51
|
Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 2013; 14:505. [PMID: 23885787 PMCID: PMC3727977 DOI: 10.1186/1471-2164-14-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
Collapse
|
52
|
Karasinska JM, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit JK, Stukas S, Lütjohann D, Gutmann DH, Wellington CL, Hayden MR. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis 2013; 54:445-55. [DOI: 10.1016/j.nbd.2013.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/29/2022] Open
|
53
|
Hu Q, Li B, Xu R, Chen D, Mu C, Fei E, Wang G. The protease Omi cleaves the mitogen-activated protein kinase kinase MEK1 to inhibit microglial activation. Sci Signal 2012; 5:ra61. [PMID: 22912494 DOI: 10.1126/scisignal.2002946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inflammation in Parkinson's disease is closely associated with disease pathogenesis. Mutations in Omi, which encodes the protease Omi, are linked to neurodegeneration and Parkinson's disease in humans and in mouse models. The severe neurodegeneration and neuroinflammation that occur in mnd2 (motor neuron degeneration 2) mice result from loss of the protease activity of Omi by the point mutation S276C; however, the substrates of Omi that induce neurodegeneration are unknown. We showed that Omi was required for the production of inflammatory molecules by microglia, which are the resident macrophages in the central nervous system. Omi suppressed the activation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 and 2 (ERK1/2) by cleaving the upstream kinase MEK1 (mitogen-activated or extracellular signal-regulated protein kinase kinase 1). Knockdown of Omi in microglial cell lines led to activation of ERK1/2 and resulted in degradation of IκBα [α inhibitor of nuclear factor κB (NF-κB)], resulting in NF-κB activation and the expression of genes encoding inflammatory molecules, such as tumor necrosis factor-α and inducible nitric oxide synthase. The production of inflammatory molecules induced by the knockdown of Omi was blocked by the MEK1-specific inhibitor U0126. Furthermore, expression of the protease-deficient S276C Omi mutant in a microglial cell line had no effect on MEK1 cleavage or ERK1/2 activation. In the brains of mnd2 mice, we observed increased transcription of several genes encoding inflammatory molecules, as well as activation of astrocytes and microglia. Therefore, our study demonstrates that Omi is an intrinsic cellular factor that inhibits neuroinflammation.
Collapse
Affiliation(s)
- Qingsong Hu
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | | | | | | | | | | | | |
Collapse
|
54
|
Roth JA, Ganapathy B, Ghio AJ. Manganese-induced toxicity in normal and human B lymphocyte cell lines containing a homozygous mutation in parkin. Toxicol In Vitro 2012; 26:1143-9. [PMID: 22841634 DOI: 10.1016/j.tiv.2012.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 01/01/2023]
Abstract
Mutations in the parkin gene are linked to development of juvenile onset of Parkinson's disease and recent studies have reported that parkin can protect against increased oxidative stress and mitochondrial dysfunction caused by a variety of oxidative and toxic insults. Overexpression of parkin has also been reported to selectively protect dopaminergic neurons from Mn toxicity. Accordingly, in this paper we compare the effect that mutations in parkin have on Mn toxicity and associated apoptotic signals in normal and human B lymphocyte cell lines containing a homozygous mutation in the gene. Results of these studies reveal that Mn toxicity was similar in both control and mutant parkin lymphocyte cells indicating that cell death caused by Mn was not altered in cells devoid of parkin activity. In contrast, Mn did inhibit mitochondrial function to a greater extent in cells devoid of active parkin as indicated by a decrease in ATP production although mitochondrial membrane potential was essentially unaffected. Consistent with inactive parkin influencing the Mn response is the observation of increased activity in the down-stream apoptotic signal, caspase 3. In summary, results reported in this paper demonstrate that mutations in parkin can lead to functional changes in potential signaling processes known to provoke Mn toxicity. The selectivity and magnitude of this response, however, does not necessarily lead to cell death in lymphocytes which are devoid of dopamine.
