51
|
New World alphavirus protein interactomes from a therapeutic perspective. Antiviral Res 2019; 163:125-139. [PMID: 30695702 DOI: 10.1016/j.antiviral.2019.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
The New World alphaviruses, Venezuelan, eastern and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are important human pathogens due to their ability to cause varying levels of morbidity and mortality in humans. There is also concern about VEEV and EEEV being used as bioweapons. Currently, a FDA-approved antiviral is lacking for New World alphaviruses. In this review, the function of each viral protein is discussed with an emphasis on how these functions can be targeted by therapeutics. Both direct acting antivirals as well as inhibitors that impact host protein interactions with viral proteins are described. Non-structural protein 3 (nsP3), capsid, and E2 proteins have garnered attention in recent years, whereas little is known regarding host protein interactions of the other viral proteins and is an important avenue for future study.
Collapse
|
52
|
Ferreira-Ramos AS, Li C, Eydoux C, Contreras JM, Morice C, Quérat G, Gigante A, Pérez Pérez MJ, Jung ML, Canard B, Guillemot JC, Decroly E, Coutard B. Approved drugs screening against the nsP1 capping enzyme of Venezuelan equine encephalitis virus using an immuno-based assay. Antiviral Res 2019; 163:59-69. [PMID: 30639438 DOI: 10.1016/j.antiviral.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/28/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Abstract
Alphaviruses such as the Venezuelan equine encephalitis virus (VEEV) are important human emerging pathogens transmitted by mosquitoes. They possess a unique viral mRNA capping mechanism catalyzed by the viral non-structural protein nsP1, which is essential for virus replication. The alphaviruses capping starts by the methylation of a GTP molecule by the N7-guanine methyltransferase (MTase) activity; nsP1 then forms a covalent link with m7GMP releasing pyrophosphate (GT reaction) and the m7GMP is next transferred onto the 5'-diphosphate end of the viral mRNA to form a cap-0 structure. The cap-0 structure decreases the detection of foreign viral RNAs, prevents RNA degradation by cellular exonucleases, and promotes viral RNA translation into proteins. Additionally, reverse-genetic studies have demonstrated that viruses mutated in nsP1 catalytic residues are both impaired towards replication and attenuated. The nsP1 protein is thus considered an attractive antiviral target for drug discovery. We have previously demonstrated that the guanylylation of VEEV nsP1 can be monitored by Western blot analysis using an antibody recognizing the cap structure. In this study, we developed a high throughput ELISA screening assay to monitor the GT reaction through m7GMP-nsP1 adduct quantitation. This assay was validated using known nsP1 inhibitors before screening 1220 approved compounds. 18 compounds inhibiting the nsP1 guanylylation were identified, and their IC50 determined. Compounds from two series were further characterized and shown to inhibit the nsP1 MTase activity. Conversely, these compounds barely inhibited a cellular MTase demonstrating their specificity towards nsP1. Analogues search and SAR were also initiated to identify the active pharmacophore features. Altogether the results show that this HT enzyme-based assay is a convenient way to select potent and specific hit compounds targeting the viral mRNA capping of Alphaviruses.
Collapse
Affiliation(s)
| | - Changqing Li
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Cécilia Eydoux
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | | | - Gilles Quérat
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Alba Gigante
- Instituto de Química Médica (IQM, CSIC), Madrid, Spain
| | | | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Bruno Coutard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.
| |
Collapse
|
53
|
Increasing the Capping Efficiency of the Sindbis Virus nsP1 Protein Negatively Affects Viral Infection. mBio 2018; 9:mBio.02342-18. [PMID: 30538185 PMCID: PMC6299483 DOI: 10.1128/mbio.02342-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses have been the cause of both localized outbreaks and large epidemics of severe disease. Currently, there are no strategies or vaccines which are either safe or effective for preventing alphaviral infection or treating alphaviral disease. This deficit of viable therapeutics highlights the need to better understand the mechanisms behind alphaviral infection in order to develop novel antiviral strategies for treatment of alphaviral disease. In particular, this report details a previously uncharacterized aspect of the alphaviral life cycle: the importance of noncapped genomic viral RNAs for alphaviral infection. This offers new insights into the mechanisms of alphaviral replication and the impact of the noncapped genomic RNAs on viral packaging. Alphaviruses are arthropod-borne RNA viruses that are capable of causing severe disease and are a significant burden to public health. Alphaviral replication results in the production of both capped and noncapped viral genomic RNAs (ncgRNAs), which are packaged into virions during infections of vertebrate and invertebrate cells. However, the roles that the ncgRNAs play during alphaviral infection have yet to be exhaustively characterized. Here, the importance of the ncgRNAs to alphaviral infection was assessed by using mutations of the nsP1 protein of Sindbis virus (SINV), which altered the synthesis of the ncgRNAs during infection by modulating the protein’s capping efficiency. Specifically, point mutations at residues Y286A and N376A decreased capping efficiency whereas a point mutation at D355A increased the capping efficiency of the SINV genomic RNA during genuine viral infection. Viral growth kinetics levels were significantly reduced for the D355A mutant relative to wild-type infection, whereas the Y286A and N376A mutants showed modest decreases in growth kinetics. Overall genomic translation and nonstructural protein accumulation were found to correlate with increases and decreases in capping efficiency. However, genomic, minus-strand, and subgenomic viral RNA synthesis were largely unaffected by the modulation of alphaviral capping activity. In addition, translation of the subgenomic alphaviral RNA (vRNA) was found not to be impacted by changes in capping efficiency. The mechanism by which the decreased presence of ncgRNAs reduced viral growth kinetics levels operated through the impaired production of viral particles. Collectively, these data illustrate the importance of ncgRNAs to viral infection and suggest that they play an integral role in the production of viral progeny.
Collapse
|
54
|
Meshram CD, Agback P, Shiliaev N, Urakova N, Mobley JA, Agback T, Frolova EI, Frolov I. Multiple Host Factors Interact with the Hypervariable Domain of Chikungunya Virus nsP3 and Determine Viral Replication in Cell-Specific Mode. J Virol 2018; 92:e00838-18. [PMID: 29899097 PMCID: PMC6069204 DOI: 10.1128/jvi.00838-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Alphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues.IMPORTANCE Alphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.
Collapse
Affiliation(s)
- Chetan D Meshram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nikita Shiliaev
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nadya Urakova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James A Mobley
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
55
|
Kaur R, Mudgal R, Narwal M, Tomar S. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res 2018; 256:209-218. [PMID: 29958924 DOI: 10.1016/j.virusres.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m7GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m7GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m7G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m7GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m7GMP-nsP1 complex by utilizing anti-m7G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg2+) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC50 values were estimated to be 2.69 μM, 5.72 μM and 1.18 mM, respectively.
