51
|
Abstract
ADAMTS7 is a secreted protease that is predominantly expressed in tissues of the cardiovascular system and tendon. Although recent evidence suggests that it may play a role in the etiology of coronary artery disease, its physiological function and substrates are unknown. The enzyme undergoes extensive posttranslational modifications, including chondroitin sulfate attachment, N and O-linked glycosylation, and a two-step activation process. For the benefit of scientists who study the function of ADAMTS7 and its role in disease, this chapter provides an introduction to the chemical and functional properties of the various ADAMTS7 domains, as well as a protocol for the recombinant expression and purification of ADAMTS7.
Collapse
Affiliation(s)
- Rens de Groot
- Center for Hematology, Imperial College, London, UK.
| |
Collapse
|
52
|
Fowkes MM, Lim NH. Purification and Activity Determination of ADAMTS-4 and ADAMTS-5 and Their Domain Deleted Mutants. Methods Mol Biol 2020; 2043:75-91. [PMID: 31463904 DOI: 10.1007/978-1-4939-9698-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A disintegrin-like and metalloproteinase with thrombospondin type-1 motifs-4 (ADAMTS-4) and ADAMTS-5 are zinc-dependent metalloproteinases that are involved in the maintenance of cartilage extracellular matrix (ECM) and are currently considered the major aggrecanases in the development of osteoarthritis. In this chapter we describe the establishment and cultivation of cell lines expressing ADAMTS-4,-5 and their domain deletion mutants; the collection of medium containing expressed ADAMTS-4,-5; the subsequent purification of this medium through anti-FLAG affinity chromatography; and the characterization of ADAMTS-4,-5 activity using synthetic Förster resonance energy transfer (FRET) peptide substrates.
Collapse
Affiliation(s)
- Milan M Fowkes
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ngee H Lim
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
53
|
Santamaria S. Chemical Modification of Proteoglycanases with Biotin. Methods Mol Biol 2020; 2043:113-123. [PMID: 31463907 DOI: 10.1007/978-1-4939-9698-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biotinylation is a versatile technique that has been used to label proteins for a variety of applications. Under alkaline conditions, the N-hydroxylsuccinimide (NHS) ester present on the biotinylation reagent reacts with primary amines such as the side chain of lysine residues or the N-termini of proteins to yield stable amide bonds. However, the effect of biotinylation on enzyme structure and function has not been generally appreciated. In this chapter, I describe specific issues involving biotinylation of proteoglycanases (e.g., ADAMTS-1, -4, and -5). Taking ADAMTS-5 as an example, I show how high incorporation of biotin molecules causes a decrease in aggrecanase activity, most likely by disrupting exosites present in the cysteine-rich and spacer domains. Such an effect is not evident when enzymatic activity is measured with synthetic peptides, since exosites are not strictly required for peptidolytic activity. Therefore, extreme care must be taken when labeling proteoglycanases and the appropriate enzyme/biotin ratio must be determined experimentally for each enzyme.
Collapse
|
54
|
Profile of Matrix-Remodeling Proteinases in Osteoarthritis: Impact of Fibronectin. Cells 2019; 9:cells9010040. [PMID: 31877874 PMCID: PMC7017325 DOI: 10.3390/cells9010040] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex and specialized three-dimensional macromolecular network, present in nearly all tissues, that also interacts with cell surface receptors on joint resident cells. Changes in the composition and physical properties of the ECM lead to the development of many diseases, including osteoarthritis (OA). OA is a chronic degenerative rheumatic disease characterized by a progressive loss of synovial joint function as a consequence of the degradation of articular cartilage, also associated with alterations in the synovial membrane and subchondral bone. During OA, ECM-degrading enzymes, including urokinase-type plasminogen activator (uPA), matrix metalloproteinases (MMPs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), cleave ECM components, such as fibronectin (Fn), generating fibronectin fragments (Fn-fs) with catabolic properties. In turn, Fn-fs promote activation of these proteinases, establishing a degradative and inflammatory feedback loop. Thus, the aim of this review is to update the contribution of ECM-degrading proteinases to the physiopathology of OA as well as their modulation by Fn-fs.
Collapse
|
55
|
Scavenius C, Poulsen EC, Thøgersen IB, Roebuck M, Frostick S, Bou-Gharios G, Yamamoto K, Deleuran B, Enghild JJ. Matrix-degrading protease ADAMTS-5 cleaves inter-α-inhibitor and releases active heavy chain 2 in synovial fluids from arthritic patients. J Biol Chem 2019; 294:15495-15504. [PMID: 31484722 DOI: 10.1074/jbc.ra119.008844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Destruction of the cartilage matrix in joints is an important feature of arthritis. Proteolytic degradation of cartilage glycoproteins can contribute to the loss of matrix integrity. Human inter-α-inhibitor (IαI), which stabilizes the extracellular matrix, is composed of the light-chain serine proteinase inhibitor bikunin and two homologous heavy chains (HC1 and HC2) covalently linked through chondroitin 4-sulfate. Inflammation promotes the transfer of HCs from chondroitin 4-sulfate to hyaluronan by tumor necrosis factor-stimulated gene-6 protein (TSG-6). This reaction generates a covalent complex between the heavy chains and hyaluronan that can promote leukocyte invasion. This study demonstrates that both IαI and the HC-hyaluronan complex are substrates for the extracellular matrix proteases ADAMTS-5 and matrix metalloprotease (MMP) -3, -7, and -13. The major cleavage sites for all four proteases are found in the C terminus of HC2. ADAMTS-5 and MMP-7 displayed the highest activity toward HC2. ADAMTS-5 degradation products were identified in mass spectrometric analysis of 29 of 33 arthropathic patients, indicating that ADAMTS-5 cleavage occurs in synovial fluid in arthritis. After cleavage, free HC2, together with TSG-6, is able to catalyze the transfer of heavy chains to hyaluronan. The release of extracellular matrix bound HC2 is likely to increase the mobility of the HC2/TSG-6 catalytic unit and consequently increase the rate of the HC transfer reaction. Ultimately, ADAMTS-5 cleavage of HC2 could alter the physiological and mechanical properties of the extracellular matrix and contribute to the progression of arthritis.
Collapse
Affiliation(s)
- Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Margaret Roebuck
- Department of Molecular and Clinical Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Simon Frostick
- Department of Molecular and Clinical Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Kazuhiro Yamamoto
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
56
|
Ding QH, Qi YY, Li XM, Chen WP, Wang XH, Ji XW. Knockdown of KIAA1199 suppresses IL-1β-induced cartilage degradation and inflammatory responses in human chondrocytes through the Wnt/β-catenin signalling pathway. Int Immunopharmacol 2019; 73:203-211. [PMID: 31103876 DOI: 10.1016/j.intimp.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022]
|
57
|
Exosites in Hypervariable Loops of ADAMTS Spacer Domains control Substrate Recognition and Proteolysis. Sci Rep 2019; 9:10914. [PMID: 31358852 PMCID: PMC6662762 DOI: 10.1038/s41598-019-47494-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
ADAMTS (A Disintegrin-like and Metalloproteinase domain with Thrombospondin type 1 Motif)-1, -4 and -5 share the abilities to cleave large aggregating proteoglycans including versican and aggrecan. These activities are highly relevant to cardiovascular disease and osteoarthritis and during development. Here, using purified recombinant ADAMTS-1, -4 and -5, we quantify, compare, and define the molecular basis of their versicanase activity. A novel sandwich-ELISA detecting the major versican cleavage fragment was used to determine, for the first time, kinetic constants for versican proteolysis. ADAMTS-5 (kcat/Km 35 × 105 M−1 s−1) is a more potent (~18-fold) versicanase than ADAMTS-4 (kcat/Km 1.86 × 105 M−1 sec−1), whereas ADAMTS-1 versicanase activity is comparatively low. Deletion of the spacer domain reduced versicanase activity of ADAMTS-5 19-fold and that of ADAMTS-4 167-fold. Co-deletion of the ADAMTS-5 cysteine-rich domain further reduced versicanase activity to a total 153-fold reduction. Substitution of two hypervariable loops in the spacer domain of ADAMTS-5 (residues 739–744 and 837–844) and ADAMTS-4 (residues 717–724 and 788–795) with those of ADAMTS-13, which does not cleave proteoglycans, caused spacer-dependent reductions in versicanase activities. Our results demonstrate that these loops contain exosites critical for interaction with and processing of versican. The hypervariable loops of ADAMTS-5 are shown to be important also for its aggrecanase activity. Together with previous work on ADAMTS-13 our results suggest that the spacer domain hypervariable loops may exercise significant control of ADAMTS proteolytic activity as a general principle. Identification of specific exosites also provides targets for selective inhibitors.
