51
|
Rath CB, Schirmeister F, Figl R, Seeberger PH, Schäffer C, Kolarich D. Flagellin Glycoproteomics of the Periodontitis Associated Pathogen Selenomonas sputigena Reveals Previously Not Described O-glycans and Rhamnose Fragment Rearrangement Occurring on the Glycopeptides. Mol Cell Proteomics 2018; 17:721-736. [PMID: 29339411 PMCID: PMC5880101 DOI: 10.1074/mcp.ra117.000394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
Flagellated, Gram-negative, anaerobic, crescent-shaped Selenomonas species are colonizers of the digestive system, where they act at the interface between health and disease. Selenomonas sputigena is also considered a potential human periodontal pathogen, but information on its virulence factors and underlying pathogenicity mechanisms is scarce. Here we provide the first report of a Selenomonas glycoprotein, showing that S. sputigena produces a diversely and heavily O-glycosylated flagellin C9LY14 as a major cellular protein, which carries various hitherto undescribed rhamnose- and N-acetylglucosamine linked O-glycans in the range from mono- to hexasaccharides. A comprehensive glycomic and glycoproteomic assessment revealed extensive glycan macro- and microheterogeneity identified from 22 unique glycopeptide species. From the multiple sites of glycosylation, five were unambiguously identified on the 437-amino acid C9LY14 protein (Thr149, Ser182, Thr199, Thr259, and Ser334), the only flagellin protein identified. The O-glycans additionally showed modifications by methylation and putative acetylation. Some O-glycans carried hitherto undescribed residues/modifications as determined by their respective m/z values, reflecting the high diversity of native S. sputigena flagellin. We also found that monosaccharide rearrangement occurred during collision-induced dissociation (CID) of protonated glycopeptide ions. This effect resulted in pseudo Y1-glycopeptide fragment ions that indicated the presence of additional glycosylation sites on a single glycopeptide. CID oxonium ions and electron transfer dissociation, however, confirmed that just a single site was glycosylated, showing that glycan-to-peptide rearrangement can occur on glycopeptides and that this effect is influenced by the molecular nature of the glycan moiety. This effect was most pronounced with disaccharides. This study is the first report on O-linked flagellin glycosylation in a Selenomonas species, revealing that C9LY14 is one of the most heavily glycosylated flagellins described to date. This study contributes to our understanding of the largely under-investigated surface properties of oral bacteria. The data have been deposited to the ProteomeXchange with identifier PXD005859.
Collapse
Affiliation(s)
- Cornelia B. Rath
- From the ‡Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, 1190 Vienna, Austria
| | - Falko Schirmeister
- §Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; ,¶Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rudolf Figl
- ‖Department of Chemistry, Division of Biochemistry, Universität für Bodenkultur Wien, 1190 Vienna, Austria
| | - Peter H. Seeberger
- §Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; ,¶Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christina Schäffer
- From the ‡Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, 1190 Vienna, Austria;
| | - Daniel Kolarich
- §Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; .,**Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
52
|
Lindsey ML, Jung M, Hall ME, DeLeon-Pennell KY. Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Rev Proteomics 2018; 15:105-112. [PMID: 29285949 DOI: 10.1080/14789450.2018.1421947] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The cardiac extracellular matrix (ECM) provides anatomical, biochemical, and physiological support to the left ventricle. ECM proteins are difficult to detect using unbiased proteomic approaches due to solubility issues and a relatively low abundance compared to cytoplasmic and mitochondrial proteins present in highly prevalent cardiomyocytes. Areas covered: Proteomic capabilities have dramatically improved over the past 20 years, due to enhanced sample preparation protocols and increased capabilities in mass spectrometry (MS), database searching, and bioinformatics analysis. This review summarizes technological advancements made in proteomic applications that make ECM proteomics highly feasible. Expert commentary: Proteomic analysis of the ECM provides an important contribution to our understanding of the molecular and cellular processes associated with cardiovascular disease. Using results generated from proteomics approaches in basic science applications and integrating proteomics templates into clinical research protocols will aid in efforts to personalize medicine.
Collapse
Affiliation(s)
- Merry L Lindsey
- a Research Service , G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson , MS , USA.,b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA
| | - Mira Jung
- b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA
| | - Michael E Hall
- b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA.,c Division of Cardiology , University of Mississippi Medical Center , Jackson , MS , USA
| | - Kristine Y DeLeon-Pennell
- a Research Service , G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson , MS , USA.,b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
53
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
54
|
Joshi HJ, Jørgensen A, Schjoldager KT, Halim A, Dworkin LA, Steentoft C, Wandall HH, Clausen H, Vakhrushev SY. GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Glycobiology 2017; 28:131-136. [DOI: 10.1093/glycob/cwx104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
|
55
|
You X, Qin H, Ye M. Recent advances in methods for the analysis of protein o-glycosylation at proteome level. J Sep Sci 2017; 41:248-261. [PMID: 28988430 DOI: 10.1002/jssc.201700834] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
O-Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post-translational modifications. Compared with N-linked glycosylation, O-glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O-glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O-glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O-glycosylation, i.e. O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O-glycosylation. For the large-scale analysis of mucin-type glycosylation, the glycan simplification strategies including the ''SimpleCell'' technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation.
Collapse
Affiliation(s)
- Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
56
|
Cao L, Qu Y, Zhang Z, Wang Z, Prytkova I, Wu S. Intact glycopeptide characterization using mass spectrometry. Expert Rev Proteomics 2017; 13:513-22. [PMID: 27140194 DOI: 10.1586/14789450.2016.1172965] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.
Collapse
Affiliation(s)
- Li Cao
- a Pharma Research and Development , R&D Platform Technology & Science, GSK , King of Prussia , PA , USA
| | - Yi Qu
- b ChemEco Division , Evans Analytical Group , Hercules , CA , USA
| | - Zhaorui Zhang
- c Process Research & Development , AbbVie , North Chicago , IL , USA
| | - Zhe Wang
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| | - Iya Prytkova
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| | - Si Wu
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| |
Collapse
|
57
|
Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2017; 13:609-26. [PMID: 27232439 DOI: 10.1080/14789450.2016.1190651] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual's metabolic and pathophysiologic state. AREAS COVERED High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins. Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.
Collapse
Affiliation(s)
- Michael Harpole
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin Davis
- b Department of Chemistry/Biochemistry , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
58
|
Liu MQ, Zeng WF, Fang P, Cao WQ, Liu C, Yan GQ, Zhang Y, Peng C, Wu JQ, Zhang XJ, Tu HJ, Chi H, Sun RX, Cao Y, Dong MQ, Jiang BY, Huang JM, Shen HL, Wong CCL, He SM, Yang PY. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat Commun 2017; 8:438. [PMID: 28874712 PMCID: PMC5585273 DOI: 10.1038/s41467-017-00535-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
The precise and large-scale identification of intact glycopeptides is a critical step in glycoproteomics. Owing to the complexity of glycosylation, the current overall throughput, data quality and accessibility of intact glycopeptide identification lack behind those in routine proteomic analyses. Here, we propose a workflow for the precise high-throughput identification of intact N-glycopeptides at the proteome scale using stepped-energy fragmentation and a dedicated search engine. pGlyco 2.0 conducts comprehensive quality control including false discovery rate evaluation at all three levels of matches to glycans, peptides and glycopeptides, improving the current level of accuracy of intact glycopeptide identification. The N-glycoproteome of samples metabolically labeled with 15N/13C were analyzed quantitatively and utilized to validate the glycopeptide identification, which could be used as a novel benchmark pipeline to compare different search engines. Finally, we report a large-scale glycoproteome dataset consisting of 10,009 distinct site-specific N-glycans on 1988 glycosylation sites from 955 glycoproteins in five mouse tissues. Protein glycosylation is a heterogeneous post-translational modification that generates greater proteomic diversity that is difficult to analyze. Here the authors describe pGlyco 2.0, a workflow for the precise one step identification of intact N-glycopeptides at the proteome scale.
