51
|
Xie C, Li J, Guo T, Yan Y, Tang C, Wang Y, Chen P, Wang X, Liang S. Rab3A is a new interacting partner of synaptotagmin I and may modulate synaptic membrane fusion through a competitive mechanism. Biochem Biophys Res Commun 2014; 444:491-5. [PMID: 24472545 DOI: 10.1016/j.bbrc.2014.01.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/18/2014] [Indexed: 11/29/2022]
Abstract
Rab3 and synaptotagmin have been reported to be the key proteins that have opposite actions but cooperatively play critical regulatory roles in selecting and limiting the number of vesicles released at central synapses. However, the exact mechanism has not been fully understood. In this study, Rab3A and synaptotagmin I, the most abundant isoforms of Rab3 and synaptotagmin, respectively, in brain were for the first time demonstrated to directly interact with each other in a Ca(2+)-independent manner, and the KKKK motif in the C2B domain of synaptotagmin I was a key site for the Rab3A binding, which was further confirmed by the competitive inhibition of inositol hexakisphosphate. Further studies demonstrated that Rab3A competitively affected the synaptotagmin I interaction with syntaxin 1B that was involved in membrane fusion during the synaptic vesicle exocytosis. These data indicate that Rab3A is a new synaptotagmin I interacting partner and may participate in the regulation of synaptic membrane fusion and thus the vesicle exocytosis by competitively modulating the interaction of synaptotagmin with syntaxin of the t-SNARE complex in presynaptic membranes.
Collapse
Affiliation(s)
- Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Jianglin Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Tianyao Guo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Yizhong Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Cheng Tang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
52
|
Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:6. [PMID: 24478786 PMCID: PMC3900766 DOI: 10.3389/fpls.2014.00006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| | - Jian Xu
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| |
Collapse
|
53
|
Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Xing J, Chen W. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS One 2014; 9:e83141. [PMID: 24416157 PMCID: PMC3885408 DOI: 10.1371/journal.pone.0083141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress that limits crop productivity in many regions of the world. A comparative proteomic approach to identify salt stress-responsive proteins and to understand the molecular mechanisms was carried out in the woody halophyte Kandelia candel. Four-leaf-old K. candel seedlings were exposed to 150 (control), 300, 450, and 600 mM NaCl for 3 days. Proteins extracted from the leaves of K. candel seedlings were separated by two-dimensional gel electrophoresis (2-DE). More than 900 protein spots were detected on each gel, and 53 differentially expressed protein spots were located with at least two-fold differences in abundance on 2-DE maps, of which 48 were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). The results showed that K. candel could withstand up to 450 mM NaCl stress by up-regulating proteins that are mainly involved in photosynthesis, respiration and energy metabolism, Na(+) compartmentalization, protein folding and assembly, and signal transduction. Physiological data, including superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities, hydrogen peroxide (H2O2) and superoxide anion radicals (O2(-)) contents, as well as Na(+) content and K(+)/Na(+) ratios all correlated well with our proteomic results. This study provides new global insights into woody halophyte salt stress responses. Identification of differentially expressed proteins promotes better understanding of the molecular basis for salt stress reduction in K. candel.
Collapse
Affiliation(s)
- Lingxia Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Meng Liang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fanglin Tan
- Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Yiyong Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxiang Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li Huang
- Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Jianhong Xing
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
54
|
Shevchenko A, Yang Y, Knaust A, Thomas H, Jiang H, Lu E, Wang C, Shevchenko A. Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J Proteomics 2013; 105:363-71. [PMID: 24291353 DOI: 10.1016/j.jprot.2013.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/18/2013] [Indexed: 11/20/2022]
Abstract
UNLABELLED We report on the geLC-MS/MS proteomics analysis of cereals and cereal food excavated in Subeixi cemetery (500-300BC) in Xinjiang, China. Proteomics provided direct evidence that at the Subexi sourdough bread was made from barley and broomcorn millet by leavening with a renewable starter comprising baker's yeast and lactic acid bacteria. The baking recipe and flour composition indicated that barley and millet bread belonged to the staple food already in the first millennium BC and suggested the role of Turpan basin as a major route for cultural communication between Western and Eastern Eurasia in antiquity. This article is part of a Special Issue entitled: Proteomics of non-model organisms. BIOLOGICAL SIGNIFICANCE We demonstrate that organic residues of thousand year old foods unearthed by archeological excavations can be analyzed by geLC-MS/MS proteomics with good representation of protein source organisms and coverage of sequences of identified proteins. In-depth look into the foods proteome identifies the food type and its individual ingredients, reveals ancient food processing technologies, projects their social and economic impact and provides evidence of intercultural communication between ancient populations. Proteomics analysis of ancient organic residues is direct, quantitative and informative and therefore has the potential to develop into a valuable, generally applicable tool in archaeometry. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Anna Shevchenko
- MPI of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Yimin Yang
- Department of Archaeometry, University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, PR China
| | - Andrea Knaust
- MPI of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Henrik Thomas
- MPI of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Hongen Jiang
- Department of Archaeometry, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Enguo Lu
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi 830000, PR China
| | - Changsui Wang
- Department of Archaeometry, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | | |
Collapse
|
55
|
Yang L, Zhang Y, Zhu N, Koh J, Ma C, Pan Y, Yu B, Chen S, Li H. Proteomic Analysis of Salt Tolerance in Sugar Beet Monosomic Addition Line M14. J Proteome Res 2013; 12:4931-50. [DOI: 10.1021/pr400177m] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Le Yang