Collapse
|
58
|
Colige A, Monseur C, Crawley JTB, Santamaria S, de Groot R. Proteomic discovery of substrates of the cardiovascular protease ADAMTS7. J Biol Chem 2019; 294:8037-8045. [PMID: 30926607 PMCID: PMC6527163 DOI: 10.1074/jbc.ra119.007492] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
The protease ADAMTS7 functions in the extracellular matrix (ECM) of the cardiovascular system. However, its physiological substrate specificity and mechanism of regulation remain to be explored. To address this, we conducted an unbiased substrate analysis using terminal amine isotopic labeling of substrates (TAILS). The analysis identified candidate substrates of ADAMTS7 in the human fibroblast secretome, including proteins with a wide range of functions, such as collagenous and noncollagenous extracellular matrix proteins, growth factors, proteases, and cell-surface receptors. It also suggested that autolysis occurs at Glu-729-Val-730 and Glu-732-Ala-733 in the ADAMTS7 Spacer domain, which was corroborated by N-terminal sequencing and Western blotting. Importantly, TAILS also identified proteolysis of the latent TGF-β-binding proteins 3 and 4 (LTBP3/4) at a Glu-Val and Glu-Ala site, respectively. Using purified enzyme and substrate, we confirmed ADAMTS7-catalyzed proteolysis of recombinant LTBP4. Moreover, we identified multiple additional scissile bonds in an N-terminal linker region of LTBP4 that connects fibulin-5/tropoelastin and fibrillin-1-binding regions, which have an important role in elastogenesis. ADAMTS7-mediated cleavage of LTBP4 was efficiently inhibited by the metalloprotease inhibitor TIMP-4, but not by TIMP-1 and less efficiently by TIMP-2 and TIMP-3. As TIMP-4 expression is prevalent in cardiovascular tissues, we propose that TIMP-4 represents the primary endogenous ADAMTS7 inhibitor. In summary, our findings reveal LTBP4 as an ADAMTS7 substrate, whose cleavage may potentially impact elastogenesis in the cardiovascular system. We also identify TIMP-4 as a likely physiological ADAMTS7 inhibitor.
Collapse
Affiliation(s)
- Alain Colige
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - James T B Crawley
- Centre for Haematology, Imperial College London, W12 0NN London, United Kingdom
| | | | - Rens de Groot
- Centre for Haematology, Imperial College London, W12 0NN London, United Kingdom.
| |
Collapse
|
59
|
Wei Q, Zhang X, Zhou C, Ren Q, Zhang Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. Connect Tissue Res 2019; 60:209-218. [PMID: 29992840 DOI: 10.1080/03008207.2018.1499731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degeneration of the intervertebral discs, a natural progression of the aging process, is strongly implicated as a cause of low back pain. Aggrecan is the major structural proteoglycan in the extracellular matrix of the intervertebral disc. It is large, possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. The negatively charged glycosaminoglycan side chains in aggrecan in the nucleus pulposus of the intervertebral discs can bind electrostatically to polar water molecules, which are crucial for maintaining the well-hydrated state that enables the discs to undergo reversible deformation under compressive loading. A more in-depth understanding of the molecular basis of disc degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Within this scope, we discuss the current knowledge concerning the structure and function of aggrecan in intervertebral disc degeneration. These data suggest that aggrecan plays a central role in the function and degeneration of the intervertebral disc, which may suggest potential aggrecan-based therapies for disc regeneration.
Collapse
Affiliation(s)
- Qingshen Wei
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Xiangwei Zhang
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Caiju Zhou
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Qiang Ren
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Yuntao Zhang
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| |
Collapse
|
60
|
Hemmeryckx B, Carai P, Roger Lijnen H. ADAMTS5 deficiency in mice does not affect cardiac function. Cell Biol Int 2019; 43:593-604. [DOI: 10.1002/cbin.11130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bianca Hemmeryckx
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, KU Leuven3000 Leuven Belgium
| | - Paolo Carai
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, KU Leuven3000 Leuven Belgium
| | - H. Roger Lijnen
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, KU Leuven3000 Leuven Belgium
| |
Collapse
|
61
|
Kantaputra PN, Pruksametanan A, Phondee N, Hutsadaloi A, Intachai W, Kawasaki K, Ohazama A, Ngamphiw C, Tongsima S, Ketudat Cairns JR, Tripuwabhrut P. ADAMTSL1
and mandibular prognathism. Clin Genet 2019; 95:507-515. [DOI: 10.1111/cge.13519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Piranit N. Kantaputra
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
- Dentaland Clinic; Chiang Mai Thailand
| | - Apitchaya Pruksametanan
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Nattapol Phondee
- Department of Dental Health; Srisangwan Hospital; Mae Hon Son Thailand
| | | | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Katsushig Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC); Thailand Science Park, Khlong Luang; Pathum Thani Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC); Thailand Science Park, Khlong Luang; Pathum Thani Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application; Suranaree University of Technology; Nakhon Ratchasima Thailand
| | - Polbhat Tripuwabhrut
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
62
|
Shu CC, Flannery CR, Little CB, Melrose J. Catabolism of Fibromodulin in Developmental Rudiment and Pathologic Articular Cartilage Demonstrates Novel Roles for MMP-13 and ADAMTS-4 in C-terminal Processing of SLRPs. Int J Mol Sci 2019; 20:ijms20030579. [PMID: 30700002 PMCID: PMC6386837 DOI: 10.3390/ijms20030579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Cartilage regeneration requires a balance of anabolic and catabolic processes. Aim: To examine the susceptibility of fibromodulin (FMOD) and lumican (LUM) to degradation by MMP-13, ADAMTS-4 and ADAMTS-5, the three major degradative proteinases in articular cartilage, in cartilage development and in osteoarthritis (OA). Methods: Immunolocalization of FMOD and LUM in fetal foot and adult knee cartilages using an FMOD matrix metalloprotease (MMP)-13 neoepitope antibody (TsYG11) and C-terminal anti-FMOD (PR184) and anti-LUM (PR353) antibodies. The in vitro digestion of knee cartilage with MMP-13, A Disintegrin and Metalloprotease with Thrompospondin motifs (ADAMTS)-4 and ADAMTS-5, to assess whether FMOD and LUM fragments observed in Western blots of total knee replacement specimens could be generated. Normal ovine articular cartilage explants were cultured with interleukin (IL)-1 and Oncostatin-M (OSM) ± PGE3162689, a broad spectrum MMP inhibitor, to assess FMOD, LUM and collagen degradation. Results and Discussion: FMOD and LUM were immunolocalized in metatarsal and phalangeal fetal rudiment cartilages and growth plates. Antibody TsYG11 localized MMP-13-cleaved FMOD in the hypertrophic chondrocytes of the metatarsal growth plates. FMOD was more prominently localized in the superficial cartilage of normal and fibrillated zones in OA cartilage. TsYG11-positive FMOD was located deep in the cartilage samples. Ab TsYG11 identified FMOD fragmentation in Western blots of normal and fibrillated cartilage extracts and total knee replacement cartilage. The C-terminal anti-FMOD, Ab PR-184, failed to identify FMOD fragmentation due to C-terminal processing. The C-terminal LUM, Ab PR-353, identified three LUM fragments in OA cartilages. In vitro digestion of human knee cartilage with MMP-13, ADAMTS-4 and ADAMTS-5 generated FMOD fragments of 54, 45 and 32 kDa similar to in blots of OA cartilage; LUM was less susceptible to fragmentation. Ab PR-353 detected N-terminally processed LUM fragments of 39, 38 and 22 kDa in 65–80-year-old OA knee replacement cartilage. FMOD and LUM were differentially processed in MMP-13, ADAMTS-4 and ADAMTS-5 digestions. FMOD was susceptible to degradation by MMP-13, ADAMTS-4 and to a lesser extent by ADAMTS-5; however, LUM was not. MMP-13-cleaved FMOD in metatarsal and phalangeal fetal rudiment and growth plate cartilages suggested roles in skeletogenesis and OA pathogenesis. Explant cultures of ovine cartilage stimulated with IL-1/OSM ± PGE3162689 displayed GAG loss on day 5 due to ADAMTS activity. However, by day 12, the activation of proMMPs occurred as well as the degradation of FMOD and collagen. These changes were inhibited by PGE3162689, partly explaining the FMOD fragments seen in OA and the potential therapeutic utility of PGE3162689.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Research Laboratory, Institute of Bone & Joint Research, North Sydney Area Health Authority, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | - Carl R Flannery
- Bioventus LLC, 4721 Emperor Blvd., Suite 100, Durham, NC 27703, USA.
| | - Christopher B Little
- Raymond Purves Research Laboratory, Institute of Bone & Joint Research, North Sydney Area Health Authority, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Research Laboratory, Institute of Bone & Joint Research, North Sydney Area Health Authority, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2033, Australia.
| |
Collapse
|
63
|
Abstract
Matrix metalloproteinases and the related metalloproteases are implicated in cancer progression. They are endopeptidases that require several defined amino acid residues in both N-terminal and C-terminal sides of the scissile bond. Fluorogenic Förster resonance energy transfer (FRET) substrates that harbor a fluorophore and a quencher on opposite sides of the scissile bond are conveniently used to measure their activities. In this chapter, we describe the principle of FRET substrates and how to use them to measure activities and kinetic parameters of endopeptidases.
Collapse
Affiliation(s)
| | - Hideaki Nagase
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
64
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
65
|
Yin W, Lei Y. Leonurine inhibits IL-1β induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharmacol 2018; 65:50-59. [PMID: 30273917 DOI: 10.1016/j.intimp.2018.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degradation, subchondral bone sclerosis and synovitis. Leonurine, an active component extracted from the leaves of Herba leonuri, has been reported to possess various potent biological effects such as anti-oxidant, anti-apoptosis, and anti-inflammatory. However, the therapeutic benefits of leonurine on OA have not been reported. This study aimed to evaluate the therapeutic effect of leonurine on chondrocytes and in murine OA models. Murine chondrocytes were pre-treated with leonurine (5, 10, and 20 μM) for 2 h and then stimulated with IL-1β for 24 h. Production of NO, PGE2, IL-6, TNF-α, MMP-3, MMP-13, and ADAMTS-5 was assessed with the Griess reagent and ELISAs. The mRNA expression of COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, aggrecan, and collagen-II was tested with real-time polymerase chain reaction. The protein expression of iNOS, COX-2 and NF-κB-related signaling molecules was measured with western blotting. In this study, leonurine visibly inhibited the IL-1β-induced production of NO, PGE2, IL-6 and TNF-α; and decreased the expression of iNOS, COX-2, MMP-3, MMP-13 and ADAMTS-5 in chondrocytes. Furthermore, leonurine significantly suppressed IL-1β-stimulated NF-κB activation. In addition, treatment with leonurine not only prevented cartilage destruction and subchondral bone thickening, but also alleviated synovitis in a murine OA model. Taken together, these results suggest that leonurine may be a potential therapeutic agent in OA treatment.