Collapse
Affiliation(s)
- Ming-Qi Liu
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China.,Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, 20032, China
| | - Wen-Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Fang
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Wei-Qian Cao
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Chao Liu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
| | - Guo-Quan Yan
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Yang Zhang
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Chao Peng
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 201210, China
| | - Jian-Qiang Wu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jin Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Jun Tu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
| | - Rui-Xiang Sun
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
| | - Yong Cao
- National Institute of Biological Sciences (Beijing), Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (Beijing), Beijing, 102206, China
| | - Bi-Yun Jiang
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Jiang-Ming Huang
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Hua-Li Shen
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Catherine C L Wong
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 201210, China.
| | - Si-Min He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng-Yuan Yang
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, China. .,Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
59
|
Investigation of O-glycosylation heterogeneity of recombinant coagulation factor IX using LC–MS/MS. Bioanalysis 2017; 9:1361-1372. [DOI: 10.4155/bio-2017-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Recombinant coagulation factor IX (rFIX) has extraordinarily multiple post-translational modifications including N-glycosylation and O-glycosylation which have a drastic effect on biological functions and in vivo recovery. Unlike N-glycosylation extensively characterized, there are a few studies on O-glycosylation due to its intrinsic complexity. In-depth O-glycosylation analysis is necessary to better understand and assess pharmacological activity of rFIX. Results: We determined unusual O-glycosylations including O-fucosylation and O-glucosylation which were located at Serine 53 and 61, respectively in EGF domain. Other O-glycosylations bearing core 1 glycan moiety were found on activation peptide. Conclusion: This is the first comprehensive study to characterize O-glycosylation of rFIX using MS-based glycomic and glycoproteomic approaches. Site-specific profiling will be a powerful platform to determine bioequivalence of biosimilars.
Collapse
|
60
|
Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv 2017; 1:429-442. [PMID: 29296958 DOI: 10.1182/bloodadvances.2016002121] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 01/26/2023] Open
Abstract
The hemostatic system comprises platelet aggregation, coagulation, and fibrinolysis, and is critical to the maintenance of vascular integrity. Multiple studies indicate that glycans play important roles in the hemostatic system; however, most investigations have focused on N-glycans because of the complexity of O-glycan analysis. Here we performed the first systematic analysis of native-O-glycosylation using lectin affinity chromatography coupled to liquid chromatography mass spectrometry (LC-MS)/MS to determine the precise location of O-glycans in human plasma, platelets, and endothelial cells, which coordinately regulate hemostasis. We identified the hitherto largest O-glycoproteome from native tissue with a total of 649 glycoproteins and 1123 nonambiguous O-glycosites, demonstrating that O-glycosylation is a ubiquitous modification of extracellular proteins. Investigation of the general properties of O-glycosylation established that it is a heterogeneous modification, frequently occurring at low density within disordered regions in a cell-dependent manner. Using an unbiased screen to identify associations between O-glycosites and protein annotations we found that O-glycans were over-represented close (± 15 amino acids) to tandem repeat regions, protease cleavage sites, within propeptides, and located on a select group of protein domains. The importance of O-glycosites in proximity to proteolytic cleavage sites was further supported by in vitro peptide assays demonstrating that proteolysis of key hemostatic proteins can be inhibited by the presence of O-glycans. Collectively, these data illustrate the global properties of native O-glycosylation and provide the requisite roadmap for future biomarker and structure-function studies.
Collapse
|
61
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
62
|
Qin H, Cheng K, Zhu J, Mao J, Wang F, Dong M, Chen R, Guo Z, Liang X, Ye M, Zou H. Proteomics Analysis of O-GalNAc Glycosylation in Human Serum by an Integrated Strategy. Anal Chem 2017; 89:1469-1476. [PMID: 28035807 DOI: 10.1021/acs.analchem.6b02887] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The diversity of O-linked glycan structures has drawn increasing attention due to its vital biological roles. However, intact O-glycopeptides with different glycans are typically not well elucidated using the current methods. In this work, an integrated strategy was developed for comprehensive analysis of O-GalNAc glycosylation by combining hydrophilic interaction chromatography (HILIC) tip enrichment, beam-type collision induced decomposition (beam-CID) detection, and in silico deglycosylation method for spectra interpretation. In this strategy, the intact O-GalNAc glycopeptides were selectively enriched and the original spectra obtained by time-of-flight (TOF)-CID were preprocessed using an in silico deglycosylation method, enabling direct searching without setting multiple glycosylation modifications, which could significantly decrease the search space. This strategy was applied to analyze the O-GalNAc glycoproteome of human serum, leading to identification of 407 intact O-GalNAc glycopeptides from 93 glycoproteins. About 81% of the glycopeptides contained at least one sialic acid, which could reveal the microheterogeneity of O-GalNAc glycosylation. Up until now, this is the largest data set of intact O-GalNAc glycoforms from complex biological samples at the proteome level. Furthermore, this method is readily applicable to study O-glycoform heterogeneity in other complex biological systems.
Collapse
Affiliation(s)
- Hongqiang Qin
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Kai Cheng
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Jun Zhu
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Jiawei Mao
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Fangjun Wang
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Mingming Dong
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Rui Chen
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Zhimou Guo
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xinmiao Liang
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Mingliang Ye
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Hanfa Zou
- CAS Key Lab of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
63
|
Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, Fu X, Cai G, Chen X, Geng W, Yang X, Wu M, Li Z, Zhang D. Glycopatterns of Urinary Protein as New Potential Diagnosis Indicators for Diabetic Nephropathy. J Diabetes Res 2017; 2017:5728087. [PMID: 28401167 PMCID: PMC5376433 DOI: 10.1155/2017/5728087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy is a major cause of chronic kidney disease and end-stage kidney disease. However, so little is known about alterations of the glycopatterns in urine with the development of diabetic nephropathy. Presently, we interrogated glycopatterns in urine specimens using a lectin microarray. The results showed that expression levels of Siaα2-6Gal/GalNAc recognized by SNA exhibited significantly increased tendency with the development of diabetic nephropathy; moreover, SNA blotting indicated glycoproteins (90 kDa, 70 kDa, and 40 kDa) in urine may contribute to this alteration. Furthermore, the glycopatterns of (GlcNAc)2-4 recognized by STL exhibited difference between diabetic and nondiabetic nephropathy. The results of urinary protein microarray fabricated by another 48 urine specimens also indicated (GlcNAc)2-4 is a potential indictor to differentiate the patients with diabetic nephropathy from nondiabetic nephropathy. Furtherly, STL blotting showed that the 50 kDa glycoproteins were correlated with this alteration. In conclusion, our data provide pivotal information to monitor the development of diabetic nephropathy and distinguish between diabetic nephropathy and nondiabetic renal disease based on precise alterations of glycopatterns in urinary proteins, but further studies are needed in this regard.
Collapse
Affiliation(s)
- Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Moyan Liu
- Department of Nephrology, General Hospital of Jinan Military Command, Jinan, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinle Fu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Wenjia Geng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaoli Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Minghui Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
- *Zheng Li: and
| | - Dong Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- *Dong Zhang:
| |
Collapse
|
64
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
65
|
Caillot N, Bouley J, Jain K, Mariano S, Luce S, Horiot S, Airouche S, Beuraud C, Beauvallet C, Devillier P, Chollet-Martin S, Kellenberger C, Mascarell L, Chabre H, Batard T, Nony E, Lombardi V, Baron-Bodo V, Moingeon P. Sialylated Fetuin-A as a candidate predictive biomarker for successful grass pollen allergen immunotherapy. J Allergy Clin Immunol 2016; 140:759-770.e13. [PMID: 27965111 DOI: 10.1016/j.jaci.2016.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Eligibility to immunotherapy is based on the determination of IgE reactivity to a specific allergen by means of skin prick or in vitro testing. Biomarkers predicting the likelihood of clinical improvement during immunotherapy would significantly improve patient selection. METHODS Proteins were differentially assessed by using 2-dimensional differential gel electrophoresis and label-free mass spectrometry in pretreatment sera obtained from clinical responders and nonresponders within a cohort of 82 patients with grass pollen allergy receiving sublingual immunotherapy or placebo. Functional studies of Fetuin-A (FetA) were conducted by using gene silencing in a mouse asthma model, human dendritic cell in vitro stimulation assays, and surface plasmon resonance. RESULTS Analysis by using quantitative proteomics of pretreatment sera from patients with grass pollen allergy reveals that high levels of O-glycosylated sialylated FetA isoforms are found in patients exhibiting a strong decrease in rhinoconjunctivitis symptoms after sublingual immunotherapy. Although FetA is involved in numerous inflammatory conditions, its potential role in allergy is unknown. In vivo silencing of the FETUA gene in BALB/c mice results in a dramatic upregulation of airway hyperresponsiveness, lung resistance, and TH2 responses after allergic sensitization to ovalbumin. Both sialylated and nonsialytated FetA bind to LPS, but only the former synergizes with LPS and grass pollen or mite allergens to enhance the Toll-like receptor 4-mediated proallergic properties of human dendritic cells. CONCLUSIONS As a reflection of the patient's inflammatory status, pretreatment levels of sialylated FetA in the blood are indicative of the likelihood of clinical responses during grass pollen immunotherapy.