- Key Laboratory of
Molecular
Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
- Engineering Research Center
of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Yanjun Zhang
- Information Science and Technology
School, Heilongjiang University, Harbin
150080, China
- Department
of Biology, Genetics
Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary
Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610, United States
| | - Ning Zhu
- Department
of Biology, Genetics
Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary
Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610, United States
| | - Jin Koh
- Department
of Biology, Genetics
Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary
Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610, United States
| | - Chunquan Ma
- Key Laboratory of
Molecular
Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
- Engineering Research Center
of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Yu Pan
- Key Laboratory of
Molecular
Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
- Engineering Research Center
of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Bing Yu
- Key Laboratory of
Molecular
Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
- Engineering Research Center
of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Sixue Chen
- Key Laboratory of
Molecular
Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
- Engineering Research Center
of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Department
of Biology, Genetics
Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary
Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610, United States
| | - Haiying Li
- Key Laboratory of
Molecular
Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
- Engineering Research Center
of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| |
Collapse
|
56
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
57
|
Conroy C, Ching J, Gao Y, Wang X, Rampitsch C, Xing T. Knockout of AtMKK1 enhances salt tolerance and modifies metabolic activities in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e24206. [PMID: 23511202 PMCID: PMC3907437 DOI: 10.4161/psb.24206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent a crucial regulatory mechanism in plant development. The ability to activate and inactivate MAPK pathways rapidly in response to changing conditions helps plants to adapt to a changing environment. AtMKK1 is a stress response kinase that is capable of activating the MAPK proteins AtMPK3, AtMPK4 and AtMPK6. To elucidate its mode of action further, several tests were undertaken to examine the response of AtMKK1 to salt stress using a knockout (KO) mutant of AtMKK1. We found that AtMKK1 mutant plants tolerated elevated levels of salt during both germination and adulthood. Proteomic analysis indicated that the level of the α subunit of mitochrondrial H(+)-ATPase, mitochrondial NADH dehydrogenase and mitochrondrial formate dehydrogenase was enhanced in AtMKK1 knockout mutants upon high salinity stress. The level of formate dehydrogenase was further confirmed by immunoblotting and enzyme assay. The possible involvement of these enzymes in salt tolerance is discussed.
Collapse
Affiliation(s)
- Chad Conroy
- Department of Biology and Institute of Biochemistry; Carleton University; Ottawa, ON Canada
| | - Jacqueline Ching
- Agriculture and Agri-Food Canada; Cereal Research Centre; Winnipeg, MB Canada
| | - Yan Gao
- Department of Biology and Institute of Biochemistry; Carleton University; Ottawa, ON Canada
| | - Xiaojing Wang
- College of Life Sciences; South China Normal University; Guangdong Key Laboratory of Biotechnology for Plant Development; Guangzhou, P.R. China
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada; Cereal Research Centre; Winnipeg, MB Canada
| | - Tim Xing
- Department of Biology and Institute of Biochemistry; Carleton University; Ottawa, ON Canada
- Correspondence to: Tim Xing,
| |
Collapse
|
58
|
Wang F, Wang L, Xu Z, Liang G. Identification and analysis of multi-protein complexes in placenta. PLoS One 2013; 8:e62988. [PMID: 23638173 PMCID: PMC3639281 DOI: 10.1371/journal.pone.0062988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022] Open
Abstract
Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.
Collapse
Affiliation(s)
- Fuqiang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Wang
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyang Xu
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
59
|
Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 2013; 14:6757-89. [PMID: 23531537 PMCID: PMC3645664 DOI: 10.3390/ijms14046757] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022] Open
Abstract
The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.
Collapse
|
60
|
Wang H, Yang Y, Chen W, Ding L, Li P, Zhao X, Wang X, Li A, Bao Q. Identification of differentially expressed proteins of Arthrospira (Spirulina) plantensis-YZ under salt-stress conditions by proteomics and qRT-PCR analysis. Proteome Sci 2013; 11:6. [PMID: 23363438 PMCID: PMC3599948 DOI: 10.1186/1477-5956-11-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
Arthrospira (Spirulina) platensis as a representative species of cyanobacteria has been recognized and used worldwide as a source of protein in the food, which possesses some unusual and valuable physiological characteristics, such as alkali and salt tolerance. Based on complete genome sequencing of Arthrospira (Spirulina) plantensis-YZ, we compared the protein expression profiles of this organism under different salt-stress conditions (i.e. 0.02 M, 0.5 M and 1.0 M NaCl, respectively), using 2-D electrophoresis and peptide mass fingerprinting, and retrieved 141 proteins showing significantly differential expression in response to salt-stress. Of the 141 proteins, 114 Arthrospira (Spirulina) plantensis-YZ proteins were found with significant homology to those found in Arthrospira (76 proteins in Arthrospira platensis str. Paraca and 38 in Arthrospira maxima CS-328). The remaining 27 proteins belong to other bacteria. Subsequently, we determined the transcriptional level of 29 genes in vivo in response to NaCl treatments and verified them by qRT-PCR. We found that 12 genes keep consistency at both transcription and protein levels, and transcription of all of them but one were up-regulated. We classified the 141 differentially expressed proteins into 18 types of function categories using COG database, and linked them to their respective KEGG metabolism pathways. These proteins are involved in 31 metabolism pathways, such as photosynthesis, glucose metabolism, cysteine and methionine metabolism, lysine synthesis, fatty acid metabolism, glutathione metabolism. Additionally, the SRPs, heat shock protein and ABC transporter proteins were identified, which probably render Arthrospira (Spirulina) plantensis's resistance against high salt stress.