Collapse
Affiliation(s)
- Jerome A Roth
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
55
|
Freikman I, Ringel I, Fibach E. Shedding of phosphatidylserine from developing erythroid cells involves microtubule depolymerization and affects membrane lipid composition. J Membr Biol 2012; 245:779-87. [PMID: 22825717 DOI: 10.1007/s00232-012-9478-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/30/2012] [Indexed: 12/01/2022]
Abstract
Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, flip-flops to the external leaflet during aging of, or trauma to, cells. A fraction of this PS undergoes shedding into the extracellular milieu. PS externalization and shedding change during maturation of erythroid cells and affect the functioning, senescence and elimination of mature RBCs. Several lines of evidence suggest dependence of PS shedding on intracellular Ca concentration as well as on interaction between plasma membrane phospholipids and microtubules (MTs), the key components of the cytoskeleton. We investigated the effect of Ca flux and MT assembly on the distribution of PS across, and shedding from, the membranes of erythroid precursors. Cultured human and murine erythroid precursors were treated with the Ca ionophore A23187, the MT assembly enhancer paclitaxel (Taxol) or the inhibitor colchicine. PS externalization and shedding were measured by flow cytometry and the cholesterol/phospholipids in RBC membranes and supernatants, by ¹H-NMR. We found that treatment with Taxol or colchicine resulted in a marked increase in PS externalization, while shedding was increased by colchicine but inhibited by Taxol. These results indicate that PS externalization is mediated by Ca flux, and PS shedding by both Ca flux and MT assembly. The cholesterol/phospholipid ratio in the membrane is modified by PS shedding; we now show that it was increased by colchicine and A23187, while taxol had no effect. In summary, the results indicate that the Ca flux and MT depolymerization of erythroid precursors mediate their PS externalization and shedding, which in turn changes their membrane composition.
Collapse
Affiliation(s)
- Inna Freikman
- Institute of Drug Research, School of Pharmacy, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | | | | |
Collapse
|
56
|
c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. Anticancer Drugs 2012; 23:98-107. [PMID: 21968419 DOI: 10.1097/cad.0b013e32834bc978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microtubule-binding agents (MBAs) form one of the most important anticancer-drug families, but their molecular mechanisms are poorly understood. MBAs such as paclitaxel (PTX) stabilize microtubules, whereas XRP44X (a novel pyrazole) and combretastatins A4 (CA4) destabilize microtubules. These two different types of MBAs have potent antitumor activity. Comparisons of their effects on signal transduction and cellular responses will help uncover the molecular mechanism by which MBAs affect tumor cells. We used MCF-7 cells to compare the effects of the three MBAs on the cytoskeleton, cell cycle distribution, and activation of the three major mitogen-activated protein kinase (MAPK) signaling cascades [extracellular signal-related kinases, c-Jun N-terminal kinase (JNK), and p38 MAPK] using pharmacological inhibitors. The G2/M phase arrest was induced following polymerization of microtubules by PTX and depolymerization by XRP44X and CA4. The three major MAPKs were rapidly activated by XRP44X, and extracellular signal-related kinases and p38 by PTX, whereas JNK did not quickly respond to PTX. Pharmacological inhibitors indicated that activation of JNK is principally required for XRP44X- and CA4-induced microtubule depolymerization and G2/M phase arrest. Our results suggest that early phosphorylation of JNK is a specific mechanism involved in microtubule depolymerization by certain MBAs.
Collapse
|
57
|
Van Laar VS, Berman SB. The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson's disease. Neurobiol Dis 2012; 51:43-55. [PMID: 22668779 DOI: 10.1016/j.nbd.2012.05.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 12/15/2022] Open
Abstract
The dynamic properties of mitochondria (mitochondrial fission, fusion, transport biogenesis and degradation) are critical for neuronal function and health, and dysregulation of mitochondrial dynamics has been increasingly linked to the pathogenesis of Parkinson's disease (PD). Mitochondrial dynamics and bioenergetics are interconnected, and this is of particular importance in neurons, which have a unique bioenergetic profile due to their energetic dependence on mitochondria and specialized, compartmentalized energetic needs. In this review, we summarize the interplay of mitochondrial dynamics and bioenergetics, and its particular relevance for neurodegeneration. Evidence linking dysregulation of mitochondrial dynamics to PD is presented from both toxin and genetic models, including newly emerging details of how PD-relevant genes PTEN-induced kinase 1 (PINK1) and Parkin regulate fission, fusion, mitophagy and transport. Finally, we discuss how neuronal bioenergetics may impact PD-relevant regulation of mitochondrial dynamics, and possible implications for understanding the role of mitochondrial dynamics in PD.