Collapse
Affiliation(s)
| | - Julien Bouley
- Research Department, Stallergenes Greer, Antony, France
| | - Karine Jain
- Research Department, Stallergenes Greer, Antony, France
| | | | - Sonia Luce
- Research Department, Stallergenes Greer, Antony, France
| | | | - Sabi Airouche
- Research Department, Stallergenes Greer, Antony, France
| | - Chloé Beuraud
- Research Department, Stallergenes Greer, Antony, France
| | | | - Philippe Devillier
- UPRES EA 220 and Clinical Research Department, Foch Hospital, Suresnes, France
| | | | | | | | - Henri Chabre
- Research Department, Stallergenes Greer, Antony, France
| | | | - Emmanuel Nony
- Research Department, Stallergenes Greer, Antony, France
| | | | | | | |
Collapse
|
66
|
Pap A, Medzihradszky KF, Darula Z. Using "spectral families" to assess the reproducibility of glycopeptide enrichment: human serum O-glycosylation revisited. Anal Bioanal Chem 2016; 409:539-550. [PMID: 27766363 DOI: 10.1007/s00216-016-9960-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Growing evidence on the diverse biological roles of extracellular glycosylation as well as the need for quality control of protein pharmaceuticals make glycopeptide analysis both exciting and important again after a long hiatus. High-throughput O-glycosylation studies have to tackle the complexity of glycosylation as well as technical difficulties and, up to now, have yielded only limited results mostly from single enrichment experiments. In this study, we address the technical reproducibility of the characterization of the most prevalent O-glycosylation (mucin-type core 1 structures) in human serum, using a two-step lectin affinity-based workflow. Our results are based on automated glycopeptide identifications from higher-energy C-trap dissociation and electron transfer dissociation MS/MS data. Assignments meeting strict acceptance criteria served as the foundation for generating "spectral families" incorporating low-scoring MS/MS identifications, supported by accurate mass measurements and expected chromatographic retention times. We show that this approach helped to evaluate the reproducibility of the glycopeptide enrichment more reliably and also contributed to the expansion of the glycoform repertoire of already identified glycosylated sequences. The roadblocks hindering more in-depth investigations and quantitative analyses will also be discussed.
Collapse
Affiliation(s)
- Adam Pap
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary.,Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Genentech Hall N474A, San Francisco, CA, 94158-2517, USA
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary.
| |
Collapse
|
67
|
Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:278-286. [DOI: 10.1016/j.jchromb.2016.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
|
68
|
Sanda M, Benicky J, Wu J, Wang Y, Makambi K, Ahn J, Smith CI, Zhao P, Zhang L, Goldman R. Increased sialylation of site specific O-glycoforms of hemopexin in liver disease. Clin Proteomics 2016; 13:24. [PMID: 27688741 PMCID: PMC5034550 DOI: 10.1186/s12014-016-9125-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Non-invasive monitoring of liver disease remains an important health issue. Liver secreted glycoproteins reflect pathophysiological states of the organ and represent a rational target for serologic monitoring. In this study, we describe sialylated O-glycoforms of liver-secreted hemopexin (HPX) and quantify them as a ratio of disialylated to monosialylated form (S-HPX). Methods We measured S-HPX in serum of participants of the HALT-C trial using a LC–MS/MS-MRM assay. Results Repeated measurements of S-HPX in the samples of 23 disease-free controls, collected at four different time points, show that the ratio remains stable in the healthy controls but increases with the progression of liver disease. The results of measurement of S-HPX in serum of participants of the HALT-C trial show that it increased significantly (Kruskal–Wallis test, p < 0.01) in liver disease as the stage of fibrosis progressed in liver biopsies. We observed a 1.7-fold increase in fibrosis defined as Ishak score 3–4 (24.9 + 14.2, n = 22) and 4.7-fold increase in cirrhosis defined as Ishak score 5–6 (68.6 + 38.5; n = 24) compared to disease-free controls (14.7 + 6.7, n = 23). S-HPX is correlated with AFP, bilirubin, INR, ALT, and AST while inversely correlated with platelet count and albumin. In an independent verification set of samples, S-HPX separated the Ishak 5–6 (n = 15) from the Ishak 3–4 (n = 15) participants with AuROC 0.84; at the same time, the Ishak 3–4 group was separated from disease-free controls (n = 15) with AuROC 0.82. Conclusion S-HPX, a measure of sialylated O-glycoforms of hemopexin, progressively increases in fibrotic and cirrhotic patient of HCV etiology and can be quantified by an LC–MS/MS-MRM assay in unfractionated serum of patients. Quantification of sialylated O-glycoforms of this liver secreted glycoprotein represents a novel measure of the stage of liver disease that could have a role in monitoring the progression of liver pathology. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9125-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department of Oncology, Georgetown University, PS Room GD11, 3800 Reservoir Rd NW, Washington, DC 20057 USA
| | - Julius Benicky
- Department of Oncology, Georgetown University, NRB Room E207, 3970 Reservoir Rd NW, Washington, DC 20057 USA
| | - Jing Wu
- Department of Oncology, Georgetown University, NRB Room E207, 3970 Reservoir Rd NW, Washington, DC 20057 USA
| | - Yiwen Wang
- Department of Oncology, Georgetown University, NRB Room E207, 3970 Reservoir Rd NW, Washington, DC 20057 USA
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Building D Suite 180 Room 185, 4000 Reservoir Rd NW, Washington, DC 20057 USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Basic Science Building D Room 255, 3900 Reservoir Rd NW, Washington, DC 20057 USA
| | - Coleman I Smith
- MedStar Georgetown University Transplant Institute, 2-PHC, 3800 Reservoir Rd NW, Washington, DC 20057 USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Lihua Zhang
- Department of Oncology, Georgetown University, PS Room GD11, 3800 Reservoir Rd NW, Washington, DC 20057 USA
| | - Radoslav Goldman
- Department of Oncology, Georgetown University, NRB Room E207, 3970 Reservoir Rd NW, Washington, DC 20057 USA
| |
Collapse
|
69
|
Nasir W, Toledo AG, Noborn F, Nilsson J, Wang M, Bandeira N, Larson G. SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis. J Proteome Res 2016; 15:2826-40. [PMID: 27399812 DOI: 10.1021/acs.jproteome.6b00417] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycoproteomics has rapidly become an independent analytical platform bridging the fields of glycomics and proteomics to address site-specific protein glycosylation and its impact in biology. Current glycopeptide characterization relies on time-consuming manual interpretations and demands high levels of personal expertise. Efficient data interpretation constitutes one of the major challenges to be overcome before true high-throughput glycopeptide analysis can be achieved. The development of new glyco-related bioinformatics tools is thus of crucial importance to fulfill this goal. Here we present SweetNET: a data-oriented bioinformatics workflow for efficient analysis of hundreds of thousands of glycopeptide MS/MS-spectra. We have analyzed MS data sets from two separate glycopeptide enrichment protocols targeting sialylated glycopeptides and chondroitin sulfate linkage region glycopeptides, respectively. Molecular networking was performed to organize the glycopeptide MS/MS data based on spectral similarities. The combination of spectral clustering, oxonium ion intensity profiles, and precursor ion m/z shift distributions provided typical signatures for the initial assignment of different N-, O- and CS-glycopeptide classes and their respective glycoforms. These signatures were further used to guide database searches leading to the identification and validation of a large number of glycopeptide variants including novel deoxyhexose (fucose) modifications in the linkage region of chondroitin sulfate proteoglycans.
