51
|
Devlin LA, Ramsbottom SA, Overman LM, Lisgo SN, Clowry G, Molinari E, Powell L, Miles CG, Sayer JA. Embryonic and foetal expression patterns of the ciliopathy gene CEP164. PLoS One 2020; 15:e0221914. [PMID: 31990917 PMCID: PMC6986751 DOI: 10.1371/journal.pone.0221914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/03/2020] [Indexed: 01/20/2023] Open
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) are a group of inherited genetic disorders that share a defect in the formation, maintenance or functioning of the primary cilium complex, causing progressive cystic kidney disease and other clinical manifestations. Mutations in centrosomal protein 164 kDa (CEP164), also known as NPHP15, have been identified as a cause of NPHP-RC. Here we have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR) to perform immunohistochemistry studies on human embryonic and foetal tissues to determine the expression patterns of CEP164 during development. Notably expression is widespread, yet defined, in multiple organs including the kidney, retina and cerebellum. Murine studies demonstrated an almost identical Cep164 expression pattern. Taken together, these data support a conserved role for CEP164 throughout the development of numerous organs, which, we suggest, accounts for the multi-system disease phenotype of CEP164-mediated NPHP-RC.
Collapse
Affiliation(s)
- L. A. Devlin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - S. A. Ramsbottom
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - L. M. Overman
- MRC-Wellcome Trust Human Developmental Biology Resource, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne, England, United Kingdom
| | - S. N. Lisgo
- MRC-Wellcome Trust Human Developmental Biology Resource, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne, England, United Kingdom
| | - G. Clowry
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, England, United Kingdom
| | - E. Molinari
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - L. Powell
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - C. G. Miles
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - J. A. Sayer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle upon Tyne, England, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, England, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Actin-based regulation of ciliogenesis - The long and the short of it. Semin Cell Dev Biol 2019; 102:132-138. [PMID: 31862221 DOI: 10.1016/j.semcdb.2019.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/23/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
The primary cilia is found on the mammalian cell surface where it serves as an antenna for the reception and transmission of a variety of cellular signaling pathways. At its core the cilium is a microtubule-based organelle, but it is clear that its assembly and function are dependent upon the coordinated regulation of both actin and microtubule dynamics. In particular, the discovery that the centrosome is able to act as both a microtubule and actin organizing centre implies that both cytoskeletal networks are acting directly on the process of cilia assembly. In this review, we set our recent results with the formin FHDC1 in the context of current reports that show each stage of ciliogenesis is impacted by changes in actin dynamics. These include direct effects of actin filament assembly on basal body positioning, vesicle trafficking to and entry into the cilium, cilia length, cilia membrane organization and cilia-dependent signaling.
Collapse
|
53
|
Photoreceptor disc membranes are formed through an Arp2/3-dependent lamellipodium-like mechanism. Proc Natl Acad Sci U S A 2019; 116:27043-27052. [PMID: 31843915 DOI: 10.1073/pnas.1913518117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The light-sensitive outer segment of the vertebrate photoreceptor is a highly modified primary cilium filled with disc-shaped membranes that provide a vast surface for efficient photon capture. The formation of each disc is initiated by a ciliary membrane evagination driven by an unknown molecular mechanism reportedly requiring actin polymerization. Since a distinct F-actin network resides precisely at the site of disc morphogenesis, we employed a unique proteomic approach to identify components of this network potentially driving disc morphogenesis. The only identified actin nucleator was the Arp2/3 complex, which induces the polymerization of branched actin networks. To investigate the potential involvement of Arp2/3 in the formation of new discs, we generated a conditional knockout mouse lacking its essential ArpC3 subunit in rod photoreceptors. This knockout resulted in the complete loss of the F-actin network specifically at the site of disc morphogenesis, with the time course of ArpC3 depletion correlating with the time course of F-actin loss. Without the actin network at this site, the initiation of new disc formation is completely halted, forcing all newly synthesized membrane material to be delivered to the several nascent discs whose morphogenesis had already been in progress. As a result, these discs undergo uncontrolled expansion instead of normal enclosure, which leads to formation of unusual, large membrane whorls. These data suggest a model of photoreceptor disc morphogenesis in which Arp2/3 initiates disc formation in a "lamellipodium-like" mechanism.
Collapse
|
54
|
Zuo X, Kwon SH, Janech MG, Dang Y, Lauzon SD, Fogelgren B, Polgar N, Lipschutz JH. Primary cilia and the exocyst are linked to urinary extracellular vesicle production and content. J Biol Chem 2019; 294:19099-19110. [PMID: 31694916 PMCID: PMC6916495 DOI: 10.1074/jbc.ra119.009297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The recently proposed idea of "urocrine signaling" hypothesizes that small secreted extracellular vesicles (EVs) contain proteins that transmit signals to distant cells. However, the role of renal primary cilia in EV production and content is unclear. We previously showed that the exocyst, a highly conserved trafficking complex, is necessary for ciliogenesis; that it is present in human urinary EVs; that knockdown (KD) of exocyst complex component 5 (EXOC5), a central exocyst component, results in very short or absent cilia; and that human EXOC5 overexpression results in longer cilia. Here, we show that compared with control Madin-Darby canine kidney (MDCK) cells, EXOC5 overexpression increases and KD decreases EV numbers. Proteomic analyses of isolated EVs from EXOC5 control, KD, and EXOC5-overexpressing MDCK cells revealed significant alterations in protein composition. Using immunoblotting to specifically examine the expression levels of ADP-ribosylation factor 6 (ARF6) and EPS8-like 2 (EPS8L2) in EVs, we found that EXOC5 KD increases ARF6 levels and decreases EPS8L2 levels, and that EXOC5 overexpression increases EPS8L2. Knockout of intraflagellar transport 88 (IFT88) confirmed that the changes in EV number/content were due to cilia loss: similar to EXOC5, the IFT88 loss resulted in very short or absent cilia, decreased EV numbers, increased EV ARF6 levels, and decreased Eps8L2 levels compared with IFT88-rescued EVs. Compared with control animals, urine from proximal tubule-specific EXOC5-KO mice contained fewer EVs and had increased ARF6 levels. These results indicate that perturbations in exocyst and primary cilia affect EV number and protein content.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia 30912
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29424
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Steven D Lauzon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
55
|
Defining the layers of a sensory cilium with STORM and cryoelectron nanoscopy. Proc Natl Acad Sci U S A 2019; 116:23562-23572. [PMID: 31690665 DOI: 10.1073/pnas.1902003116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary cilia carry out numerous signaling and sensory functions, and defects in them, "ciliopathies," cause a range of symptoms, including blindness. Understanding of their nanometer-scale ciliary substructures and their disruptions in ciliopathies has been hindered by limitations of conventional microscopic techniques. We have combined cryoelectron tomography, enhanced by subtomogram averaging, with superresolution stochastic optical reconstruction microscopy (STORM) to define subdomains within the light-sensing rod sensory cilium of mouse retinas and reveal previously unknown substructures formed by resident proteins. Domains are demarcated by structural features such as the axoneme and its connections to the ciliary membrane, and are correlated with molecular markers of subcompartments, including the lumen and walls of the axoneme, the membrane glycocalyx, and the intervening cytoplasm. Within this framework, we report spatial distributions of key proteins in wild-type (WT) mice and the effects on them of genetic deficiencies in 3 models of Bardet-Biedl syndrome.
