide.
Collapse
Affiliation(s)
- Yi Yang
- a Department of Neurology , Peking University Third Hospital , Haidian District, Beijing , China
| | - Lu Tang
- a Department of Neurology , Peking University Third Hospital , Haidian District, Beijing , China
| | - Nan Zhang
- a Department of Neurology , Peking University Third Hospital , Haidian District, Beijing , China
| | | | - Shinji Hadano
- b Department of Molecular Life Sciences , Tokai University School of Medicine , Isehara , Kanagawa , Japan.,c The Institute of Medical Sciences, Tokai University , Isehara , Kanagawa , Japan.,e Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine , Isehara , Kanagawa , Japan
| | - Dongsheng Fan
- a Department of Neurology , Peking University Third Hospital , Haidian District, Beijing , China
| |
Collapse
|
79
|
Dangoumau A, Deschamps R, Veyrat-Durebex C, Pettmann B, Corcia P, Andres CR, Vourc'h P. A novel p.E121G SOD1 mutation in slowly progressive form of amyotrophic lateral sclerosis induces cytoplasmic aggregates in cultured motor neurons and reduces cell viability. Amyotroph Lateral Scler Frontotemporal Degener 2014; 16:131-4. [PMID: 25336041 DOI: 10.3109/21678421.2014.965179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in the SOD1 gene encoding the Cu/Zn superoxide dismutase-1 protein are responsible for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. To date a large number of mutations have been reported in SOD1, but only few of them have been studied and validated by functional studies. We present a novel mutation in SOD1 in a female suffering from slowly progressive ALS. This dominant mutation (c.365A > G) in exon 5 resulted in a substitution of a highly conserved amino acid (p.E121G) of the protein. Functional studies in the motor neuronal cell line NSC34 and in primary culture of mouse motor neurons revealed that this mutation p.E121G induced aggregates positive for SOD1 and ubiquitin, as well as reduced cell viability. These findings identified a novel causal mutation in ALS in close proximity with one of the three histidine residues (H120) of SOD1 interacting with copper.
Collapse
|
80
|
Bcl-2 Decreases the Affinity of SQSTM1/p62 to Poly-Ubiquitin Chains and Suppresses the Aggregation of Misfolded Protein in Neurodegenerative Disease. Mol Neurobiol 2014; 52:1180-1189. [DOI: 10.1007/s12035-014-8908-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/28/2014] [Indexed: 12/14/2022]
|
81
|
Palomo GM, Manfredi G. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 2014; 1607:36-46. [PMID: 25301687 DOI: 10.1016/j.brainres.2014.09.065] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
Neuronal cells are highly dependent on mitochondria, and mitochondrial dysfunction is associated with neurodegenerative diseases. As perturbed mitochondrial function renders neurons extremely sensitive to a wide variety of insults, such as oxidative stress and bioenergetic defects, mitochondrial defects can profoundly affect neuronal fate. Several studies have linked ALS with mitochondrial dysfunction, stemming from observations of mitochondrial abnormalities, both in patients and in cellular and mouse models of familial forms of ALS. Mitochondrial changes have been thoroughly investigated in mutants of superoxide dismutase 1 (SOD1), one of the most common causes of familial ALS, for which excellent cellular and animal models are available, but recently evidence is emerging also in other forms of ALS, both familial and sporadic. Mitochondrial defects in ALS involve many critical physiopathological processes, from defective bioenergetics to abnormal calcium homeostasis, altered morphology and impaired trafficking. In this review, we summarize established evidence of mitochondrial dysfunction in ALS, especially in SOD1 mutant models of familial ALS. The main focus of the review is on defective mitochondrial quality control (MQC) in ALS. MQC operates at multiple levels to clear damaged proteins through proteostasis and to eliminate irreparably damaged organelles through mitophagy. However, since ALS motor neurons progressively accumulate damaged mitochondria, it is plausible that the MQC is ineffective or overwhelmed by excessive workload imposed by the chronic and extensive mitochondrial damage. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Gloria M Palomo
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, United States.