Collapse
Affiliation(s)
- Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg , SE 413 45 Gothenburg, Sweden
| | - Alejandro Gomez Toledo
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg , SE 413 45 Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg , SE 413 45 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg , SE 413 45 Gothenburg, Sweden
| | - Mingxun Wang
- Department of Computer Science and Engineering, Center for Computational Mass Spectrometry, CSE, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Nuno Bandeira
- Department of Computer Science and Engineering, Center for Computational Mass Spectrometry, CSE, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg , SE 413 45 Gothenburg, Sweden
| |
Collapse
|
70
|
Site-specific characterization of N-linked glycosylation in human urinary glycoproteins and endogenous glycopeptides. Glycoconj J 2016; 33:937-951. [PMID: 27234710 DOI: 10.1007/s10719-016-9677-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022]
Abstract
Glycosylation is a very important post-translational modification involved in various cellular processes, such as cell adhesion, signal transduction and immune response. Urine is a rich source of glycoproteins and attractive biological fluid for biomarker discovery, owing to its availability, ease of collection, and correlation with pathophysiology of diseases. Although the urinary proteomics have been explored previously, the urinary glycoproteome characterization remains challenging requiring the development and optimization of analytical and bioinformatics methods for protein glycoprofiling. This study describes the high confident identification of 472 unique N-glycosylation sites covering 256 urinary glycoproteins. Besides, 202 unique N-glycosylation sites were identified in low molecular weight endogenous glycopeptides, which belong to 90 glycoproteins. Global site-specific characterization of the N-linked glycan heterogeneity was achieved by intact glycopeptide analysis, revealing 303 unique glycopeptides most of them displaying complex/hybrid glycans composed by sialic acid and fucose. These datasets consist in a valuable resource of glycoproteins and N-glycosylation sites found in healthy human urine that can be further explored in different disorders, in which the N-linked glycosylation may be aberrant.
Collapse
|
71
|
Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U, Pengelley S, Jabs W, Seeberger PH, Silva DV, Wuhrer M, Kolarich D. The Art of Destruction: Optimizing Collision Energies in Quadrupole-Time of Flight (Q-TOF) Instruments for Glycopeptide-Based Glycoproteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:507-19. [PMID: 26729457 PMCID: PMC4756043 DOI: 10.1007/s13361-015-1308-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 05/12/2023]
Abstract
In-depth site-specific investigations of protein glycosylation are the basis for understanding the biological function of glycoproteins. Mass spectrometry-based N- and O-glycopeptide analyses enable determination of the glycosylation site, site occupancy, as well as glycan varieties present on a particular site. However, the depth of information is highly dependent on the applied analytical tools, including glycopeptide fragmentation regimes and automated data analysis. Here, we used a small set of synthetic disialylated, biantennary N-glycopeptides to systematically tune Q-TOF instrument parameters towards optimal energy stepping collision induced dissociation (CID) of glycopeptides. A linear dependency of m/z-ratio and optimal fragmentation energy was found, showing that with increasing m/z-ratio, more energy is required for glycopeptide fragmentation. Based on these optimized fragmentation parameters, a method combining lower- and higher-energy CID was developed, allowing the online acquisition of glycan and peptide-specific fragments within a single tandem MS experiment. We validated this method analyzing a set of human immunoglobulins (IgA1+2, sIgA, IgG1+2, IgE, IgD, IgM) as well as bovine fetuin. These optimized fragmentation parameters also enabled software-assisted glycopeptide assignment of both N- and O-glycopeptides including information about the most abundant glycan compositions, peptide sequence and putative structures. Twenty-six out of 30 N-glycopeptides and four out of five O-glycopeptides carrying >110 different glycoforms could be identified by this optimized LC-ESI tandem MS method with minimal user input. The Q-TOF based glycopeptide analysis platform presented here opens the way to a range of different applications in glycoproteomics research as well as biopharmaceutical development and quality control.
Collapse
Affiliation(s)
- Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany.
| |
Collapse
|
72
|
Lee CS, Taib NAM, Ashrafzadeh A, Fadzli F, Harun F, Rahmat K, Hoong SM, Abdul-Rahman PS, Hashim OH. Unmasking Heavily O-Glycosylated Serum Proteins Using Perchloric Acid: Identification of Serum Proteoglycan 4 and Protease C1 Inhibitor as Molecular Indicators for Screening of Breast Cancer. PLoS One 2016; 11:e0149551. [PMID: 26890881 PMCID: PMC4758733 DOI: 10.1371/journal.pone.0149551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022] Open
Abstract
Heavily glycosylated mucin glycopeptides such as CA 27.29 and CA 15-3 are currently being used as biomarkers for detection and monitoring of breast cancer. However, they are not well detected at the early stages of the cancer. In the present study, perchloric acid (PCA) was used to enhance detection of mucin-type O-glycosylated proteins in the serum in an attempt to identify new biomarkers for early stage breast cancer. Sensitivity and specificity of an earlier developed sandwich enzyme-linked lectin assay were significantly improved with the use of serum PCA isolates. When a pilot case-control study was performed using the serum PCA isolates of normal participants (n = 105) and patients with stage 0 (n = 31) and stage I (n = 48) breast cancer, higher levels of total O-glycosylated proteins in sera of both groups of early stage breast cancer patients compared to the normal control women were demonstrated. Further analysis by gel-based proteomics detected significant inverse altered abundance of proteoglycan 4 and plasma protease C1 inhibitor in both the early stages of breast cancer patients compared to the controls. Our data suggests that the ratio of serum proteoglycan 4 to protease C1 inhibitor may be used for screening of early breast cancer although this requires further validation in clinically representative populations.
Collapse
Affiliation(s)
- Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Ashrafzadeh
- Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Faizah Harun
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kartini Rahmat
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Mee Hoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
73
|
Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 2016; 33:261-72. [PMID: 26780731 DOI: 10.1007/s10719-016-9649-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
Abstract
The use of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(n)) for the glycoproteomic characterization of glycopeptides is a growing field of research. The N- and O-glycosylated peptides (N- and O-glycopeptides) analyzed typically originate from protease-digested glycoproteins where many of them are expected to be biomedically important. Examples of LC-MS(2) and MS(3) fragmentation strategies used to pursue glycan structure, peptide identity and attachment-site identification analyses of glycopeptides are described in this review. MS(2) spectra, using the CID and HCD fragmentation techniques of a complex biantennary N-glycopeptide and a core 1 O-glycopeptide, representing two examples of commonly studied glycopeptide types, are presented. A few practical tips for accomplishing glycopeptide analysis using reversed-phase LC-MS(n) shotgun proteomics settings, together with references to the latest glycoproteomic studies, are presented.
Collapse
|
74
|
Darula Z, Sarnyai F, Medzihradszky KF. O-glycosylation sites identified from mucin core-1 type glycopeptides from human serum. Glycoconj J 2016; 33:435-45. [PMID: 26729242 DOI: 10.1007/s10719-015-9630-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
In this work O-linked glycopeptides bearing mucin core-1 type structures were enriched from human serum. Since about 70 % of the O-glycans in human serum bind to the plant lectin Jacalin, we tested a previously successful protocol that combined Jacalin affinity enrichment on the protein- and peptide-level with ERLIC chromatography as a further enrichment step in between, to eliminate the high background of unmodified peptides. In parallel, we developed a simpler and significantly faster new workflow that used two lectins sequentially: wheat germ agglutinin and then Jacalin. The first lectin provides general glycopeptide enrichment, while the second specifically enriches O-linked glycopeptides with Galβ1-3GalNAcα structures. Mass spectrometric analysis of enriched samples showed that the new sample preparation method is more selective and sensitive than the former. Altogether, 52 unique glycosylation sites in 20 proteins were identified in this study.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, Szeged, Hungary.