Collapse
Affiliation(s)
- Victor S Van Laar
- University of Pittsburgh Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
58
|
Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G. Microtubule destabilization is shared by genetic and idiopathic Parkinson's disease patient fibroblasts. PLoS One 2012; 7:e37467. [PMID: 22666358 PMCID: PMC3359730 DOI: 10.1371/journal.pone.0037467] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Data from both toxin-based and gene-based models suggest that dysfunction of the microtubule system contributes to the pathogenesis of Parkinson's disease, even if, at present, no evidence of alterations of microtubules in vivo or in patients is available. Here we analyze cytoskeleton organization in primary fibroblasts deriving from patients with idiopathic or genetic Parkinson's disease, focusing on mutations in parkin and leucine-rich repeat kinase 2. Our analyses reveal that genetic and likely idiopathic pathology affects cytoskeletal organization and stability, without any activation of autophagy or apoptosis. All parkinsonian fibroblasts have a reduced microtubule mass, represented by a higher fraction of unpolymerized tubulin in respect to control cells, and display significant changes in microtubule stability-related signaling pathways. Furthermore, we show that the reduction of microtubule mass is so closely related to the alteration of cell morphology and behavior that both pharmacological treatment with microtubule-targeted drugs, and genetic approaches, by transfecting the wild type parkin or leucine-rich repeat kinase 2, restore the proper microtubule stability and are able to rescue cell architecture. Taken together, our results suggest that microtubule destabilization is a point of convergence of genetic and idiopathic forms of parkinsonism and highlight, for the first time, that microtubule dysfunction occurs in patients and not only in experimental models of Parkinson's disease. Therefore, these data contribute to the knowledge on molecular and cellular events underlying Parkinson's disease and, revealing that correction of microtubule defects restores control phenotype, may offer a new therapeutic target for the management of the disease.
Collapse
Affiliation(s)
| | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | | |
Collapse
|
59
|
Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, Kunz WS, Brandt U, Broccoli V, Reichmann H, Gispert S, Jendrach M. Primary skin fibroblasts as a model of Parkinson's disease. Mol Neurobiol 2012; 46:20-7. [PMID: 22350618 PMCID: PMC3443476 DOI: 10.1007/s12035-012-8245-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/03/2012] [Indexed: 01/28/2023]
Abstract
Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues.
Collapse
Affiliation(s)
- Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Hospital, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
61
|
Differential programming of p53-deficient embryonic cells during rotenone block. Toxicology 2011; 290:31-41. [PMID: 21893155 DOI: 10.1016/j.tox.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53-efficient embryonic fibroblasts compared to p53-deficient cells. These cell lines differed with respect to NADH/NAD(+) balance. This ratio constitutes a driving force for NAD- and NADH-dependent reactions and is inversed upon exposure to Rotenone (complex I inhibitor). Rotenone perturbed the structure of the elongated fibrillar tubulin network and decreased mRNA expression of tubulin genes both suggesting reprogramming and reorganization of the cytoskeleton in both cell lines. These changes were reflected in the abundance of specific mRNA and microRNA (miRNA) species as determined from genome-based analysis. Changes in mRNA and miRNA expression profiles reflected differences in energy utilizing pathways, consistent with the notion that the p53 pathway influences the cellular response to mitochondrial dysfunction and that at least some control may be embedded within specific mRNA/miRNA networks in embryonic cells.