Collapse
|
56
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
57
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
58
|
Corkins ME, Krneta-Stankic V, Kloc M, McCrea PD, Gladden AB, Miller RK. Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis. PLoS One 2019; 14:e0221698. [PMID: 31469868 PMCID: PMC6716777 DOI: 10.1371/journal.pone.0221698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Kidneys are composed of numerous ciliated epithelial tubules called nephrons. Each nephron functions to reabsorb nutrients and concentrate waste products into urine. Defects in primary cilia are associated with abnormal formation of nephrons and cyst formation in a wide range of kidney disorders. Previous work in Xenopus laevis and zebrafish embryos established that loss of components that make up the Wnt/PCP pathway, Daam1 and ArhGEF19 (wGEF) perturb kidney tubulogenesis. Dishevelled, which activates both the canonical and non-canonical Wnt/PCP pathway, affect cilia formation in multiciliated cells. In this study, we investigated the role of the noncanoncial Wnt/PCP components Daam1 and ArhGEF19 (wGEF) in renal ciliogenesis utilizing polarized mammalian kidney epithelia cells (MDCKII and IMCD3) and Xenopus laevis embryonic kidney. We demonstrate that knockdown of Daam1 and ArhGEF19 in MDCKII and IMCD3 cells leads to loss of cilia, and Daam1's effect on ciliogenesis is mediated by the formin-activity of Daam1. Moreover, Daam1 co-localizes with the ciliary transport protein Ift88 and is present in cilia. Interestingly, knocking down Daam1 in Xenopus kidney does not lead to loss of cilia. These data suggests a new role for Daam1 in the formation of primary cilia.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pierre D. McCrea
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew B. Gladden
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston, Texas, United States of America
| |
Collapse
|
59
|
Fulmer D, Toomer K, Guo L, Moore K, Glover J, Moore R, Stairley R, Lobo G, Zuo X, Dang Y, Su Y, Fogelgren B, Gerard P, Chung D, Heydarpour M, Mukherjee R, Body SC, Norris RA, Lipschutz JH. Defects in the Exocyst-Cilia Machinery Cause Bicuspid Aortic Valve Disease and Aortic Stenosis. Circulation 2019; 140:1331-1341. [PMID: 31387361 DOI: 10.1161/circulationaha.119.038376] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bicuspid aortic valve (BAV) disease is a congenital defect that affects 0.5% to 1.2% of the population and is associated with comorbidities including ascending aortic dilation and calcific aortic valve stenosis. To date, although a few causal genes have been identified, the genetic basis for the vast majority of BAV cases remains unknown, likely pointing to complex genetic heterogeneity underlying this phenotype. Identifying genetic pathways versus individual gene variants may provide an avenue for uncovering additional BAV causes and consequent comorbidities. METHODS We performed genome-wide association Discovery and Replication Studies using cohorts of 2131 patients with BAV and 2728 control patients, respectively, which identified primary cilia genes as associated with the BAV phenotype. Genome-wide association study hits were prioritized based on P value and validated through in vivo loss of function and rescue experiments, 3-dimensional immunohistochemistry, histology, and morphometric analyses during aortic valve morphogenesis and in aged animals in multiple species. Consequences of these genetic perturbations on cilia-dependent pathways were analyzed by Western and immunohistochemistry analyses, and assessment of aortic valve and cardiac function were determined by echocardiography. RESULTS Genome-wide association study hits revealed an association between BAV and genetic variation in human primary cilia. The most associated single-nucleotide polymorphisms were identified in or near genes that are important in regulating ciliogenesis through the exocyst, a shuttling complex that chaperones cilia cargo to the membrane. Genetic dismantling of the exocyst resulted in impaired ciliogenesis, disrupted ciliogenic signaling and a spectrum of cardiac defects in zebrafish, and aortic valve defects including BAV, valvular stenosis, and valvular calcification in murine models. CONCLUSIONS These data support the exocyst as required for normal ciliogenesis during aortic valve morphogenesis and implicate disruption of ciliogenesis and its downstream pathways as contributory to BAV and associated comorbidities in humans.
Collapse
Affiliation(s)
- Diana Fulmer
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston.,Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Katelynn Toomer
- Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Lilong Guo
- Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Kelsey Moore
- Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Janiece Glover
- Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Reece Moore
- Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Rebecca Stairley
- Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Glenn Lobo
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston.,Ophthalmology (G.L.), Medical University of South Carolina, Charleston
| | - Xiaofeng Zuo
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston
| | - Yujing Dang
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston
| | - Yanhui Su
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu (B.F.)
| | - Patrick Gerard
- Department of Mathematical Sciences, Clemson University, SC (P.G.)
| | - Dongjun Chung
- Public Health Sciences (D.C.), Medical University of South Carolina, Charleston
| | - Mahyar Heydarpour
- Department of Anesthesiology, Brigham and Women's Hospital (M.H.), Harvard Medical School, Boston, MA
| | - Rupak Mukherjee
- Surgery (R. Mukherjee), Medical University of South Carolina, Charleston.,Departments of Research (R. Mukherjee), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Simon C Body
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center (S.C.B.), Harvard Medical School, Boston, MA
| | - Russell A Norris
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston.,Regenerative Medicine and Cell Biology (D.F., K.T., L.G., K.M., J.G., R. Moore, R.S., R.A.N.), Medical University of South Carolina, Charleston
| | - Joshua H Lipschutz
- Departments of Medicine (D.F., G.L., X.Z., Y.D., Y.S., R.A.N., J.H.L.), Medical University of South Carolina, Charleston.,Medicine (J.H.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
60
|
Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes (Basel) 2019; 10:genes10080557. [PMID: 31344897 PMCID: PMC6722924 DOI: 10.3390/genes10080557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
The light sensing outer segments of photoreceptors (PRs) are renewed every ten days due to their high photoactivity, especially of the cones during daytime vision. This demands a tremendous amount of energy, as well as a high turnover of their main biosynthetic compounds, membranes, and proteins. Therefore, a refined proteostasis network (PN), regulating the protein balance, is crucial for PR viability. In many inherited retinal diseases (IRDs) this balance is disrupted leading to protein accumulation in the inner segment and eventually the death of PRs. Various studies have been focusing on therapeutically targeting the different branches of the PR PN to restore the protein balance and ultimately to treat inherited blindness. This review first describes the different branches of the PN in detail. Subsequently, insights are provided on how therapeutic compounds directed against the different PN branches might slow down or even arrest the appalling, progressive blinding conditions. These insights are supported by findings of PN modulators in other research disciplines.