| | - Farkas Sarnyai
- Laboratory of Proteomics Research, Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, Szeged, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, Szeged, Hungary.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, USA
| |
Collapse
|
75
|
Parker BL, Thaysen-Andersen M, Fazakerley DJ, Holliday M, Packer NH, James DE. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes. Mol Cell Proteomics 2016; 15:141-53. [PMID: 26537798 PMCID: PMC4762517 DOI: 10.1074/mcp.m115.054221] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Indexed: 01/16/2023] Open
Abstract
Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Benjamin L Parker
- From the ‡Charles Perkins Centre, School of Molecular Bioscience and
| | | | | | - Mira Holliday
- From the ‡Charles Perkins Centre, School of Molecular Bioscience and
| | - Nicolle H Packer
- ¶Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - David E James
- From the ‡Charles Perkins Centre, School of Molecular Bioscience and §School of MedicineUniversity of Sydney, Sydney, Australia;
| |
Collapse
|
76
|
Goth CK, Halim A, Khetarpal SA, Rader DJ, Clausen H, Schjoldager KTBG. A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proc Natl Acad Sci U S A 2015; 112:14623-8. [PMID: 26554003 PMCID: PMC4664366 DOI: 10.1073/pnas.1511175112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regulated shedding of the ectodomain of cell membrane proteins by proteases is a common process that releases the extracellular domain from the cell and activates cell signaling. Ectodomain shedding occurs in the immediate extracellular juxtamembrane region, which is also where O-glycosylation is often found and examples of crosstalk between shedding and O-glycosylation have been reported. Here, we systematically investigated the potential of site-specific O-glycosylation mediated by distinct polypeptide GalNAc-transferase (GalNAc-T) isoforms to coregulate ectodomain shedding mediated by the A Disintegrin And Metalloproteinase (ADAM) subfamily of proteases and in particular ADAM17. We analyzed 25 membrane proteins that are known to undergo ADAM17 shedding and where the processing sites included Ser/Thr residues within ± 4 residues that could represent O-glycosites. We used in vitro GalNAc-T enzyme and ADAM cleavage assays to demonstrate that shedding of at least 12 of these proteins are potentially coregulated by O-glycosylation. Using TNF-α as an example, we confirmed that shedding mediated by ADAM17 is coregulated by O-glycosylation controlled by the GalNAc-T2 isoform both ex vivo in isogenic cell models and in vivo in mouse Galnt2 knockouts. The study provides compelling evidence for a wider role of site-specific O-glycosylation in ectodomain shedding.
Collapse
Affiliation(s)
- Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sumeet A Khetarpal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T-B G Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark;
| |
Collapse
|
77
|
Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E. Site-specific O-Glycosylation Analysis of Human Blood Plasma Proteins. Mol Cell Proteomics 2015; 15:624-41. [PMID: 26598643 PMCID: PMC4739677 DOI: 10.1074/mcp.m115.053546] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
Site-specific glycosylation analysis is key to investigate structure-function relationships of glycoproteins, e.g. in the context of antigenicity and disease progression. The analysis, though, is quite challenging and time consuming, in particular for O-glycosylated proteins. In consequence, despite their clinical and biopharmaceutical importance, many human blood plasma glycoproteins have not been characterized comprehensively with respect to their O-glycosylation. Here, we report on the site-specific O-glycosylation analysis of human blood plasma glycoproteins. To this end pooled human blood plasma of healthy donors was proteolytically digested using a broad-specific enzyme (Proteinase K), followed by a precipitation step, as well as a glycopeptide enrichment and fractionation step via hydrophilic interaction liquid chromatography, the latter being optimized for intact O-glycopeptides carrying short mucin-type core-1 and -2 O-glycans, which represent the vast majority of O-glycans on human blood plasma proteins. Enriched O-glycopeptide fractions were subjected to mass spectrometric analysis using reversed-phase liquid chromatography coupled online to an ion trap mass spectrometer operated in positive-ion mode. Peptide identity and glycan composition were derived from low-energy collision-induced dissociation fragment spectra acquired in multistage mode. To pinpoint the O-glycosylation sites glycopeptides were fragmented using electron transfer dissociation. Spectra were annotated by database searches as well as manually. Overall, 31 O-glycosylation sites and regions belonging to 22 proteins were identified, the majority being acute-phase proteins. Strikingly, also 11 novel O-glycosylation sites and regions were identified. In total 23 O-glycosylation sites could be pinpointed. Interestingly, the use of Proteinase K proved to be particularly beneficial in this context. The identified O-glycan compositions most probably correspond to mono- and disialylated core-1 mucin-type O-glycans (T-antigen). The developed workflow allows the identification and characterization of the major population of the human blood plasma O-glycoproteome and our results provide new insights, which can help to unravel structure-function relationships. The data were deposited to ProteomeXchange PXD003270.
Collapse
Affiliation(s)
- Marcus Hoffmann
- From the ‡Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany
| | | | - Udo Reichl
- From the ‡Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany; ¶Otto von Guericke University Magdeburg, Chair of Bioprocess Engineering, 39106 Magdeburg, Germany
| | - Manfred Wuhrer
- ‖Center for Proteomics and Metabolomics, Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erdmann Rapp
- From the ‡Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany; **glyXera GmbH, Leipziger Strasse 44 (Zenit), 39120 Magdeburg, Germany
| |
Collapse
|
78
|
Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2015; 33:309-43. [PMID: 26555091 PMCID: PMC4891372 DOI: 10.1007/s10719-015-9626-2] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.
Collapse
Affiliation(s)
- Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
79
|
Liu J, Wang F, Mao J, Zhang Z, Liu Z, Huang G, Cheng K, Zou H. High-Sensitivity N-Glycoproteomic Analysis of Mouse Brain Tissue by Protein Extraction with a Mild Detergent of N-Dodecyl β-D-Maltoside. Anal Chem 2015; 87:2054-7. [DOI: 10.1021/ac504700t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawei Mao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Huang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
80
|
Bai X, Li D, Zhu J, Guan Y, Zhang Q, Chi L. From individual proteins to proteomic samples: characterization of O-glycosylation sites in human chorionic gonadotropin and human-plasma proteins. Anal Bioanal Chem 2015; 407:1857-69. [DOI: 10.1007/s00216-014-8439-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 12/27/2022]
|
81
|
Kong Y, Joshi HJ, Schjoldager KTBG, Madsen TD, Gerken TA, Vester-Christensen MB, Wandall HH, Bennett EP, Levery SB, Vakhrushev SY, Clausen H. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology 2015; 25:55-65. [PMID: 25155433 PMCID: PMC4245906 DOI: 10.1093/glycob/cwu089] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures. What determines O-glycan site occupancy is still poorly understood, although it is clear that the substrate specificities of individual isoenzymes and the repertoire of GalNAc-Ts in cells are key parameters. The GalNAc-T isoenzymes are differentially expressed in cells and tissues in principle allowing cells to produce unique O-glycoproteomes dependent on the specific subset of isoforms present. In vitro analysis of acceptor peptide substrate specificities using recombinant expressed GalNAc-Ts has been the method of choice for probing activities of individual isoforms, but these studies have been hampered by biological validation of actual O-glycosylation sites in proteins and number of substrate testable. Here, we present a systematic analysis of the activity of 10 human GalNAc-T isoenzymes with 195 peptide substrates covering known O-glycosylation sites and provide a comprehensive dataset for evaluating isoform-specific contributions to the O-glycoproteome.
Collapse
Affiliation(s)
- Yun Kong
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine Ter-Borch Gram Schjoldager
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Daugbjerg Madsen
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas A Gerken
- Department of Pediatrics Department of Biochemistry and Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Malene B Vester-Christensen
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric Paul Bennett
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Steven B Levery
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
82
|
Urinary Proteins with Post-translational Modifications. URINE PROTEOMICS IN KIDNEY DISEASE BIOMARKER DISCOVERY 2015; 845:59-65. [DOI: 10.1007/978-94-017-9523-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
83
|
Arrighi S. The urothelium: anatomy, review of the literature, perspectives for veterinary medicine. Ann Anat 2014; 198:73-82. [PMID: 25533627 DOI: 10.1016/j.aanat.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
Abstract
Over time, much knowledge has been accumulated about the active role of the urothelium, principally in rodents and human. Far from being a mere passive barrier, this specialized epithelium can alter the ion and protein composition of the urine, is able to sense and respond to mechanical stimuli such as pressure, and react to mechanical stimuli by epithelial cell communication with the nervous system. Most of the specialized functions of the urothelium are linked to a number of morpho-physiologic properties exhibited by the superficial umbrella cells, including specialized membrane lipids, asymmetric unit membrane particles and a plasmalemma with stiff plaques which function as a barrier to most substances found in urine, thus protecting the underlying tissues. Moreover, the entire mucosa lining the low urinary tract, composed of urothelium and sub-urothelium, forms a functional transduction unit, able to respond to eso- and endogenous physical and chemical stimuli in a manner assuring an adequate functional response. This review will summarize the available information on each area of inquiry from a morpho-functional point of view. Possible considerations pertaining to species of veterinary interest are reviewed as well. The review was prepared consulting the electronic databases PubMed and Cab Abstracts and retrieving all pertinent reports and the relative reference lists, in order to identify any potential additional studies that could be included. Full-length research articles and thematic reviews were considered. Information on the urothelium of some domestic animal species was also included.