Collapse
Affiliation(s)
- Huili Wang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, 325035, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
DsHsp90 is involved in the early response of Dunaliella salina to environmental stress. Int J Mol Sci 2012; 13:7963-7979. [PMID: 22942684 PMCID: PMC3430215 DOI: 10.3390/ijms13077963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses.
Collapse
|
62
|
Mastrobuoni G, Irgang S, Pietzke M, Assmus HE, Wenzel M, Schulze WX, Kempa S. Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics 2012; 13:215. [PMID: 22651860 PMCID: PMC3444938 DOI: 10.1186/1471-2164-13-215] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 05/31/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cellular proteome and metabolome are underlying dynamic regulation allowing rapid adaptation to changes in the environment. System-wide analysis of these dynamics will provide novel insights into mechanisms of stress adaptation for higher photosynthetic organisms. We applied pulsed-SILAC labeling to a photosynthetic organism for the first time and we established a method to study proteome dynamics in the green alga Chlamydomonas reinhardtii, an emerging model system for plant biology. In addition, we combined the analysis of protein synthesis with metabolic profiling to study the dynamic changes of metabolism and proteome turnover under salt stress conditions. RESULTS To study de novo protein synthesis an arginine auxotroph Chlamydomonas strain was cultivated in presence of stable isotope-labeled arginine for 24 hours. From the time course experiment in 3 salt concentrations we could identify more than 2500 proteins and their H/L ratio in at least one experimental condition; for 998 protiens at least 3 ratio counts were detected in the 24 h time point (0 mM NaCl). After fractionation we could identify 3115 proteins and for 1765 of them we determined their de novo synthesis rate. Consistently with previous findings we showed that RuBisCO is among the most prominent proteins in the cell; and similar abundance and turnover for the small and large RuBisCO subunit could be calculated. The D1 protein was identified among proteins with a high synthesis rates. A global median half-life of 45 h was calculated for Chlamydomonas proteins under the chosen conditions. CONCLUSION To investigate the temporal co-regulation of the proteome and metabolome, we applied salt stress to Chlamydomonas and studied the time dependent regulation of protein expression and changes in the metabolome. The main metabolic response to salt stress was observed within the amino acid metabolism. In particular, proline was up-regulated manifold and according to that an increased carbon flow within the proline biosynthetic pathway could be measured. In parallel the analysis of abundance and de novo synthesis of the corresponding enzymes revealed that metabolic rearrangements precede adjustments of protein abundance.
Collapse
Affiliation(s)
- Guido Mastrobuoni
- Max Delbrück Center for Molecular Medicine Berlin, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
A proteomic analysis of storage stress responses in Ipomoea batatas (L.) Lam. tuberous root. Mol Biol Rep 2012; 39:8015-25. [DOI: 10.1007/s11033-012-1648-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 04/16/2012] [Indexed: 02/06/2023]
|
64
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
65
|
Sun MM, Sun J, Qiu JW, Jing H, Liu H. Characterization of the proteomic profiles of the brown tide alga Aureoumbra lagunensis under phosphate- and nitrogen-limiting conditions and of its phosphate limitation-specific protein with alkaline phosphatase activity. Appl Environ Microbiol 2012; 78:2025-33. [PMID: 22247172 PMCID: PMC3298125 DOI: 10.1128/aem.05755-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/07/2012] [Indexed: 12/21/2022] Open
Abstract
The persistent bloom of the brown tide alga Aureoumbra lagunensis has been reported in coastal embayments along southern Texas, but the molecular mechanisms that sustain such algal bloom are unknown. We compared the proteome and physiological parameters of A. lagunensis grown in phosphate (P)-depleted, P- and nitrogen (N)-depleted, and nutrient-replete cultures. For the proteomic analysis, samples from three conditions were subjected to two-dimensional electrophoresis and tandem mass spectrometry analysis. Because of the paucity of genomic resources in this species, a de novo cross-species protein search was used to identify the differentially expressed proteins, which revealed their involvement in several key biological processes, such as chlorophyll synthesis, antioxidative protection, and protein degradation, suggesting that A. lagunensis may adopt intracellular nutrient compensation, extracellular organic nutrient regeneration, and damage protection to thrive in P-depleted environments. A highly abundant P limitation-specific protein, tentatively identified as a putative alkaline phosphatase, was further characterized by enzyme activity assay on nondenaturing gel and confocal microscopy, which confirmed that this protein has alkaline phosphatase activity, is a cytoplasmic protein, and is closely associated with the cell membrane. The abundance, location, and functional expression of this alkaline phosphatase all indicate the importance of organic P utilization for A. lagunensis under P limitation and the possible role of this alkaline phosphatase in regenerating phosphate from extra- or intracellular organic phosphorus.
Collapse
Affiliation(s)
- Ming-Ming Sun
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hongmei Jing
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hongbin Liu
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
66
|
Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Methods 2012; 88:189-96. [DOI: 10.1016/j.mimet.2011.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022]
|
67
|
Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S. Mechanisms of plant salt response: insights from proteomics. J Proteome Res 2011; 11:49-67. [PMID: 22017755 DOI: 10.1021/pr200861w] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soil salinity is a major abiotic stress that limits plant growth and agriculture productivity. To cope with salt stress, plants have evolved complex salt-responsive signaling and metabolic processes at the cellular, organ, and whole-plant levels. Investigation of the physiological and molecular mechanisms underlying plant salinity tolerance will provide valuable information for effective engineering strategies. Current proteomics provides a high-throughput approach to study sophisticated molecular networks in plants. In this review, we describe a salt-responsive protein database by an integrated analysis of proteomics-based studies. The database contains 2171 salt-responsive protein identities representing 561 unique proteins. These proteins have been identified from leaves, roots, shoots, seedlings, unicells, grains, hypocotyls, radicles, and panicles from 34 plant species. The identified proteins provide invaluable information toward understanding the complex and fine-tuned plant salt-tolerance mechanisms in photosynthesis, reactive oxygen species (ROS) scavenging, ion homeostasis, osmotic modulation, signaling transduction, transcription, protein synthesis/turnover, cytoskeleton dynamics, and cross-tolerance to different stress conditions.