Collapse
|
61
|
Chen HY, Welby E, Li T, Swaroop A. Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies. ACTA ACUST UNITED AC 2019; 4:97-115. [PMID: 31763178 PMCID: PMC6839492 DOI: 10.3233/trd-190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ciliopathies display extensive genetic and clinical heterogeneity, varying in severity, age of onset, disease progression and organ systems affected. Retinal involvement, as demonstrated by photoreceptor dysfunction or death, is a highly penetrant phenotype among a vast majority of ciliopathies. Photoreceptor cells possess a specialized and modified sensory cilium with membrane discs where efficient photon capture and ensuing signaling cascade initiate the visual process. Disruptions of cilia biogenesis and protein transport lead to impairment of photoreceptor function and eventually degeneration. Despite advances in elucidation of ciliogenesis and photoreceptor cilia defects, we have limited understanding of pathogenic mechanisms underlying retinal phenotype(s) observed in human ciliopathies. Patient-derived induced pluripotent stem cell (iPSC)-based approaches offer a unique opportunity to complement studies with model organisms and examine cilia disease relevant to humans. Three-dimensional retinal organoids from iPSC lines feature laminated cytoarchitecture, apical-basal polarity and emergence of a ciliary structure, thereby permitting pathogenic modeling of human photoreceptors in vitro. Here, we review the biology of photoreceptor cilia and associated defects and discuss recent progress in evolving treatment modalities, especially using patient-derived iPSCs, for retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Yu Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Welby
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
62
|
Lee M, Hwang YS, Yoon J, Sun J, Harned A, Nagashima K, Daar IO. Developmentally regulated GTP-binding protein 1 modulates ciliogenesis via an interaction with Dishevelled. J Cell Biol 2019; 218:2659-2676. [PMID: 31270137 PMCID: PMC6683737 DOI: 10.1083/jcb.201811147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/25/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Our study reveals Drg1 as a new binding partner of Dishevelled. The Drg1–Dishevelled association regulates Daam1 and RhoA interactions and activity, leading to polymerization and stability of the actin cytoskeleton, a process that is essential for proper multiciliation. Cilia are critical for proper embryonic development and maintaining homeostasis. Although extensively studied, there are still significant gaps regarding the proteins involved in regulating ciliogenesis. Using the Xenopus laevis embryo, we show that Dishevelled (Dvl), a key Wnt signaling scaffold that is critical to proper ciliogenesis, interacts with Drg1 (developmentally regulated GTP-binding protein 1). The loss of Drg1 or disruption of the interaction with Dvl reduces the length and number of cilia and displays defects in basal body migration and docking to the apical surface of multiciliated cells (MCCs). Moreover, Drg1 morphants display abnormal rotational polarity of basal bodies and a decrease in apical actin and RhoA activity that can be attributed to disruption of the protein complex between Dvl and Daam1, as well as between Daam1 and RhoA. These results support the concept that the Drg1–Dvl interaction regulates apical actin polymerization and stability in MCCs. Thus, Drg1 is a newly identified partner of Dvl in regulating ciliogenesis.
Collapse
Affiliation(s)
| | | | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Adam Harned
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kunio Nagashima
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Ira O Daar
- National Cancer Institute, Frederick, MD
| |
Collapse
|
63
|
Renal ciliopathies. Curr Opin Genet Dev 2019; 56:49-60. [DOI: 10.1016/j.gde.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
|
64
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
65
|
Boitet ER, Reish NJ, Hubbard MG, Gross AK. NudC regulates photoreceptor disk morphogenesis and rhodopsin localization. FASEB J 2019; 33:8799-8808. [PMID: 31022349 DOI: 10.1096/fj.201801740rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The outer segment (OS) of rod photoreceptors consist of a highly modified primary cilium containing phototransduction machinery necessary for light detection. The delivery and organization of the phototransduction components within and along the cilium into the series of stacked, highly organized disks is critical for cell function and viability. How disks are formed within the cilium remains an area of active investigation. We have found nuclear distribution protein C (nudC), a key component of mitosis and cytokinesis during development, to be present in the inner segment region of these postmitotic cells in several species, including mouse, tree shrew, monkey, and frog. Further, we found nudC interacts with rhodopsin and the small GTPase rab11a. Here, we show through transgenic tadpole studies that nudC is integral to rod cell disk formation and photoreceptor protein localization. Finally, we demonstrate that short hairpin RNA knockdown of nudC in tadpole rod photoreceptors, which leads to the inability of rod cells to maintain their OS, is rescued through coexpression of murine nudC.-Boitet, E. R., Reish, N. J., Hubbard, M. G., Gross, A. K. NudC regulates photoreceptor disk morphogenesis and rhodopsin localization.
Collapse
Affiliation(s)
- Evan R Boitet
- Evelyn F. McKnight Brain Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas J Reish
- Evelyn F. McKnight Brain Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meredith G Hubbard
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alecia K Gross
- Evelyn F. McKnight Brain Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
66
|
Modes of Accessing Bicarbonate for the Regulation of Membrane Guanylate Cyclase (ROS-GC) in Retinal Rods and Cones. eNeuro 2019; 6:eN-NWR-0393-18. [PMID: 30783616 PMCID: PMC6378327 DOI: 10.1523/eneuro.0393-18.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
The membrane guanylate cyclase, ROS-GC, that synthesizes cyclic GMP for use as a second messenger for visual transduction in retinal rods and cones, is stimulated by bicarbonate. Bicarbonate acts directly on ROS-GC1, because it enhanced the enzymatic activity of a purified, recombinant fragment of bovine ROS-GC1 consisting solely of the core catalytic domain. Moreover, recombinant ROS-GC1 proved to be a true sensor of bicarbonate, rather than a sensor for CO2. Access to bicarbonate differed in rods and cones of larval salamander, Ambystoma tigrinum, of unknown sex. In rods, bicarbonate entered at the synapse and diffused to the outer segment, where it was removed by Cl--dependent exchange. In contrast, cones generated bicarbonate internally from endogenous CO2 or from exogenous CO2 that was present in extracellular solutions of bicarbonate. Bicarbonate production from both sources of CO2 was blocked by the carbonic anhydrase inhibitor, acetazolamide. Carbonic anhydrase II expression was verified immunohistochemically in cones but not in rods. In addition, cones acquired bicarbonate at their outer segments as well as at their inner segments. The multiple pathways for access in cones may support greater uptake of bicarbonate than in rods and buffer changes in its intracellular concentration.
Collapse
|
67
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
68
|
SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet-Biedl syndrome. Eur J Hum Genet 2019; 27:928-940. [PMID: 30723319 DOI: 10.1038/s41431-019-0347-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 01/26/2023] Open
Abstract
Studies of ciliopathies have served in elucidating much of our knowledge of structure and function of primary cilia. We report humans with Bardet-Biedl syndrome who display intellectual disability, retinitis pigmentosa, obesity, short stature and brachydactyly, stemming from a homozyogous truncation mutation in SCAPER, a gene previously associated with mitotic progression. Our findings, based on linkage analysis and exome sequencing studies of two remotely related large consanguineous families, are in line with recent reports of SCAPER variants associated with intellectual disability and retinitis pigmentosa. Using immuno-fluorescence and live cell imaging in NIH/3T3 fibroblasts and SH-SY5Y neuroblastoma cell lines over-expressing SCAPER, we demonstrate that both wild type and mutant SCAPER are expressed in primary cilia and co-localize with tubulin, forming bundles of microtubules. While wild type SCAPER was rarely localized along the ciliary axoneme and basal body, the aberrant protein remained sequestered to the cilia, mostly at the ciliary tip. Notably, longer cilia were demonstrated both in human affected fibroblasts compared to controls, as well as in NIH/3T3 cells transfected with mutant versus wildtype SCAPER. As SCAPER expression is known to peak at late G1 and S phase, overlapping the timing of ciliary resorption, our data suggest a possible role of SCAPER in ciliary dynamics and disassembly, also affecting microtubule-related mitotic progression. Thus, we outline a human ciliopathy syndrome and demonstrate that it is caused by a mutation in SCAPER, affecting primary cilia.