| |
Collapse
|
82
|
Axonal protection by modulation of p62 expression in TNF-induced optic nerve degeneration. Neurosci Lett 2014; 581:37-41. [DOI: 10.1016/j.neulet.2014.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
|
83
|
p62/sequestosome 1 regulates aggresome formation of pathogenic ataxin-3 with expanded polyglutamine. Int J Mol Sci 2014; 15:14997-5010. [PMID: 25158237 PMCID: PMC4200763 DOI: 10.3390/ijms150914997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 02/03/2023] Open
Abstract
The cellular protein quality control system in association with aggresome formation contributes to protecting cells against aggregation-prone protein-induced toxicity. p62/Sequestosome 1 (p62) is a multifunctional protein which plays an important role in protein degradation and aggregation. Although poly-ubiquitination is usually required for p62-mediated protein degradation and aggresome formation, several p62 substrates are processed to form aggregate in an ubiquitination-independent manner. In this study we demonstrate that p62 directly interacts with pathogenic Machado Joseph Disease (MJD)-associated protein ataxin-3 with polyglutamine (polyQ) expansion. Moreover, p62 could regulate the aggresome formation of pathogenic ataxin-3 and protect cells against pathogenic ataxin-3-induced cell death.
Collapse
|
84
|
Ignacio-Souza LM, Bombassaro B, Pascoal LB, Portovedo MA, Razolli DS, Coope A, Victorio SC, de Moura RF, Nascimento LF, Arruda AP, Anhe GF, Milanski M, Velloso LA. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology 2014; 155:2831-44. [PMID: 24892821 DOI: 10.1210/en.2014-1090] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set point of adiposity, and returning to normal weight becomes extremely difficult. Here we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by an increased colocalization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, whereas the inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and autoperpetuation of obesity.
Collapse
Affiliation(s)
- Leticia M Ignacio-Souza
- Laboratory of Cell Signaling (L.M.I.-S., B.B., L.B.P., M.A.P., D.S.R., A.C., S.C.V., R.F.d.M., L.F.N., A.P.A., M.M., L.A.V.), Faculty of Applied Sciences (M.A.P., M.M.), and Department of Pharmacology (G.F.A.), University of Campinas, 13084-970 Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Vaz AR, Cunha C, Gomes C, Schmucki N, Barbosa M, Brites D. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Mol Neurobiol 2014; 51:864-77. [PMID: 24848512 DOI: 10.1007/s12035-014-8731-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects mainly motor neurons (MNs). NSC-34 MN-like cells carrying the G93A mutation in human superoxide dismutase-1 (hSOD1(G93A)) are a common model to study the molecular mechanisms of neurodegeneration in ALS. Although the underlying pathways of MN failure still remain elusive, increased apoptosis and oxidative stress seem to be implicated. Riluzole, the only approved drug, only slightly delays ALS progression. Ursodeoxycholic acid (UDCA), as well as its glycine (glycoursodeoxycholic acid, GUDCA) and taurine (TUDCA) conjugated species, have shown therapeutic efficacy in neurodegenerative models and diseases. Pilot studies in ALS patients indicate safety and tolerability for UDCA oral administration. We explored the mechanisms associated with superoxide dismutase-1 (SOD1) accumulation and MN degeneration in NSC-34/hSOD1(G93A) cells differentiated for 4 days in vitro (DIV). We examined GUDCA efficacy in preventing such pathological events and in restoring MN functionality by incubating cells with 50 μM GUDCA at 0 DIV and at 2 DIV, respectively. Increased cytosolic SOD1 inclusions were observed in 4 DIV NSC-34/hSOD1(G93A) cells together with decreased mitochondria viability (1.2-fold, p < 0.01), caspase-9 activation (1.8-fold, p < 0.05), and apoptosis (2.1-fold, p < 0.01). GUDCA exerted preventive effects (p < 0.05) while also reduced caspase-9 levels when added at 2 DIV (p < 0.05). ATP depletion (2-fold, p < 0.05), increased nitrites (1.6-fold, p < 0.05) and metalloproteinase-9 (MMP-9) activation (1.8-fold, p < 0.05), but no changes in MMP-2, were observed in the extracellular media of 4 DIV NSC-34/hSOD1(G93A) cells. GUDCA inhibited nitrite production (p < 0.05) while simultaneously prevented and reverted MMP-9 activation (p < 0.05), but not ATP depletion. Data highlight caspase-9 and MMP-9 activation as key pathomechanisms in ALS and GUDCA as a promising therapeutic strategy for slowing disease onset and progression.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
86
|