Collapse
Affiliation(s)
- Heng Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | | | | | | | | | | | | |
Collapse
|
68
|
Zhao R, Cao Y, Xu H, Lv L, Qiao D, Cao Y. ANALYSIS OF EXPRESSED SEQUENCE TAGS FROM THE GREEN ALGA DUNALIELLA SALINA (CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2011; 47:1454-1460. [PMID: 27020369 DOI: 10.1111/j.1529-8817.2011.01071.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The unicellular green alga Dunaliella salina (Dunal) Teodor. is a novel model photosynthetic eukaryote for studying photosystems, high salinity acclimation, and carotenoid accumulation. In spite of such significance, there have been limited studies on the Dunaliella genome transcriptome and proteome. To further investigate D. salina, a cDNA library was constructed and sequenced. Here, we present the analysis of the 2,282 expressed sequence tags (ESTs) generated together with 3,990 ESTs from dbEST. A total of 4,148 unique sequences (UniSeqs) were identified, of which 56.1% had sequence similarity with Uniprot entries, suggesting that a large number of unique genes may be harbored by Dunaliella. Additionally, protein family domains were identified to further characterize these sequences. Then, we also compared EST sequences with different complete eukaryotic genomes from several animals, plants, and fungi. We observed notable differences between D. salina and other organisms. This EST collection and its annotation provided a significant resource for basic and applied research on D. salina and laid the foundation for a systematic analysis of the transcriptome basis of green algae development and diversification.
Collapse
Affiliation(s)
- Rui Zhao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China, 610064
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China, 610064
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China, 610064
| | - Linfeng Lv
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China, 610064
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China, 610064
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China, 610064
| |
Collapse
|
69
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Leung PTY, Wang Y, Mak SST, Ng WC, Leung KMY. Differential proteomic responses in hepatopancreas and adductor muscles of the green-lipped mussel Perna viridis to stresses induced by cadmium and hydrogen peroxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:49-61. [PMID: 21684241 DOI: 10.1016/j.aquatox.2011.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
This study aimed to reveal the proteomic responses in the hepatopancreas and adductor muscle of a common biomonitor, Perna viridis after 14-day exposure to two model chemicals, cadmium (Cd; a toxic metal) and hydrogen peroxide (H(2)O(2); a pro-oxidant), using two-dimensional gel electrophoresis coupled with multivariate statistical analyses. Unique sets of tissue-specific protein expression signatures were revealed corresponding to the two treatment groups. In the hepatopancreas, 15 and 2 spots responded to Cd and H(2)O(2) treatments respectively. 6 and 7 spots were differentially expressed in the adductor muscle for Cd and H(2)O(2) treatments, respectively. 15 differentially expressed spots were successfully identified by MALDI-TOF/TOF MS analysis. These proteins are involved in glycolysis, amino acid metabolism, energy homeostasis, oxidative stress response, redox homeostasis and protein folding, heat-shock response, and muscle contraction modulation. This is the first time, to have demonstrated that Cd exposure not only leads to substantial oxidative stress but also results in endoplasmic reticulum stress in hepatopancreas of the mussel. Such notable stress responses may be attributable to high Cd accumulation in this tissue. Our results suggested that investigations on these stress-associated protein changes could be used as a new and complementary approach in pollution monitoring by this popular biomonitor species.
Collapse
Affiliation(s)
- Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
71
|
Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 2011; 10:3852-70. [PMID: 21732589 DOI: 10.1021/pr101102p] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Soil salinity poses a serious threat to agriculture productivity throughout the world. Studying mechanisms of salinity tolerance in halophytic plants will provide valuable information for engineering plants for enhanced salt tolerance. Monocotyledonous Puccinellia tenuiflora is a halophytic species that widely distributed in the saline-alkali soil of the Songnen plain in northeastern China. Here we investigate the molecular mechanisms underlying moderate salt tolerance of P. tenuiflora using a combined physiological and proteomic approach. The changes in biomass, inorganic ion content, osmolytes, photosynthesis, defense-related enzyme activities, and metabolites in the course of salt treatment were analyzed in the leaves. Comparative proteomic analysis revealed 107 identities (representing 93 unique proteins) differentially expressed in P. tenuiflora leaves under saline conditions. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate and energy metabolism, protein metabolism, signaling, membrane, and transport. Our results showed that reduction of photosynthesis under salt treatment was attributed to the down-regulation of the light-harvesting complex (LHC) and Calvin cycle enzymes. Selective uptake of inorganic ions, high K(+)/Na(+) ratio, Ca(2+) concentration changes, and an accumulation of osmolytes contributed to ion balance and osmotic adjustment in leaf cells. Importantly, P. tenuiflora plants developed diverse reactive oxygen species (ROS) scavenging mechanisms in their leaves to cope with moderate salinity, including enhancement of the photorespiration pathway and thermal dissipation, synthesis of the low-molecular-weight antioxidant α-tocopherol, and an accumulation of compatible solutes. This study provides important information toward improving salt tolerance of cereals.