Collapse
|
69
|
Bastin BR, Schneider SQ. Taxon-specific expansion and loss of tektins inform metazoan ciliary diversity. BMC Evol Biol 2019; 19:40. [PMID: 30704394 PMCID: PMC6357514 DOI: 10.1186/s12862-019-1360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/14/2019] [Indexed: 11/15/2022] Open
Abstract
Background Cilia and flagella are complex cellular structures thought to have first evolved in a last ciliated eukaryotic ancestor due to the conserved 9 + 2 microtubule doublet structure of the axoneme and associated proteins. The Tektin family of coiled-coil domain containing proteins was previously identified in cilia of organisms as diverse as green algae and sea urchin. While studies have shown that some Tektins are necessary for ciliary function, there has been no comprehensive phylogenetic survey of tektin genes. To fill this gap, we sampled tektin sequences broadly among metazoan and unicellular lineages in order to determine how the tektin gene complements evolved in over 100 different extant species. Results Using Bayesian and Maximum Likelihood analyses, we have ascertained with high confidence that all metazoan tektins arose from a single ancestral tektin gene in the last common ancestor of metazoans and choanoflagellates. Gene duplications gave rise to two tektin genes in the metazoan ancestor, and a subsequent expansion to three and four tektin genes in early bilaterian ancestors. While all four tektin genes remained highly conserved in most deuterostome and spiralian species surveyed, most tektin genes in ecdysozoans are highly derived with extensive gene loss in several lineages including nematodes and some crustaceans. In addition, while tektin-1, − 2, and − 4 have remained as single copy genes in most lineages, tektin-3/5 has been duplicated independently several times, notably at the base of the spiralian, vertebrate and hymenopteran (Ecdysozoa) clades. Conclusions We provide a solid description of tektin evolution supporting one, two, three, and four ancestral tektin genes in a holozoan, metazoan, bilaterian, and nephrozoan ancestor, respectively. The isolated presence of tektin in a cryptophyte and a chlorophyte branch invokes events of horizontal gene transfer, and that the last common ciliated eukaryotic ancestor lacked a tektin gene. Reconstructing the evolutionary history of the tektin complement in each extant metazoan species enabled us to pinpoint lineage specific expansions and losses. Our analysis will help to direct future studies on Tektin function, and how gain and loss of tektin genes might have contributed to the evolution of various types of cilia and flagella. Electronic supplementary material The online version of this article (10.1186/s12862-019-1360-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Present Address: Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| |
Collapse
|
70
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
71
|
Photoreceptor actin dysregulation in syndromic and non-syndromic retinitis pigmentosa. Biochem Soc Trans 2018; 46:1463-1473. [PMID: 30464047 DOI: 10.1042/bst20180138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/26/2018] [Accepted: 10/12/2018] [Indexed: 01/11/2023]
Abstract
Retinitis pigmentosa (RP) is the leading cause of inherited blindness. RP is a genetically heterogeneous disorder, with more than 100 different causal genes identified in patients. Central to disease pathogenesis is the progressive loss of retinal photoreceptors. Photoreceptors are specialised sensory neurons that exhibit a complex and highly dynamic morphology. The highly polarised and elaborated architecture of photoreceptors requires precise regulation of numerous cytoskeletal elements. In recent years, significant work has been placed on investigating the role of microtubules (specifically, the acetylated microtubular axoneme of the photoreceptor connecting cilium) and their role in normal photoreceptor function. This has been driven by the emerging field of ciliopathies, human diseases arising from mutations in genes required for cilia formation or function, of which RP is a frequently reported phenotype. Recent studies have highlighted an intimate relationship between cilia and the actin cystoskeleton. This review will focus on the role of actin in photoreceptors, examining the connection between actin dysregulation in RP.
Collapse
|
72
|
Hossain D, Tsang WY. The role of ubiquitination in the regulation of primary cilia assembly and disassembly. Semin Cell Dev Biol 2018; 93:145-152. [PMID: 30213760 DOI: 10.1016/j.semcdb.2018.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
The primary cilium is a cellular antenna found on the surface of many eukaryotic cells, whose main role is to sense and transduce signals that regulate growth, development, and differentiation. Although once believed to be a vestigial organelle without important function, it has become clear that defects in primary cilium are responsible for a wide variety of genetic diseases affecting many organs and tissues, including the brain, eyes, heart, kidneys, liver, and pancreas. The primary cilium is mainly present in quiescent and differentiated cells, and controls must exist to ensure that this organelle is assembled or disassembled at the right time. Although many protein components required for building the cilium have been identified, mechanistic details of how these proteins are spatially and temporally regulated and how these regulations are connected to external cues are beginning to emerge. This review article highlights the role of ubiquitination and in particular, E3 ubiquitin ligases and deubiquitinases, in the control of primary cilia assembly and disassembly.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montreal, Quebec, H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montreal, Quebec, H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
73
|
Tripon RG, Oláh J, Nasir T, Csincsik L, Li CL, Szunyogh S, Gong H, Flinn JM, Ovádi J, Lengyel I. Localization of the zinc binding tubulin polymerization promoting protein in the mice and human eye. J Trace Elem Med Biol 2018; 49:222-230. [PMID: 29317136 DOI: 10.1016/j.jtemb.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Tubulin Polymerization Promoting Protein (TPPP/p25) modulates the dynamics and stability of the microtubule network by its bundling and acetylation enhancing activities that can be modulated by the binding of zinc to TPPP/p25. Its expression is essential for the differentiation of oligodendrocytes, the major constituents of the myelin sheath, and has been associated with neuronal inclusions. In this paper, evidence is provided for the expression and localization of TPPP/p25 in the zinc-rich retina and in the oligodendrocytes in the optic nerve. Localization of TPPP/p25 was established by confocal microscopy using calbindin and synaptophysin as markers of specific striations in the inner plexiform layer (IPL) and presynaptic terminals, respectively. Postsynaptic nerve terminals in striations S1, S3 and S5 in the IPL and a subset of amacrine cells show immunopositivity against TPPP/p25 both in mice and human eyes. The co-localization of TPPP/p25 with acetylated tubulin was detected in amacrine cells, oligodendrocyte cell bodies and in synapses in the IPL. Quantitative Western blot revealed that the TPPP/p25 level in the retina was 0.05-0.13 ng/μg protein, comparable to that in the brain. There was a central (from optic nerve head) to peripheral retinal gradient in TPPP/p25 protein levels. Our in vivo studies revealed that the oral zinc supplementation of mice significantly increased TPPP/p25 as well as acetylated tubulin levels in the IPL. These results suggest that TPPP/p25, a microtubule stabilizer can play a role in the organization and reorganization of synaptic connections and visual integration in the eye.