Collapse
Affiliation(s)
- Ramanjit Kaur
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajat Mudgal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Manju Narwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
56
|
Narwal M, Singh H, Pratap S, Malik A, Kuhn RJ, Kumar P, Tomar S. Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. Int J Biol Macromol 2018; 116:451-462. [PMID: 29730006 DOI: 10.1016/j.ijbiomac.2018.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-borne pathogenic alphavirus is a growing public health threat. No vaccines or antiviral drug is currently available in the market for chikungunya treatment. nsP2pro, the viral cysteine protease, carries out an essential function of nonstructural polyprotein processing and forms four nonstructural proteins (nsPs) that makes the replication complex, hence constitute a promising drug target. In this study, crystal structure of nsP2pro has been determined at 2.59 Å, which reveals that the protein consists of two subdomains: an N-terminal protease subdomain and a C-terminal methyltransferase subdomain. Structural comparison of CHIKV nsP2pro with structures of other alphavirus nsP2 advances that the substrate binding cleft is present at the interface of two subdomains. Additionally, structure insights revealed that access to the active site and substrate binding cleft is blocked by a flexible interdomain loop in CHIKV nsP2pro. This loop contains His548, the catalytic residue, and Trp549 and Asn547, the residues predicted to bind substrate. Interestingly, mutation of Asn547 leads to three-fold increase in Km confirming that Asn547 plays important role in substrate binding and recognition. This study presents the detailed molecular analysis and signifies the substrate specificity residues of CHIKV nsP2pro, which will be beneficial for structure-based drug design and optimization of CHIKV protease inhibitors.
Collapse
Affiliation(s)
- Manju Narwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harvijay Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anjali Malik
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Richard J Kuhn
- Markey Center for Structural Biology and Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
57
|
Mutso M, Morro AM, Smedberg C, Kasvandik S, Aquilimeba M, Teppor M, Tarve L, Lulla A, Lulla V, Saul S, Thaa B, McInerney GM, Merits A, Varjak M. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus. Viruses 2018; 10:E226. [PMID: 29702546 PMCID: PMC5977219 DOI: 10.3390/v10050226] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.
Collapse
Affiliation(s)
- Margit Mutso
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Ainhoa Moliner Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Cecilia Smedberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | | | - Mona Teppor
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Liisi Tarve
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Aleksei Lulla
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Valeria Lulla
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Sirle Saul
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| | - Margus Varjak
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
58
|
Feibelman KM, Fuller BP, Li L, LaBarbera DV, Geiss BJ. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res 2018; 154:124-131. [PMID: 29680670 DOI: 10.1016/j.antiviral.2018.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies.
Collapse
Affiliation(s)
- Kristen M Feibelman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Benjamin P Fuller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
59
|
Nonstructural Proteins of Alphavirus-Potential Targets for Drug Development. Viruses 2018; 10:v10020071. [PMID: 29425115 PMCID: PMC5850378 DOI: 10.3390/v10020071] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o'nyong'nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.
Collapse
|
60
|
Sharma R, Kesari P, Kumar P, Tomar S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018; 515:223-234. [DOI: 10.1016/j.virol.2017.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
61
|
Kumar S, Kumar A, Mamidi P, Tiwari A, Kumar S, Mayavannan A, Mudulli S, Singh AK, Subudhi BB, Chattopadhyay S. Chikungunya virus nsP1 interacts directly with nsP2 and modulates its ATPase activity. Sci Rep 2018; 8:1045. [PMID: 29348627 PMCID: PMC5773547 DOI: 10.1038/s41598-018-19295-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/27/2017] [Indexed: 01/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus, which has created an alarming threat in the world due to unavailability of vaccine and antiviral compounds. The CHIKV nsP2 contains ATPase, RTPase, helicase and protease activities, whereas, nsP1 is a viral capping enzyme. In alphaviruses, the four non-structural proteins form the replication complex in the cytoplasm and this study characterizes the interaction between CHIKV nsP1 and nsP2. It was observed that, both the proteins co-localize in the cytoplasm and interact in the CHIKV infected cells by confocal microscopy and immunoprecipitation assay. Further, it was demonstrated through mutational analysis that, the amino acids 1-95 of nsP2 and 170-288 of nsP1 are responsible for their direct interaction. Additionally, it was noticed that, the ATPase activity of nsP2 is enhanced in the presence of nsP1, indicating the functional significance of this interaction. In silico analysis showed close (≤1.7 Å) polar interaction (hydrogen bond) between Glu4, Arg7, 96, 225 of nsP2 with Lys256, 206, Val367 and Phe312 of nsP1 respectively. Hence, this investigation provides molecular characterization of CHIKV nsP1-nsP2 interaction which might be a useful target for rational designing of antiviral drugs.
Collapse
Affiliation(s)
| | | | | | - Atul Tiwari
- Banaras Hindu University, Varanasi, U.P., India
| | | | | | | | | | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, India
| | | |
Collapse
|
62
|
Abstract
Chikungunya virus (CHIKV) was discovered more than six decades ago, but has remained poorly investigated. However, after a recent outbreak of CHIK fever in both hemispheres and viral adaptation to new species of mosquitoes, it has attracted a lot of attention. The currently available experimental data suggest that molecular mechanisms of CHIKV replication in vertebrate and mosquito cells are similar to those of other New and Old World alphaviruses. However, this virus exhibits a number of unique characteristics that distinguish it from the other, better studied members of the alphavirus genus. This review is an attempt to summarize the data accumulated thus far regarding the molecular mechanisms of alphavirus RNA replication and interaction with host cells. Emphasis was placed on demonstrating the distinct features of CHIKV in utilizing host factors to build replication complexes and modify the intracellular environment for efficient viral replication and inhibition of the innate immune response. The available data suggest that our knowledge about alphavirus replication contains numerous gaps that potentially hamper the development of new therapeutic means against CHIKV and other pathogenic alphaviruses.
Collapse
Affiliation(s)
- I Frolov
- Department of Microbiology, University of Alabama at Birmingham, 1720 2nd Ave South, BBRB373/Box 3, 35294-2170, Birmingham, AL, USA.
| | - E I Frolova
- Department of Microbiology, University of Alabama at Birmingham, 1720 2nd Ave South, BBRB373/Box 3, 35294-2170, Birmingham, AL, USA
| |
Collapse
|
63
|
Inhibition of chikungunya virus by picolinate that targets viral capsid protein. Virology 2016; 498:265-276. [DOI: 10.1016/j.virol.2016.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/13/2023]
|
64
|
Pseudo-typed Semliki Forest virus delivers EGFP into neurons. J Neurovirol 2016; 23:205-215. [PMID: 27739033 DOI: 10.1007/s13365-016-0486-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022]
Abstract
Semliki Forest virus (SFV), a neurotropic virus, has been used to deliver heterologous genes into cells in vitro and in vivo. In this study, we constructed a reporter SFV4-FL-EGFP and found that it can deliver EGFP into neurons located at the injection site without disseminating throughout the brain. Lacking of the capsid gene of SFV4-FL-EGFP does not block its life cycle, while forming replication-competent virus-like particles (VLPs). These VLPs hold subviral genome by using the packaging sequence (PS) located within the nsP2 gene, and can transfer their genome into cells. In addition, we found that the G protein of vesicular stomatitis virus (VSVG) can package SFV subviral genome, which is consistent with the previous reports. The G protein of rabies virus (RVG) could also package SFV subviral genome. These pseudo-typed SFV can deliver EGFP gene into neurons. Taken together, these findings may be used to construct various SFV-based delivery systems for virological studies, gene therapy, and neural circuit labeling.
Collapse
|
65
|
The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. Sci Rep 2016; 6:31819. [PMID: 27545976 PMCID: PMC4992889 DOI: 10.1038/srep31819] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022] Open
Abstract
The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections.