Collapse
Affiliation(s)
- S Arrighi
- Department of Health, Animal Science and Food Safety, Laboratory of Anatomy and Confocal Microscopy, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
84
|
Lazar IM, Deng J, Ikenishi F, Lazar AC. Exploring the glycoproteomics landscape with advanced MS technologies. Electrophoresis 2014; 36:225-37. [PMID: 25311661 DOI: 10.1002/elps.201400400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
The advance of glycoproteomic technologies has offered unique insights into the importance of glycosylation in determining the functional roles of a protein within a cell. Biologically active glycoproteins include the categories of enzymes, hormones, proteins involved in cell proliferation, cell membrane proteins involved in cell-cell recognition, and communication events or secreted proteins, just to name a few. The recent progress in analytical instrumentation, methodologies, and computational approaches has enabled a detailed exploration of glycan structure, connectivity, and heterogeneity, underscoring the staggering complexity of the glycome repertoire in a cell. A variety of approaches involving the use of spectroscopy, MS, separation, microfluidic, and microarray technologies have been used alone or in combination to tackle the glycoproteome challenge, the research results of these efforts being captured in an overwhelming number of annual publications. This work is aimed at reviewing the major developments and accomplishments in the field of glycoproteomics, with focus on the most recent advancements (2012-2014) that involve the use of capillary separations and MS detection.
Collapse
Affiliation(s)
- Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
85
|
Ali L, Flowers SA, Jin C, Bennet EP, Ekwall AKH, Karlsson NG. The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol Cell Proteomics 2014; 13:3396-409. [PMID: 25187573 PMCID: PMC4256492 DOI: 10.1074/mcp.m114.040865] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/15/2014] [Indexed: 11/06/2022] Open
Abstract
The lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation. In this study, using a liquid chromatography-tandem mass spectrometry approach, employing both collision-induced and electron-transfer dissociation fragmentation methods, we identified 185 O-glycopeptides within the STP-rich domain of human synovial lubricin. This showed that adjacent threonine residues within the central STP-rich region could be simultaneously and/or individually glycosylated. In addition to core 1 structures responsible for biolubrication, core 2 O-glycopeptides were also identified, indicating that lubricin glycosylation may have other roles. Investigation of the expression of polypeptide N-acetylgalactosaminyltransferase genes was carried out using cultured primary fibroblast-like synoviocytes, a cell type that expresses lubricin in vivo. This analysis showed high mRNA expression levels of the less understood polypeptide N-acetylgalactosaminyltransferase 15 and 5 in addition to the ubiquitously expressed polypeptide N-acetylgalactosaminyltransferase 1 and 2 genes. This suggests that there is a unique combination of transferase genes important for the O-glycosylation of lubricin. The site-specific glycopeptide analysis covered 82% of the protein sequence and showed that lubricin glycosylation displays both micro- and macroheterogeneity. The density of glycosylation was shown to be high: 168 sites of O-glycosylation, predominately sialylated, were identified. These glycosylation sites were focused in the central STP-rich region, giving the domain a negative charge. The more positively charged lysine and arginine residues in the N and C termini suggest that synovial lubricin exists as an amphoteric molecule. The identification of these unique properties of lubricin may provide insight into the important low-friction lubricating functions of lubricin during natural joint movement.
Collapse
Affiliation(s)
- Liaqat Ali
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sarah A Flowers
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Eric Paul Bennet
- §Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Norre Alle 20, DK-2200 Copenhagen N, Denmark
| | - Anna-Karin H Ekwall
- ¶Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, SE-41346, Gothenburg, Sweden
| | - Niclas G Karlsson
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden;
| |
Collapse
|
86
|
Saraswat M, Joenväära S, Musante L, Peltoniemi H, Holthofer H, Renkonen R. N-linked (N-) glycoproteomics of urinary exosomes. [Corrected]. Mol Cell Proteomics 2014; 14:263-76. [PMID: 25452312 DOI: 10.1074/mcp.m114.040345] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epithelial cells lining the urinary tract secrete urinary exosomes (40-100 nm) that can be targeted to specific cells modulating their functionality. One potential targeting mechanism is adhesion between vesicle surface glycoproteins and target cells. This makes the glycopeptide analysis of exosomes important. Exosomes reflect the physiological state of the parent cells; therefore, they are a good source of biomarkers for urological and other diseases. Moreover, the urine collection is easy and noninvasive and urinary exosomes give information about renal and systemic organ systems. Accordingly, multiple studies on proteomic characterization of urinary exosomes in health and disease have been published. However, no systematic analysis of their glycoproteomic profile has been carried out to date, whereas a conserved glycan signature has been found for exosomes from urine and other sources including T cell lines and human milk. Here, we have enriched and identified the N-glycopeptides from these vesicles. These enriched N-glycopeptides were solved for their peptide sequence, glycan composition, structure, and glycosylation site using collision-induced dissociation MS/MS (CID-tandem MS) data interpreted by a publicly available software GlycopeptideId. Released glycans from the same sample was also analyzed with MALDI-MS. We have identified the N-glycoproteome of urinary exosomes. In total 126 N-glycopeptides from 51 N-glycosylation sites belonging to 37 glycoproteins were found in our results. The peptide sequences of these N-glycopeptides were identified unambiguously and their glycan composition (for 125 N-glycopeptides) and structures (for 87 N-glycopeptides) were proposed. A corresponding glycomic analysis with released N-glycans was also performed. We identified 66 unique nonmodified N-glycan compositions and in addition 13 sulfated/phosphorylated glycans were also found. This is the first systematic analysis of N-glycoproteome of urinary exosomes.
Collapse
Affiliation(s)
- Mayank Saraswat
- From the ‡Transplantation Laboratory, Haartman Institute, PO Box 21, Haartmaninkatu 3, FI-00014 University of Helsinki, Finland
| | - Sakari Joenväära
- §HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Luca Musante
- ¶Centre for Bioanalytical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hannu Peltoniemi
- ‖Applied Numerics Ltd, Nuottapolku 10 A 8, 00330 Helsinki, Finland
| | - Harry Holthofer
- ¶Centre for Bioanalytical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Risto Renkonen
- From the ‡Transplantation Laboratory, Haartman Institute, PO Box 21, Haartmaninkatu 3, FI-00014 University of Helsinki, Finland; §HUSLAB, Helsinki University Central Hospital, Helsinki, Finland;
| |
Collapse
|
87
|
Halim A, Westerlind U, Pett C, Schorlemer M, Rüetschi U, Brinkmalm G, Sihlbom C, Lengqvist J, Larson G, Nilsson J. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J Proteome Res 2014; 13:6024-32. [PMID: 25358049 DOI: 10.1021/pr500898r] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein glycosylation plays critical roles in the regulation of diverse biological processes, and determination of glycan structure-function relationships is important to better understand these events. However, characterization of glycan and glycopeptide structural isomers remains challenging and often relies on biosynthetic pathways being conserved. In glycoproteomic analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using collision-induced dissociation (CID), saccharide oxonium ions containing N-acetylhexosamine (HexNAc) residues are prominent. Through analysis of beam-type CID spectra and ion trap CID spectra of synthetic and natively derived N- and O-glycopeptides, we found that the fragmentation patterns of oxonium ions characteristically differ between glycopeptides terminally substituted with GalNAcα1-O-, GlcNAcβ1-O-, Galβ3GalNAcα1-O-, Galβ4GlcNAcβ-O-, and Galβ3GlcNAcβ-O- structures. The difference in the oxonium ion fragmentation profiles of such glycopeptides may thus be used to distinguish among these glycan structures and could be of importance in LC-MS/MS-based glycoproteomic studies.