Collapse
Affiliation(s)
- Robert G Tripon
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Department of Histology, University of Medicine and Pharmacy, Tîrgu Mureş, Romania.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Tajwar Nasir
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Lajos Csincsik
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| | - Chee Lok Li
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, MA, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University Fairfax, VA, USA.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
74
|
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies. J Mol Biol 2018; 430:3545-3564. [DOI: 10.1016/j.jmb.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
|
75
|
Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Exp Mol Med 2018; 50:1-17. [PMID: 29959317 PMCID: PMC6026120 DOI: 10.1038/s12276-018-0108-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies comprise a large number of hereditary human diseases and syndromes caused by mutations resulting in dysfunction of either primary or motile cilia. Both types of cilia share a similar architecture. While primary cilia are present on most cell types, expression of motile cilia is limited to specialized tissues utilizing ciliary motility. We characterized protein complexes of ciliopathy proteins and identified the conserved AAA-ATPase Ruvbl1 as a common novel component. Here, we demonstrate that Ruvbl1 is crucial for the development and maintenance of renal tubular epithelium in mice: both constitutive and inducible deletion in tubular epithelial cells result in renal failure with tubular dilatations and fewer ciliated cells. Moreover, inducible deletion of Ruvbl1 in cells carrying motile cilia results in hydrocephalus, suggesting functional relevance in both primary and motile cilia. Cilia of Ruvbl1-negative cells lack crucial proteins, consistent with the concept of Ruvbl1-dependent cytoplasmic pre-assembly of ciliary protein complexes. A protein involved in building and maintaining thin protrusions from cell surfaces called cilia is implicated in “ciliopathies”, diseases in which ciliary function is disrupted. These include polycystic kidney disease and disorders collectively known as ciliary dyskinesias. “Primary cilia” perform sensory functions, detecting external chemical and physical signals and initiating responses within cells. In addition, “motile cilia” beat rhythmically to move fluids surrounding cells. Researchers in Germany and the Netherlands, led by Bernhard Schermer and Max C. Liebau at the University of Cologne, studied a protein called Ruvbl1, known to interact with DNA and other proteins. The researchers found it is crucial for the functioning of both types of cilia. Deleting the gene for Ruvbl1 in mice caused kidney failure and a build-up of fluid in the brain known as hydrocephalus. The research could help understand and ultimately treat ciliopathies.
Collapse
|
76
|
Kumeta M, Panina Y, Yamazaki H, Takeyasu K, Yoshimura SH. N-terminal dual lipidation-coupled molecular targeting into the primary cilium. Genes Cells 2018; 23:715-723. [PMID: 29900630 DOI: 10.1111/gtc.12603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023]
Abstract
The primary cilium functions as an "antenna" for cell signaling, studded with characteristic transmembrane receptors and soluble protein factors, raised above the cell surface. In contrast to the transmembrane proteins, targeting mechanisms of nontransmembrane ciliary proteins are poorly understood. We focused on a pathogenic mutation that abolishes ciliary localization of retinitis pigmentosa 2 protein and revealed a dual acylation-dependent ciliary targeting pathway. Short N-terminal sequences which contain myristoylation and palmitoylation sites are sufficient to target a marker protein into the cilium in a palmitoylation-dependent manner. A Golgi-localized palmitoyltransferase DHHC-21 was identified as the key enzyme controlling this targeting pathway. Rapid turnover of the targeted protein was ensured by cholesterol-dependent membrane fluidity, which balances highly and less-mobile populations of the molecules within the cilium. This targeting signal was found in a set of signal transduction molecules, suggesting a general role of this pathway in proper ciliary organization, and dysfunction in ciliary disorders.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yulia Panina
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Quantitative Biology Center (QBiC), Osaka, Japan
| | - Hiroya Yamazaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
77
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
78
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
79
|
Tammana D, Tammana TVS. Chlamydomonas FAP265 is a tubulin polymerization promoting protein, essential for flagellar reassembly and hatching of daughter cells from the sporangium. PLoS One 2017; 12:e0185108. [PMID: 28931065 PMCID: PMC5607191 DOI: 10.1371/journal.pone.0185108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Tubulin polymerization promoting proteins (TPPPs) belong to a family of neomorphic moon lighting proteins, involved in various physiological and pathological conditions. In physiological conditions, TPPPs play an important role in microtubule dynamics regulating mitotic spindle assembly and in turn cell proliferation. In pathological situations, TPPPs interact with α-synuclein and β-amyloid and promote their aggregation leading to Parkinson’s disease and multiple system atrophy. Orthologs of TPPP family proteins were identified in ciliary proteomes from various organisms including Chlamydomonas but their role in ciliogenesis was not known. Here we showed that Flagellar Associated Protein, FAP265, a Chlamydomonas homologue of TPPP family proteins, localizes in the cytosol, at the basal bodies and in the flagella of vegetative Chlamydomonas cells. During cell division, the protein was found as a distinct spot in the nucleus and at the cleavage furrow which forms between the daughter cells. Further null mutants of Chlamydomonas FAP265 protein, fap265, showed severe defects in hatching from the mother sporangium. Daughter cells of fap265 were significantly larger in size compared with wild type cells. Moreover, the daughter cells present within the mother sporangium failed to form flagella before hatching. They reassembled their flagella only after hatching from the sporangium suggesting that FAP265 plays an important role in flagellar reassembly after cell division.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
| | | |
Collapse
|
80
|
Kim BJ, Irwin DJ, Song D, Daniel E, Leveque JD, Raquib AR, Pan W, Ying GS, Aleman TS, Dunaief JL, Grossman M. Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration. Neurology 2017; 89:1604-1611. [PMID: 28887373 DOI: 10.1212/wnl.0000000000004500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Whereas Alzheimer disease (AD) is associated with inner retina thinning visualized by spectral-domain optical coherence tomography (SD-OCT), we sought to determine if the retina has a distinguishing biomarker for frontotemporal degeneration (FTD). METHODS Using a cross-sectional design, we examined retinal structure in 38 consecutively enrolled patients with FTD and 44 controls using a standard SD-OCT protocol. Retinal layers were segmented with the Iowa Reference Algorithm. Subgroups of highly predictive molecular pathology (tauopathy, TAR DNA-binding protein 43, unknown) were determined by clinical criteria, genetic markers, and a CSF biomarker (total tau: β-amyloid) to exclude presumed AD. We excluded eyes with poor image quality or confounding diseases. SD-OCT measures of patients (n = 46 eyes) and controls (n = 69 eyes) were compared using a generalized linear model accounting for intereye correlation, and correlations between retinal layer thicknesses and Mini-Mental State Examination (MMSE) were evaluated. RESULTS Adjusting for age, sex, and race, patients with FTD had a thinner outer retina than controls (132 vs 142 μm, p = 0.004). Patients with FTD also had a thinner outer nuclear layer (ONL) (88.5 vs 97.9 μm, p = 0.003) and ellipsoid zone (EZ) (14.5 vs 15.1 μm, p = 0.009) than controls, but had similar thicknesses for inner retinal layers. The outer retina thickness of patients correlated with MMSE (Spearman r = 0.44, p = 0.03). The highly predictive tauopathy subgroup (n = 31 eyes) also had a thinner ONL (88.7 vs 97.4 μm, p = 0.01) and EZ (14.4 vs 15.1 μm, p = 0.01) than controls. CONCLUSIONS FTD is associated with outer retina thinning, and this thinning correlates with disease severity.
