51
|
Ghatak S, Misra S, Norris RA, Moreno-Rodriguez RA, Hoffman S, Levine RA, Hascall VC, Markwald RR. Periostin induces intracellular cross-talk between kinases and hyaluronan in atrioventricular valvulogenesis. J Biol Chem 2014; 289:8545-61. [PMID: 24469446 DOI: 10.1074/jbc.m113.539882] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Periostin (PN), a novel fasciclin-related matricellular protein, has been implicated in cardiac development and postnatal remodeling, but the mechanism remains unknown. We examined the role of PN in mediating intracellular kinase activation for atrioventricular valve morphogenesis using well defined explant cultures, gene transfection systems, and Western blotting. The results show that valve progenitor (cushion) cells secrete PN into the extracellular matrix, where it can bind to INTEGRINs and activate INTEGRIN/focal adhesion kinase signaling pathways and downstream kinases, PI3K/AKT and ERK. Functional assays with prevalvular progenitor cells showed that activating these signaling pathways promoted adhesion, migration, and anti-apoptosis. Through activation of PI3K/ERK, PN directly enhanced collagen expression. Comparing PN-null to WT mice also revealed that expression of hyaluronan (HA) and activation of hyaluronan synthase-2 (Has2) are also enhanced upon PN/INTEGRIN/focal adhesion kinase-mediated activation of PI3K and/or ERK, an effect confirmed by the reduction of HA synthase-2 in PN-null mice. We also identified in valve progenitor cells a potential autocrine signaling feedback loop between PN and HA through PI3K and/or ERK. Finally, in a three-dimensional assay to simulate normal valve maturation in vitro, PN promoted collagen compaction in a kinase-dependent fashion. In summary, this study provides the first direct evidence that PN can act to stimulate a valvulogenic signaling pathway.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Ghatak S, Bogatkevich GS, Atnelishvili I, Akter T, Feghali-Bostwick C, Hoffman S, Fresco VM, Fuchs JC, Visconti RP, Markwald RR, Padhye SB, Silver RM, Hascall VC, Misra S. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease. J Biol Chem 2013; 289:7856-72. [PMID: 24324260 DOI: 10.1074/jbc.m113.505065] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Ghatak S, Vyas A, Misra S, O'Brien P, Zambre A, Fresco VM, Markwald RR, Swamy KV, Afrasiabi Z, Choudhury A, Khetmalas M, Padhye S. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities. Bioorg Med Chem Lett 2013; 24:317-24. [PMID: 24295787 DOI: 10.1016/j.bmcl.2013.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 11/17/2022]
Abstract
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells.
Collapse
Affiliation(s)
- Shibnath Ghatak
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alok Vyas
- ISTRA Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India; Department of Bioinformatics and Computer Science, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Paul O'Brien
- Hematology/Oncology Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ajit Zambre
- Department of Chemistry, Bharati Vidyapeeth, Pune 411007, India
| | - Victor M Fresco
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger R Markwald
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - K Venkateshwara Swamy
- Department of Bioinformatics and Computer Science, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Zahra Afrasiabi
- Department of Life & Physical Sciences, Lincoln University, 820 Chestnut St., Jefferson City, MO 65101, USA
| | - Amitava Choudhury
- Department of Chemistry, Missouri S & T University (formerly University of Missouri-Rolla), Rolla, MO 65409, USA
| | - Madhukar Khetmalas
- Department of Bioinformatics and Computer Science, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Subhash Padhye
- ISTRA Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India.
| |
Collapse
|
54
|
Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 2013; 23:522-32. [PMID: 24012661 DOI: 10.1016/j.semcancer.2013.08.007] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/17/2022]
Abstract
The mutual and interdependent interaction between tumor and its microenvironment is a crucial topic in cancer research. Recently, it was reported that targeting stromal events could improve efficacies of current therapeutics and prevent metastatic spreading. Tumor microenvironment is a "complex network" of different cell types, soluble factors, signaling molecules and extracellular matrix components, which orchestrate the fate of tumor progression. As by definition, cancer stem cells (CSCs) are proposed to be the unique cell type able to maintain tumor mass and survive outside the primary tumor at metastatic sites. Being exposed to environmental stressors, including reactive oxygen species (ROS), CSCs have developed a GSH-dependent antioxidant system to improve ROS defense capability and acquire a malignant phenotype. Nevertheless, tumor progression is dependent on extracellular matrix remodeling, fibroblasts and macrophages activation in response to oxidative stress, as well as epithelial mesenchymal transition (EMT)-inducing signals and endothelial and perivascular cells recruitment. Besides providing a survival advantage by inducing de novo angiogenesis, tumor-associated vessels contribute to successful dissemination by facilitating tumor cells entry into the circulatory system and driving the formation of pre-metastatic niche. In this review, we focus on the synergistic effect of hypoxia inducible factors (HIFs) and vascular endothelial growth factors (VEGFs) in the successful outgrowth of metastasis, integrating therefore many of the emerging models and theories in the field.