Collapse
|
66
|
A Sensitive and Robust High-Throughput Screening Assay for Inhibitors of the Chikungunya Virus nsP1 Capping Enzyme. PLoS One 2016; 11:e0158923. [PMID: 27427769 PMCID: PMC4948833 DOI: 10.1371/journal.pone.0158923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus that causes severe and debilitating disease symptoms. Alarmingly, transmission rates of CHIKV have increased dramatically over the last decade resulting in 1.7 million suspected cases in the Western hemisphere alone. There are currently no antivirals for treatment of CHIKV infection and novel anti-alphaviral compounds are badly needed. nsP1 is the alphavirus protein responsible for the methyltransferase and guanylyltransferase activities necessary for formation of the 5’ type 0 cap structure added to newly formed viral RNA. Formation of this cap depends on nsP1 binding GTP and transferring a methylated GMP to nascent viral RNA. We have developed a fluorescence polarization-based assay that monitors displacement of a fluorescently-labeled GTP analog in real time. Determining the relative affinities of 15 GTP analogs for nsP1 GTP revealed important structural aspects of GTP that will inform identification of inhibitors able to outcompete GTP for the nsP1 binding site. Validation of the assay for HTS was completed and a secondary orthogonal assay that measures guanylation activity was developed in order to evaluate hits from future drug screens. This platform provides an avenue for identification of potent nsP1 inhibitors, which would potentially provide compounds capable of treating disease caused by CHIKV infection.
Collapse
|
67
|
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res 2016; 44:7511-26. [PMID: 27317694 PMCID: PMC5027499 DOI: 10.1093/nar/gkw551] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.
Collapse
Affiliation(s)
- Anand Ramanathan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - G Brett Robb
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
68
|
RNA Replication and Membrane Modification Require the Same Functions of Alphavirus Nonstructural Proteins. J Virol 2015; 90:1687-92. [PMID: 26581991 DOI: 10.1128/jvi.02484-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023] Open
Abstract
The alphaviruses induce membrane invaginations known as spherules as their RNA replication sites. Here, we show that inactivation of any function (polymerase, helicase, protease, or membrane association) essential for RNA synthesis also prevents the generation of spherule structures in a Semliki Forest virus trans-replication system. Mutants capable of negative-strand synthesis, including those defective in RNA capping, gave rise to spherules. Recruitment of RNA to membranes in the absence of spherule formation was not detected.
Collapse
|
69
|
Differences in Processing Determinants of Nonstructural Polyprotein and in the Sequence of Nonstructural Protein 3 Affect Neurovirulence of Semliki Forest Virus. J Virol 2015; 89:11030-45. [PMID: 26311875 DOI: 10.1128/jvi.01186-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/19/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The A7(74) strain of Semliki Forest virus (SFV; genus Alphavirus) is avirulent in adult mice, while the L10 strain is virulent in mice of all ages. It has been previously demonstrated that this phenotypic difference is associated with nonstructural protein 3 (nsP3). Consensus clones of L10 (designated SFV6) and A7(74) (designated A774wt) were used to construct a panel of recombinant viruses. The insertion of nsP3 from A774wt into the SFV6 backbone had a minor effect on the virulence of the resulting recombinant virus. Conversely, insertion of nsP3 from SFV6 into the A774wt backbone or replacement of A774wt nsP3 with two copies of nsP3 from SFV6 resulted in virulent viruses. Unexpectedly, duplication of nsP3-encoding sequences also resulted in elevated levels of nsP4, revealing that nsP3 is involved in the stabilization of nsP4. Interestingly, replacement of nsP3 of SFV6 with that of A774wt resulted in a virulent virus; the virulence of this recombinant was strongly reduced by functionally coupled substitutions for amino acid residues 534 (P4 position of the cleavage site between nsP1 and nsP2) and 1052 (S4 subsite residue of nsP2 protease) in the nonstructural polyprotein. Pulse-chase experiments revealed that A774wt and avirulent recombinant virus were characterized by increased processing speed of the cleavage site between nsP1 and nsP2. A His534-to-Arg substitution specifically activated this cleavage, while a Val1052-to-Glu substitution compensated for this effect by reducing the basal protease activity of nsP2. These findings provide a link between nonstructural polyprotein processing and the virulence of SFV. IMPORTANCE SFV infection of mice provides a well-characterized model to study viral encephalitis. SFV also serves as a model for studies of alphavirus molecular biology and host-pathogen interactions. Thus far, the genetic basis of different properties of SFV strains has been studied using molecular clones, which often contain mistakes originating from standard cDNA synthesis and cloning procedures. Here, for the first time, consensus clones of SFV strains were used to map virulence determinants. Existing data on the importance of nsP3 for virulent phenotypes were confirmed, another determinant of neurovirulence and its molecular basis was characterized, and a novel function of nsP3 was identified. These findings provide links between the molecular biology of SFV and its biological properties and significantly increase our understanding of the basis of alphavirus-induced pathology. In addition, the usefulness of consensus clones as tools for studies of alphaviruses was demonstrated.
Collapse
|
70
|
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 2015. [PMID: 26219641 DOI: 10.1099/jgv.0.000249] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.
Collapse
Affiliation(s)
- Jonathan C Rupp
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Kevin J Sokoloski
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Natasha N Gebhart
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Richard W Hardy
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| |
Collapse
|
71
|
mRNA Capping by Venezuelan Equine Encephalitis Virus nsP1: Functional Characterization and Implications for Antiviral Research. J Virol 2015; 89:8292-303. [PMID: 26041283 DOI: 10.1128/jvi.00599-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/19/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Alphaviruses are known to possess a unique viral mRNA capping mechanism involving the viral nonstructural protein nsP1. This enzyme harbors methyltransferase (MTase) and nsP1 guanylylation (GT) activities catalyzing the transfer of the methyl group from S-adenosylmethionine (AdoMet) to the N7 position of a GTP molecule followed by the formation of an m(7)GMP-nsP1 adduct. Subsequent transfer of m(7)GMP onto the 5' end of the viral mRNA has not been demonstrated in vitro yet. Here we report the biochemical characterization of Venezuelan equine encephalitis virus (VEEV) nsP1. We have developed enzymatic assays uncoupling the different reactions steps catalyzed by nsP1. The MTase and GT reaction activities were followed using a nonhydrolyzable GTP (GIDP) substrate and an original Western blot assay using anti-m3G/m(7)G-cap monoclonal antibody, respectively. The GT reaction is stimulated by S-adenosyl-l-homocysteine (Ado-Hcy), the product of the preceding MTase reaction, and metallic ions. The covalent linking between nsP1 and m(7)GMP involves a phosphamide bond between the nucleotide and a histidine residue. Final guanylyltransfer onto RNA was observed for the first time with an alphavirus nsP1 using a 5'-diphosphate RNA oligonucleotide whose sequence corresponds to the 5' end of the viral genome. Alanine scanning mutagenesis of residues H37, H45, D63, E118, Y285, D354, R365, N369, and N375 revealed their respective roles in MT and GT reactions. Finally, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA), and ribavirin triphosphate on MTase and capping reactions were investigated, providing possible avenues for antiviral research. IMPORTANCE Emergence or reemergence of alphaviruses represents a serious health concern, and the elucidation of their replication mechanisms is a prerequisite for the development of specific inhibitors targeting viral enzymes. In particular, alphaviruses are able, through an original reaction sequence, to add to their mRNA a cap required for their protection against cellular nucleases and initiation of viral proteins translation. In this study, the capping of a 5' diphosphate synthetic RNA mimicking the 5' end of an alphavirus mRNA was observed in vitro for the first time. The different steps for this capping are performed by the nonstructural protein 1 (nsP1). Reference compounds known to target the viral capping inhibited nsP1 enzymatic functions, highlighting the value of this enzyme in antiviral development.