Collapse
Affiliation(s)
- Wenhua Yin
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan 512026, China.
| | - Ying Lei
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan 512026, China
| |
Collapse
|
66
|
Coveney CR, Collins I, Mc Fie M, Chanalaris A, Yamamoto K, Wann AKT. Cilia protein IFT88 regulates extracellular protease activity by optimizing LRP-1-mediated endocytosis. FASEB J 2018; 32:fj201800334. [PMID: 29920219 PMCID: PMC6219823 DOI: 10.1096/fj.201800334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/04/2018] [Indexed: 01/15/2023]
Abstract
Matrix protease activity is fundamental to developmental tissue patterning and remains influential in adult homeostasis. In cartilage, the principal matrix proteoglycan is aggrecan, the protease-mediated catabolism of which defines arthritis; however, the pathophysiologic mechanisms that drive aberrant aggrecanolytic activity remain unclear. Human ciliopathies exhibit altered matrix, which has been proposed to be the result of dysregulated hedgehog signaling that is tuned within the primary cilium. Here, we report that disruption of intraflagellar transport protein 88 (IFT88), a core ciliary trafficking protein, increases chondrocyte aggrecanase activity in vitro. We find that the receptor for protease endocytosis in chondrocytes, LDL receptor-related protein 1 (LRP-1), is unevenly distributed over the cell membrane, often concentrated at the site of cilia assembly. Hypomorphic mutation of IFT88 disturbs this apparent hot spot for protease uptake, increases receptor shedding, and results in a reduced rate of protease clearance from the extracellular space. We propose that IFT88 and/or the cilium regulates the extracellular remodeling of matrix-independently of Hedgehog regulation-by enabling rapid LRP-1-mediated endocytosis of proteases, potentially by supporting the creation of a ciliary pocket. This result highlights new roles for the cilium's machinery in matrix turnover and LRP-1 function, with potential relevance in a range of diseases.-Coveney, C. R., Collins, I., Mc Fie, M., Chanalaris, A., Yamamoto, K., Wann, A. K. T. Cilia protein IFT88 regulates extracellular protease activity by optimizing LRP-1-mediated endocytosis.
Collapse
Affiliation(s)
- Clarissa R. Coveney
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Isabella Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Megan Mc Fie
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anastasios Chanalaris
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kazuhiro Yamamoto
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Angus K. T. Wann
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
67
|
Ding QH, Ye CY, Chen EM, Zhang W, Wang XH. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo. Int Immunopharmacol 2018; 61:222-230. [PMID: 29890416 DOI: 10.1016/j.intimp.2018.05.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 11/25/2022]
Abstract
The overproduction of MMPs (matrix metalloproteinases) and members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) protein family plays an important role in the pathogenesis of osteoarthritis (OA). The potential of selective MMPs or ADAMTS inhibitors as chemopreventive agents for OA has been demonstrated in several studies. In this study, we investigated the protective effects of emodin (1,3,8-trihydroxy-6-methylanthaquinone), isolated from the root of Rheum palmatum L., in the inhibition of MMP and ADAMTS expression in both rat chondrocytes and an animal model of OA. The expression of MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, aggrecan, and collagen II mRNA and protein in interleukin-1beta (IL-1β)-induced rat chondrocytes was followed by quantitative real-time PCR and western blot. The activation of the NF-κB and Wnt/β-catenin pathways by IL-1β was assessed by western blot. The in vivo effects of emodin were evaluated by intra-articular injection in rats in an experimental model of OA induced by anterior cruciate ligament transection. Emodin dose-dependently down-regulated the expression of MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 at both the mRNA and protein level in IL-1β-stimulated rat chondrocytes. In addition, the IL-1β-induced activation of NF-κB and Wnt signals was attenuated by emodin, as determined by western blotting. The intra-articular injection of emodin in a rat OA model ameliorated OA progression, as determined in morphological and histological analyses in vivo. Taken together, our findings demonstrate that emodin is a promising therapeutic agent for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Qian-Hai Ding
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China.
| | - Chen-Yi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| | - Er-Man Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| | - Xiang-Hua Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| |
Collapse
|
68
|
Santamaria S, de Groot R. Monoclonal antibodies against metzincin targets. Br J Pharmacol 2018; 176:52-66. [PMID: 29488211 DOI: 10.1111/bph.14186] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
The metzincin clan of metalloproteinases includes the MMP, disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs families, which cleave extracellular targets in a wide range of (patho)physiological processes. Antibodies constitute a powerful tool to modulate the activity of these enzymes for both therapeutic and research purposes. In this review, we give an overview of monoclonal antibodies (mAbs) that have been tested in preclinical disease models, human trials and important studies of metzincin structure and function. Initial attempts to develop therapeutic small molecule inhibitors against MMPs were hampered by structural similarities between metzincin active sites and, consequently, off-target effects. Therefore, more recently, mAbs have been developed that do not bind to the active site but bind to surface-exposed loops that are poorly conserved in closely related family members. Inhibition of protease activity by these mAbs occurs through a variety of mechanisms, including (i) barring access to the active site, (ii) disruption of exosite binding, and (iii) prevention of protease activation. These different modes of inhibition are discussed in the context of the antibodies' potency, selectivity and, importantly, the effects in models of disease and clinical trials. In addition, various innovative strategies that were used to generate anti-metzincin mAbs are discussed. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
| | - Rens de Groot
- Imperial College London, Centre for Haematology, London, UK
| |
Collapse
|
69
|
Riegger J, Zimmermann M, Joos H, Kappe T, Brenner RE. Hypothermia Promotes Cell-Protective and Chondroprotective Effects After Blunt Cartilage Trauma. Am J Sports Med 2018; 46:420-430. [PMID: 29116863 DOI: 10.1177/0363546517736051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cryotherapy is routinely administered after sports injuries of synovial joints. Although positive clinical effects on periarticular swelling and pain have been described, the effects on the cell biological activities of cartilage and synovial cells remain largely unknown so far. HYPOTHESIS Local hypothermia alleviates synovial reactions and prevents chondrocyte death as well as cartilage destructive processes after blunt cartilage trauma. STUDY DESIGN Controlled laboratory study. METHODS Human cartilage explants were impacted by a drop-tower apparatus (0.59 J) and cultured at 24 hours or 7 days in different temperature conditions (2 hours [short term], 16 hours [medium term], or throughout [long term] at 27°C; afterwards or throughout at 37°C). Besides, isolated human fibroblast-like synoviocytes (FLS) were stimulated with traumatized cartilage conditioned medium and cultured as mentioned above up to 4 days. The effects of hypothermia were evaluated by cell viability, gene expression, type II collagen synthesis and cleavage, as well as the release of matrix metalloproteinase (MMP)-2, MMP-13, and interleukin 6 (IL-6). RESULTS Seven days after trauma, hypothermic treatment throughout improved cell viability (short term: 10.1% [ P = .016]; medium term: 6% [ P = .0362]; long term: 12.5% [ P = .0039]). Short-term hypothermia attenuated the expression of catabolic MMP-13 (mRNA: -2.2-fold [ P = .0119]; protein: -2-fold [ P = .0238]). Whereas type II collagen synthesis (1.7-fold [ P = .0227]) was increased after medium-term hypothermia, MMP-13 expression (mRNA: -30.8-fold [ P = .0025]; protein: -10.3-fold [ P < .0001]) and subsequent cleavage of type II collagen (-1.1-fold [ P = .0489]) were inhibited. Long-term hypothermia further suppressed MMP release (pro-MMP-2: -3-fold [ P = .0222]; active MMP-2: -5.2-fold [ P = .0183]; MMP-13: -56-fold [ P < .0001]) and type II collagen breakdown (-1.6-fold [ P = .0036]). Four days after FLS stimulation, hypothermia significantly suppressed the gene expression of matrix-destructive enzymes after medium-term (MMP-3: -4.1-fold [ P = .0211]) and long-term exposure (a disintegrin and metalloproteinase with thrombospondin motifs 4 [ADAMTS4]: -4.3-fold [ P = .0045]; MMP-3: -25.8-fold [ P = .014]; MMP-13: -122-fold [ P = .0444]) and attenuated IL-6 expression by trend. CONCLUSION After blunt cartilage trauma, initial hypothermia for only 2 hours and/or 16 hours induced significant cell-protective and chondroprotective effects and promoted the anabolic activity of chondrocytes, while the expression of matrix-destructive enzymes by stimulated FLS was attenuated by prolonged hypothermia. CLINICAL RELEVANCE The findings of this preliminary ex vivo investigation indicate that optimized cryotherapy management after cartilage trauma might prevent matrix-degenerative processes associated with the pathogenesis of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Madeleine Zimmermann
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Helga Joos
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Thomas Kappe
- Department of Orthopaedic Surgery, University of Ulm, Ulm, Germany
| | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| |
Collapse
|
70
|
Ma TW, Li Y, Wang GY, Li XR, Jiang RL, Song XP, Zhang ZH, Bai H, Li X, Gao L. Changes in Synovial Fluid Biomarkers after Experimental Equine Osteoarthritis. J Vet Res 2017; 61:503-508. [PMID: 29978116 PMCID: PMC5937351 DOI: 10.1515/jvetres-2017-0056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
Introduction The study aimed to clarify the changes in the concentration of inflammatory mediators, proteases, and cartilage degradation biomarkers in the synovial fluid of joints in an equine osteoarthritis model. Material and Methods Osteoarthritis was induced in eight Mongolian horses by a sterile intra-articular injection of amphotericin B, which was injected into the left carpal joint in a dose of 2 mL (25 mg/mL). The control group comprised five horses which were injected with an equal dose of sterile physiological saline into the left carpal joint. Synovial fluid was obtained at baseline and every week after injection. Test methods were based on ELISA. Results In the course of the osteoarthritis, the concentration of biomarkers in joint synovial fluid showed an increasing trend. IL-1, IL-6, MMP-9, MMP-13, ADAMTS-5, CS846, GAG, HA, CTX-II, and COMP concentrations sharply increased before the onset of significant symptoms of lameness, whereas TNF-α, MMP-2, and MMP-3 concentrations rose sharply after the occurrence of such symptoms. Conclusion The results obtained confirm that the concentrations of IL-1, IL-6, MMP-9, MMP-13, ADAMTS-5, CS846, GAG, HA, CTX-II and COMP increase substantially in equine osteoarthritis, which provides a theoretical basis for the rapid diagnosis of the disease.