Collapse
Affiliation(s)
- Veronica Catalano
- University of Palermo, Department of Surgical and Oncological Sciences, Laboratory of Cellular and Molecular Pathophysiology, Via Liborio Giuffrè, 5, 90127 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
55
|
Zou L, Song X, Yi T, Li S, Deng H, Chen X, Li Z, Bai Y, Zhong Q, Wei Y, Zhao X. Administration of PLGA nanoparticles carrying shRNA against focal adhesion kinase and CD44 results in enhanced antitumor effects against ovarian cancer. Cancer Gene Ther 2013; 20:242-50. [PMID: 23492823 DOI: 10.1038/cgt.2013.12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The two membrane-bound proteins, focal adhesion kinase (FAK) and CD44, are involved in processes critical to cancer progression. FAK has an active role in angiogenesis, cell proliferation and cell apoptosis, whereas the heavily glycosylated CD44 has been implicated in cancer metastasis. Here, using short hairpin RNA (shRNA) against FAK and CD44, we demonstrate that simultaneous knockdown of both these genes inhibits cancer growth more efficiently than knockdown of either gene individually. Plasmids targeting these genes or non-relative control sequences were constructed and delivered to ovarian cancer targets by biodegradable poly D,L-lactide-co-glycolide acid nanoparticles (PLGANPs). Nude mice were utilized in an intraperitoneal model of ovarian carcinomatosis to assess antitumor efficacy in vivo. Single gene knockdown resulted in significantly smaller tumors than those observed in the empty-vector control (P's<0.001). More importantly, knockdown of both genes resulted in tumors smaller than both the empty-vector group (P<0.0001) and the single gene knockdown groups (P's<0.001). Knockdown of both FAK and CD44 resulted in tumors with inhibited angiogenesis, reduced proliferation and increased apoptosis as compared with controls (P's<0.001) and single knockdown groups (P's<0.05). These results indicate that dual knockdown of FAK and CD44 in the tumors of patients with ovarian cancer may have an enhanced therapeutic effect, and point toward a mechanism involving the inhibition of angiogenesis, cellular proliferation and the induction of apoptosis.
Collapse
Affiliation(s)
- L Zou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Misra S, Ghatak S, Patil N, Dandawate P, Ambike V, Adsule S, Unni D, Venkateswara Swamy K, Padhye S. Novel dual cyclooxygenase and lipoxygenase inhibitors targeting hyaluronan-CD44v6 pathway and inducing cytotoxicity in colon cancer cells. Bioorg Med Chem 2013; 21:2551-9. [PMID: 23517721 DOI: 10.1016/j.bmc.2013.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/12/2013] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme have been found to play a role in promoting growth in colon cancer cell lines. The di-tert-butyl phenol class of compounds has been found to inhibit both COX-2 and 5-LOX enzymes with proven effectiveness in arresting tumor growth. In the present study, the structural analogs of 2,6 di-tert-butyl-p-benzoquinone (BQ) appended with hydrazide side chain were found to inhibit COX-2 and 5-LOX enzymes at micromolar concentrations. Molecular docking of the compounds into COX-2 and 5-LOX protein cavities indicated strong binding interactions supporting the observed cytototoxicities. The signaling interaction between endogenous hyaluronan and CD44 has been shown to regulate COX-2 activities through ErbB2 receptor tyrosine kinase (RTK) activation. In the present studies it has been observed for the first time, that three of our COX/5-LOX dual inhibitors inhibit proliferation upon hydrazide substitution and prevent the activity of pro-angiogenic factors in HCA-7, HT-29, Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressed in colon cancer cells, through inhibition of the hyaluronan/CD44v6 cell survival pathway. Since there is a substantial enhancement in the antiproliferative activities of these compounds upon hydrazide substitution, the present work opens up new opportunities for evolving novel active compounds of BQ series for inhibiting colon cancer.