Collapse
|
72
|
Ahola T, Karlin DG. Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses. Biol Direct 2015; 10:16. [PMID: 25886938 PMCID: PMC4392871 DOI: 10.1186/s13062-015-0050-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
Background Members of the alphavirus supergroup include human pathogens such as chikungunya virus, hepatitis E virus and rubella virus. They encode a capping enzyme with methyltransferase-guanylyltransferase (MTase-GTase) activity, which is an attractive drug target owing to its unique mechanism. However, its experimental study has proven very difficult. Results We examined over 50 genera of viruses by sequence analyses. Earlier studies showed that the MTase-GTase contains a “Core” region conserved in sequence. We show that it is followed by a long extension, which we termed “Iceberg” region, whose secondary structure, but not sequence, is strikingly conserved throughout the alphavirus supergroup. Sequence analyses strongly suggest that the minimal capping domain corresponds to the Core and Iceberg regions combined, which is supported by earlier experimental data. The Iceberg region contains all known membrane association sites that contribute to the assembly of viral replication factories. We predict that it may also contain an overlooked, widely conserved membrane-binding amphipathic helix. Unexpectedly, we detected a sequence homolog of the alphavirus MTase-GTase in taxa related to nodaviruses and to chronic bee paralysis virus. The presence of a capping enzyme in nodaviruses is biologically consistent, since they have capped genomes but replicate in the cytoplasm, where no cellular capping enzyme is present. The putative MTase-GTase domain of nodaviruses also contains membrane-binding sites that may drive the assembly of viral replication factories, revealing an unsuspected parallel with the alphavirus supergroup. Conclusions Our work will guide the functional analysis of the alphaviral MTase-GTase and the production of domains for structure determination. The identification of a homologous domain in a simple model system, nodaviruses, which replicate in numerous eukaryotic cell systems (yeast, flies, worms, mammals, and plants), can further help crack the function and structure of the enzyme. Reviewers This article was reviewed by Valerian Dolja, Eugene Koonin and Sebastian Maurer-Stroh. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0050-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| | - David G Karlin
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. .,The Division of Structural Biology, Henry Wellcome Building, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
73
|
Noncapped Alphavirus Genomic RNAs and Their Role during Infection. J Virol 2015; 89:6080-92. [PMID: 25833042 DOI: 10.1128/jvi.00553-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/21/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Alphaviruses are enveloped positive-sense RNA viruses that exhibit a wide host range consisting of vertebrate and invertebrate species. Previously we have reported that the infectivity of Sindbis virus (SINV), the model alphavirus, was largely a function of the cell line producing the viral particles. Mammalian-cell-derived SINV particles, on average, exhibit a higher particle-to-PFU ratio than mosquito cell-derived SINV particles. Nevertheless, the outcome of nonproductive infection, the molecular traits that determine particle infectivity and the biological importance of noninfectious particles were, prior to this study, unknown. Here, we report that the incoming genomic RNAs of noninfectious SINV particles undergo rapid degradation following infection. Moreover, these studies have led to the identification of the absence of the 5' cap structure as a primary molecular determinant of particle infectivity. We show that the genomic RNAs of alphaviruses are not universally 5' capped, with a significant number of noncapped genomic RNA produced early in infection. The production of noncapped viral genomic RNAs is important to the establishment and maintenance of alphaviral infection. IMPORTANCE This report is of importance to the field of virology for three reasons. First, these studies demonstrate that noncapped Sindbis virus particles are produced as a result of viral RNA synthesis. Second, this report is, to our knowledge, the first instance of the direct measurement of the half-life of an incoming genomic RNA from a positive-sense RNA virus. Third, these studies indicate that alphaviral infection is likely a concerted effort of infectious and noninfectious viral particles.
Collapse
|
74
|
Ma DY, Suthar MS. Mechanisms of innate immune evasion in re-emerging RNA viruses. Curr Opin Virol 2015; 12:26-37. [PMID: 25765605 PMCID: PMC4470747 DOI: 10.1016/j.coviro.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
RNA viruses passively evade host detection by masking viral PAMPs and replicating within vesicles. Many emerging viruses harbor multiple strategies for innate immune evasion. Viral antagonists have been found to target the pattern recognition receptor and interferon signaling pathways. Knowledge of host–pathogen interactions is essential for vaccine/therapeutic development and understanding innate immunity.
Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus–host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
75
|
Guillén J, Lichière J, Rabah N, Beitzel BF, Canard B, Coutard B. Structural and biophysical analysis of sequence insertions in the Venezuelan Equine Encephalitis Virus macro domain. Virus Res 2015; 201:94-100. [PMID: 25725151 DOI: 10.1016/j.virusres.2015.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Random transposon insertions in viral genomes can be used to reveal genomic regions important for virus replication. We used these genomic data to evaluate at the protein level the effect of such insertions on the Venezuelan Equine Encephalitis Virus nsP3 macro domain. The structural analysis showed that transposon insertions occur mainly in loops connecting the secondary structure elements. Some of the insertions leading to a temperature sensitive viral phenotype (ts) are close to the cleavage site between nsP2 and nsP3 or the ADP-ribose binding site, two important functions of the macro domain. Using four mutants mimicking the transposon insertions, we confirmed that these insertions can affect the macro domain properties without disrupting the overall structure of the protein.
Collapse
Affiliation(s)
- Jaime Guillén
- CNRS, AFMB UMR 7257, 13288, Marseille, France; Aix-Marseille Université, AFMB UMR 7257, 13288, Marseille, France
| | - Julie Lichière
- CNRS, AFMB UMR 7257, 13288, Marseille, France; Aix-Marseille Université, AFMB UMR 7257, 13288, Marseille, France
| | - Nadia Rabah
- CNRS, AFMB UMR 7257, 13288, Marseille, France; Aix-Marseille Université, AFMB UMR 7257, 13288, Marseille, France
| | - Brett F Beitzel
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702, United States
| | - Bruno Canard
- CNRS, AFMB UMR 7257, 13288, Marseille, France; Aix-Marseille Université, AFMB UMR 7257, 13288, Marseille, France
| | - Bruno Coutard
- CNRS, AFMB UMR 7257, 13288, Marseille, France; Aix-Marseille Université, AFMB UMR 7257, 13288, Marseille, France.
| |
Collapse
|
76
|
Mutations conferring a noncytotoxic phenotype on chikungunya virus replicons compromise enzymatic properties of nonstructural protein 2. J Virol 2014; 89:3145-62. [PMID: 25552719 DOI: 10.1128/jvi.03213-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E117K (EK) substitution or a GEEGS sequence insertion after residue T647 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the establishment of experimental systems that can be used to conduct virus replication studies at a lower biosafety level. We applied a functional selection approach to develop, for the first time, a noncytotoxic CHIKV replicon capable of persisting in human cell lines. We anticipate that this safe and efficient research tool will be valuable for screening CHIKV replication inhibitors and for identifying and analyzing host factors involved in viral replication. We also analyzed, from virological and protein biochemistry perspectives, the functional defects caused by mutations conferring noncytotoxic phenotypes; we found that all known enzymatic activities of CHIKV nsP2, as well as its RNA-binding capability, were compromised by these mutations, which led to a reduced capacity for replication.