Collapse
Affiliation(s)
- Adnan Halim
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, ‡Department of Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg , SE-41345 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kątnik-Prastowska I, Lis J, Matejuk A. Glycosylation of uroplakins. Implications for bladder physiopathology. Glycoconj J 2014; 31:623-36. [PMID: 25394961 PMCID: PMC4245495 DOI: 10.1007/s10719-014-9564-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Urothelium, a specialized epithelium, covers the urinary tract and act not only as a barrier separating its light from the surrounding tissues, but fulfills an important role in maintaining the homeostasis of the urothelial tract and well-being of the whole organism. Proper function of urothelium is dependent on the precise assemble of highly specialized glycoproteins called uroplakins, the end products and differentiation markers of the urothelial cells. Glycosylation changes in uroplakins correlate with and might reflect progressive stages of pathological conditions of the urothelium such as cancer, urinary tract infections, interstitial cystitis and others. In this review we focus on sugar components of uroplakins, their emerging role in urothelial biology and disease implications. The advances in our understanding of uroplakins changes in glycan moieties composition, structure, assembly and expression of their glycovariants could potentially lead to the development of targeted therapies and discoveries of novel urine and plasma markers for the benefit of patients with urinary tract diseases.
Collapse
Affiliation(s)
- Iwona Kątnik-Prastowska
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Bujwida 44a, 50-345, Wroclaw, Poland
| | | | | |
Collapse
|
89
|
Halim A, Carlsson MC, Madsen CB, Brand S, Møller SR, Olsen CE, Vakhrushev SY, Brimnes J, Wurtzen PA, Ipsen H, Petersen BL, Wandall HH. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications. Mol Cell Proteomics 2014; 14:191-204. [PMID: 25389185 DOI: 10.1074/mcp.m114.042614] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM(1) characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines.
Collapse
Affiliation(s)
- Adnan Halim
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael C Carlsson
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Caroline Benedicte Madsen
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Svenning Rune Møller
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; ¶Department of Plant and Environmental Biology, Glyco section, Faculty of Science, University of Copenhagen 1871 Frederiksberg C, Denmark
| | - Carl Erik Olsen
- ¶Department of Plant and Environmental Biology, Glyco section, Faculty of Science, University of Copenhagen 1871 Frederiksberg C, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | - Bent L Petersen
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; ¶Department of Plant and Environmental Biology, Glyco section, Faculty of Science, University of Copenhagen 1871 Frederiksberg C, Denmark
| | - Hans H Wandall
- From the ‡Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
| |
Collapse
|
90
|
Urine Reflection of Changes in Blood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 845:13-9. [DOI: 10.1007/978-94-017-9523-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
91
|
Noborn F, Gomez Toledo A, Sihlbom C, Lengqvist J, Fries E, Kjellén L, Nilsson J, Larson G. Identification of chondroitin sulfate linkage region glycopeptides reveals prohormones as a novel class of proteoglycans. Mol Cell Proteomics 2014; 14:41-9. [PMID: 25326458 DOI: 10.1074/mcp.m114.043703] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrates produce various chondroitin sulfate proteoglycans (CSPGs) that are important structural components of cartilage and other connective tissues. CSPGs also contribute to the regulation of more specialized processes such as neurogenesis and angiogenesis. Although many aspects of CSPGs have been studied extensively, little is known of where the CS chains are attached on the core proteins and so far, only a limited number of CSPGs have been identified. Obtaining global information on glycan structures and attachment sites would contribute to our understanding of the complex proteoglycan structures and may also assist in assigning CSPG specific functions. In the present work, we have developed a glycoproteomics approach that characterizes CS linkage regions, attachment sites, and identities of core proteins. CSPGs were enriched from human urine and cerebrospinal fluid samples by strong-anion-exchange chromatography, digested with chondroitinase ABC, a specific CS-lyase used to reduce the CS chain lengths and subsequently analyzed by nLC-MS/MS with a novel glycopeptide search algorithm. The protocol enabled the identification of 13 novel CSPGs, in addition to 13 previously established CSPGs, demonstrating that this approach can be routinely used to characterize CSPGs in complex human samples. Surprisingly, five of the identified CSPGs are traditionally defined as prohormones (cholecystokinin, chromogranin A, neuropeptide W, secretogranin-1, and secretogranin-3), typically stored and secreted from granules of endocrine cells. We hypothesized that the CS side chain may influence the assembly and structural organization of secretory granules and applied surface plasmon resonance spectroscopy to show that CS actually promotes the assembly of chromogranin A core proteins in vitro. This activity required mild acidic pH and suggests that the CS-side chains may also influence the self-assembly of chromogranin A in vivo giving a possible explanation to previous observations that chromogranin A has an inherent property to assemble in the acidic milieu of secretory granules.
Collapse
Affiliation(s)
- Fredrik Noborn
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Alejandro Gomez Toledo
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Carina Sihlbom
- §Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 413, SE-405 30, Sweden
| | - Johan Lengqvist
- §Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 413, SE-405 30, Sweden
| | - Erik Fries
- ¶Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Lena Kjellén
- ¶Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Jonas Nilsson
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Göran Larson
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden;
| |
Collapse
|
92
|
Levery SB, Steentoft C, Halim A, Narimatsu Y, Clausen H, Vakhrushev SY. Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta Gen Subj 2014; 1850:33-42. [PMID: 25284204 DOI: 10.1016/j.bbagen.2014.09.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Global analyses of proteins and their modifications by mass spectrometry are essential tools in cell biology and biomedical research. Analyses of glycoproteins represent particular challenges and we are only at the beginnings of the glycoproteomic era. Some of the challenges have been overcome with N-glycoproteins and proteome-wide analysis of N-glycosylation sites is accomplishable today but only by sacrificing information of structures at individual glycosites. More recently advances in analysis of O-glycoproteins have been made and proteome-wide analysis of O-glycosylation sites is becoming available as well. SCOPE OF REVIEW Here we discuss the challenges of analysis of O-glycans and new O-glycoproteomics strategies focusing on O-GalNAc and O-Man glycoproteomes. MAJOR CONCLUSIONS A variety of strategies are now available for proteome-wide analysis of O-glycosylation sites enabling functional studies. However, further developments are still needed for complete analysis of glycan structures at individual sites for both N- and O-glycoproteomics strategies. GENERAL SIGNIFICANCE The advances in O-glycoproteomics have led to identification of new biological functions of O-glycosylation and a new understanding of the importance of where O-glycans are positioned on proteins.
Collapse
Affiliation(s)
- Steven B Levery
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
93
|
Chandler KB, Brnakova Z, Sanda M, Wang S, Stalnaker SH, Bridger R, Zhao P, Wells L, Edwards NJ, Goldman R. Site-specific glycan microheterogeneity of inter-alpha-trypsin inhibitor heavy chain H4. J Proteome Res 2014; 13:3314-29. [PMID: 24884609 PMCID: PMC4084840 DOI: 10.1021/pr500394z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) is a 120 kDa acute-phase glycoprotein produced primarily in the liver, secreted into the blood, and identified in serum. ITIH4 is involved in liver development and stabilization of the extracellular matrix (ECM), and its expression is altered in liver disease. In this study, we aimed to characterize glycosylation of recombinant and serum-derived ITIH4 using analytical mass spectrometry. Recombinant ITIH4 was analyzed to optimize glycopeptide analyses, followed by serum-derived ITIH4. First, we confirmed that the four ITIH4 N-X-S/T sequons (N81, N207, N517, and N577) were glycosylated by treating ITIH4 tryptic/GluC glycopeptides with PNGaseF in the presence of (18)O water. Next, we performed glycosidase-assisted LC-MS/MS analysis of ITIH4 trypsin-GluC glycopeptides enriched via hydrophilic interaction liquid chromatography to characterize ITIH4 N-glycoforms. While microheterogeneity of N-glycoforms differed between ITIH4 protein expressed in HEK293 cells and protein isolated from serum, occupancy of N-glycosylation sites did not differ. A fifth N-glycosylation site was discovered at N274 with the rare nonconsensus NVV motif. Site N274 contained high-mannose N-linked glycans in both serum and recombinant ITIH4. We also identified isoform-specific ITIH4 O-glycoforms and documented that utilization of O-glycosylation sites on ITIH4 differed between the cell line and serum.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The Role and Importance of Glycosylation of Acute Phase Proteins with Focus on Alpha-1 Antitrypsin in Acute and Chronic Inflammatory Conditions. J Proteome Res 2014; 13:3131-43. [DOI: 10.1021/pr500146y] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cormac McCarthy
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Radka Saldova
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Mark R Wormald
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, U.K
| | - Pauline M. Rudd
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Noel G. McElvaney
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| |
Collapse
|
95
|
Changes of proteins induced by anticoagulants can be more sensitively detected in urine than in plasma. SCIENCE CHINA-LIFE SCIENCES 2014; 57:649-56. [PMID: 24907934 DOI: 10.1007/s11427-014-4661-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
The most fundamental property of biomarkers is change. But changes are hard to maintain in plasma since it is strictly controlled by homeostatic mechanisms of the body. There is no homeostatic mechanism for urine. Besides, urine is partly a filtration of blood, and systematic information can be reflected in urine. We hypothesize that change of blood can be reflected in urine more sensitively. Here we introduce the interference into the blood by two anticoagulants heparin or argatroban. Plasma and urine proteins were profiled by LC-MS/MS and then validated by Western blot in totally six SD female rats before and after the drug treatments. In argatroban treated group, with exactly the same experimental procedure and the same cutoff value for both plasma and urine proteins, 62 proteins changed in urine, only one of which changed in plasma. In heparin treated group, 27 proteins changed in urine but only three other proteins changed in plasma. Both LC-MS/MS and Western blot analyses demonstrated drug-induced increases in transferrin and hemopexin levels in urine but not in plasma. Our data indicates that urine may serve as a source for more sensitive detection of protein biomarkers than plasma.