Collapse
Affiliation(s)
- Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Involvement of multimeric protein complexes in mediating the capacitation-dependent binding of human spermatozoa to homologous zonae pellucidae. Dev Biol 2011; 356:460-74. [DOI: 10.1016/j.ydbio.2011.05.674] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 02/06/2023]
|
73
|
Xie C, Liu N, Long J, Tang C, Li J, Huo L, Wang X, Chen P, Liang S. Blue native/SDS-PAGE combined with iTRAQ analysis reveals advanced glycation end-product-induced changes of synaptosome proteins in C57 BL/6 mice. Electrophoresis 2011; 32:2194-205. [PMID: 21792995 DOI: 10.1002/elps.201100125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 04/13/2011] [Indexed: 01/09/2023]
Abstract
Evidence shows that administration of high-level D-galactose induces the production of advanced glycation end-products (AGEs) that have been implicated in the development of diabetic complications such as neuropathy. The deterioration of learning and memory during neuropathy might be associated with the altered expression of proteins in synapse. To evaluate AGE-induced protein network alterations in synapse, blue native/SDS-PAGE and iTRAQ proteomic methods were used to screen for differentially expressed synaptic proteins of cerebral cortex in D-galactose-induced C57 BL/6 mice. In total, the expression level of 84 proteins is changed during AGE accumulation. The significantly differentially expressed proteins mainly participate in neurotransmission, energy metabolism and signal transduction pathway, suggesting that energy metabolism is damaged and neurotransmission is attenuated in synapse. The results of in vivo activities of malondialdehyde and superoxide dismutase suggested that AGE accumulation in the brain leads to the generation of reactive oxygen species. Therefore, elucidating the differentially expressed proteins underlying the AGE accumulation will open a new window to the mechanism of learning and memory impairments in neuropathy.
Collapse
Affiliation(s)
- Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Committee, College of Life Sciences, Hunan Normal University, Changsha, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lüthje S, Meisrimler CN, Hopff D, Möller B. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants. PHYTOCHEMISTRY 2011; 72:1124-1135. [PMID: 21211808 DOI: 10.1016/j.phytochem.2010.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.
Collapse
Affiliation(s)
- Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek, Dept. Plant Physiology, Ohnhorststrasse 18, 22609 Hamburg, Germany.
| | | | | | | |
Collapse
|
75
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
76
|
Tomanek L. Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:373-99. [PMID: 21329210 DOI: 10.1146/annurev-marine-120709-142729] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental proteomics, the study of changes in the abundance of proteins and their post-translational modifications, has become a powerful tool for generating hypotheses regarding how the environment affects the biology of marine organisms. Proteomics discovers hitherto unknown cellular effects of environmental stressors such as changes in thermal, osmotic, and anaerobic conditions. Proteomic analyses have advanced the characterization of the biological effects of pollutants and identified comprehensive and pollutant-specific sets of biomarkers, especially those highlighting post-translational modifications. Proteomic analyses of infected organisms have highlighted the broader changes occurring during immune responses and how the same pathways are attenuated during the maintenance of symbiotic relationships. Finally, proteomic changes occurring during the early life stages of marine organisms emphasize the importance of signaling events during development in a rapidly changing environment. Changes in proteins functioning in energy metabolism, cytoskeleton, protein stabilization and turnover, oxidative stress, and signaling are common responses to environmental change.
Collapse
Affiliation(s)
- Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, San Luis Obispo, California 93407-0401, USA.
| |
Collapse
|
77
|
Shekari F, Taei A, Pan TL, Wang PW, Baharvand H, Salekdeh GH. Identification of cytoplasmic and membrane-associated complexes in human embryonic stem cells using blue native PAGE. MOLECULAR BIOSYSTEMS 2011; 7:2688-701. [DOI: 10.1039/c1mb05135k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
78
|
Song T, Gao Q, Xu Z, Song R. The cloning and characterization of two ammonium transporters in the salt-resistant green alga, Dunaliella viridis. Mol Biol Rep 2010; 38:4797-804. [PMID: 21153924 DOI: 10.1007/s11033-010-0621-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 11/26/2010] [Indexed: 11/26/2022]
Abstract
Ammonium (NH(4) (+)) transport is a key process in nitrogen metabolism. To elucidate the role of ammonium transporters in the nitrogen consumption of the salt-resistant green alga, Dunaliella viridis, two ammonium transporter genes, DvAMT1;1 and DvAMT1;2, were isolated from cDNA libraries of D. viridis. DvAMT1;1 and DvAMT1;2 share only 40% amino acid identity, indicating that they have highly divergent coding sequences. Functional complementation in a yeast mutant defective in ammonium uptake indicated that both DvAMT1;1 and DvAMT1;2 were functional ammonium transporters. Quantitative RT-PCR showed similar expression patterns, but different transcript abundance levels, for DvAMT1;1 and DvAMT1;2 under different nitrogen conditions. Both were induced at low nitrogen and inhibited at high nitrogen concentrations, especially when NH(4) (+) was the nitrogen source. At the transcriptional level, DvAMT1;1 was diurnally regulated, while DvAMT1;2 was not. In addition, under NaCl concentrations that ranged from 0.5 to 3 M, DvAMT1;1 was down-regulated at the higher salt conditions; conversely, DvAMT1;2 maintained a relatively low, but stable, transcript abundance. The observed differences in transcriptional regulation of DvAMT1;1 and DvAMT1;2 are indicative of their diverse physiological functions in D. viridis.