Collapse
|
62
|
Parisiadou L, Cai H. LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun Integr Biol 2011; 3:396-400. [PMID: 21057624 DOI: 10.4161/cib.3.5.12286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 01/11/2023] Open
Abstract
The mutations in the LRRK2 gene cause clinically typical, late-onset Parkinson disease, strengthening the idea that the familial forms of the disease represent an important tool for the study of the idiopathic forms. Despite the great effort to describe and functionally characterize the LRRK2 gene product, its physiological role remains elusive. In this article, we will discuss along with other references, our recent findings that assigned a critical role of LRRK2 protein on cytosleketal dynamics and how this direction could provide a valuable platform to further appreciate the mechanism underlying LRRK2-mediated pathophysiology of the disease.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Unit of Transgenesis; Laboratory of Neurogenetics; National Institute on Aging; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
63
|
Choi WS, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. ACTA ACUST UNITED AC 2011; 192:873-82. [PMID: 21383081 PMCID: PMC3051820 DOI: 10.1083/jcb.201009132] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of microtubule depolymerization and the accumulation of cytosolic dopamine and reactive oxygen species selectively affects survival of dopaminergic neurons. Mitochondrial complex I dysfunction is regarded as underlying dopamine neuron death in Parkinson’s disease models. However, inactivation of the Ndufs4 gene, which compromises complex I activity, does not affect the survival of dopamine neurons in culture or in the substantia nigra pars compacta of 5-wk-old mice. Treatment with piericidin A, a complex I inhibitor, does not induce selective dopamine neuron death in either Ndufs4+/+ or Ndufs4−/− mesencephalic cultures. In contrast, rotenone, another complex I inhibitor, causes selective toxicity to dopamine neurons, and Ndufs4 inactivation potentiates this toxicity. We identify microtubule depolymerization and the accumulation of cytosolic dopamine and reactive oxygen species as alternative mechanisms underlying rotenone-induced dopamine neuron death. Enhanced rotenone toxicity to dopamine neurons from Ndufs4 knockout mice may involve enhanced dopamine synthesis caused by the accumulation of nicotinamide adenine dinucleotide reduced. Our results suggest that the combination of disrupting microtubule dynamics and inhibiting complex I, either by mutations or exposure to toxicants, may be a risk factor for Parkinson’s disease.
Collapse
Affiliation(s)
- Won-Seok Choi
- Department of Environmental and Occupational Health Sciences, Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
64
|
Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JBT, Aschner M. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 2011; 32:291-9. [PMID: 21300091 PMCID: PMC3079013 DOI: 10.1016/j.neuro.2011.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Azoles/pharmacology
- Blotting, Western
- Caspase 3/metabolism
- Cells, Cultured
- Cytoprotection
- Dose-Response Relationship, Drug
- Environmental Pollutants/toxicity
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glutamine/metabolism
- Isoindoles
- Membrane Potential, Mitochondrial/drug effects
- Mercury Poisoning, Nervous System/etiology
- Mercury Poisoning, Nervous System/metabolism
- Mercury Poisoning, Nervous System/pathology
- Methylmercury Compounds/toxicity
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neuroprotective Agents/pharmacology
- Organoselenium Compounds/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Zhaobao Yin
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | - Mingwei Ni
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dejan Milatovic
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lu Rongzhu
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Joao B. T. Rocha
- Departamento de Bioquímica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
65
|
Rankin CA, Roy A, Zhang Y, Richter M. Parkin, A Top Level Manager in the Cell's Sanitation Department. Open Biochem J 2011; 5:9-26. [PMID: 21633666 PMCID: PMC3104551 DOI: 10.2174/1874091x01105010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 01/31/2023] Open
Abstract
Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to bind zinc ions. RING domains may interact with DNA or with other proteins and perform a wide range of functions. Some function as E3 ubiquitin ligases, participating in attachment of ubiquitin chains to signal proteasome degradation; however, ubiquitin may be attached for purposes other than proteasome degradation. It was determined that the C-terminal most RING, RING2, is essential for Parkin to function as an E3 ubiquitin ligase and a number of substrates have been identified. However, Parkin also participates in a number of other fiunctions, such as DNA repair, microtubule stabilization, and formation of aggresomes. Some functions, such as participation in a multi-protein complex implicated in NMDA activity at the post synaptic density, do not require ubiquitination of substrate molecules. Recent observations of RING proteins suggest their function may be regulated by zinc ion binding. We have modeled the three RING domains of Parkin and have identified a new set of RING2 ligands. This set allows for binding of two rather than just one zinc ion, opening the possibility that the number of zinc ions bound acts as a molecular switch to modulate Parkin function.