Collapse
|
96
|
Windwarder M, Altmann F. Site-specific analysis of the O-glycosylation of bovine fetuin by electron-transfer dissociation mass spectrometry. J Proteomics 2014; 108:258-68. [PMID: 24907489 DOI: 10.1016/j.jprot.2014.05.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 01/14/2023]
Abstract
UNLABELLED Bovine fetuin often finds use as a test model for analytical methods, but the exact occupancy of its O-glycosylation sites has not yet been determined. An obstacle for a closer inspection of the five or six O-glycosylation sites is the close spacing of several sites on the same tryptic peptide. The advent of ion-trap instruments with electron-transfer dissociation (ETD) capability and - for the type of instrument - high resolution prompted us to probe this technology for the investigation of the intricate posttranslational modifications O-glycosylation and phosphorylation. Much information could be obtained by direct-infusion ETD analysis of the fully sialylated tryptic 61-residue peptide harboring 8 hydroxyl amino acids of which four were indeed found to be, if only partially, glycosylated. The middle-down approach allowed recognizing an order of action of O-GalNAc transferase(s). No such hierarchy could be observed for phosphorylation. ETD fragmentation on an ion trap thus allowed in-depth analysis of a large, multiply O-glycosylated peptide, however, only by data accumulation over several minutes by direct infusion of a prefractionated sample. O-glycosylation and phosphorylation sites re-defined and their occupancy including that of N-glycans were defined by this study. BIOLOGICAL SIGNIFICANCE O-glycosylation of natural or recombinant proteins poses a challenge because of the lack of unambiguous consensus sites, the agglomeration of several O-glycans in close proximity and the lack of efficient O-glycosidases. Even bovine fetuin, a frequently used test glycoprotein for glycosylation analysis, has hitherto not been fully characterized in terms of site occupancy. This gap shall hereby be closed by application of electron-transfer dissociation mass spectroscopy.
Collapse
Affiliation(s)
- Markus Windwarder
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria.
| |
Collapse
|
97
|
Darula Z, Medzihradszky KF. Glycan side reaction may compromise ETD-based glycopeptide identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:977-87. [PMID: 24664807 PMCID: PMC4036456 DOI: 10.1007/s13361-014-0852-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/02/2014] [Indexed: 05/20/2023]
Abstract
Tris(hydroxymethyl)aminomethane (Tris) is one of the most frequently used buffer ingredients. Among other things, it is recommended and is usually used for lectin-based affinity enrichment of glycopeptides. Here we report that sialic acid, a common 'capping' unit in both N- and O-linked glycans may react with this chemical, and this side reaction may compromise glycopeptide identification when ETD spectra are the only MS/MS data used in the database search. We show that the modification may alter N- as well as O-linked glycans, the Tris-derivative is still prone to fragmentation both in 'beam-type' CID (HCD) and ETD experiments, at the same time--since the acidic carboxyl group was 'neutralized'--it will display a different retention time than its unmodified counterpart. We also suggest solutions that--when incorporated into existing search engines--may significantly improve the reliability of glycopeptide assignments.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary,
| | | |
Collapse
|
98
|
Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1437-52. [PMID: 24830338 DOI: 10.1016/j.bbapap.2014.05.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC-MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC-MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
99
|
Liu M, Zhang Y, Chen Y, Yan G, Shen C, Cao J, Zhou X, Liu X, Zhang L, Shen H, Lu H, He F, Yang P. Efficient and Accurate Glycopeptide Identification Pipeline for High-Throughput Site-Specific N-Glycosylation Analysis. J Proteome Res 2014; 13:3121-9. [DOI: 10.1021/pr500238v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mingqi Liu
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Yang Zhang
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Yaohan Chen
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Guoquan Yan
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Chengping Shen
- Cloudscientific Technology Co., Ltd., 585 Long Hua West Road, Xuhui District, Shanghai 200232, P. R. China
| | - Jing Cao
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Xinwen Zhou
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Xiaohui Liu
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Lei Zhang
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Huali Shen
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Haojie Lu
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| | - Fuchu He
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
- State Key Laboratory of Proteomics, 33 Life Science Park, Beijing 102206, P. R. China
| | - Pengyuan Yang
- Department
of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 138 YiXueYuan Road, Shanghai 200032, P. R. China
| |
Collapse
|
100
|
Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, Thannhauser TW, Rose JKC. A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Mol Cell Proteomics 2014; 13:566-79. [PMID: 24198434 PMCID: PMC3916654 DOI: 10.1074/mcp.m113.028969] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/20/2013] [Indexed: 12/22/2022] Open
Abstract
Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with different affinities can be particularly effective. A multi-lectin approach has also been reported to provide a significant benefit for the analysis of plant N-glycoproteins; however, it has yet to be determined whether certain lectins, or combinations of lectins are optimal for plant N-glycoproteome profiling; or whether specific lectins show preferential association with particular N-glycosylation sites or N-glycan structures. We describe here a comparative study of three mannose-binding lectins, concanavalin A, snowdrop lectin, and lentil lectin, to profile the N-glycoproteome of mature green stage tomato (Solanum lycopersicum) fruit pericarp. Through coupling lectin affinity chromatography with a shotgun proteomics strategy, we identified 448 putative N-glycoproteins, whereas a parallel lectin affinity chromatography plus hydrophilic interaction chromatography analysis revealed 318 putative N-glycosylation sites on 230 N-glycoproteins, of which 100 overlapped with the shotgun analysis, as well as 17 N-glycan structures. The use of multiple lectins substantially increased N-glycoproteome coverage and although there were no discernible differences in the structures of N-glycans, or the charge, isoelectric point (pI) or hydrophobicity of the glycopeptides that differentially bound to each lectin, differences were observed in the amino acid frequency at the -1 and +1 subsites of the N-glycosylation sites. We also demonstrated an alternative and complementary in planta recombinant expression strategy, followed by affinity MS analysis, to identify the putative N-glycan structures of glycoproteins whose abundance is too low to be readily determined by a shotgun approach, and/or combined with deglycosylation for predicted deamidated sites, using a xyloglucan-specific endoglucanase inhibitor protein as an example.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- From the ‡Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Simon Hucko
- §USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Kevin J. Howe
- §USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Sheng Zhang
- ¶Proteomics and Mass Spectrometry Facility, Institute of Biotechnology, Ithaca, New York 14853
| | - Robert W. Sherwood
- ¶Proteomics and Mass Spectrometry Facility, Institute of Biotechnology, Ithaca, New York 14853
| | | | - Jocelyn K. C. Rose
- From the ‡Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|