Collapse
Affiliation(s)
- Tian-Wen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Guan-Ying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Xin-Ran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Ren-Li Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Xiao-Peng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Zhi-Heng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Hui Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Xin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| |
Collapse
|
71
|
Hemoglobin stimulates the expression of ADAMTS-5 and ADAMTS-9 by synovial cells: a possible cause of articular cartilage damage after intra-articular hemorrhage. BMC Musculoskelet Disord 2017; 18:449. [PMID: 29137610 PMCID: PMC5686793 DOI: 10.1186/s12891-017-1815-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022] Open
Abstract
Background ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteins play an important pathological role in matrix degeneration. Aggrecan degradation is a significant and critical event in early-stage osteoarthritis. To determine the effect of hemoglobin (Hb) on the ability of synovial tissues to produce ADAMTS family members, we examined the influence of Hb by synovial cells in an in vitro experimental system. Methods Synovial tissues were obtained from five young patients with meniscal injury under arthroscopic surgery. Primary cultures of human knee synovial cells were treated with different doses of human Hb (0, 25, 50, 100 μg/ml). The culture media were collected 24 h after Hb-treatment. In the time-course studies, cells were treated with and without 100 μg/ml Hb, and culture media were taken at 6, 12, and 24 h. To identify the proteins responsible for aggrecanase activity, Western blot analysis using antibodies against human ADAMTS-5, −8, −9, and −10; enzyme-linked immunosorbent assay (ELISA); and gene expression for ADAMTS-5 and -9 were examined. Statistical comparisons between each group were performed using paired t-tests. Results Western blot analysis revealed that Hb-treatment resulted in the expression of ADAMTS-5 and -9. Neither control group nor Hb-treated medium showed immunoreactivity against ADAMTS-8 or −10. In a dose-dependency study, the Hb-treated group showed significantly higher levels of ADAMTS-5 and -9 compared with the control (p < 0.05). There was no significant difference between 25, 50, and 100 μg/ml Hb-treated groups. In a time-course study, the ADAMTS-5 and -9 levels in the conditioned medium had significantly increased expression at 6, 12, and 24 h in the Hb-treated group (p < 0.05). Hb evoked significant expression of ADAMTS-9 mRNA at 12 and 24 h (p < 0.05). Conclusions These findings indicate that Hb induces the expression of ADAMTS-5 and -9 by synovial cells at low doses, even at an acute phase, and suggests a possible role for Hb in cartilage damage after intra-articular hemorrhage. The results also suggest a new potential therapeutic target by inhibiting the activities of ADAMTS-5 and -9 to prevent cartilage damage after intra-articular hemorrhage.
Collapse
|
72
|
Lin X, Liu X, Wang L, Jiang J, Sun Y, Zhu Q, Chen Z, He Y, Hu P, Xu Q, Gao F, Lin Y, Jaiswal S, Xiang M, Wang J. Targeted next-generation sequencing identified ADAMTS5 as novel genetic substrate in patients with bicuspid aortic valve. Int J Cardiol 2017; 252:150-155. [PMID: 29162281 DOI: 10.1016/j.ijcard.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bicuspid Aortic Valve (BAV) is the most common congenital heart disease, affecting >1% of the general population. Up to date, three genes, NOTCH1, GATA5 and SMAD6, have been linked to the isolated form of BAV. However, potential genetic determinants remain largely unknown in most BAV patients. MATERIAL AND METHODS Targeted next-generation sequencing of 7 BAV candidate genes (NOTCH1, GATA5, SMAD6, NOS3, ADAMTS5, Alk2 and SMAD2) was performed in 32 BAV patients. Additional 35 BAV patients and 238 tricuspid aortic valve (TAV) patients, consisting of 107 patients from the transcatheter aortic valve implantation (TAVI) registry and 131 patients from the coronary artery disease (CAD) registry, were selected for further genotyping. RESULTS We found 2 rare non-synonymous variants in 2/7 genes in 3 BAV patients: one was NOTCH1:c.4297G>A and the other one was ADMTS5:c.935C>A that shared by two patients. NOTCH1:c.4297G>A has not been reported previously. ADMTS5:c.935C>A was predicted to be pathogenic by all applied algorithms. Alignment of protein sequences from all available species revealed that ADMTS5:p.Arg312Leu, produced by ADMTS5:c.935C>A, is located in a highly conserved region. The minor allele frequency of ADMTS5:c.935C>A in BAV patients was significantly higher than the matched population in TAV group (0.015 vs. 0, P=0.048). CONCLUSION Our results suggested that ADMTS5:c.935C>A are potentially associated with BAV. Further studies, such as large sample case-control replication test and functional research, are needed to explore the role of this rare variant in the development of BAV.
Collapse
Affiliation(s)
- Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lihan Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jubo Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinghao Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qifeng Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuxin He
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Po Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiyuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Feng Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yan Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Sanjay Jaiswal
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
73
|
Fontanil T, Álvarez-Teijeiro S, Villaronga MÁ, Mohamedi Y, Solares L, Moncada-Pazos A, Vega JA, García-Suárez O, Pérez-Basterrechea M, García-Pedrero JM, Obaya AJ, Cal S. Cleavage of Fibulin-2 by the aggrecanases ADAMTS-4 and ADAMTS-5 contributes to the tumorigenic potential of breast cancer cells. Oncotarget 2017; 8:13716-13729. [PMID: 28099917 PMCID: PMC5355132 DOI: 10.18632/oncotarget.14627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
Fibulin-2 participates in the assembly of extracellular matrix components through interactions with multiple ligands and promotes contacts between cells and their surrounding environment. Consequently, identification of processes that could lead to an altered Fibulin-2 could have a major impact not only in the maintenance of tissue architecture and morphogenesis but also in pathological situations including cancer. Herein, we have investigated the ability of the secreted metalloproteases ADAMTS-4 and ADAMTS-5 to digest Fibulin-2. Using in vitro approaches and cultured breast cancer cell lines we demonstrate that Fibulin-2 is a better substrate for ADAMTS-5 than it is for ADAMTS-4. Moreover, Fibulin-2 degradation is associated to an enhancement of the invasive potential of T47D, MCF-7 and SK-BR-3 cells. We have also found that conditioned medium from MCF-7 cells that simultaneously overexpress Fibulin-2 and ADAMTS-5 significantly induced the migratory and invasive ability of normal breast fibroblasts using 3D collagen matrices. Immunohistochemical analysis highlights the close proximity or partial overlap of both Fibulin-2 and ADAMTS-5 in breast tumor samples. Additionally, proteolytic products derived from a potential degradation of Fibulin-2 by ADAMTS-5 were also identified in these samples. Finally, we also show that the cleavage of Fibulin-2 by ADAMTS-5 is counteracted by ADAMTS-12, a metalloprotease that interacts with Fibulin-2. Overall, our results provide direct evidence indicating that Fibulin-2 is a novel substrate of ADAMTS-5 and that this proteolysis could alter the cellular microenvironment affecting the balance between protumor and antitumor effects associated to both Fibulin-2 and the ADAMTSs metalloproteases.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - M Ángeles Villaronga
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Laura Solares
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Angela Moncada-Pazos
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - José A Vega
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Olivia García-Suárez
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Marcos Pérez-Basterrechea
- Unidad de Trasplantes, Terapia Celular y Medicina Regenerativa, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - Alvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Departamento de Biología Funcional, Area de Fisiología, Universidad de Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
74
|
Chanalaris A, Doherty C, Marsden BD, Bambridge G, Wren SP, Nagase H, Troeberg L. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3. Mol Pharmacol 2017; 92:459-468. [PMID: 28798097 PMCID: PMC5588548 DOI: 10.1124/mol.117.109397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/01/2017] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C51H40N6O23S6) bound to TIMP-3 with a KD value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis.