Nassif M, Valenzuela V, Rojas-Rivera D, Vidal R, Matus S, Castillo K, Fuentealba Y, Kroemer G, Levine B, Hetz C. Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis. Autophagy 2014; 10:1256-71. [PMID: 24905722 DOI: 10.4161/auto.28784] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacological activation of autophagy is becoming an attractive strategy to induce the selective degradation of aggregate-prone proteins. Recent evidence also suggests that autophagy impairment may underlie the pathogenesis of several neurodegenerative diseases. Mutations in the gene encoding SOD1 (superoxide disumutase 1) trigger familial amyotrophic lateral sclerosis (ALS), inducing its misfolding and aggregation and the progressive loss of motoneurons. It is still under debate whether autophagy has a protective or detrimental role in ALS. Here we evaluate the impact of BECN1/Beclin 1, an essential autophagy regulator, in ALS. BECN1 levels were upregulated in both cells and animals expressing mutant SOD1. To evaluate the impact of BECN1 to the pathogenesis of ALS in vivo, we generated mutant SOD1 transgenic mice heterozygous for Becn1. We observed an unexpected increase in life span of mutant SOD1 transgenic mice haploinsufficient for Becn1 compared with littermate control animals. These effects were accompanied by enhanced accumulation of SQSTM1/p62 and reduced levels of LC3-II, and an altered equilibrium between monomeric and oligomeric mutant SOD1 species in the spinal cord. At the molecular level, we detected an abnormal interaction of mutant SOD1 with the BECN1-BCL2L1 complex that may impact autophagy stimulation. Our data support a dual role of BECN1 in ALS and depict a complex scenario in terms of predicting the effects of manipulating autophagy in a disease context.
Collapse
Affiliation(s)
- Melissa Nassif
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell (CEMC); Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile
| | - Vicente Valenzuela
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell (CEMC); Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell (CEMC); Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile
| | - René Vidal
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Neurounion Biomedical Foundation; Santiago, Chile
| | - Soledad Matus
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Neurounion Biomedical Foundation; Santiago, Chile
| | - Karen Castillo
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell (CEMC); Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile
| | - Yerko Fuentealba
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell (CEMC); Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile
| | - Guido Kroemer
- INSERM U848; Villejuif, France; Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France; Equipe 11 labellisée par la Ligue contre le Cancer; Centre de Recherche des Cordeliers; Paris, France; Pôle de Biologie; Hôpital Européen Georges Pompidou; Paris, France; Université Paris Descartes; Sorbonne Paris Cité; Paris, France
| | - Beth Levine
- Department of Internal Medicine and Howard Hughes Medical Institute; UT Southwestern Medical Center; Dallas, TX USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell (CEMC); Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile; Neurounion Biomedical Foundation; Santiago, Chile; Department of Immunology and Infectious Diseases; Harvard School of Public Health; Boston, MA USA
| |
Collapse
|
87
|
An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, Wu D, Xu Z, Li C, Guo Y. Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 2014; 49:1435-48. [PMID: 24390572 DOI: 10.1007/s12035-013-8623-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/15/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease involving both upper and lower motor neurons. The mechanism of motor neuron degeneration is still unknown. Although many studies have been performed on spinal motor neurons, few have been reported on brainstem and its motor nuclei. The aim of this study was to investigate oxidative stress and autophagic changes in the brainstem and representative motor nuclei of superoxide dismutase 1 (SOD1)-G93A mouse model of ALS. The expression levels of cluster of differentiation molecule 11b (CD11b), glial fibrillary acidic protein, glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, voltage-dependent anion-selective channel protein 1, Sequestosome 1/p62 (p62), microtubule-associated protein 1 light chain 3B (LC3), and SOD1 proteins in brainstem were examined by Western blot analysis. Immunohistochemistry and immunofluorescence were performed to identify the cellular localization of SOD1, p62, and LC3B, respectively. The results showed that there were progressive asctrocytic proliferation and microglial activation, induction of antioxidant proteins, and increased p62 and LC3II expression in brainstem of SOD1-G93A mice. Additionally, SOD1 and p62 accumulated in hypoglossal, facial, and red nuclei, but not in oculomotor nucleus. Furthermore, electron microscope showed increased autophagic vacuoles in affected brainstem motor nuclei. Our results indicate that brainstem share similar gliosis, oxidative stress, and autophagic changes as the spinal cord in SOD1-G93A mice. Thus, SOD1 accumulation in astrocytes and neurons, oxidative stress, and altered autophagy are involved in motor neuron degeneration in the brainstem, similar to the motor neurons in spinal cord. Therefore, therapeutic trials in the SOD1G93A mice need to target the brainstem in addition to the spinal cord.