Collapse
Affiliation(s)
- Carolyn A Rankin
- Molecular Biosciences Department, University of Kansas, Lawrence KS 66045, USA
| | | | | | | |
Collapse
|
66
|
Ren Y, Jiang H, Ma D, Nakaso K, Feng J. Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Genet 2011; 20:1074-83. [PMID: 21177257 PMCID: PMC3043659 DOI: 10.1093/hmg/ddq550] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/15/2010] [Indexed: 01/31/2023] Open
Abstract
Parkin, whose mutations cause Parkinson disease (PD), controls oxidative stress by limiting the expression of monoamine oxidases (MAO)--mitochondrial enzymes responsible for the oxidative de-amination of dopamine. Here, we show that parkin performed this function by increasing the ubiquitination and degradation of estrogen-related receptors (ERR), orphan nuclear receptors that play critical roles in the transcription regulation of many nuclear-encoded mitochondrial proteins. All three ERRs (α, β and γ) increased the transcription of MAOs A and B; the effects were abolished by parkin, but not by its PD-linked mutants. Parkin bound to ERRs and increased their ubiquitination and degradation. In fibroblasts from PD patients with parkin mutations or brain slices from parkin knockout mice, degradation of ERRs was significantly attenuated. The results reveal the molecular mechanism by which parkin suppresses the transcription of MAOs to control oxidative stress induced by dopamine oxidation.
Collapse
Affiliation(s)
- Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA and
| | - Houbo Jiang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA and
| | - Dingyuan Ma
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA and
| | - Kazuhiro Nakaso
- Department of Neurology, Tottori University, Yonago 683-8504, Japan
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA and
| |
Collapse
|
67
|
Berwick DC, Harvey K. LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol 2011; 21:257-65. [PMID: 21306901 DOI: 10.1016/j.tcb.2011.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 11/16/2022]
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a major cause of Parkinson's disease. We contrast data suggesting that changes in LRRK2 activity cause alterations in mitogen-activated protein kinase, translational control, tumor necrosis factor α/Fas ligand and Wnt signaling pathways with the cell biological functions of LRRK2 such as vesicle trafficking. Despite scarce in vivo data on cell signaling, involvement in diverse cell biological functions suggests a role for LRRK2 as an upstream regulator in events leading to neurodegeneration. To stimulate discussion and give direction for future research, we further suggest that despite the importance of the catalytic activity for cytotoxicity, the main cellular function of LRRK2 is linked to assembly of signaling complexes.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | |
Collapse
|
68
|
Nesti C, Pardini C, Barachini S, D'Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F. Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res 2010; 1367:94-102. [PMID: 20854799 DOI: 10.1016/j.brainres.2010.09.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 09/08/2010] [Accepted: 09/11/2010] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive death of substantia nigra dopaminergic neurons that results in a regional loss of striatal dopamine (DA) levels. Dental pulp contains ex vivo-expandable cells called dental pulp stem cells (DPSCs), with the capacity to differentiate into multiple cell lineages. More interestingly, due to their embryonic origin, DPSCs express neurotrophic factors such as brain-derived neurotrophic factor, nerve growth factor and glial cell-derived neurotrophic factor. The aim of the present study was to investigate the neuroprotective effects of DPSCs against MPP+ (2.5, 5, and 10 μM) and rotenone (0.25, 0.5 and 1 μM) in an in vitro model of PD, using an indirect co-culture system with mesencephalic cell cultures. When mesencephalic cultures were challenged with MPP+ or rotenone, in the presence of DPSCs a statistically significant protective effect was observed at all the tested doses in terms of DA uptake. DPSCs protective effect on DA neurons was also confirmed by immunocytochemistry: an increased number of spared tyrosine hydroxylase (TH)+ cells was observed in co-culture conditions compared to controls, and neurons showed longer processes in comparison with mesencephalic cells grown without DPSCs. In conclusion, the co-culture with DPSCs significantly attenuated MPP+ or rotenone-induced toxicity in primary cultures of mesencephalic neurons. Considering that the direct contact between the two cell types was prevented, it can be speculated that neuroprotection could be due to soluble factors such as BDNF and NGF, released by DPSCs. Blocking BDNF and NGF with neutralizing antibodies, the neuroprotecting effect of DPSCs was completely abolished. Therefore DPSCs can be viewed as possible candidates for studies on cell-based therapy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Claudia Nesti