Collapse
Affiliation(s)
- Benjamin J Kim
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - David J Irwin
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Delu Song
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ebenezer Daniel
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jennifer D Leveque
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Aaishah R Raquib
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Wei Pan
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Gui-Shuang Ying
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Tomas S Aleman
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Joshua L Dunaief
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Scheie Eye Institute, Department of Ophthalmology (B.J.K., D.S., E.D., J.D.L., A.R.R., W.P., G.-S.Y., T.S.A., J.L.D.), and Frontotemporal Lobar Degeneration Center, Department of Neurology (D.J.I., M.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
81
|
Goodman L, Zallocchi M. Integrin α8 and Pcdh15 act as a complex to regulate cilia biogenesis in sensory cells. J Cell Sci 2017; 130:3698-3712. [PMID: 28883094 DOI: 10.1242/jcs.206201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/01/2017] [Indexed: 01/21/2023] Open
Abstract
The way an organism perceives its surroundings depends on sensory systems and the highly specialized cilia present in the neurosensory cells. Here, we describe the existence of an integrin α8 (Itga8) and protocadherin-15a (Pcdh15a) ciliary complex in neuromast hair cells in a zebrafish model. Depletion of the complex via downregulation or loss-of-function mutation leads to a dysregulation of cilia biogenesis and endocytosis. At the molecular level, removal of the complex blocks the access of Rab8a into the cilia as well as normal recruitment of ciliary cargo by centriolar satellites. These defects can be reversed by the introduction of a constitutively active form of Rhoa, suggesting that Itga8-Pcdh15a complex mediates its effect through the activation of this small GTPase and probably by the regulation of actin cytoskeleton dynamics. Our data points to a novel mechanism involved in the regulation of sensory cilia development, with the corresponding implications for normal sensory function.
Collapse
Affiliation(s)
- Linda Goodman
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA
| | - Marisa Zallocchi
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA
| |
Collapse
|
82
|
Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:1-34. [PMID: 28838656 DOI: 10.1016/bs.pmbts.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although initially disregarded compared to prion pathogenesis, the functions exerted by the cellular prion protein PrPC have gained much interest over the past two decades. Research aiming at unraveling PrPC functions started to intensify when it became appreciated that it would give clues as to how it is subverted in the context of prion infection and, more recently, in the context of Alzheimer's disease. It must now be admitted that PrPC is implicated in an incredible variety of biological processes, including neuronal homeostasis, stem cell fate, protection against stress, or cell adhesion. It appears that these diverse roles can all be fulfilled through the involvement of PrPC in cell signaling events. Our aim here is to provide an overview of our current understanding of PrPC functions from the animal to the molecular scale and to highlight some of the remaining gaps that should be addressed in future research.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Sophie Mouillet-Richard
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France.
| |
Collapse
|
83
|
Abstract
Motile and non-motile (primary) cilia are nearly ubiquitous cellular organelles. The dysfunction of cilia causes diseases known as ciliopathies. The number of reported ciliopathies (currently 35) is increasing, as is the number of established (187) and candidate (241) ciliopathy-associated genes. The characterization of ciliopathy-associated proteins and phenotypes has improved our knowledge of ciliary functions. In particular, investigating ciliopathies has helped us to understand the molecular mechanisms by which the cilium-associated basal body functions in early ciliogenesis, as well as how the transition zone functions in ciliary gating, and how intraflagellar transport enables cargo trafficking and signalling. Both basic biological and clinical studies are uncovering novel ciliopathies and the ciliary proteins involved. The assignment of these proteins to different ciliary structures, processes and ciliopathy subclasses (first order and second order) provides insights into how this versatile organelle is built, compartmentalized and functions in diverse ways that are essential for human health.
Collapse
|
84
|
Tammana D, Tammana TVS. Human DNA helicase, RuvBL1 and its Chlamydomonas homologue, CrRuvBL1 plays an important role in ciliogenesis. Cytoskeleton (Hoboken) 2017; 74:251-259. [PMID: 28574207 DOI: 10.1002/cm.21377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/23/2023]
Abstract
Several nuclear and nucleic acid-binding proteins were detected in the proteomic analyses of ciliary fractions from various organisms. Yet very little is known about the role of these proteins in ciliogenesis and ciliary signaling. In an attempt to characterize the role of these nuclear proteins, we identified a hypothetical protein from Chlamydomonas reinhardtii, CrRuvBL1, which is homologous to human DNA helicase, HsRuvBL1. CrRuvBL1 localizes to flagella and nucleus in vegetative Chlamydomonas cells. It accumulates in the nucleus specifically during initial stages of flagellar assembly and cell division indicating its role in these processes. Mammalian counterpart of this protein, HsRuvBL1, was found to be present at the basal bodies and in the primary cilium of quiescent Retinal Pigment Epithelial (RPE1) cells. In interphase cells, HsRuvBL1 is present at centrioles while the protein localizes on spindle fibers, spindle poles and midbodies, which are important structures formed during different phases of cell division. Depletion of HsRuvBL1 by using siRNAs leads to complete loss of primary cilia in RPE1 cells. Together these results suggest that nuclear proteins play an important role in ciliogenesis.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Phase 1, Bangalore, 560100, India
| | - Trinadh Venkata Satish Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Phase 1, Bangalore, 560100, India
| |
Collapse
|
85
|
Potter C, Zhu W, Razafsky D, Ruzycki P, Kolesnikov AV, Doggett T, Kefalov VJ, Betleja E, Mahjoub MR, Hodzic D. Multiple Isoforms of Nesprin1 Are Integral Components of Ciliary Rootlets. Curr Biol 2017. [PMID: 28625779 DOI: 10.1016/j.cub.2017.05.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SYNE1 (synaptic nuclear envelope 1) encodes multiple isoforms of Nesprin1 (nuclear envelope spectrin 1) that associate with the nuclear envelope (NE) through a C-terminal KASH (Klarsicht/Anc1/Syne homology) domain (Figure 1A) [1-4]. This domain interacts directly with the SUN (Sad1/Unc84) domain of Sun proteins [5-7], a family of transmembrane proteins of the inner nuclear membrane (INM) [8, 9], to form the so-called LINC complexes (linkers of the nucleoskeleton and cytoskeleton) that span the entire NE and mediate nuclear positioning [10-12]. In a stark departure from this classical depiction of Nesprin1 in the context of the NE, we report here that rootletin recruits Nesprin1α at the ciliary rootlets of photoreceptors and identify asymmetric NE aggregates of Nesprin1α and Sun2 that dock filaments of rootletin at the nuclear surface. In NIH 3T3 cells, we show that recombinant rootletin filaments also dock to the NE through the specific recruitment of an ∼600-kDa endogenous isoform of Nesprin1 (Nes1600kDa) and of Sun2. In agreement with the association of Nesprin1α with photoreceptor ciliary rootlets and the functional interaction between rootletin and Nesprin1 in fibroblasts, we demonstrate that multiple isoforms of Nesprin1 are integral components of ciliary rootlets of multiciliated ependymal and tracheal cells. Together, these data provide a novel functional paradigm for Nesprin1 at ciliary rootlets and suggest that the wide spectrum of human pathologies linked to truncating mutations of SYNE1 [13-15] may originate in part from ciliary defects.