Collapse
Affiliation(s)
- Ting An
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei Province, 050000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70:4729-45. [PMID: 23864030 PMCID: PMC4172456 DOI: 10.1007/s00018-013-1415-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient's life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.
Collapse
Affiliation(s)
- Rachna S. Pandya
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Robert Bowser
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Robert M. Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
89
|
Pizon V, Rybina S, Gerbal F, Delort F, Vicart P, Baldacci G, Karsenti E. MURF2B, a novel LC3-binding protein, participates with MURF2A in the switch between autophagy and ubiquitin proteasome system during differentiation of C2C12 muscle cells. PLoS One 2013; 8:e76140. [PMID: 24124537 PMCID: PMC3790703 DOI: 10.1371/journal.pone.0076140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/24/2013] [Indexed: 01/08/2023] Open
Abstract
The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways.
Collapse
Affiliation(s)
- Véronique Pizon
- University Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC4413, Paris, France
- * E-mail:
| | - Sofia Rybina
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Gerbal
- Université Paris Diderot, Matière et Systèmes Complexes, CNRS UMR 7057, Paris, France
- Université Pierre et Marie Curie, Physics Department-UFR925, Paris, France
| | - Florence Delort
- University Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC4413, Paris, France
| | - Patrick Vicart
- University Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC4413, Paris, France
| | - Giuseppe Baldacci
- Université Paris Diderot, CNRS, Institut Jacques Monod, Paris, France
| | - Eric Karsenti
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
90
|
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev 2013; 34:501-24. [PMID: 23612225 DOI: 10.1210/er.2012-1034] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is characterized by focal areas of aberrant and excessive bone turnover, specifically increased bone resorption and disorganized bone formation. Germline mutations in the sequestosome 1/p62 (SQSTM1/p62) gene are common in PDB patients, with most mutations affecting the ubiquitin-associated domain of the protein. In vitro, osteoclast precursor cells expressing PDB-mutant SQSTM1/p62 protein are associated with increases in nuclear factor κB activation, osteoclast differentiation, and bone resorption. Although the precise mechanisms by which SQSTM1/p62 mutations contribute to disease pathogenesis and progression are not well defined, it is apparent that as well as affecting nuclear factor κB signaling, SQSTM1/p62 is a master regulator of ubiquitinated protein turnover via autophagy and the ubiquitin-proteasome system. Additional roles for SQSTM1/p62 in the oxidative stress-induced Keap1/Nrf2 pathway and in caspase-mediated apoptosis that were recently reported are potentially relevant to the pathogenesis of PDB. Thus, SQSTM1/p62 may serve as a molecular link or switch between autophagy, apoptosis, and cell survival signaling. The purpose of this review is to outline recent advances in understanding of the multiple pathophysiological roles of SQSTM1/p62 protein, with particular emphasis on their relationship to PDB, including challenges associated with translating SQSTM1/p62 research into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah L Rea
- Department of Endocrinology and Diabetes, Level 1, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
91
|
Jung HJ, Kim YJ, Eggert S, Chung KC, Choi KS, Park SA. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol 2013; 248:441-50. [PMID: 23906983 DOI: 10.1016/j.expneurol.2013.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
Aging increases the co-incidence of Alzheimer's disease (AD) and type 2 diabetes (T2DM). However, the critical factors that contribute to the age-related increase in AD-T2DM comorbidity have yet to be clarified. In this study, aging effects and their relationship to AD-related pathology and T2DM as well as the underlying mechanisms of this process were investigated using obese rats with chronic T2DM. Tau pathology and its associated signaling pathways in the brain were compared between Otsuka Long-Evans Tokushima Fatty (OLETF) rats and corresponding non-diabetic controls at various ages. Tau phosphorylation at AD-related epitopes, including Thr212, Thr231, Ser262, and Ser396, increased with age in the soluble brain extracts of chronic OLETF rats and were accompanied by synaptic protein loss. There was also a marked age-dependent accumulation of polyubiquitinated substances in diabetic rats. Accordingly, tau proteins were highly polyubiquitinated in aged OLETF rats and a strong degree of co-localization existed between p-tau and ubiquitin in these neurons. In addition, the mRNA and protein levels of p62, a known cargo molecule that transports polyubiquitinated tau to proteasomal and autophagic degradation systems, decreased robustly with age in OLETF rats and there was an inverse correlation between protein levels of p62 and p-tau. The impaired degradation of polyubiquitinated p-tau due to age- and T2DM-dependent decreases in p62 transcription is a primary mechanism underlying increased AD-like pathology in a T2DM rat model as age increases. These results provide novel insight into the mechanisms supporting the age-related increase in AD-T2DM comorbidity.