Collapse
Affiliation(s)
- Ting Song
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
79
|
Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:437-49. [PMID: 21802602 DOI: 10.1016/j.plantsci.2010.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 05/10/2023]
Abstract
The unicellular, halotolerant, green alga, Dunaliella salina (Chlorophyceae) has the unique ability to adapt and grow in a wide range of salt conditions from about 0.05 to 5.5M. To better understand the molecular basis of its salinity tolerance, a complementary DNA (cDNA) library was constructed from D. salina cells adapted to 2.5M NaCl, salt-shocked at 3.4M NaCl for 5h, and used to generate an expressed sequence tag (EST) database. ESTs were obtained for 2831 clones representing 1401 unique transcripts. Putative functions were assigned to 1901 (67.2%) ESTs after comparison with protein databases. An additional 154 (5.4%) ESTs had significant similarity to known sequences whose functions are unclear and 776 (27.4%) had no similarity to known sequences. For those D. salina ESTs for which functional assignments could be made, the largest functional categories included protein synthesis (35.7%), energy (photosynthesis) (21.4%), primary metabolism (13.8%) and protein fate (6.8%). Within the protein synthesis category, the vast majority of ESTs (80.3%) encoded ribosomal proteins representing about 95% of the approximately 82 subunits of the cytosolic ribosome indicating that D. salina invests substantial resources in the production and maintenance of protein synthesis. The increased mRNA expression upon salinity shock was verified for a small set of selected genes by real-time, quantitative reverse-transcription-polymerase chain reaction (qRT-PCR). This EST collection also provided important new insights into the genetic underpinnings for the biosynthesis and utilization of glycerol and other osmoprotectants, the carotenoid biosynthetic pathway, reactive oxygen-scavenging enzymes, and molecular chaperones (heat shock proteins) not described previously for D. salina. EST discovery also revealed the existence of RNA interference and signaling pathways associated with osmotic stress adaptation. The unknown ESTs described here provide a rich resource for the identification of novel genes associated with the mechanistic basis of salinity stress tolerance and other stress-adaptive traits.
Collapse
Affiliation(s)
- Fadi Alkayal
- Dasman Center for Research and Treatment of Diabetes, P.O Box 1180, Dasman, Kuwait
| | | | | | | | | | | |
Collapse
|
80
|
Analysis of Proteins in Plasma Membrane From Halophilic Bacteria by Two Dimensional Blue Native Gel Electrophoresis*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Sun J, Zhang Y, Thiyagarajan V, Qian PY, Qiu JW. Protein expression during the embryonic development of a gastropod. Proteomics 2010; 10:2701-11. [DOI: 10.1002/pmic.200900846] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
82
|
Mochida K, Shinozaki K. Genomics and bioinformatics resources for crop improvement. PLANT & CELL PHYSIOLOGY 2010; 51:497-523. [PMID: 20208064 PMCID: PMC2852516 DOI: 10.1093/pcp/pcq027] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/01/2010] [Indexed: 05/19/2023]
Abstract
Recent remarkable innovations in platforms for omics-based research and application development provide crucial resources to promote research in model and applied plant species. A combinatorial approach using multiple omics platforms and integration of their outcomes is now an effective strategy for clarifying molecular systems integral to improving plant productivity. Furthermore, promotion of comparative genomics among model and applied plants allows us to grasp the biological properties of each species and to accelerate gene discovery and functional analyses of genes. Bioinformatics platforms and their associated databases are also essential for the effective design of approaches making the best use of genomic resources, including resource integration. We review recent advances in research platforms and resources in plant omics together with related databases and advances in technology.
Collapse
|
83
|
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:795-804. [PMID: 19682288 DOI: 10.1111/j.1365-313x.2009.04000.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) and nitric oxide (*NO) are key reactive species in signal transduction pathways leading to activation of plant defense against biotic or abiotic stress. Here, we investigated the effect of pre-treating citrus plants (Citrus aurantium L.) with either of these two molecules on plant acclimation to salinity and show that both pre-treatments strongly reduced the detrimental phenotypical and physiological effects accompanying this stress. A proteomic analysis disclosed 85 leaf proteins that underwent significant quantitative variations in plants directly exposed to salt stress. A large part of these changes was not observed with salt-stressed plants pre-treated with either H(2)O(2) or sodium nitroprusside (SNP; a *NO-releasing chemical). We also identified several proteins undergoing changes either in their oxidation (carbonylation; 40 proteins) and/or S-nitrosylation (49 proteins) status in response to salinity stress. Both H(2)O(2) and SNP pre-treatments before salinity stress alleviated salinity-induced protein carbonylation and shifted the accumulation levels of leaf S-nitrosylated proteins to those of unstressed control plants. Altogether, the results indicate an overlap between H(2)O(2)- and *NO-signaling pathways in acclimation to salinity and suggest that the oxidation and S-nitrosylation patterns of leaf proteins are specific molecular signatures of citrus plant vigour under stressful conditions.