Collapse
Affiliation(s)
- Chloe Potter
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wanqiu Zhu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Philip Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Teresa Doggett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ewelina Betleja
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Moe R Mahjoub
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Didier Hodzic
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
86
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
87
|
Blackburn K, Bustamante X, Yin W, Goshe MB, Ostrowski LE. Quantitative Proteomic Analysis of Human Airway Cilia Identifies Previously Uncharacterized Proteins of High Abundance. J Proteome Res 2017; 16:1579-1592. [PMID: 28282151 PMCID: PMC5733142 DOI: 10.1021/acs.jproteome.6b00972] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cilia are essential to many diverse cellular processes. Although many major axonemal components have been identified and studied, how they interact to form a functional axoneme is not completely understood. To further our understanding of the protein composition of human airway cilia, we performed a semiquantitative analysis of ciliary axonemes using label-free LC/MSE, which identified over 400 proteins with high confidence. Tubulins were the most abundant proteins identified, with evidence of 20 different isoforms obtained. Twelve different isoforms of axonemal dynein heavy chain were also identified. Absolute quantification of the nontubulin components demonstrated a greater than 75-fold range of protein abundance (RSPH9;1850 fmol vs CCDC103;24 fmol), adding another level of complexity to axonemal structure. Of the identified proteins, ∼70% are known axonemal proteins. In addition, many previously uncharacterized proteins were identified. Unexpectedly, several of these, including ERICH3, C1orf87, and CCDC181, were present at high relative abundance in the cilia. RT-PCR analysis and immunoblotting confirmed cilia-specific expression for eight uncharacterized proteins, and fluorescence microscopy demonstrated unique axonemal localizations. These studies have provided the first quantitative analysis of the ciliary proteome and have identified and characterized several previously unknown proteins as major constituents of human airway cilia.
Collapse
Affiliation(s)
- Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Ximena Bustamante
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Weining Yin
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
88
|
In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors. Proc Natl Acad Sci U S A 2017; 114:E2937-E2946. [PMID: 28320964 DOI: 10.1073/pnas.1620572114] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors' subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gαt), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gαt the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s-1 Analyzing swelling as osmotically driven water influx, we find the H2O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10-5 cm⋅s-1, comparable to that of other cells lacking aquaporin expression. Application of Van't Hoff's law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H2O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity.
Collapse
|
89
|
Abstract
The axoneme is the main extracellular part of cilia and flagella in eukaryotes. It consists of a microtubule cytoskeleton, which normally comprises nine doublets. In motile cilia, dynein ATPase motor proteins generate sliding motions between adjacent microtubules, which are integrated into a well-orchestrated beating or rotational motion. In primary cilia, there are a number of sensory proteins functioning on membranes surrounding the axoneme. In both cases, as the study of proteomics has elucidated, hundreds of proteins exist in this compartmentalized biomolecular system. In this article, we review the recent progress of structural studies of the axoneme and its components using electron microscopy and X-ray crystallography, mainly focusing on motile cilia. Structural biology presents snapshots (but not live imaging) of dynamic structural change and gives insights into the force generation mechanism of dynein, ciliary bending mechanism, ciliogenesis, and evolution of the axoneme.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, 5232 Villigen PSI, Switzerland
| |
Collapse
|
90
|
Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport. PLoS Genet 2016; 12:e1006469. [PMID: 27930654 PMCID: PMC5145144 DOI: 10.1371/journal.pgen.1006469] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for identifying ciliary proteins, and unveil RAB28, a GTPase most closely related to the BBS protein RABL4/IFT27, as an IFT-associated cargo with BBSome-dependent cell autonomous and non-autonomous functions at the ciliary base. Ciliopathies are genetic disorders that arise from loss or mutation of genes that encode proteins which play roles in the biology of cilia, organelles found on most of the cells in the human body. Ciliopathy-associated ailments include–but are not limited to–kidney dysfunction, blindness, skeletal abnormalities, as well as brain disorders. Although a great number of cilium-targeted proteins are known, it is thought that a large proportion remain unidentified. Here, we use a developmental gene expression series to discover novel cilia genes in the nematode Caenorhabditis elegans. We present several cilium-localised proteins resulting from our analysis, including RAB-28, a GTPase previously implicated in the degenerative eye disease known as cone-rod dystrophy. Through live videomicroscopy, we show that RAB-28 undergoes bidirectional transport within the cilium. A RAB-28 inactivating mutation results in loss of transport, while an activating mutation results in stronger localisation at the ciliary base and robust transport, although overexpression results in a variety of cilia-related defects. Both the wild type and activating mutant proteins require the Bardet-Biedl Syndrome-related complex of proteins for their transport, linking RAB-28 to an established ciliary transport machinery.
Collapse
|
91
|
Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies. mSphere 2016; 1:mSphere00257-16. [PMID: 27904881 PMCID: PMC5112337 DOI: 10.1128/msphere.00257-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively. Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.
Collapse
|
92
|
Vertii A, Hehnly H, Doxsey S. The Centrosome, a Multitalented Renaissance Organelle. Cold Spring Harb Perspect Biol 2016; 8:8/12/a025049. [PMID: 27908937 DOI: 10.1101/cshperspect.a025049] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest. New studies hint that the centrosome functions in more than MT organization. For instance, it has recently been shown that a specific substructure of the centrosome-the mother centriole appendages-are required for the recycling of endosomes back to the plasma membrane. This alone could have important implications for a renaissance in our understanding of the development of primary cilia, endosome recycling, and the immune response. Here, we review newly identified roles for the centrosome in directing membrane traffic, the immunological synapse, and the stress response.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
93
|
May-Simera HL, Gumerson JD, Gao C, Campos M, Cologna SM, Beyer T, Boldt K, Kaya KD, Patel N, Kretschmer F, Kelley MW, Petralia RS, Davey MG, Li T. Loss of MACF1 Abolishes Ciliogenesis and Disrupts Apicobasal Polarity Establishment in the Retina. Cell Rep 2016; 17:1399-1413. [PMID: 27783952 PMCID: PMC5123820 DOI: 10.1016/j.celrep.2016.09.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) plays a role in the coordination of microtubules and actin in multiple cellular processes. Here, we show that MACF1 is also critical for ciliogenesis in multiple cell types. Ablation of Macf1 in the developing retina abolishes ciliogenesis, and basal bodies fail to dock to ciliary vesicles or migrate apically. Photoreceptor polarity is randomized, while inner retinal cells laminate correctly, suggesting that photoreceptor maturation is guided by polarity cues provided by cilia. Deletion of MACF1 in adult photoreceptors causes reversal of basal body docking and loss of outer segments, reflecting a continuous requirement for MACF1 function. MACF1 also interacts with the ciliary proteins MKKS and TALPID3. We propose that a disruption of trafficking across microtubles to actin filaments underlies the ciliogenesis defect in cells lacking MACF1 and that MKKS and TALPID3 are involved in the coordination of microtubule and actin interactions.