Collapse
|
77
|
Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 2014; 194:90-9. [PMID: 25451065 PMCID: PMC7114481 DOI: 10.1016/j.virusres.2014.10.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 10/30/2022]
Abstract
The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world.
Collapse
Affiliation(s)
- Marion Sevajol
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Lorenzo Subissi
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Etienne Decroly
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Isabelle Imbert
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
78
|
Biswas P, Kundu A, Ghosh AK. Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases. J Gen Virol 2014; 96:95-105. [PMID: 25228490 DOI: 10.1099/vir.0.069716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5' RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2'-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N(7)-and ribose 2'-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5' G*pppG end showed that guanine N(7) methylation occurred prior to the ribose 2'-O methylation to yield a m(7)GpppG/m(7)GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N(7)- and 2'-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the Km values of N(7)-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5' end of viral RNA.
Collapse
Affiliation(s)
- Poulomi Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anirban Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
79
|
Rana J, Rajasekharan S, Gulati S, Dudha N, Gupta A, Chaudhary VK, Gupta S. Network mapping among the functional domains of Chikungunya virus nonstructural proteins. Proteins 2014; 82:2403-11. [PMID: 24825751 DOI: 10.1002/prot.24602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 11/11/2022]
Abstract
Formation of virus specific replicase complex is among the most important steps that determines the fate of viral transcription and replication during Chikungunya virus (CHIKV) infection. In the present study, the authors have computationally generated a 3D structure of CHIKV late replicase complex on the basis of the interactions identified among the domains of CHIKV nonstructural proteins (nsPs) which make up the late replicase complex. The interactions among the domains of CHIKV nsPs were identified using systems such as pull down, protein interaction ELISA, and yeast two-hybrid. The structures of nsPs were generated using I-TASSER and the biological assembly of the replicase complex was determined using ZRANK and RDOCK. A total of 36 interactions among the domains and full length proteins were tested and 12 novel interactions have been identified. These interactions included the homodimerization of nsP1 and nsP4 through their respective C-ter domains; the associations of nsP2 helicase domain and C-ter domain of nsP4 with methyltransferase and membrane binding domains of nsP1; the interaction of nsP2 protease domain with C-ter domain of nsP4; and the interaction of nsP3 macro and alphavirus unique domains with the C-ter domain of nsP1. The novel interactions identified in the current study form a network of organized associations that suggest the spatial arrangement of nsPs in the late replicase complex of CHIKV.
Collapse
Affiliation(s)
- Jyoti Rana
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, 201307, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
80
|
Dong H, Fink K, Züst R, Lim SP, Qin CF, Shi PY. Flavivirus RNA methylation. J Gen Virol 2014; 95:763-778. [PMID: 24486628 DOI: 10.1099/vir.0.062208-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 5' end of eukaryotic mRNA contains the type-1 (m7GpppNm) or type-2 (m7GpppNmNm) cap structure. Many viruses have evolved various mechanisms to develop their own capping enzymes (e.g. flavivirus and coronavirus) or to 'steal' caps from host mRNAs (e.g. influenza virus). Other viruses have developed 'cap-mimicking' mechanisms by attaching a peptide to the 5' end of viral RNA (e.g. picornavirus and calicivirus) or by having a complex 5' RNA structure (internal ribosome entry site) for translation initiation (e.g. picornavirus, pestivirus and hepacivirus). Here we review the diverse viral RNA capping mechanisms. Using flavivirus as a model, we summarize how a single methyltransferase catalyses two distinct N-7 and 2'-O methylations of viral RNA cap in a sequential manner. For antiviral development, a structural feature unique to the flavivirus methyltransferase was successfully used to design selective inhibitors that block viral methyltransferase without affecting host methyltransferases. Functionally, capping is essential for prevention of triphosphate-triggered innate immune activation; N-7 methylation is critical for enhancement of viral translation; and 2'-O methylation is important for subversion of innate immune response during viral infection. Flaviviruses defective in 2'-O methyltransferase are replicative, but their viral RNAs lack 2'-O methylation and are recognized and eliminated by the host immune response. Such mutant viruses could be rationally designed as live attenuated vaccines. This concept has recently been proved with Japanese encephalitis virus and dengue virus. The findings obtained with flavivirus should be applicable to other RNA viruses.
Collapse
Affiliation(s)
- Hongping Dong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Roland Züst
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Siew Pheng Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670, Singapore
| | - Cheng-Feng Qin
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670, Singapore
| |
Collapse
|
81
|
Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity. J Virol 2014; 88:4251-64. [PMID: 24478444 DOI: 10.1128/jvi.03571-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2'-O-methyltransferase (2'-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2'-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2'-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2'-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2'-O-MTase activity to subvert the immune system. IMPORTANCE Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2'-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and activation of cell intrinsic defense pathways. For SARS-CoV, the absence of this 2'-O-MTase activity results in significant attenuation characterized by decreased viral replication, reduced weight loss, and limited breathing dysfunction in mice. The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence. Understanding this virus-host interaction provided an opportunity to design a successful live-attenuated vaccine for SARS-CoV and opens avenues for treatment and prevention of emerging CoVs and other RNA virus infections.
Collapse
|
82
|
Das PK, Merits A, Lulla A. Functional cross-talk between distant domains of chikungunya virus non-structural protein 2 is decisive for its RNA-modulating activity. J Biol Chem 2014; 289:5635-53. [PMID: 24407286 DOI: 10.1074/jbc.m113.503433] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chikungunya virus (CHIKV) non-structural protein 2 (nsP2) is a multifunctional protein that is considered a master regulator of the viral life cycle and a main viral factor responsible for cytopathic effects and subversion of antiviral defense. The C-terminal part of nsP2 possesses protease activity, whereas the N-terminal part exhibits NTPase and RNA triphosphatase activity and is proposed to have helicase activity. Bioinformatics analysis classified CHIKV nsP2 into helicase superfamily 1. However, the biochemical significance of a coexistence of two functionally unrelated modules in this single protein remains unknown. In this study, recombinant nsP2 demonstrated unwinding of double-stranded RNA in a 5'-3' directionally biased manner and RNA strand annealing activity. Comparative analysis of NTPase and helicase activities of wild type nsP2 with enzymatic capabilities of different truncated or N-terminally extended variants of nsP2 revealed that the C-terminal part of the protein is indispensable for helicase functionality and presumably provides a platform for RNA binding, whereas the N-terminal-most region is apparently involved in obtaining a conformation of nsP2 that allows for its maximal enzymatic activities. The establishment of the protocols for the production of biochemically active CHIKV nsP2 and optimization of the parameters for helicase and NTPase assays are expected to provide the starting point for a further search of possibilities for therapeutic interventions to suppress alphaviral infections.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- From the Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | | |
Collapse
|
83
|
Hypervariable domain of nonstructural protein nsP3 of Venezuelan equine encephalitis virus determines cell-specific mode of virus replication. J Virol 2013; 87:7569-84. [PMID: 23637407 DOI: 10.1128/jvi.00720-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. This genus is divided into the Old World and New World alphaviruses, which demonstrate profound differences in pathogenesis, replication, and virus-host interactions. VEEV is a representative member of the New World alphaviruses. The biology of this virus is still insufficiently understood, particularly the function of its nonstructural proteins in RNA replication and modification of the intracellular environment. One of these nonstructural proteins, nsP3, contains a hypervariable domain (HVD), which demonstrates very low overall similarity between different alphaviruses, suggesting the possibility of its function in virus adaptation to different hosts and vectors. The results of our study demonstrate the following. (i) Phosphorylation of the VEEV nsP3-specific HVD does not play a critical role in virus replication in cells of vertebrate origin but is important for virus replication in mosquito cells. (ii) The VEEV HVD is not required for viral RNA replication in the highly permissive BHK-21 cell line. In fact, it can be either completely deleted or replaced by a heterologous protein sequence. These variants require only one or two additional adaptive mutations in nsP3 and/or nsP2 proteins to achieve an efficiently replicating phenotype. (iii) However, the carboxy-terminal repeat in the VEEV HVD is indispensable for VEEV replication in the cell lines other than BHK-21 and plays a critical role in formation of VEEV-specific cytoplasmic protein complexes. Natural VEEV variants retain at least one of the repeated elements in their nsP3 HVDs.