Collapse
Affiliation(s)
- Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavão MS, Tzanakakis GN, Karamanos NK. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 2012; 279:1177-97. [DOI: 10.1111/j.1742-4658.2012.08529.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Jang BI, Li Y, Graham DY, Cen P. The Role of CD44 in the Pathogenesis, Diagnosis, and Therapy of Gastric Cancer. Gut Liver 2011. [PMID: 22195236 DOI: 10.5009/gnl.2 011.5.4.397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD44 is a transmembrane glycoprotein and surface receptor for hyaluronan that is involved in the response of cells to their microenvironment. CD44 splice variants play roles in carcinogenesis, differentiation, and lymph node metastasis and are predictive of the prognosis for various carcinomas, including gastric cancer. Current data suggest that gastric tissue stem cells and gastric cancer stem cells both express the splice variant, CD44v9. Overall, the data regarding the alterations that occur in CD44 and its splice variants in response to acute and chronic infection with Helicobacter pylori are scant and poorly elucidated in terms of possible changes in expression that occur in gastric cancer precursor lesions, such as chronic atrophic gastritis, pyloric metaplasia and intestinal metaplasia. In this study, we discuss the available data and suggest which new data would likely be useful in clinical practice. We also discuss the potential for CD44-targeted therapeutic strategies in gastric cancer. CD44 and its splice variants are positively associated with the initiation and progression of gastric cancer and may also play important roles in diagnosis, therapy and prognosis. CD44 research has been active but fragmented, and it may offer new therapeutic approaches to gastric cancer.
Collapse
Affiliation(s)
- Byung Ik Jang
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
59
|
Jang BI, Li Y, Graham DY, Cen P. The Role of CD44 in the Pathogenesis, Diagnosis, and Therapy of Gastric Cancer. Gut Liver 2011; 5:397-405. [PMID: 22195236 PMCID: PMC3240781 DOI: 10.5009/gnl.2011.5.4.397] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/18/2011] [Accepted: 09/30/2011] [Indexed: 01/06/2023] Open
Abstract
CD44 is a transmembrane glycoprotein and surface receptor for hyaluronan that is involved in the response of cells to their microenvironment. CD44 splice variants play roles in carcinogenesis, differentiation, and lymph node metastasis and are predictive of the prognosis for various carcinomas, including gastric cancer. Current data suggest that gastric tissue stem cells and gastric cancer stem cells both express the splice variant, CD44v9. Overall, the data regarding the alterations that occur in CD44 and its splice variants in response to acute and chronic infection with Helicobacter pylori are scant and poorly elucidated in terms of possible changes in expression that occur in gastric cancer precursor lesions, such as chronic atrophic gastritis, pyloric metaplasia and intestinal metaplasia. In this study, we discuss the available data and suggest which new data would likely be useful in clinical practice. We also discuss the potential for CD44-targeted therapeutic strategies in gastric cancer. CD44 and its splice variants are positively associated with the initiation and progression of gastric cancer and may also play important roles in diagnosis, therapy and prognosis. CD44 research has been active but fragmented, and it may offer new therapeutic approaches to gastric cancer.
Collapse
Affiliation(s)
- Byung Ik Jang
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
60
|
Mukerjee A, Shankardas J, Ranjan AP, Vishwanatha JK. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells. NANOTECHNOLOGY 2011; 22:445101. [PMID: 21990205 PMCID: PMC5624714 DOI: 10.1088/0957-4484/22/44/445101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.
Collapse
Affiliation(s)
- Anindita Mukerjee
- Department of Molecular Biology & Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
61
|
Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 2011; 427:3-20. [PMID: 21798324 DOI: 10.1016/j.ijpharm.2011.07.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022]
Abstract
Gene-based therapeutics hold great promise for medical advancement and have been used to treat various human diseases with mixed success. However, their therapeutic application in vivo is limited due largely to several physiological barriers. The design of non-viral gene vectors with the ability to overcome delivery obstacles is currently under extensive investigation. These efforts have placed an emphasis on the development of multifunctional vectors able to execute multiple tasks to simultaneously overcome both extracellular and intracellular obstacles. However, the assembly of these different functionalities into a single system to create multifunctional gene vectors faces many conflicts that largely limit the safe and efficient application of lipoplexes and polyplexes in a systemic delivery. In the review, we have described the dilemmas inherent in the design of a viable, non-viral gene vector equipped with multiple functionalities. The strategies directed towards individual delivery barriers are first summarized, followed by a focus on the design of so-called smart multifunctional vectors with the capability to overcome the delivery difficulties of gene medicines, including the so-called the "polycation dilemma", the "PEG dilemma" and the "package and release dilemma".