Collapse
Affiliation(s)
- Georgia Tanou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Komatsu S, Wada T, Abaléa Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 2009; 8:4487-99. [PMID: 19658398 DOI: 10.1021/pr9002883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane acts as the primary interface between the cellular cytoplasm and the extracellular environment. To investigate the function of the plasma membrane in response to flooding stress, plasma membrane was purified from root and hypocotyl of soybean seedlings using an aqueous two-phase partitioning method. Purified plasma membrane proteins with 81% purity were analyzed using either two-dimensional polyacrylamide gel electrophoresis followed by mass spectrometry and protein sequencing (2-DE MS/sequencer)-based proteomics or nanoliquid chromatography followed by mass spectrometry (nanoLC-MS/MS)-based proteomics. The number of hydrophobic proteins identified by nanoLC-MS/MS-based proteomics was compared with those identified by 2-DE MS/sequencer-based proteomics. These techniques were applied to identify the proteins in soybean that are responsive to flooding stress. Results indicate insights of plasma membrane into the response of soybean to flooding stress: (i) the proteins located in the cell wall are up-regulated in plasma membrane; (ii) the proteins related to antioxidative system play a crucial role in protecting cells from oxidative damage; (iii) the heat shock cognate protein plays a role in protecting proteins from denaturation and degradation during flooding stress; and (iv) the signaling related proteins might regulate ion homeostasis.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Li X, Xie C, Jin Q, Liu M, He Q, Cao R, Lin Y, Li J, Li Y, Chen P, Liang S. Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry. J Proteome Res 2009; 8:3475-86. [PMID: 19432478 DOI: 10.1021/pr900101d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuronal synapses are specialized sites for information exchange between neurons. Many diseases, such as addiction and mood disorders, likely result from altered expression of synaptic proteins, or altered formation of synaptic complexes involved in neurotransmission or neuroplasticity. A detailed description of native multiprotein complexes in synaptic plasma membranes (PM) is therefore essential for understanding biological mechanisms and disease processes. For the first time in this study, two-dimensional Blue Native/SDS-PAGE electrophoresis, combined with tandem mass spectrometry, was used to screen multiprotein complexes in synaptic plasma membranes from rat hippocampus. As a result, 514 unique proteins were identified, of which 36% were integral membrane proteins. In addition, 19 potentially novel and known heterooligomeric multiprotein complexes were found, such as the SNARE and ATPase complexes. A potentially novel protein complex, involving syntaxin, synapsin I and Na+/K+ ATPase alpha-1, was further confirmed by co-immunoprecipitation and immunofluorescence staining. As demonstrated here, Blue Native-PAGE is a powerful tool for the separation of hydrophobic membrane proteins. The combination of Blue Native-PAGE and mass spectrometry could systematically identify multiprotein complexes.
Collapse
Affiliation(s)
- Xuanwen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Committee, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 2009; 9:3100-14. [PMID: 19526560 DOI: 10.1002/pmic.200800340] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To gain a better understanding of salt stress responses in plants, we used a proteomic approach to investigate changes in rice (Oryza sativa) root plasma-membrane-associated proteins following treatment with 150 mmol/L NaCl. With or without a 48 h salt treatment, plasma membrane fractions from root tip cells of a salt-sensitive rice cultivar, Wuyunjing 8, were purified by PEG aqueous two-phase partitioning, and plasma-membrane-associated proteins were separated by IEF/SDS-PAGE using an optimized rehydration buffer. Comparative analysis of three independent biological replicates revealed that the expressions of 18 proteins changed by more than 1.5-fold in response to salt stress. Of these proteins, nine were up-regulated and nine were down-regulated. MS analysis indicated that most of these membrane-associated proteins are involved in important physiological processes such as membrane stabilization, ion homeostasis, and signal transduction. In addition, a new leucine-rich-repeat type receptor-like protein kinase, OsRPK1, was identified as a salt-responding protein. Immuno-blots indicated that OsRPK1 is also induced by cold, drought, and abscisic acid. Using immuno-histochemical techniques, we determined that the expression of OsRPK1 was localized in the plasma membrane of cortex cells in roots. The results suggest that different rice cultivars might have different salt stress response mechanisms.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hynek R, Svensson B, Jensen ON, Barkholt V, Finnie C. The plasma membrane proteome of germinating barley embryos. Proteomics 2009; 9:3787-94. [DOI: 10.1002/pmic.200800745] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Isolation and proteomic analysis of the halotolerant alga Dunaliella salina flagella using shotgun strategy. Mol Biol Rep 2009; 37:711-6. [PMID: 19437132 DOI: 10.1007/s11033-009-9563-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that flagella/cilia are critical organelles and play diverse roles of motility, sensory perception and development in many eukaryotic cells. However, there is very little information available about flagella composition in Dunaliella salina, a halotolerant, unicellular biflagellate green alga. In the present study, we used strategy of shotgun proteomics to identify flagella proteins after flagella were released and collected from D. salina. A total of 520 groups of proteins were identified under a stringent filter condition (Xcorr > or =1.9, > or =2.2 and > or =3.75; DeltaCn >/= 0.1). In addition to six kinds of known flagella proteins, the putative flagella proteins of D. salina identified by one or more peptides are abundant in signaling, cell division, metabolism, etc. The findings provide guidance for further studies to elucidate the roles of these proteins in the function and assembly of this organelle in microalgae.
Collapse
|
89
|
Hunting for low abundant redox proteins in plant plasma membranes. J Proteomics 2009; 72:475-83. [DOI: 10.1016/j.jprot.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/27/2008] [Accepted: 11/01/2008] [Indexed: 01/17/2023]
|
90
|
Shevchenko A, Valcu CM, Junqueira M. Tools for exploring the proteomosphere. J Proteomics 2009; 72:137-44. [PMID: 19167528 DOI: 10.1016/j.jprot.2009.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
Abstract
Homology-driven proteomics aims at exploring the proteomes of organisms with unsequenced genomes that, despite rapid genomic sequencing progress, still represent the overwhelming majority of species in the biosphere. Methodologies have been developed to enable automated LC-MS/MS identifications of unknown proteins, which rely on the sequence similarity between the fragmented peptides and reference database sequences from phylogenetically related species. However, because full sequences of matched proteins are not available and matching specificity is reduced, estimating protein abundances should become the obligatory element of homology-driven proteomics pipelines to circumvent the interpretation bias towards proteins from evolutionary conserved families.