- RRMR/CUCCS (Rete Regionale di Medicina Rigenerativa/Center for the Clinical Use of Stem Cells), Italy; Stella Maris Scientific Institute, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Gauthier A, Brandt R. Live cell imaging of cytoskeletal dynamics in neurons using fluorescence photoactivation. Biol Chem 2010; 391:639-43. [PMID: 20370315 DOI: 10.1515/bc.2010.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease and other neurodegenerative disorders share some common features at the cellular level, which are often associated with a change in cytoskeletal dynamics. Live cell imaging has been applied to study various aspects of cell physiology including cytoskeletal dynamics. Recently, fluorescence photoactivation (FPA) has been developed as a novel approach to analyze protein dynamics in living cells with high sensitivity. Here, we describe the application of FPA to determine interactions and mobility of the microtubule-associated protein tau in neurons as an example for a disease-related cytoskeletal protein and discuss further applications of FPA to study cytoskeletal dynamics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne Gauthier
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | | |
Collapse
|
70
|
WANG XM, WANG DQ, WANG XY. Function study advances of Parkinson¢s disease related genes. YI CHUAN = HEREDITAS 2010; 32:779-84. [DOI: 10.3724/sp.j.1005.2010.00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J, Cuervo AM, García de Yébenes J, Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 2010; 39:423-38. [PMID: 20546895 DOI: 10.1016/j.nbd.2010.05.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/29/2010] [Accepted: 05/11/2010] [Indexed: 01/14/2023] Open
Abstract
Tauopathies are neurodegenerative diseases, sporadic or familial, mainly characterized by dementia and parkinsonism associated to atrophy of the frontotemporal cortex and the basal ganglia, with deposition of abnormal tau in brain. Hereditary tauopathies are related with mutations of the tau gene. Up to the present, these diseases have not been helped by any disease-modifying treatment, and patients die a few years after the onset of symptoms. We have developed and characterized a mouse model of tauopathy with parkinsonism, overexpressing human mutated tau protein with deletion of parkin (PK(-/-)/Tau(VLW)). At 3 months of age, these mice present abnormal dopamine-related behavior, severe dropout of dopamine neurons in the ventral midbrain, reduced dopamine levels in the striatum and abundant phosphorylated tau-positive neuritic plaques, neurofibrillary tangles, astrogliosis, and, at 12 months old, plaques of murine beta-amyloid in the hippocampus. Trehalose is a natural disaccharide that increases the removal of abnormal proteins through enhancement of autophagy. In this work, we tested if 1% trehalose in the drinking water reverts the PK(-/-)/Tau(VLW) phenotype. The treatment with trehalose of 3-month-old PK(-/-)/Tau(VLW) mice for 2.5 months reverted the dropout of dopamine neurons, which takes place in the ventral midbrain of vehicle treated PK(-/-)/Tau(VLW) and the reduced dopamine-related proteins levels in the midbrain and striatum. The number of phosphorylated tau-positive neuritic plaques and the levels of phosphorylated tau decreased, as well as astrogliosis in brain regions. The autophagy markers in the brain, the autophagic vacuoles isolated from the liver, and the electron microscopy data indicate that these effects of trehalose are mediated by autophagy. The treatment with trehalose for 4 months of 3-month-old PK(-/-)/Tau(VLW) mice maintained the amelioration of the tau pathology and astrogliosis but failed to revert DA-related pathology in the striatum. Furthermore, the 3-week treatment with trehalose of 14-month-old PK(-/-)/Tau(VLW) mice, at the limit of their life expectancy, improved the motor behavior and anxiety of these animals, and reduced their levels of phosphorylated tau and the number of murine beta-amyloid plaques. Trehalose is neuroprotective in this model of tauopathy. Since trehalose is free of toxic effects at high concentrations, this study opens the way for clinical studies of the effects of trehalose in human tauopathies.
Collapse
|
72
|
The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons. Neurobiol Dis 2010; 40:102-12. [PMID: 20472063 DOI: 10.1016/j.nbd.2010.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 12/21/2022] Open
Abstract
Dopamine is cytotoxic and may play a role in the development of Parkinson's disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Overexpression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells.