Collapse
|
84
|
Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM. BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 2013; 438:37-49. [PMID: 23411007 DOI: 10.1016/j.virol.2013.01.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/28/2012] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus transmitted by Aedes mosquitoes. Infection with CHIKV elicits a type I interferon response that facilities virus clearance, probably through the action of down-stream effectors such as antiviral IFN-stimulated genes (ISGs). Bone marrow stromal antigen 2 (BST-2) is an ISG shown to restrict HIV-1 replication by preventing the infection of bystander cells by tethering progeny virions on the surface of infected cells. Here we show that enrichment of cell surface BST-2 results in retention of CHIKV virus like particles (VLPs) on the cell membrane. BST-2 was found to co-localize with CHIKV structural protein E1 in the context of VLPs without any noticeable effect on BST-2 level. However, CHIKV nonstructural protein 1 (nsP1) overcomes BST-2-mediated VLPs tethering by down-regulating BST-2 expression. We conclude that BST-2 tethers CHIKV VLPs on the host cell plasma membrane and identify CHIKV nsP1 as a novel BST-2 antagonist.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
85
|
Sreejith R, Rana J, Dudha N, Kumar K, Gabrani R, Sharma SK, Gupta A, Vrati S, Chaudhary VK, Gupta S. Mapping interactions of Chikungunya virus nonstructural proteins. Virus Res 2012; 169:231-6. [PMID: 22951312 DOI: 10.1016/j.virusres.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022]
Abstract
The four nonstructural proteins (nsPs1-4) of Chikungunya virus (CHIKV) play important roles involving enzymatic activities and specific interactions with both viral and host components, during different stages of viral pathogenesis. Elucidation of the presence and/or absence of interactions among nsPs in a systematic manner is thus of scientific interest. In the current study, each pair-wise combination among the four nonstructural proteins of CHIKV was systematically analyzed for possible interactions. Six novel protein interactions were identified for CHIKV, using systems such as yeast two-hybrid, GST pull down and ELISA, three of which have not been previously reported for the genus Alphavirus. These interactions form a network of organized associations that suggest the spatial arrangement of nonstructural proteins in the late replicase complex. The study identified novel interactions as well as concurred with previously described associations in related alphaviruses.
Collapse
Affiliation(s)
- R Sreejith
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201 307, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ferron F, Decroly E, Selisko B, Canard B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012; 96:21-31. [PMID: 22841701 PMCID: PMC7114304 DOI: 10.1016/j.antiviral.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
Most viruses modify their genomic and mRNA 5′-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5′–3′ exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5′-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique and Aix-Marseille Université, UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
87
|
Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 2011; 10:51-65. [PMID: 22138959 PMCID: PMC7097100 DOI: 10.1038/nrmicro2675] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNAs are protected at their 5′ ends by a cap structure consisting of an N7-methylated GTP molecule linked to the first transcribed nucleotide by a 5′–5′ triphosphate bond. The cap structure is essential for RNA splicing, export and stability, and allows the ribosomal complex to recognize mRNAs and ensure their efficient translation. Uncapped RNA molecules are degraded in cytoplasmic granular compartments called processing bodies and may be detected as 'non-self' by the host cell, triggering antiviral innate immune responses through the production of interferons. Conventional RNA capping (that is, of mRNAs from the host cell and from DNA viruses) requires hydrolysis of the 5′ γ-phosphate of RNA by an RNA triphosphatase, transfer of a GMP molecule onto the 5′-end of RNA by a guanylyltransferase, and methylation of this guanosine by an (guanine-N7)-methyltransferase. Subsequent methylations on the first and second transcribed nucleotides by (nucleoside-2′-O)-methyltransferases form cap-1 and cap-2 structures. Viruses have evolved highly diverse capping mechanisms to acquire cap structures using their own or cellular capping machineries, or by stealing cap structures from cellular mRNAs. Virally encoded RNA-capping machineries are diverse in terms of their genetic components, protein domain organization, enzyme structures, and reaction mechanisms and pathways, making viral RNA capping an attractive target for antiviral-drug design.
Capping the 5′ end of eukaryotic mRNAs with a 7-methylguanosine moiety enables efficient splicing, nuclear export and translation of mRNAs, and also limits their degradation by cellular exonucleases. Here, Canard and colleagues describe how viruses synthesize their own mRNA cap structures or steal them from host mRNAs, allowing efficient synthesis of viral proteins and avoidance of host innate immune responses. In the eukaryotic cell, capping of mRNA 5′ ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5′–3′ exonucleases and allows recognition of foreign RNAs (including viral transcripts) as 'non-self'. However, viruses have evolved mechanisms to protect their RNA 5′ ends with either a covalently attached peptide or a cap moiety (7-methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5′-caps and escape innate immunity.
Collapse
Affiliation(s)
- Etienne Decroly
- Centre National de Recherche Scientifique and Aix-Marseille Université, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | | | | | | |
Collapse
|
88
|
Replication of alphaviruses: a review on the entry process of alphaviruses into cells. Adv Virol 2011; 2011:249640. [PMID: 22312336 PMCID: PMC3265296 DOI: 10.1155/2011/249640] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/03/2011] [Indexed: 02/04/2023] Open
Abstract
Alphaviruses are small, enveloped viruses, ~70 nm in diameter, containing a single-stranded, positive-sense, RNA genome. Viruses belonging to this genus are predominantly arthropod-borne viruses, known to cause disease in humans. Their potential threat to human health was most recently exemplified by the 2005 Chikungunya virus outbreak in La Reunion, highlighting the necessity to understand events in the life-cycle of these medically important human pathogens. The replication and propagation of viruses is dependent on entry into permissive cells. Viral entry is initiated by attachment of virions to cells, leading to internalization, and uncoating to release genetic material for replication and propagation. Studies on alphaviruses have revealed entry via a receptor-mediated, endocytic pathway. In this paper, the different stages of alphavirus entry are examined, with examples from Semliki Forest virus, Sindbis virus, Chikungunya virus, and Venezuelan equine encephalitis virus described.