Collapse
Affiliation(s)
- Anastasios Chanalaris
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Christine Doherty
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Brian D Marsden
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Gabriel Bambridge
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Stephen P Wren
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
75
|
Chen B, Wang HT, Yu B, Zhang JD, Feng Y. Carthamin yellow inhibits matrix degradation and inflammation induced by LPS in the intervertebral disc via suppression of MAPK pathway activation. Exp Ther Med 2017; 14:1614-1620. [PMID: 28810627 PMCID: PMC5525633 DOI: 10.3892/etm.2017.4645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Carthamin yellow (CY), which is a flavonoid compound isolated from safflower, has various pharmacological effects including promoting blood circulation to remove blood stasis and alleviating pain. CY is a herb used in Chinese traditional medicines. Intervertebral disc degeneration (IDD) is a common spinal disorder and degeneration of nucleus pulposus (NP) cells and inflammation are significant parts of the pathological cascade. The curative effect of CY on NP cells in association with degeneration and inflammation remains to be elucidated. In the present study, rat NP cells were isolated, cultured and used to detect the suppressive effects of CY on lipopolysaccharide (LPS)-induced genetic expression variation and the expression of matrix degradation enzymes, including matrix metallopeptidase-3, ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4 and ADAMTS-5. A protective effect of CY on NP cells was observed against LPS-induced matrix degradation and inflammation. Western blotting results demonstrated that pretreatment with CY significantly suppressed the LPS-induced activation of the mitogen activated protein kinase (MAPK) pathway. The results of the present study suggested that CY exerted anti-degenerative and anti-inflammatory effects on NP cells via inhibition of MAPK pathway activation. Therefore, CY may be a potential therapeutic drug for the treatment of IDD in the future.
Collapse
Affiliation(s)
- Bin Chen
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Han-Tao Wang
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Bo Yu
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ji-Dong Zhang
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yu Feng
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
76
|
Bauters D, Cobbaut M, Geys L, Van Lint J, Hemmeryckx B, Lijnen HR. Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Mol Metab 2017; 6:715-724. [PMID: 28702327 PMCID: PMC5485238 DOI: 10.1016/j.molmet.2017.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/24/2022] Open
Abstract
Objective A potential strategy to treat obesity – and the associated metabolic consequences – is to increase energy expenditure. This could be achieved by stimulating thermogenesis through activation of brown adipose tissue (BAT) and/or the induction of browning of white adipose tissue (WAT). Over the last years, it has become clear that several metalloproteinases play an important role in adipocyte biology. Here, we investigated the potential role of ADAMTS5. Methods Mice deficient in ADAMTS5 (Adamts5−/−) and wild-type (Adamts5+/+) littermates were kept on a standard of Western-type diet for 15 weeks. Energy expenditure and heat production was followed by indirect calorimetry. To activate thermogenesis, mice were treated with the β3-adrenergic receptor (β3-AR) agonist CL-316,243 or alternatively, exposed to cold for 2 weeks. Results Compared to Adamts5+/+ mice, Adamts5−/− mice have significantly more interscapular BAT and marked browning of their subcutaneous (SC) WAT. Thermogenic pathway analysis indicated, in the absence of ADAMTS5, enhanced β3-AR signaling via activation of the cAMP response element-binding protein (CREB). Additional β3-AR stimulation with CL-316,243 promoted browning of WAT in Adamts5+/+ mice but had no additive effect in Adamts5−/− mice. However, cold exposure induced more pronounced browning of WAT in Adamts5−/− mice. Conclusions These data indicate that ADAMTS5 plays a functional role in development of BAT and browning of WAT. Hence, selective targeting of ADAMTS5 could provide a novel therapeutic strategy for treatment/prevention of obesity and metabolic diseases. Mice deficient in ADAMTS5 have elevated interscapular brown adipose tissue mass. ADAMTS5 deficient mice show increased browning of their white adipose tissue. The thermogenic profile is enhanced via adrenergic signaling and CREB activation. ADAMTS5 seems an attractive therapeutic target for metabolic diseases.
Collapse
Key Words
- %ID/g, percentage injected dose per gram
- ADAMTS, A disintesgrin and metalloproteinase with a thrombospondin type-1 motif
- ADAMTS5
- AT, adipose tissue
- BAT, brown adipose tissue
- Beige
- Brown adipose tissue
- Browning
- CREB, cAMP responsive element-binding protein
- ECM, extracellular matrix
- GON, gonadal
- HFD, high-fat diet
- Obesity
- SC, subcutaneous
- SUV, standardized uptake value
- TLG, total lesion glycolysis
- Thermogenesis
- UCP1, uncoupling protein 1
- WAT, white adipose tissue
- β3-AR, beta-3 adrenergic receptor
Collapse
Affiliation(s)
- Dries Bauters
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Mathias Cobbaut
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Lotte Geys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Bianca Hemmeryckx
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| | - H Roger Lijnen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
77
|
Yamamoto K, Santamaria S, Botkjaer KA, Dudhia J, Troeberg L, Itoh Y, Murphy G, Nagase H. Inhibition of Shedding of Low-Density Lipoprotein Receptor-Related Protein 1 Reverses Cartilage Matrix Degradation in Osteoarthritis. Arthritis Rheumatol 2017; 69:1246-1256. [PMID: 28235248 PMCID: PMC5449214 DOI: 10.1002/art.40080] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aggrecanase ADAMTS-5 and the collagenase matrix metalloproteinase 13 (MMP-13) are constitutively secreted by chondrocytes in normal cartilage, but rapidly endocytosed via the cell surface endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP-1) and subsequently degraded. This endocytic system is impaired in osteoarthritic (OA) cartilage due to increased ectodomain shedding of LRP-1. The aim of this study was to identify the LRP-1 sheddase(s) in human cartilage and to test whether inhibition of LRP-1 shedding prevents cartilage degradation in OA. METHODS Cell-associated LRP-1 and soluble LRP-1 (sLRP-1) released from human cartilage explants and chondrocytes were measured by Western blot analysis. LRP-1 sheddases were identified by proteinase inhibitor profiling and gene silencing with small interfering RNAs. Specific monoclonal antibodies were used to selectively inhibit the sheddases. Degradation of aggrecan and collagen in human OA cartilage was measured by Western blot analysis using an antibody against an aggrecan neoepitope and a hydroxyproline assay, respectively. RESULTS Shedding of LRP-1 was increased in OA cartilage compared with normal tissue. Shed sLRP-1 bound to ADAMTS-5 and MMP-13 and prevented their endocytosis without interfering with their proteolytic activities. Two membrane-bound metalloproteinases, ADAM-17 and MMP-14, were identified as the LRP-1 sheddases in cartilage. Inhibition of their activities restored the endocytic capacity of chondrocytes and reduced degradation of aggrecan and collagen in OA cartilage. CONCLUSION Shedding of LRP-1 is a key link to OA progression. Local inhibition of LRP-1 sheddase activities of ADAM-17 and MMP-14 is a unique way to reverse matrix degradation in OA cartilage and could be effective as a therapeutic approach.
Collapse
|
78
|
Itoh Y. Metalloproteinases in Rheumatoid Arthritis: Potential Therapeutic Targets to Improve Current Therapies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:327-338. [PMID: 28662826 DOI: 10.1016/bs.pmbts.2017.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease characterized by the destruction of joint tissues including cartilage and bone. Cartilage degradation is attributed to metalloproteinases (MPs) that belong to matrix metalloproteinase family and a disintegrin and metalloprotease with thrombospondin type 1 motifs produced by inflamed joint tissues. In addition, an enzyme that belongs to a disintegrin and metalloprotease family is also involved in release of inflammatory cytokines. Several highly selective inhibitors have been developed for MPs thought to play a role in RA pathogenesis and examining these inhibitors as potential drugs is becoming realistic. This chapter discusses recent reports on MPs in RA and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
79
|
Santamaria S, Fedorov O, McCafferty J, Murphy G, Dudhia J, Nagase H, Yamamoto K. Development of a monoclonal anti-ADAMTS-5 antibody that specifically blocks the interaction with LRP1. MAbs 2017; 9:595-602. [PMID: 28306378 PMCID: PMC5419085 DOI: 10.1080/19420862.2017.1304341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The potent aggrecanase ADAMTS-5 is constitutively secreted by chondrocytes, but it is rapidly endocytosed in normal cartilage via the cell surface endocytic receptor LRP1. Therefore it is difficult to detect the total ADAMTS-5 activity produced. In this study, we isolated a monoclonal anti-ADAMTS-5 antibody 1B7 that blocks LRP1-mediated internalization without affecting the aggrecanolytic activity. Addition of 1B7 to cultured human chondrocytes revealed the full aggrecanolytic activity of ADAMTS-5 generated by the cells. 1B7 is a useful tool to estimate the ADAMTS-5 activity and to identify its potential roles in the tissues.