Collapse
|
73
|
Yasuda T, Mochizuki H. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010; 15:1312-21. [DOI: 10.1007/s10495-010-0486-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
74
|
Berger AK, Cortese GP, Amodeo KD, Weihofen A, Letai A, LaVoie MJ. Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum Mol Genet 2009; 18:4317-28. [PMID: 19679562 DOI: 10.1093/hmg/ddp384] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autosomal-recessive mutations in the Parkin gene are the second most common cause of familial Parkinson's disease (PD). Parkin deficiency leads to the premature demise of the catecholaminergic neurons of the ventral midbrain in familial PD. Thus, a better understanding of parkin function may elucidate molecular aspects of their selective vulnerability in idiopathic PD. Numerous lines of evidence suggest a mitochondrial function for parkin and a protective effect of ectopic parkin expression. Since mitochondria play a critical role in cell survival/cell death through regulated cytochrome c release and control of apoptosis, we sought direct evidence of parkin function in this pathway. Mitochondria were isolated from cells expressing either excess levels of human parkin or shRNA directed against endogenous parkin and then treated with peptides corresponding to the active Bcl-2 homology 3 (BH3) domains of pro-apoptotic proteins and the threshold for cytochrome c release was analyzed. Data obtained from both rodent and human neuroblastoma cell lines showed that the expression levels of parkin were inversely correlated with cytochrome c release. Parkin was found associated with isolated mitochondria, but its binding per se was not sufficient to inhibit cytochrome c release. In addition, pathogenic parkin mutants failed to influence cytochrome c release. Furthermore, PINK1 expression had no effect on cytochrome c release, suggesting a divergent function for this autosomal recessive PD-linked gene. In summary, these data demonstrate a specific autonomous effect of parkin on mitochondrial mechanisms governing cytochrome c release and apoptosis, which may be relevant to the selective vulnerability of certain neuronal populations in PD.
Collapse
Affiliation(s)
- Alison K Berger
- Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant familial Parkinson's disease. We generated lines of Caenorhabditis elegans expressing neuronally directed human LRRK2. Expressing human LRRK2 increased nematode survival in response to rotenone or paraquat, which are agents that cause mitochondrial dysfunction. Protection by G2019S, R1441C, or kinase-dead LRRK2 was less than protection by wild-type LRRK2. Knockdown of lrk-1, the endogenous ortholog of LRRK2 in C. elegans, reduced survival associated with mitochondrial dysfunction. C. elegans expressing LRRK2 showed rapid loss of dopaminergic markers (DAT::GFP fluorescence and dopamine levels) beginning in early adulthood. Loss of dopaminergic markers was greater for the G2019S LRRK2 line than for the wild-type line. Rotenone treatment induced a larger loss of dopamine markers in C. elegans expressing G2019S LRRK2 than in C. elegans expressing wild-type LRRK2; however, loss of dopaminergic markers in the G2019S LRRK2 nematode lines was not statistically different from that in the control line. These data suggest that LRRK2 plays an important role in modulating the response to mitochondrial inhibition and raises the possibility that mutations in LRRK2 selectively enhance the vulnerability of dopaminergic neurons to a stressor associated with Parkinson's disease.
Collapse
|
76
|
Dagda RK, Zhu J, Chu CT. Mitochondrial kinases in Parkinson's disease: converging insights from neurotoxin and genetic models. Mitochondrion 2009; 9:289-98. [PMID: 19563915 DOI: 10.1016/j.mito.2009.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/06/2009] [Accepted: 06/22/2009] [Indexed: 12/11/2022]
Abstract
Alterations in mitochondrial biology have long been implicated in neurotoxin, and more recently, genetic models of parkinsonian neurodegeneration. In particular, kinase regulation of mitochondrial dynamics and turnover are emerging as central mechanisms at the convergence of neurotoxin, environmental and genetic approaches to studying Parkinson's disease (PD). Kinases that localize to mitochondria during neuronal injury include mitogen activated protein kinases (MAPK) such as extracellular signal regulated protein kinases (ERK) and c-Jun N-terminal kinases (JNK), protein kinase B/Akt, and PTEN-induced kinase 1 (PINK1). Although site(s) of action within mitochondria and specific kinase targets are still unclear, these signaling pathways regulate mitochondrial respiration, transport, fission-fusion, calcium buffering, reactive oxygen species (ROS) production, mitochondrial autophagy and apoptotic cell death. In this review, we summarize accelerating experimental evidence gathered over the last decade that implicate a central role for kinase signaling at the mitochondrion in Parkinson's and related neurodegenerative disorders. Interactions involving alpha-synuclein, leucine rich repeat kinase 2 (LRRK2), DJ-1 and Parkin are discussed. Converging mechanisms from different model systems support the concept of common pathways in parkinsonian neurodegeneration that may be amenable to future therapeutic interventions.
Collapse
Affiliation(s)
- Ruben K Dagda
- Dept. of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | | | | |
Collapse
|