Collapse
|
89
|
Singh KD, Kirubakaran P, Nagarajan S, Sakkiah S, Muthusamy K, Velmurgan D, Jeyakanthan J. Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. J Mol Model 2011; 18:39-51. [PMID: 21445710 DOI: 10.1007/s00894-011-1018-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
Abstract
To date, no suitable vaccine or specific antiviral drug is available to treat Chikungunya viral (CHIKV) fever. Hence, it is essential to identify drug candidates that could potentially impede CHIKV infection. Here, we present the development of a homology model of nsP2 protein based on the crystal structure of the nsP2 protein of Venezuelan equine encephalitis virus (VEEV). The protein modeled was optimized using molecular dynamics simulation; the junction peptides of a nonstructural protein complex were then docked in order to investigate the possible protein-protein interactions between nsP2 and the proteins cleaved by nsP2. The modeling studies conducted shed light on the binding modes, and the critical interactions with the peptides provide insight into the chemical features needed to inhibit the CHIK virus infection. Energy-optimized pharmacophore mapping was performed using the junction peptides. Based on the results, we propose the pharmacophore features that must be present in an inhibitor of nsP2 protease. The resulting pharmacophore model contained an aromatic ring, a hydrophobic and three hydrogen-bond donor sites. Using these pharmacophore features, we screened a large public library of compounds (Asinex, Maybridge, TOSLab, Binding Database) to find a potential ligand that could inhibit the nsP2 protein. The compounds that yielded a fitness score of more than 1.0 were further subjected to Glide HTVS and Glide XP. Here, we report the best four compounds based on their docking scores; these compounds have IDs of 27943, 21362, ASN 01107557 and ASN 01541696. We propose that these compounds could bind to the active site of nsP2 protease and inhibit this enzyme. Furthermore, the backbone structural scaffolds of these four lead compounds could serve as building blocks when designing drug-like molecules for the treatment of Chikungunya viral fever.
Collapse
|
90
|
Rungrotmongkol T, Nunthaboot N, Malaisree M, Kaiyawet N, Yotmanee P, Meeprasert A, Hannongbua S. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations. J Mol Graph Model 2010; 29:347-53. [PMID: 21036084 DOI: 10.1016/j.jmgm.2010.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/19/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural protein, nsP3, is a potential target for the design of potent inhibitors that fit at the adenosine-binding site of its macro domain. Here, so as to understand the fundamental basis of the particular interactions between the ADP-ribose bound to the nsP3 amino acid residues at the binding site, molecular dynamics simulations were applied. The results show that these two nsP3 domains share a similar binding pattern for accommodating the ADP-ribose. The ADP-ribose phosphate unit showed the highest degree of stabilization through hydrogen bond interactions with the nsP3 V33 residue and the consequent amino acid residues 110-114. The adenine base of ADP-ribose was specifically recognized by the conserved nsP3 residue D10. Additionally, the ribose and the diphosphate units were found to play more important roles in the CHIKV nsP3-ADP-ribose complex, while the ter-ribose was more important in the VEEV complex. The slightly higher binding affinity of ADP-ribose toward the nsP3 macro domain of VEEV, as predicted by the simulation results, is in good agreement with previous experimental data. These simulation results provide useful information to further assist in drug design and development for these two important viruses.
Collapse
Affiliation(s)
- Thanyada Rungrotmongkol
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | | | | | |
Collapse
|
91
|
Beitzel BF, Bakken RR, Smith JM, Schmaljohn CS. High-resolution functional mapping of the venezuelan equine encephalitis virus genome by insertional mutagenesis and massively parallel sequencing. PLoS Pathog 2010; 6:e1001146. [PMID: 20976195 PMCID: PMC2954836 DOI: 10.1371/journal.ppat.1001146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system. Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that was first identified in Venezuela in 1938. VEEV normally circulates in rodent populations, but during outbreaks it can jump to horses and humans where it can cause debilitating and potentially fatal disease. There are currently no vaccines or antiviral agents against VEEV licensed for use in humans. In this study, we describe a technique that we have developed that allows for the rapid identification of viral mutants that can be useful for studying the basic biology of viral replication. These mutants can also be used to generate vaccines that protect against infection with wild-type virus. We demonstrate the utility of this technique by identifying over 200 mutations spread throughout VEEV genome that make the virus unable to replicate efficiently at higher temperatures (37°C or 40°C.) Furthermore, we show that two of the mutant viruses work as vaccines, and protect mice against lethal infection with VEEV. This technique can be applied to studying other viruses, and may allow for the rapid identification of numerous vaccine candidates.
Collapse
Affiliation(s)
- Brett F. Beitzel
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Russell R. Bakken
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey M. Smith
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Connie S. Schmaljohn
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
92
|
Karlsen M, Villoing S, Ottem KF, Rimstad E, Nylund A. Development of infectious cDNA clones of Salmonid alphavirus subtype 3. BMC Res Notes 2010; 3:241. [PMID: 20858233 PMCID: PMC2949663 DOI: 10.1186/1756-0500-3-241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/21/2010] [Indexed: 01/07/2023] Open
Abstract
Background Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed. Results Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2197, nsP3263 and nsP3323 severely reduced infectivity, a serine to proline mutation in E2206 appeared to enhance the virus titer production. Conclusion We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gate 55, 5020 Bergen, Norway.
| | | | | | | | | |
Collapse
|
93
|
Gui H, Lu CW, Adams S, Stollar V, Li ML. hnRNP A1 interacts with the genomic and subgenomic RNA promoters of Sindbis virus and is required for the synthesis of G and SG RNA. J Biomed Sci 2010; 17:59. [PMID: 20663119 PMCID: PMC2916895 DOI: 10.1186/1423-0127-17-59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/21/2010] [Indexed: 12/04/2022] Open
Abstract
Background Sindbis virus (SV) is the prototype of alphaviruses which are a group of widely distributed human and animal pathogens. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein that shuttles between the nucleus and the cytoplasm. Our recent studies found that hnRNP A1 relocates from nucleus to cytoplasm in Sindbis virus (SV)-infected cells. hnRNP A1 binds to the 5' UTR of SV RNA and facilitates the viral RNA replication and translation. Methods Making use of standard molecular techniques, virology methods and an in vitro system developed by our lab to assess the role of hnRNP A1 in SV positive strand RNA synthesis. Results hnRNP A1 interacted with the genomic (G) and subgenomic (SG) RNA promoters. Knockdown of hnRNP A1 resulted in markedly decrease in the synthesis of G and SG RNA both in infected cells and in vitro. Conclusions Our study provides the first direct evidence that hnRNP A1 actively participates in viral RNA replication and is required for the synthesis of G and SG RNA.
Collapse
Affiliation(s)
- Hongxing Gui
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
94
|
RNA 5'-triphosphatase activity of the hepatitis E virus helicase domain. J Virol 2010; 84:9637-41. [PMID: 20592074 DOI: 10.1128/jvi.00492-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatitis E virus (HEV) has a positive-sense RNA genome with a 5'-m7G cap. HEV open reading frame 1 (ORF1) encodes a polyprotein with multiple enzyme domains required for replication. HEV helicase is a nucleoside triphosphatase (NTPase) with the ability to unwind RNA duplexes in the 5'-to-3' direction. When incubated with 5'-[gamma-(32)P]RNA and 5'-[alpha-(32)P]RNA, HEV helicase released (32)P only from 5'-[gamma-(32)P]RNA, showing specificity for the gamma-beta-triphosphate bond. Removal of gamma-phosphate from the 5' end of the primary transcripts (pppRNA to ppRNA) by RNA triphosphatase is an essential step during cap formation. It is suggested that HEV employs the helicase to mediate the first step of 5' cap synthesis.