Collapse
Affiliation(s)
- Salvatore Santamaria
- a Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Headington , Oxford , UK
| | - Oleg Fedorov
- b Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Headington, Oxford , UK
| | | | - Gillian Murphy
- d Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge, Li Ka Shing Centre , Cambridge , UK
| | - Jayesh Dudhia
- e Department of Clinical Sciences and Services , Royal Veterinary College, North Mymms , Hatfield , Herts , UK
| | - Hideaki Nagase
- a Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Headington , Oxford , UK
| | - Kazuhiro Yamamoto
- a Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Headington , Oxford , UK
| |
Collapse
|
80
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
81
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
82
|
Perera RS, Dissanayake PH, Senarath U, Wijayaratne LS, Karunanayake AL, Dissanayake VHW. Single Nucleotide Variants of Candidate Genes in Aggrecan Metabolic Pathway Are Associated with Lumbar Disc Degeneration and Modic Changes. PLoS One 2017; 12:e0169835. [PMID: 28081267 PMCID: PMC5231268 DOI: 10.1371/journal.pone.0169835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Lumbar disc degeneration (LDD) is genetically determined and severity of LDD is associated with Modic changes. Aggrecan is a major proteoglycan in the intervertebral disc and end plate. Progressive reduction of aggrecan is a main feature of LDD and Modic changes. Objectives The study investigated the associations of single nucleotide variants (SNVs) of candidate genes in the aggrecan metabolic pathway with the severity of LDD and Modic changes. In-silico functional analysis of significant SNVs was also assessed. Methods A descriptive cross sectional study was carried out on 106 patients with chronic mechanical low back pain. T1, T2 sagittal lumbar MRI scans were used to assess the severity of LDD and Modic changes. 62 SNVs in ten candidate genes (ACAN, IL1A, IL1B, IL6, MMP3, ADAMTS4, ADAMTS5, TIMP1, TIMP2 and TIMP3) were genotyped on Sequenom MassARRAY iPLEX platform. Multiple linear regression analysis was carried out using PLINK 1.9 in accordance with additive genetic model. In-silico functional analysis was carried out using Provean, SIFT, PolyPhen and Mutation Taster. Results Mean age was 52.42±9.42 years. 74 (69.8%) were females. The rs2856836, rs1304037, rs17561 and rs1800587 variants of the IL1A gene were associated with the severity of LDD and Modic changes. The rs41270041 variant of the ADAMTS4 gene and the rs226794 variant of the ADAMTS5 gene were associated with severity of LDD while the rs34884997 variant of the ADAMTS4 gene, the rs55933916 variant of the ADAMTS5 gene and the rs9862 variant of the TIMP3 gene were associated with severity of Modic changes. The rs17561 variant of the IL1A gene was predicted as pathogenic by the PolyPhen prediction tool. Conclusions SNVs of candidate genes in ACAN metabolic pathway are associated with severity of LDD and Modic changes in patients with chronic mechanical low back pain. Predictions of in-silico functional analysis of significant SNVs are inconsistent.
Collapse
Affiliation(s)
- Romain Shanil Perera
- Department of Allied Health Sciences, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- * E-mail:
| | - Poruwalage Harsha Dissanayake
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | | |
Collapse
|
83
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
84
|
Bauters D, Spincemaille P, Geys L, Cassiman D, Vermeersch P, Bedossa P, Scroyen I, Lijnen HR. ADAMTS5 deficiency protects against non-alcoholic steatohepatitis in obesity. Liver Int 2016; 36:1848-1859. [PMID: 27254774 DOI: 10.1111/liv.13181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Increased prevalence of obesity is paralleled by an increase in non-alcoholic steatohepatitis (NASH). We previously found that the expression of ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) is enhanced in expanding adipose tissue. However, no information is available on a potential role in liver pathology. We studied the effect of ADAMTS5 deficiency on NASH in mice. METHODS Wild-type (Adamts5+/+ ) and deficient (Adamts5-/- ) mice were kept on a standard- or high-fat diet (HFD) for 15 weeks. Alternatively, steatohepatitis was induced with methionine/choline-deficient (MCD) diet. RESULTS HFD feeding resulted in comparable body weights for both genotypes, but Adamts5-/- mice had approximately 40% lower liver weight (P = 0.0004). In the Adamts5-/- mice, the HFD as well as the MCD diet consistently induced less NASH with less fibrosis. The deteriorating effect of ADAMTS5 on the liver during diet-induced obesity may be due, at least in part, to proteolytic cleavage of the matrix components syndecan-1 and versican, thereby enhancing hepatic triglyceride clearance from the circulation. Plasma lipid levels were elevated in obese Adamts5-/- mice. There was no clear effect of ADAMTS5 deficiency on glycaemia or glucose tolerance, whereas insulin sensitivity was somewhat improved. Furthermore, Adamts5-/- mice were protected from hepatic mitochondrial dysfunction, as indicated by increased mitochondrial respiratory chain complex activity, higher ATP levels and higher expression of antioxidant enzymes. CONCLUSIONS Absence of ADAMTS5 preserves liver integrity in a diet-induced obesity model. Selective targeting of ADAMTS5 could provide a new therapeutic strategy for treatment/prevention of NASH.
Collapse
Affiliation(s)
- Dries Bauters
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Pieter Spincemaille
- Lab of Hepatology, University of Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Lotte Geys
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Pierre Bedossa
- Department of Pathology, Hôpital Beaujon, Clichy, France
| | - Ilse Scroyen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Henri R Lijnen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
85
|
Fuller E, Little CB, Melrose J. Interleukin-1α induces focal degradation of biglycan and tissue degeneration in an in-vitro ovine meniscal model. Exp Mol Pathol 2016; 101:214-220. [PMID: 27615609 DOI: 10.1016/j.yexmp.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
We have developed an ovine meniscal explant model where the focal degradative events leading to characteristic fragmentation patterns of biglycan in human OA of the knee and hip, and evident in animal models of knee OA and IVD degeneration are reproduced in culture. Lateral and medial menisci were dissected into outer, mid and inner zones and established in explant culture±IL-1 (10ng/ml). The biglycan species present in conditioned media samples and in GuHCl extracts of tissues were examined by Western blotting using two C-terminal antibodies PR-85 and EF-Bgn. Clear differences were evident in the biglycan species in each meniscal tissue zone with the medial outer meniscus having lower biglycan levels and major fragments of 20, 28, 33 and 36, 39kDa. Similar fragmentation was detected in articular cartilage samples, 42-45kDa core protein species were also detected. Biglycan fragmentation was not as extensive in the IL-1 stimulated meniscal cultures with 36, 39, 42 and 45kDa biglycan species evident. Thus the medial meniscus outer zone displayed the highest levels of biglycan processing in this model and correlated with a major zone of meniscal remodelling in OA in man. Significantly, enzymatic digests of meniscal tissues with MMP-13, ADAMTS-4 and ADAMTS-5 have also generated similar biglycan species in-vitro. Zymography confirmed that the medial outer zone was the region of maximal MMP activity. This model represents a convenient system to recapitulate matrix remodelling events driven by IL-1 in pathological cartilages and in animal models of joint degeneration.
Collapse
Affiliation(s)
- Emily Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia; School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
86
|
Doherty CM, Visse R, Dinakarpandian D, Strickland DK, Nagase H, Troeberg L. Engineered Tissue Inhibitor of Metalloproteinases-3 Variants Resistant to Endocytosis Have Prolonged Chondroprotective Activity. J Biol Chem 2016; 291:22160-22172. [PMID: 27582494 PMCID: PMC5063997 DOI: 10.1074/jbc.m116.733261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 01/03/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a central inhibitor of matrix-degrading and sheddase families of metalloproteinases. Extracellular levels of the inhibitor are regulated by the balance between its retention on the extracellular matrix and its endocytic clearance by the scavenger receptor low density lipoprotein receptor-related protein 1 (LRP1). Here, we used molecular modeling to predict TIMP-3 residues potentially involved in binding to LRP1 based on the proposed LRP1 binding motif of 2 lysine residues separated by about 21 Å and mutated the candidate lysine residues to alanine individually and in pairs. Of the 22 mutants generated, 13 displayed a reduced rate of uptake by HTB94 chondrosarcoma cells. The two mutants (TIMP-3 K26A/K45A and K42A/K110A) with lowest rates of uptake were further evaluated and found to display reduced binding to LRP1 and unaltered inhibitory activity against prototypic metalloproteinases. TIMP-3 K26A/K45A retained higher affinity for sulfated glycosaminoglycans than K42A/K110A and exhibited increased affinity for ADAMTS-5 in the presence of heparin. Both mutants inhibited metalloproteinase-mediated degradation of cartilage at lower concentrations and for longer than wild-type TIMP-3, indicating that their increased half-lives improved their ability to protect cartilage. These mutants may be useful in treating connective tissue diseases associated with increased metalloproteinase activity.
Collapse
Affiliation(s)
- Christine M Doherty
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Robert Visse
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Deendayal Dinakarpandian
- the School of Computing and Engineering, University of Missouri, Kansas City, Missouri 64111, and
| | | | - Hideaki Nagase
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom,
| |
Collapse
|
87
|
Bauters D, Scroyen I, Deprez-Poulain R, Lijnen HR. ADAMTS5 promotes murine adipogenesis and visceral adipose tissue expansion. Thromb Haemost 2016; 116:694-704. [PMID: 27383908 DOI: 10.1160/th16-01-0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/01/2016] [Indexed: 11/05/2022]
Abstract
Enhanced expression of the aggrecanase ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) has been observed in adipose tissue (AT) of obese rodents. Here, we have investigated the role of ADAMTS5 in adipogenesis, AT expansion and associated angiogenesis. In vitro differentiation of precursor cells into mature adipocytes was studied using murine embryonic fibroblasts (MEF) derived from wild-type (Adamts5(+/+)) and ADAMTS5 deficient (Adamts5(-/-)) mice, or 3T3-F442A preadipocytes with stable gene silencing of Adamts5. De novo adipogenesis was monitored by injection of 3T3-F442A cells with or without Adamts5 knockdown in Nude mice. Furthermore, Adamts5(+/+)and Adamts5(-/-) mice were kept on a high-fat diet (HFD) to monitor AT development. Adamts5(-/-) MEF, as well as 3T3-F442A preadipocytes with Adamts5 knockdown, showed significantly reduced differentiation as compared to control cells. In mice, de novo formed fat pads arising from 3T3-F442A cells with Adamts5 knockdown were significantly smaller as compared to controls. After 15 or 25 weeks on HFD, total body weight and subcutaneous AT weight were similar for Adamts5(+/+) and Adamts5(-/-) mice, but visceral/gonadal fat mass was significantly lower for Adamts5(-/-) mice. These data were confirmed by magnetic resonance imaging. In addition, the blood vessel density in adipose tissue was higher for Adamts5(-/-) mice kept on HFD. In conclusion, our data support the concept that ADAMTS5 promotes adipogenesis in vitro and in vivo, as well as development of visceral AT and associated angiogenesis in mice kept on HFD.