Collapse
Affiliation(s)
- Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | | | |
Collapse
|
91
|
Abstract
Along with unequivocal hits produced by matching multiple MS/MS spectra to database sequences, LC-MS/MS analysis often yields a large number of hits of borderline statistical confidence. To simplify their validation, we propose to use rapid de novo interpretation of all acquired MS/MS spectra and, with the help of a simple software tool, display the candidate sequences together with each database search hit. We demonstrate that comparing hit database sequences and independent de novo interpretations of the same MS/MS spectra assists in rapid examination of ambiguous matches.
Collapse
Affiliation(s)
- Henrik Thomas
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
92
|
Identification of prognosis-related proteins in advanced gastric cancer by mass spectrometry-based comparative proteomics. J Cancer Res Clin Oncol 2008; 135:403-11. [PMID: 18830628 DOI: 10.1007/s00432-008-0474-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022]
Abstract
PURPOSE The objective of this study was to identify differentially expressed proteins of advanced gastric cancer from patients with different prognosis using NanoLC-MS/MS (LTQ) (nanoflow liquid chromatography system interfaced with a linear ion trap LTQ mass spectrometer). METHODS Eight gastric cancer patients with relatively early TNM stage and survival time >34 months were identified as good survival (group G), while the other eight with late stage and survival time <15 months as poor survival (group P). The total protein of the tissue samples from each group was extracted and pooled together respectively. The resulting two protein mixtures were trypsin-digested and analyzed using NanoLC-MS/MS (LTQ). Database searches were done against NCBI non-redundant database and SWISS-PROT database and the identified proteins were classified through an online Web Gene Ontology Annotation Plot tool. Immunohistochemistry was used to verify candidate prognosis-related proteins. RESULTS There were 284 and 213 proteins identified for group G and group P respectively. And 117 proteins were detected exclusively in group G and 46 proteins exclusively in group P. These protein markers function in calcium ion signaling pathway, cellular metabolism, cytoskeleton formation, stress reaction, etc. Among those, the down-regulated expression of S100P was verified to claim a poor clinical outcome of gastric cancer patients (P = 0.0375). CONCLUSION The MS-based proteomics approach is efficient in identifying differentially expressed proteins in relation to prognosis of advanced gastric cancer patients. These differentially expressed proteins could be potential prognosis-related cancer markers and deserve further validation and functional study.
Collapse
|
93
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
94
|
|
95
|
Junqueira M, Spirin V, Balbuena TS, Thomas H, Adzhubei I, Sunyaev S, Shevchenko A. Protein identification pipeline for the homology-driven proteomics. J Proteomics 2008; 71:346-56. [PMID: 18639657 DOI: 10.1016/j.jprot.2008.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/26/2022]
Abstract
Homology-driven proteomics is a major tool to characterize proteomes of organisms with unsequenced genomes. This paper addresses practical aspects of automated homology-driven protein identifications by LC-MS/MS on a hybrid LTQ Orbitrap mass spectrometer. All essential software elements supporting the presented pipeline are either hosted at the publicly accessible web server, or are available for free download.
Collapse
Affiliation(s)
- Magno Junqueira
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B. Proteome analysis of non-model plants: a challenging but powerful approach. MASS SPECTROMETRY REVIEWS 2008; 27:354-77. [PMID: 18381744 DOI: 10.1002/mas.20170] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Collapse
|
97
|
Junqueira M, Spirin V, Santana Balbuena T, Waridel P, Surendranath V, Kryukov G, Adzhubei I, Thomas H, Sunyaev S, Shevchenko A. Separating the wheat from the chaff: unbiased filtering of background tandem mass spectra improves protein identification. J Proteome Res 2008; 7:3382-95. [PMID: 18558732 DOI: 10.1021/pr800140v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins upon database searches. The remaining, operationally termed background, spectra originate from a variety of poorly controlled sources and affect the throughput and confidence of database searches. Here, we report an algorithm and its software implementation that rapidly removes background spectra, regardless of their precise origin. The method estimates the dissimilarity distance between screened MS/MS spectra and unannotated spectra from a partially redundant background library compiled from several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to background protein contaminants and required manual validation. Removing high quality background MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased the false positive rate of stringent database searches and improved the identification of low-abundance proteins.
Collapse
Affiliation(s)
- Magno Junqueira
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Reisinger V, Eichacker LA. Solubilization of membrane protein complexes for blue native PAGE. J Proteomics 2008; 71:277-83. [PMID: 18573355 DOI: 10.1016/j.jprot.2008.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 12/27/2022]
Abstract
Blue native PAGE is an electrophoretic technique for high-resolution separation of membrane proteins. The method has been proven especially useful for investigation of native protein complexes enabling a characterization of potential protein-protein interactions in the context of functional proteomics. Blue native PAGE is easy to realise, results are reproducible and a high number of protocols are available. However, care should be taken during solubilization of protein complexes to achieve significant results in BN-PAGE analysis. Solubilization of membranes and proteins is not only influenced by detergent-lipid and detergent-protein interactions but also by lipid-lipid, lipid-protein and protein-protein interactions. Interactions have been investigated experimentally and theoretically. But, in practice, the experimental results do not always mirror the theoretical basis and therefore optimal solubilization conditions for each membrane and membrane protein complex should be investigated individually to tap the full potential of BN-PAGE analysis.
Collapse
Affiliation(s)
- Veronika Reisinger
- Department Biology I, Ludwig-Maximilians-Universität München, Menzingerstrasse 67, Munich, Germany
| | | |
Collapse
|