Collapse
Affiliation(s)
- Hyun-Jung Jung
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon 420-767, Republic of Korea
| | | | | | | | | | | |
Collapse
|
92
|
p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model. J Neurosci 2013; 33:7710-27. [PMID: 23637164 DOI: 10.1523/jneurosci.3021-12.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders that are caused by the expansion of trinucleotide CAG repeats in the causative genes. Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease that is caused by the expansion of a polyQ tract within the androgen receptor (AR). p62 is a ubiquitin- and light-chain 3-binding protein that is known to regulate the degradation of targeted proteins via autophagy and inclusion formation. In this study, we examined the effects of p62 depletion and overexpression on cultured cells and in a transgenic mouse model that overexpressed the mutant AR. Here, we demonstrate that depletion of p62 significantly exacerbated motor phenotypes and the neuropathological outcome, whereas overexpression of p62 protected against mutant AR toxicity in SBMA mice. Depletion of p62 significantly increased the levels of monomeric mutant AR and mutant AR protein complexes in an SBMA mouse model via the impairment of autophagic degradation. In addition, p62 overexpression improved SBMA mouse phenotypes by inducing cytoprotective inclusion formation. Our results demonstrate that p62 provides two different therapeutic targets in SBMA pathogenesis: (1) autophagy-dependent degradation and (2) benevolent inclusion formation of the mutant AR.
Collapse
|
93
|
Zhang K, Shi P, An T, Wang Q, Wang J, Li Z, Duan W, Li C, Guo Y. Food restriction-induced autophagy modulates degradation of mutant SOD1 in an amyotrophic lateral sclerosis mouse model. Brain Res 2013; 1519:112-9. [DOI: 10.1016/j.brainres.2013.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/26/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
94
|
Selective forelimb impairment in rats expressing a pathological TDP-43 25 kDa C-terminal fragment to mimic amyotrophic lateral sclerosis. Mol Ther 2013; 21:1324-34. [PMID: 23689600 DOI: 10.1038/mt.2013.88] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/06/2013] [Indexed: 12/13/2022] Open
Abstract
Pathological inclusions containing transactive response DNA-binding protein 43 kDa (TDP-43) are common in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). TDP-43 normally localizes predominantly to the nucleus, but during disease progression, it mislocalizes to the cytoplasm. We expressed TDP-43 in rats by an adeno-associated virus (AAV9) gene transfer method that transduces neurons throughout the central nervous system (CNS). To mimic the aberrant cytoplasmic TDP-43 found in disease, we expressed a form of TDP-43 with mutations in the nuclear localization signal sequence (TDP-NLS). The TDP-NLS was detected in both the cytoplasm and the nucleus of transduced neurons. Unlike wild-type TDP-43, expression of TDP-NLS did not induce mortality. However, the TDP-NLS induced disease-relevant motor impairments over 24 weeks. We compared the TDP-NLS to a 25 kDa C-terminal proaggregatory fragment of TDP-43 (TDP-25). The clinical phenotype of forelimb impairment was pronounced with the TDP-25 form, supporting a role of this C-terminal fragment in pathogenesis. The results advance previous rodent models by inducing cytoplasmic expression of TDP-43 in the spinal cord, and the non-lethal phenotype enabled long-term study. Approaching a more relevant disease state in an animal model that more closely mimics underlying mechanisms in human disease could unlock our ability to develop therapeutics.