Collapse
Affiliation(s)
| | | | - Chun Gao
- National Eye Institute, Bethesda, MD 20892, USA
| | | | - Stephanie M Cologna
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Tina Beyer
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Nisha Patel
- National Eye Institute, Bethesda, MD 20892, USA
| | | | - Matthew W Kelley
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Megan G Davey
- The Roslin Institute, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| | - Tiansen Li
- National Eye Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
94
|
Taschner M, Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a028092. [PMID: 27352625 DOI: 10.1101/cshperspect.a028092] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT), the bidirectional movement of a multicomponent transport system between the ciliary base and tip. Since its initial discovery more than two decades ago, considerable effort has been invested in dissecting the molecular mechanisms of IFT in a variety of model organisms. Importantly, IFT was shown to be essential for mammalian development, and defects in this process cause a number of human pathologies known as ciliopathies. Here, we review current knowledge of IFT with a particular emphasis on the IFT machinery and specific mechanisms of ciliary cargo recognition and transport.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
95
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
96
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
97
|
Aït-Ali N, Fridlich R, Millet-Puel G, Clérin E, Delalande F, Jaillard C, Blond F, Perrocheau L, Reichman S, Byrne LC, Olivier-Bandini A, Bellalou J, Moyse E, Bouillaud F, Nicol X, Dalkara D, van Dorsselaer A, Sahel JA, Léveillard T. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 2016; 161:817-32. [PMID: 25957687 DOI: 10.1016/j.cell.2015.03.023] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/31/2022]
Abstract
Rod-derived cone viability factor (RdCVF) is an inactive thioredoxin secreted by rod photoreceptors that protects cones from degeneration. Because the secondary loss of cones in retinitis pigmentosa (RP) leads to blindness, the administration of RdCVF is a promising therapy for this untreatable neurodegenerative disease. Here, we investigated the mechanism underlying the protective role of RdCVF in RP. We show that RdCVF acts through binding to Basigin-1 (BSG1), a transmembrane protein expressed specifically by photoreceptors. BSG1 binds to the glucose transporter GLUT1, resulting in increased glucose entry into cones. Increased glucose promotes cone survival by stimulation of aerobic glycolysis. Moreover, a missense mutation of RdCVF results in its inability to bind to BSG1, stimulate glucose uptake, and prevent secondary cone death in a model of RP. Our data uncover an entirely novel mechanism of neuroprotection through the stimulation of glucose metabolism.
Collapse
Affiliation(s)
- Najate Aït-Ali
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Ram Fridlich
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Géraldine Millet-Puel
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Emmanuelle Clérin
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - François Delalande
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France; IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Céline Jaillard
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Frédéric Blond
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Ludivine Perrocheau
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Sacha Reichman
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Jacques Bellalou
- Institut Pasteur, Platform 5 Production of Recombinant Proteins and Antibodies, 75724 Paris Cedex 15, France
| | - Emmanuel Moyse
- Unité de Physiologie de la Reproduction et des Comportements (PRC), UMR-85 INRA, Centre INRA de Tours, Université François Rabelais de Tours, 37380 Nouzilly, France
| | - Frédéric Bouillaud
- Inserm, U1016, Institut Cochin, 75014 Paris, France; Cnrs, UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Xavier Nicol
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Deniz Dalkara
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Alain van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France; IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - José-Alain Sahel
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France
| | - Thierry Léveillard
- INSERM, U968, 75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France.
| |
Collapse
|
98
|
Abstract
The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular membrane through their distal appendages (also known as transition fibers) and provide the foundation on which the microtubules of the ciliary axoneme are built. Consequently, basal body position and orientation dictates the position and orientation of its cilium. The heart of the basal body is the mother centriole, the older of the two centrioles inherited during mitosis and which is comprised of nine triplet microtubules arranged in a cylinder. Like all ciliated organisms, mice possess basal bodies, and studies of mouse basal body structure have made diverse important contributions to the understanding of how basal body structure impacts the function of cilia. The appendages and associated structures of mouse basal bodies can differ in their architecture from those of other organisms, and even between murine cell types. For example, basal bodies of immotile primary cilia are connected to daughter centrioles, whereas those of motile multiciliated cells are not. The last few years have seen the identification of many components of the basal body, and the mouse will continue to be an extremely valuable system for genetically defining their functions.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
99
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
100
|
Rainy N, Etzion T, Alon S, Pomeranz A, Nisgav Y, Livnat T, Bach M, Gerstner CD, Baehr W, Gothilf Y, Stiebel-Kalish H. Knockdown of unc119c results in visual impairment and early-onset retinal dystrophy in zebrafish. Biochem Biophys Res Commun 2016; 473:1211-1217. [PMID: 27079236 DOI: 10.1016/j.bbrc.2016.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE UNC119 proteins are involved in G protein trafficking in mouse retinal photoreceptors and Caenorhabditis elegans olfactory neurons. An Unc119 null allele is associated with cone-rod dystrophy in mouse, but the mechanism leading to disease is not understood. We studied the role of Unc119 paralogs and Arl3l2 in zebrafish vision and retinal organization resulting from unc119c and arl3l2 knockdown. METHODS Zebrafish unc119c was amplified by PCR from retina and pineal gland cDNA. Its expression pattern in the eye and pineal gland was determined by whole-mount in-situ hybridization. unc119c and arl3l2 were knocked down using morpholino-modified oligonucleotides (MO). Their visual function was assessed with a quantitative optomotor assay on 6 days post-fertilization larvae. Retinal morphology was analyzed using immunohistochemistry with anti-cone arrestin (zpr-1) and anti-cone transducin-α (GNAT2) antibodies. RESULTS The zebrafish genome contains four genes encoding unc119 paralogs located on different chromosomes. The exon/intron arrangements of these genes are identical. Three Unc119 paralogs are expressed in the zebrafish retina, termed Unc119a-c. Based on sequence similarity, Unc119a and Unc119b are orthologs of mammalian UNC119a and UNC119b, respectively. A third, Unc119c, is unique and not present in mammals. Whole mount in-situ hybridization revealed that unc119a and unc119b RNA are ubiquitously expressed in the CNS, and unc119c is specifically expressed in photoreceptive tissues (pineal gland and retina). A Unc119 interactant, Arl3l2 also localizes to the pineal gland and the retina. As measured by the optomotor response, unc119c and arl3l2 knockdown resulted in significantly lower vision compared to wild-type zebrafish larvae and control morpholino (MO). Immunohistological analysis with anti-cone transducin and anti-cone arrestin (zpr-1) indicates that knockdown of unc119c leads to photoreceptor degeneration mostly affecting cones. CONCLUSIONS Our results suggest that Unc119c is the only Unc119 paralog that is highly specific to the retina in zebrafish. Unc119c and Arl3l2 proteins are important for the function of cones.
Collapse
Affiliation(s)
- Nir Rainy
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Israel
| | - Talya Etzion
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Israel
| | - Shahar Alon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Israel; Sagol School of Neuroscience Tel Aviv University, Israel
| | - Adi Pomeranz
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Israel
| | - Yael Nisgav
- Laboratory of Eye Research, Felsenstein Medical Research Center Israel, Petah Tikva, Israel
| | - Tami Livnat
- Laboratory of Eye Research, Felsenstein Medical Research Center Israel, Petah Tikva, Israel
| | - Michael Bach
- Eye Center, Medical Center, University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Cecilia D Gerstner
- Department of Ophthalmology and Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, UT 84132, USA; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Israel; Sagol School of Neuroscience Tel Aviv University, Israel
| | - Hadas Stiebel-Kalish
- Department of Ophthalmology at Rabin Medical Center, Petah Tikva & Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|