Collapse
|
95
|
Reichert E, Clase A, Bacetty A, Larsen J. Alphavirus antiviral drug development: scientific gap analysis and prospective research areas. Biosecur Bioterror 2010; 7:413-27. [PMID: 20028250 DOI: 10.1089/bsp.2009.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The New World alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) pose a significant threat to human health as the etiological agents of serious viral encephalitis through natural infection as well as through their potential use as a biological weapon. At present, there is no FDA-approved medical treatment for infection with these viruses. The Defense Threat Reduction Agency, Joint Science and Technology Office for Chemical and Biological Defense (DTRA/JSTO), is currently funding research aimed at developing antiviral drugs and vaccines against VEEV, EEEV, and WEEV. A review of antiviral drug discovery efforts for these viruses revealed significant gaps in the data, assays, and models required for successful drug development. This review provides a description of these gaps and highlights specific critical research areas for the development of a target-based drug discovery program for the VEEV, EEEV, and WEEV nonstructural proteins. These efforts will increase the probability of the successful development of a pharmaceutical intervention against these viral threat agents.
Collapse
Affiliation(s)
- Erin Reichert
- Biological Therapeutics, Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060-6201, USA
| | | | | | | |
Collapse
|
96
|
Cruz CC, Suthar MS, Montgomery SA, Shabman R, Simmons J, Johnston RE, Morrison TE, Heise MT. Modulation of type I IFN induction by a virulence determinant within the alphavirus nsP1 protein. Virology 2010; 399:1-10. [PMID: 20097400 DOI: 10.1016/j.virol.2009.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/05/2009] [Accepted: 12/18/2009] [Indexed: 12/25/2022]
Abstract
Alphaviruses are mosquito-borne viruses that cause serious human and animal diseases. Previous studies demonstrated that a determinant within the nsP1/nsP2 cleavage domain of the virulent Sindbis AR86 virus played a key role in regulating adult mouse virulence without adversely affecting viral replication. Additional characterization of this determinant demonstrated that a virus with the attenuating mutation induced more type I IFN production both in vivo and in vitro. Interestingly, this phenotype was not specific to the Sindbis AR86 virus, as a similar mutation in a distantly related alphavirus, Ross River Virus (RRV), also led to enhanced IFN induction. This effect was independent of virus-induced host shutoff, since IRF-3 phosphorylation, which occurs independently of de novo host transcription/translation, was induced more robustly in cells infected with the mutant viruses. Altogether, these results demonstrate that critical determinants within the nsP1/nsP2 cleavage domain play an important role in regulating alphavirus-induced IFN responses.
Collapse
Affiliation(s)
- Catherine C Cruz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mehul S Suthar
- Department of Immunology, University of Washington, Seattle, WA 98195-76504, USA
| | - Stephanie A Montgomery
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reed Shabman
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason Simmons
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert E Johnston
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas E Morrison
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology, The University of Colorado Denver, Aurora, CO 80045
| | - Mark T Heise
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
97
|
Abstract
The functions of the alphavirus-encoded nonstructural protein nsP3 during infection are poorly understood. In contrast, nsP1, nsP2, and nsP4 have known enzymatic activities and functions. A functional analysis of the C-terminal region of nsP3 of Semliki Forest virus revealed the presence of a degradation signal that overlaps with a sequence element located between nsP3 and nsP4 that is required for proteolytic processing. This element was responsible for the short half-life (1 h) of individually expressed nsP3, and it also was functionally transferable to other proteins. Inducible cell lines were used to express native nsP3 or truncated mutants. The removal of 10 C-terminal amino acid (aa) residues from nsP3 increased the half-life of the protein approximately 8-fold. While the deletion of 30 C-terminal aa residues resulted in a similar stabilization, this deletion also changed the cellular localization of nsP3. This truncated mutant no longer exhibited a punctate localization in the cytoplasm, but instead filamentous stretches could be formed around the nuclei of induced cells, suggesting the existence of an additional functional element upstream of the degradation signal. C-terminally truncated uncleavable polyprotein P12(CA)3del30 was localized diffusely, which is in contrast to P12(CA)3, which is known to be associated with vesicle membranes. The induction of nsP3 or its truncated forms reduced the efficiency of virus multiplication in corresponding cells by affecting different steps of the infection cycle. The expression of nsP3 or a mutant lacking the 10 C-terminal aa residues repressed the establishment of infection, while the expression of nsP3 lacking 30 C-terminal aa residues led to the reduced synthesis of subgenomic RNA.
Collapse
|
98
|
Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE, Bisaillon M. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA (NEW YORK, N.Y.) 2009; 15:2340-2350. [PMID: 19850911 PMCID: PMC2779676 DOI: 10.1261/rna.1609709] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The 5'-end of the flavivirus genome harbors a methylated (m7)GpppA(2'OMe) cap structure, which is generated by the virus-encoded RNA triphosphatase, RNA (guanine-N7) methyltransferase, nucleoside 2'-O-methyltransferase, and RNA guanylyltransferase. The presence of the flavivirus guanylyltransferase activity in NS5 has been suggested by several groups but has not been empirically proven. Here we provide evidence that the N-terminus of the flavivirus NS5 protein is a true RNA guanylyltransferase. We demonstrate that GTP can be used as a substrate by the enzyme to form a covalent GMP-enzyme intermediate via a phosphoamide bond. Mutational studies also confirm the importance of a specific lysine residue in the GTP binding site for the enzymatic activity. We show that the GMP moiety can be transferred to the diphosphate end of an RNA transcript harboring an adenosine as the initiating residue. We also demonstrate that the flavivirus RNA triphosphatase (NS3 protein) stimulates the RNA guanylyltransferase activity of the NS5 protein. Finally, we show that both enzymes are sufficient and necessary to catalyze the de novo formation of a methylated RNA cap structure in vitro using a triphosphorylated RNA transcript. Our study provides biochemical evidence that flaviviruses encode a complete RNA capping machinery.
Collapse
Affiliation(s)
- Moheshwarnath Issur
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Genomic sequencing of Highlands J virus: A comparison to western and eastern equine encephalitis viruses. Virus Res 2009; 145:334-40. [DOI: 10.1016/j.virusres.2009.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/15/2009] [Accepted: 07/27/2009] [Indexed: 11/22/2022]
|
100
|
Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 2009; 4:837-56. [PMID: 19722838 DOI: 10.2217/fmb.09.59] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alphaviruses are small, spherical, enveloped, positive-sense ssRNA viruses responsible for a considerable number of human and animal diseases. Alphavirus members include Chikungunya virus, Sindbis virus, Semliki Forest virus, the western, eastern and Venezuelan equine encephalitis viruses, and the Ross River virus. Alphaviruses can cause arthritic diseases and encephalitis in humans and animals and continue to be a worldwide threat. The viruses are transmitted by blood-sucking arthropods, and replicate in both arthropod and vertebrate hosts. Alphaviruses form spherical particles (65-70 nm in diameter) with icosahedral symmetry and a triangulation number of four. The icosahedral structures of alphaviruses have been defined to very high resolutions by cryo-electron microscopy and crystallographic studies. In this review, we summarize the major events in alphavirus infection: entry, replication, assembly and budding. We focus on data acquired from structural and functional studies of the alphaviruses. These structural and functional data provide a broader perspective of the virus lifecycle and structure, and allow additional insight into these important viruses.
Collapse
Affiliation(s)
- Joyce Jose
- Department of Biological Sciences, Bindley Bioscience Center, Lilly Hall of Life Sciences, 915 West State St., Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|