Collapse
|
95
|
Gal J, Chen J, Barnett KR, Yang L, Brumley E, Zhu H. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem 2013; 288:15035-45. [PMID: 23580651 DOI: 10.1074/jbc.m112.431957] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a tubulin deacetylase that regulates protein aggregation and turnover. Mutations in Cu/Zn superoxide dismutase (SOD1) linked to familial amyotrophic lateral sclerosis (ALS) make the mutant protein prone to aggregation. However, the role of HDAC6 in mutant SOD1 aggregation and the ALS etiology is unclear. Here we report that HDAC6 knockdown increased mutant SOD1 aggregation in cultured cells. Different from its known role in mediating the degradation of poly-ubiquitinated proteins, HDAC6 selectively interacted with mutant SOD1 via two motifs similar to the SOD1 mutant interaction region (SMIR) that we identified previously in p62/sequestosome 1. Expression of the aggregation-prone mutant SOD1 increased α-tubulin acetylation, and the acetylation-mimicking K40Q α-tubulin mutant promoted mutant SOD1 aggregation. Our results suggest that ALS-linked mutant SOD1 can modulate HDAC6 activity and increase tubulin acetylation, which, in turn, facilitates the microtubule- and retrograde transport-dependent mutant SOD1 aggregation. HDAC6 impairment might be a common feature in various subtypes of ALS.
Collapse
Affiliation(s)
- Jozsef Gal
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
96
|
Zhang YB, Gong JL, Xing TY, Zheng SP, Ding W. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis 2013; 4:e550. [PMID: 23519119 PMCID: PMC3615731 DOI: 10.1038/cddis.2013.77] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.
Collapse
Affiliation(s)
- Y-B Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
97
|
Thomas M, Alegre-Abarrategui J, Wade-Martins R. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain 2013; 136:1345-60. [DOI: 10.1093/brain/awt030] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
98
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
99
|
Niu C, Zhang J, Gao F, Yang L, Jia M, Zhu H, Gong W. FUS-NLS/Transportin 1 complex structure provides insights into the nuclear targeting mechanism of FUS and the implications in ALS. PLoS One 2012; 7:e47056. [PMID: 23056579 PMCID: PMC3466232 DOI: 10.1371/journal.pone.0047056] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023] Open
Abstract
The C-terminal nuclear localization sequence of FUsed in Sarcoma (FUS-NLS) is critical for its nuclear import mediated by transportin (Trn1). Familial amyotrophic lateral sclerosis (ALS) related mutations are clustered in FUS-NLS. We report here the structural, biochemical and cell biological characterization of the FUS-NLS and its clinical implications. The crystal structure of the FUS-NLS/Trn1 complex shows extensive contacts between the two proteins and a unique α-helical structure in the FUS-NLS. The binding affinity between Trn1 and FUS-NLS (wide-type and 12 ALS-associated mutants) was determined. As compared to the wide-type FUS-NLS (K(D) = 1.7 nM), each ALS-associated mutation caused a decreased affinity and the range of this reduction varied widely from 1.4-fold over 700-fold. The affinity of the mutants correlated with the extent of impaired nuclear localization, and more importantly, with the duration of disease progression in ALS patients. This study provides a comprehensive understanding of the nuclear targeting mechanism of FUS and illustrates the significance of FUS-NLS in ALS.
Collapse
Affiliation(s)
- Chunyan Niu
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- Department of Molecular and Cellular Biochemistry & Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Feng Gao
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuqing Yang
- Department of Molecular and Cellular Biochemistry & Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Minze Jia
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry & Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (HZ); (WG)
| | - Weimin Gong
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HZ); (WG)
| |
Collapse
|
100
|
Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, Prescott M, Simonsen A, Yamamoto A, Zhang H, Klionsky DJ, Devenish RJ. Receptor protein complexes are in control of autophagy. Autophagy 2012; 8:1701-5. [PMID: 22874568 DOI: 10.4161/auto.21332] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In autophagic processes a variety of cargos is delivered to the degradative compartment of cells. Recent progress in autophagy research has provided support for the notion that when autophagic processes are operating in selective mode, a receptor protein complex will process the cargo. Here we present a concept of receptor protein complexes as comprising a functional tetrad of components: a ligand, a receptor, a scaffold and an Atg8 family protein. Our current understanding of each of the four components and their interaction in the context of cargo selection are considered in turn.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University Clayton Campus, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|