Collapse
Affiliation(s)
- Tao Wang
- Center for Pharmaceutical Biotechnology and Nanomedicine, 312 Mugar Life Sciences Building, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
62
|
Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2011; 278:1429-43. [PMID: 21362138 PMCID: PMC3166356 DOI: 10.1111/j.1742-4658.2011.08071.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as survival, progression and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites and to localize to distant organs. CD44, an adhesion/homing molecule, is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix. CD44, a multistructural and multifunctional molecule, detects changes in extracellular matrix components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-extracellular matrix interactions, cell trafficking, lymph node homing and the presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44 variants (CD44v), especially CD44v4-v7 and CD44v6-v9, in tumor progression has been confirmed for many tumor types in numerous clinical studies. The downregulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be caused by their higher binding affinity than CD44s for hyaluronan. Alternatively, CD44v-specific functions could be caused by differences in associating molecules, which may bind selectively to the CD44v exon. This minireview summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing CD44v can target multiple metastatic tumors.
Collapse
Affiliation(s)
- Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Centre, Box 595, SE-75124 Uppsala, Sweden
| | - Vincent C. Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Nikos K. Karamanos
- Department of Chemistry, Laboratory of Biochemistry, University of Patras, Patras, Greece
| | - Spyros S. Skandalis
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Centre, Box 595, SE-75124 Uppsala, Sweden
| | - Roger R. Markwald
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shibnath Ghatak
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
63
|
Sanders MA, Majumdar APN. Colon cancer stem cells: implications in carcinogenesis. Front Biosci (Landmark Ed) 2011; 16:1651-62. [PMID: 21196254 DOI: 10.2741/3811] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may not be effective against the cancer stem cells that are responsible for recurrence. In recent years great progress has been made in identifying markers of both normal and malignant colon stem cells. Proteins proposed as colon cancer stem cell markers include CD133, CD44, CD166, ALDH1A1, Lgr5, and several others. In this review we consider the evidence for these proteins as colon cancer stem cell markers and as prognostic indicators of colon cancer survival. Additionally, we discuss potential functions of these proteins and the implications this may have for development of therapies that target colon cancer stem cells.
Collapse
Affiliation(s)
- Matthew A Sanders
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
64
|
Ghatak S, Hascall VC, Markwald RR, Misra S. Stromal hyaluronan interaction with epithelial CD44 variants promotes prostate cancer invasiveness by augmenting expression and function of hepatocyte growth factor and androgen receptor. J Biol Chem 2010; 285:19821-32. [PMID: 20200161 PMCID: PMC2888393 DOI: 10.1074/jbc.m110.104273] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432–12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.
Collapse
Affiliation(s)
- Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology and Division of Rheumatology and Immunology, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
65
|
Klopp AH, Woodward WA. Therapeutic strategies to eliminate breast cancer stem cells. CURRENT BREAST CANCER REPORTS 2009. [DOI: 10.1007/s12609-009-0031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
66
|
Krishna ADS, Mandraju RK, Kishore G, Kondapi AK. An efficient targeted drug delivery through apotransferrin loaded nanoparticles. PLoS One 2009; 4:e7240. [PMID: 19806207 PMCID: PMC2752169 DOI: 10.1371/journal.pone.0007240] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/31/2009] [Indexed: 02/07/2023] Open
Abstract
Background Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. Methodology/Principal Findings Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25–50 ηm, which increase to 60–80 ηm upon direct loading of drug (direct-nano), and showed further increase in dimension (75–95 ηm) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression of hepatocellular carcinoma with negligible toxicity to kidney and liver. Conclusions The present study thus demonstrates that the direct-nano is highly efficacious in delivery of drug in a target specific manner with lower toxicity to heart, liver and kidney.
Collapse
Affiliation(s)
| | | | - Golla Kishore
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| | - Anand Kumar Kondapi
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
- * E-mail:
| |
Collapse
|
67
|
Wang SL, Yao HH, Qin ZH. Strategies for short hairpin RNA delivery in cancer gene therapy. Expert Opin Biol Ther 2009; 9:1357-68. [DOI: 10.1517/14712590903236843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|