Collapse
Affiliation(s)
| | | | | | - H Roger Lijnen
- H. R. Lijnen, Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, CDG, Herestraat 49, Box 911, 3000 Leuven, Belgium, Tel.: +32 16 372053, Fax: +32 16 345990, E-mail:
| |
Collapse
|
88
|
Lima MA, dos Santos L, Turri JA, Nonogaki S, Buim M, Lima JF, de Jesus Viana Pinheiro J, Bueno de Toledo Osório CA, Soares FA, Freitas VM. Prognostic Value of ADAMTS Proteases and Their Substrates in Epithelial Ovarian Cancer. Pathobiology 2016; 83:316-26. [DOI: 10.1159/000446244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
|
89
|
ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Toxins (Basel) 2016; 8:toxins8050155. [PMID: 27196928 PMCID: PMC4885070 DOI: 10.3390/toxins8050155] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.
Collapse
|
90
|
Li Y, Li K, Mao L, Han X, Zhang K, Zhao C, Zhao J. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc. PeerJ 2016; 4:e1992. [PMID: 27190710 PMCID: PMC4867702 DOI: 10.7717/peerj.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kang Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lu Mao
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
91
|
Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem J 2016; 473:e1-4. [PMID: 26657033 DOI: 10.1042/bj20151072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular matrix of articular cartilage is structurally specialized for efficient absorption of mechanical impact. In particular, giant aggregates of the large chondroitin sulfate proteoglycan, aggrecan, with the glycosaminoglycan, hyaluronan, allow cartilage to resist compressive load. Proteolysis of aggrecan by members of the proteinase family ADAMTS (A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif), was identified as an early step in the inexorable destruction of cartilage in osteoarthritis (OA). Of the investigated proteinases, ADAMTS5 has emerged as a principal mediator of aggrecan loss in OA, convincingly so in mouse models, and with high probability in humans. ADAMTS5 has a bipartite organization, comprising a proteinase domain and an ancillary domain containing exosites for interaction with aggrecan and other substrates. In a recent issue of this journal, Santamaria et al. characterized anti-ADAMTS5 monoclonal antibodies isolated from a phage display library. By blocking the catalytic site of the ADAMTS5 immunogen with a synthetic inhibitor, the authors of the paper biased selection of antibodies to the ancillary domain. This work, together with other antibodies targeting ADAMTS5, offers diverse, high-affinity and, as far as can be determined, selective aggrecanase inhibitors. Mapping of their epitopes provided novel insights into ADAMTS5 interactions with aggrecan. These monoclonal antibodies deserve continued investigation for potential arthritis therapy, although their successful use will require a comprehensive understanding of the physiological roles of ADAMTS5, and its regulation, intrinsic properties and intermolecular interactions.
Collapse
|
92
|
Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S, Nagase H. MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol 2016; 56:57-73. [PMID: 27084377 PMCID: PMC5146981 DOI: 10.1016/j.matbio.2016.03.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 01/26/2023]
Abstract
Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3. ProMMP-13 is constitutively produced and endocytosed by chondrocytes. LRP1 is a key modulator of extracellular levels of proMMP-13 and MMP-13. ProMMP-13 and MMP-13 directly bind to LRP1 via the hemopexin domain. Unique sites on LRP1 for MMP-13 binding have been mapped. Co-endocytosis of proMMP-13 with ADAMTS-4, -5 and TIMP-3.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Hiroshi Okano
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wakako Miyagawa
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Visse
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Yasuyuki Shitomi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Salvatore Santamaria
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Herts, UK
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, USA
| | - Satoshi Hirohata
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
93
|
Li Y, Li K, Han X, Mao C, Zhang K, Zhao T, Zhao J. The imbalance between TIMP3 and matrix-degrading enzymes plays an important role in intervertebral disc degeneration. Biochem Biophys Res Commun 2016; 469:507-14. [DOI: 10.1016/j.bbrc.2015.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022]
|
94
|
Lu X, Lin J, Jin J, Qian W, Weng X. Hsa-miR-15a exerts protective effects against osteoarthritis by targeting aggrecanase-2 (ADAMTS5) in human chondrocytes. Int J Mol Med 2015; 37:509-16. [PMID: 26707794 DOI: 10.3892/ijmm.2015.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to examine the expression levels and role of hsa-miR-15a in osteoarthritis (OA), as well as the associated mechanisms. The expression levels of hsa-miR-15a and A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 5 (ADAMTS5, also known as aggrecanase-2) were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in both OA and normal chondrocytes. hsa-miR‑21 mimics or antisense oligonucleotides (ASO) were co-transfected into the chondrocytes to examine the effects on the putative binding sites compared with the negative control (NC)-mimics or NC-ASO. The relative ADAMTS5 mRNA and protein levels were measured by RT-qPCR and western blot anlaysis, respectively. Moreover, after inhibiting the expression of hsa‑miR‑15a and ADAMTS5 by ASO and small interfering RNA (siRNA), respectively, the amounts of proteoglycan and collagen in the cellular matrix and medium were determined. Additionally, the expression levels of collagen II were measured by western blot analysis. hsa‑miR‑15a expression was downregulated, but ADAMTS5 expression was upregulated in the human OA chondrocytes compared to the normal chondrocytes. Luciferase reporter assay confirmed that the hsa‑miR‑15a binding site was in the ADAMTS5 gene 3'-untranslated region (3'-UTR), and ADAMTS5 was negatively regulated by hsa‑miR‑15a. The downregulation of hsa‑miR‑15a decreased the aggregation of proteoglycan and the collagen content, but increased the release of proteoglycan and collagen; total collagen production was significantly lower, and collagenase activity was markedly higher. The downregulation of ADAMTS5 increased the aggregation of proteoglycan and the collagen content, but decreased the release of proteoglycan and collagen, along with total collagen production. Moreover, collagenase activity was markedly lower. The findings of our study suggest that hsa‑miR‑15a exerts protective effects against OA by targeting ADAMTS5 in human chondrocytes.
Collapse
Affiliation(s)
- Xin Lu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jin Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jin Jin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Wenwei Qian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
95
|
Kosasih HJ, Last K, Rogerson FM, Golub SB, Gauci SJ, Russo VC, Stanton H, Wilson R, Lamande SR, Holden P, Fosang AJ. A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) Forms Catalytically Active Oligomers. J Biol Chem 2015; 291:3197-208. [PMID: 26668318 DOI: 10.1074/jbc.m115.704817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼ 400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE(373) neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors.
Collapse
Affiliation(s)
- Hansen J Kosasih
- From the Department of Paediatrics, University of Melbourne, Parkville 3052, Australia, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Karena Last
- From the Department of Paediatrics, University of Melbourne, Parkville 3052, Australia, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Fraser M Rogerson
- From the Department of Paediatrics, University of Melbourne, Parkville 3052, Australia, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Suzanne B Golub
- From the Department of Paediatrics, University of Melbourne, Parkville 3052, Australia, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Stephanie J Gauci
- the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Vincenzo C Russo
- the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Heather Stanton
- From the Department of Paediatrics, University of Melbourne, Parkville 3052, Australia, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | | | - Shireen R Lamande
- the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | - Paul Holden
- the Department of Orthopaedics & Rehabilitation, Oregon Health & Science University, Portland, Oregon 97239, and
| | - Amanda J Fosang
- From the Department of Paediatrics, University of Melbourne, Parkville 3052, Australia, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia,
| |
Collapse
|
96
|
Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:654765. [PMID: 26697491 PMCID: PMC4677162 DOI: 10.1155/2015/654765] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 01/12/2023]
Abstract
Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer.
Collapse
|
97
|
Shiraishi A, Mochizuki S, Miyakoshi A, Kojoh K, Okada Y. Development of human neutralizing antibody to ADAMTS4 (aggrecanase-1) and ADAMTS5 (aggrecanase-2). Biochem Biophys Res Commun 2015; 469:62-69. [PMID: 26612259 DOI: 10.1016/j.bbrc.2015.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
Abstract
ADAMTS4 (aggrecanase-1) and ADAMTS5 (aggrecanase-2), members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family, are considered to play a key role in aggrecan degradation of articular cartilage in human osteoarthritis. Here, we developed a neutralizing antibody to these aggrecanases by screening human combinatorial antibody library. Among the five candidate antibodies, one antibody was immunoreactive with both ADAMTS4 and ADAMTS5, showing no or negligible cross-reactivity with 10 different related metalloproteinases of the ADAMTS, ADAM (a disintegrin and metalloproteinase) and MMP (matrix metalloproteinase) gene families. This antibody almost completely and partially inhibited aggrecanase activity of ADAMTS4 and ADAMTS5, respectively. It also suppressed the aggrecanase activity derived from interleukin-1-stimulated osteoarthritic chondrocytes. These data demonstrate that the antibody is specific to ADAMTS4 and ADAMTS5 and inhibits their aggrecanase activity at molecular and cellular levels, and suggest that this antibody may be useful for treatment of pathological conditions such as osteoarthritis.
Collapse
Affiliation(s)
- Aya Shiraishi
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Satsuki Mochizuki
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | | | | | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan.
| |
Collapse
|
98
|
Jiang Y, Hu C, Yu S, Yan J, Peng H, Ouyang HW, Tuan RS. Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1β/nerve growth factor signaling. Arthritis Res Ther 2015; 17:327. [PMID: 26577823 PMCID: PMC4650403 DOI: 10.1186/s13075-015-0840-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Interleukin-1β (IL-1β) and nerve growth factor (NGF) are key regulators in the pathogenesis of inflammatory arthritis; specifically, IL-1β is involved in tissue degeneration and NGF is involved in joint pain. However, the cellular and molecular interactions between IL-1β and NGF in articular cartilage are not known. Cartilage stem/progenitor cells (CSPCs) have recently been identified in osteoarthritic (OA) cartilage on the basis of their migratory properties. Here we hypothesize that IL-1β/NGF signaling is involved in OA cartilage degeneration by targeting CSPCs. METHOD NGF and NGF receptor (NGFR: TrkA and p75NTR) expression in healthy and OA human articular cartilage and isolated chondrocytes was determined by immunostaining, qRT-PCR, flow cytometry and western blot. Articular cartilage derived stem/progenitor cells were collected and identified by stem/progenitor cell characteristics. 3D-cultured CSPC pellets and cartilage explants were treated with NGF and NGF neutralizing antibody, and extracellular matrix changes were examined by sulfated glycosaminoglycan (GAG) release and MMP expression and activity. RESULTS Expression of NGF, TrkA and p75NTR was found to be elevated in human OA cartilage. Cellular changes upon IL-1β and/or NGF treatment were then examined. NGF mRNA and NGFR proteins levels were upregulated in cultured chondrocytes exposed to IL-1β. NGF was chemotactic for cells isolated from OA cartilage. Cells isolated on the basis of their chemotactic migration towards NGF demonstrated stem/progenitor cell characteristics, including colony-forming ability, multi-lineage differentiation potential, and stem cell surface markers. The effects of NGF perturbation in cartilage explants and 3D-cultured CSPCs were next analyzed. NGF treatment resulted in extracellular matrix catabolism indicated by increased sGAG release and MMP expression and activity; conversely, treatment with NGF neutralizing antibody inhibited increased MMP levels, and enhanced tissue inhibitor of matrix metalloprotease-1 (TIMP1) expression in OA cartilage explants. NGF blockade with neutralizing antibody also affected cartilage matrix remodeling in 3D-CSPC pellet cultures. CONCLUSION Our results strongly suggest that NGF signaling is a contributing factor in articular cartilage degeneration in OA, which likely targets a specific subpopulation of progenitor cells, the CSPCs, affecting their migratory and matrix remodeling activities. These findings provide novel cellular/signaling therapeutic targets in osteoarthritic cartilage.
Collapse
Affiliation(s)
- Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA.
| | - Changchang Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Shuting Yu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA.
- Tsinghua University School of Medicine, Beijing, 100084, China.
| | - Junwei Yan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA.
- Current address: Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China.
| | - Hsuan Peng
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA.
- Current address: Berea College, Berea, KY, 40403, USA.
| | - Hong Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA.
| |
Collapse
|
99
|
Ding L, Zampogna B, Vasta S, Jang KW, De Caro F, Martin JA, Amendola A. Why Do Osteochondral Allografts Survive? Comparative Analysis of Cartilage Biochemical Properties Unveils a Molecular Basis for Durability. Am J Sports Med 2015; 43:2459-68. [PMID: 26311444 PMCID: PMC5038986 DOI: 10.1177/0363546515596407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Transplantation of osteochondral allografts (OCAs) freshly preserved for ≥30 days has proven to be a reliable technique for cartilage resurfacing. However, the prolonged storage of allografts comes at the expense of chondrocyte viability, which declines precipitously after 14 days under refrigeration. Despite this, radiographic data indicate that most allograft cartilage remains stable for years after implantation. The apparent durability of partially devitalized cartilage begs the question of how the extracellular matrix is maintained. HYPOTHESIS Compared with patients' defect cartilage, replacement OCAs freshly preserved for 36 days on average contain significantly lower levels of cartilage matrix-destructive metalloproteinases, which may contribute to the long-term stability of implanted grafts. STUDY DESIGN Descriptive laboratory study. METHODS Chondrocyte density was determined by the cell yield from digested cartilage and by double-strand DNA content quantified with PicoGreen assay. Chondrocyte viability was estimated by staining enzymatically isolated chondrocytes with calcein AM and ethidium homodimer-2. Cartilage proteoglycan (PG) content was analyzed with dimethylmethylene blue assay. The in vitro 48-hour release of PG-depleting metalloproteinases including matrix metalloproteinase (MMP)-1, -3, -13, and ADAMTS-5 from cartilage was examined with Western blotting. The data were compared between diseased cartilage from patients and samples from matched grafts. The relative amount of MMP-3 to its endogenous inhibitor, tissue inhibitor of MMP-1 (TIMP-1), was also determined with Western blotting. RESULTS Chondrocyte density decreased linearly with allograft storage time and declined by an average of 43%. PG content decreased while the percentage of nonviable chondrocytes increased with storage time, with the former showing less linearity. However, PG content remained in the normal range and was significantly higher than that in patients' defect cartilage. Correspondingly, significantly less PG-depleting metalloproteinases and a much lower MMP-3/TIMP-1 ratio were detected in allograft cartilage than in patients' diseased cartilage. CONCLUSION These findings indicated that, at the time of implantation, fresh-preserved OCAs contained significantly lower levels of PG-depleting metalloproteinases compared with patients' defect cartilage, which might contribute to their long-term stability in vivo. CLINICAL RELEVANCE The comparatively low expression of cartilage-dissolving metalloproteinases in human OCAs freshly preserved over 30 days offers support to the long-term durability of implanted grafts. Based on study data that showed similarity in the response to inflammatory cytokines between patients' cartilage and OCA cartilage, strategies that can alleviate inflammation may provide extra benefit for the survival of implanted grafts. In terms of the practice of graft preservation, agents that can keep balance between the ATP supply and demand or stabilize the cell membrane or inhibit the activation of metalloproteinases may significantly improve cell viability in fresh-preserved OCAs with a storage time longer than 5 weeks.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA,Address correspondence to Lei Ding, MD, PhD, or Annunziato Amendola, MD, Department of Orthopaedics and Rehabilitation, University of Iowa, 2701 Prairie Meadow Drive, Iowa City, IA 52242, USA ( or )
| | - Biagio Zampogna
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA,Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sebastiano Vasta
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA,Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Kee Woong Jang
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA
| | - Francesca De Caro
- Orthopaedic Clinic and Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA
| | - Annunziato Amendola
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA,Address correspondence to Lei Ding, MD, PhD, or Annunziato Amendola, MD, Department of Orthopaedics and Rehabilitation, University of Iowa, 2701 Prairie Meadow Drive, Iowa City, IA 52242, USA ( or )
| |
Collapse
|
100
|
Ismail HM, Yamamoto K, Vincent TL, Nagase H, Troeberg L, Saklatvala J. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol 2015; 67:1826-36. [PMID: 25776267 DOI: 10.1002/art.39099] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aggrecan enables articular cartilage to bear load and resist compression. Aggrecan loss occurs early in osteoarthritis and rheumatoid arthritis and can be induced by inflammatory cytokines such as interleukin-1 (IL-1). IL-1 induces cleavage of specific aggrecans characteristic of the ADAMTS proteinases. The aim of this study was to identify the intracellular signaling pathways by which IL-1 causes aggrecan degradation by human chondrocytes and to investigate how aggrecanase activity is controlled by chondrocytes. METHODS We developed a cell-based assay combining small interfering RNA (siRNA)-induced knockdown with aggrecan degradation assays. Human articular chondrocytes were overlaid with bovine aggrecan after transfection with siRNAs against molecules of the IL-1 signaling pathway. After IL-1 stimulation, released aggrecan fragments were detected with AGEG and ARGS neoepitope antibodies. Aggrecanase activity and tissue inhibitor of metalloproteinases 3 levels were measured by enzyme-linked immunosorbent assay. Low-density lipoprotein receptor-related protein 1 (LRP-1) shedding was analyzed by Western blotting. RESULTS ADAMTS-5 is a major aggrecanase in human chondrocytes, regulating aggrecan degradation in response to IL-1. The tumor necrosis factor receptor-associated 6 (TRAF-6)/transforming growth factor β-activated kinase 1 (TAK-1)/MKK-4 signaling axis is essential for IL-1-induced aggrecan degradation, while NF-κB is not. Of the 3 MAPKs (ERK, p38, and JNK), only JNK-2 showed a significant role in aggrecan degradation. Chondrocytes constitutively secreted aggrecanase, which was continuously endocytosed by LRP-1, keeping the extracellular level of aggrecanase low. IL-1 induced aggrecanase activity in the medium in a JNK-2-dependent manner, possibly by reducing aggrecanase endocytosis, because IL-1 caused JNK-2-dependent shedding of LRP-1. CONCLUSION The signaling axis TRAF-6/TAK-1/MKK-4/JNK-2 mediates IL-1-induced aggrecanolysis. The level of aggrecanase is controlled by its endocytosis, which may be reduced upon IL-1 stimulation because of LRP-1 shedding.
Collapse
Affiliation(s)
- Heba M Ismail
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | - Kazuhiro Yamamoto
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | - Linda Troeberg
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| |
Collapse
|