51
|
Lazarus MD, Schneider TG, Taraschi TF. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci 2008; 121:1937-49. [PMID: 18477610 PMCID: PMC5105679 DOI: 10.1242/jcs.023150] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The current model for hemoglobin ingestion and transport by intraerythrocytic Plasmodium falciparum malaria parasites shares similarities with endocytosis. However, the model is largely hypothetical, and the mechanisms responsible for the ingestion and transport of host cell hemoglobin to the lysosome-like food vacuole (FV) of the parasite are poorly understood. Because actin dynamics play key roles in vesicle formation and transport in endocytosis, we used the actin-perturbing agents jasplakinolide and cytochalasin D to investigate the role of parasite actin in hemoglobin ingestion and transport to the FV. In addition, we tested the current hemoglobin trafficking model through extensive analysis of serial thin sections of parasitized erythrocytes (PE) by electron microscopy. We find that actin dynamics play multiple, important roles in the hemoglobin transport pathway, and that hemoglobin delivery to the FV via the cytostomes might be required for parasite survival. Evidence is provided for a new model, in which hemoglobin transport to the FV occurs by a vesicle-independent process.
Collapse
Affiliation(s)
- Michelle D. Lazarus
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy G. Schneider
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Theodore F. Taraschi
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
52
|
Taoufiq Z, Gay F, Balvanyos J, Ciceron L, Tefit M, Lechat P, Mazier D. Rho Kinase Inhibition in Severe Malaria: Thwarting Parasite‐Induced Collateral Damage to Endothelia. J Infect Dis 2008; 197:1062-73. [DOI: 10.1086/528988] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
53
|
Touré FS, Ouwe-Missi-Oukem-Boyer O, Bisvigou U, Moussa O, Rogier C, Pino P, Mazier D, Bisser S. Apoptosis: a potential triggering mechanism of neurological manifestation in Plasmodium falciparum malaria. Parasite Immunol 2008; 30:47-51. [PMID: 18086016 DOI: 10.1111/j.1365-3024.2007.00986.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum infection can lead to a life threatening disease and the pathogenetic mechanisms of severe manifestations are not fully understood. Here, we investigated the capacity of P. falciparum-parasitized red blood cells (PRBC) from 45 children with clinical malaria to induce endothelial cell (EC) apoptosis. In all subjects, PRBC that cytoadhered to ECs could be found albeit to a variable degree. By contrast, PRBC that induce EC apoptosis were found only in nine (20%) subjects. Interestingly, children with neurological manifestations were significantly more likely to harbour apoptogenic strains. There was no quantitative relationship between the capacity of these isolates to cytoadhere and apoptosis induction. We hypothesize that P. falciparum-encoded molecules could be responsible for apoptosis induction and therefore suggest new insights in the pathogenesis of P. falciparum malaria. Further investigations are currently in progress to determine whether these results can be confirmed and to identify putative parasite apoptogenic factors.
Collapse
Affiliation(s)
- F S Touré
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Siau A, Toure FS, Ouwe-Missi-Oukem-Boyer O, Ciceron L, Mahmoudi N, Vaquero C, Froissard P, Bisvigou U, Bisser S, Coppee JY, Bischoff E, David PH, Mazier D. Whole-transcriptome analysis of Plasmodium falciparum field isolates: identification of new pathogenicity factors. J Infect Dis 2007; 196:1603-12. [PMID: 18008243 DOI: 10.1086/522012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/30/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe malaria and one of its most important pathogenic processes, cerebral malaria, involves the sequestration of parasitized red blood cells (pRBCs) in brain postcapillary venules. Although the pathogenic mechanisms underlying malaria remain poorly characterized, it has been established that adhesion of pRBCs to endothelial cells (ECs) can result in cell apoptosis, which in turn may lead to disruption of the blood-brain barrier. The nature of the parasite molecules involved in the pathogenesis of severe malaria remains elusive. METHODS Whole-transcriptome profiling of nonapoptogenic versus apoptogenic parasite field isolates obtained from Gabonese children was performed with pan-genomic Plasmodium falciparum DNA microarrays; radiolabeled instead of fluorescent cDNAs were used to improve the sensitivity of signal detection. RESULTS Our methods allowed the identification of 59 genes putatively associated with the induction of EC apoptosis. Silencing of Plasmodium gene expression with specific double-stranded RNA was performed on 8 selected genes; 5 of these, named "Plasmodium apoptosis-linked pathogenicity factors" (PALPFs), were found to be linked to parasite apoptogenicity. Of these genes, 2 might act via parasite cytoadherence. CONCLUSION This is the first attempt to identify genes involved in parasite pathogenic mechanisms against human ECs. The finding of PALPFs illuminates perspectives for novel therapeutic strategies against cerebral complications of malaria.
Collapse
Affiliation(s)
- Anthony Siau
- Institut National de la Sante et de la Recherche Medicale U511, Paris 75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Jenkins N, Wu Y, Chakravorty S, Kai O, Marsh K, Craig A. Plasmodium falciparum intercellular adhesion molecule-1-based cytoadherence-related signaling in human endothelial cells. J Infect Dis 2007; 196:321-7. [PMID: 17570121 PMCID: PMC1934551 DOI: 10.1086/518795] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 02/01/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cytoadherence of Plasmodium falciparum-infected erythrocytes to host endothelium has been associated with pathology in severe malaria, but, despite extensive information on the primary processes involved in the adhesive interactions, the mechanisms underlying disease are poorly understood. METHODS We compared parasite lines varying in their binding properties to human endothelial cells for their ability to stimulate signaling activity. RESULTS In human umbilical vein endothelial cells (HUVECs), which rely on adhesion to intercellular adhesion molecule (ICAM)-1 for binding, signaling is related to the avidity of the parasite line for ICAM-1 and can be blocked either through the use of anti-ICAM-1 monoclonal antibodies or HUVECs with altered ICAM-1 binding properties (i.e., ICAM-1(Kilifi)). Human dermal microvascular endothelial cells (HDMECs), which can bind infected erythrocytes via ICAM-1 and CD36, have a more complex pattern of signaling behavior, but this is also dependent on adhesive interactions rather than merely contact between cells. CONCLUSIONS Signaling via apposition of P. falciparum-infected erythrocytes with host endothelium is dependent, at least in part, on the cytoadherence characteristics of the invading isolate. An understanding of the postadhesive processes produced by cytoadherence may help us to understand the variable pathologies seen in malaria disease.
Collapse
Affiliation(s)
- Neil Jenkins
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | | | | | | | | | | |
Collapse
|
56
|
Touré FS, Ouwe-Missi-Oukem-Boyer O, Mezui-Me-Ndong J, Ndong-Atome GR, Bisvigou U, Mazier D, Bisser S. Cytoadherence and genotype of Plasmodium falciparum strains from symptomatic children in Franceville, southeastern Gabon. Clin Med Res 2007; 5:106-13. [PMID: 17607045 PMCID: PMC1905933 DOI: 10.3121/cmr.2007.696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Plasmodium falciparum causes severe clinical manifestations by sequestering parasitized red blood cells (PRBC) in the microvasculature of major organs such as the brain. This sequestration results from PRBC adherence to vascular endothelial cells via erythrocyte membrane protein 1, a variant parasite surface antigen. OBJECTIVE To determine whether P. falciparum multiple genotype infection (MGI) is associated with stronger PRBC cytoadherence and greater clinical severity. METHODS Nested polymerase chain reaction was used to genotype P. falciparum isolates from symptomatic children and to distinguish between single genotype infection (SGI) and MGI. PRBC cytoadhesion was studied with cultured human lung endothelial cells. RESULTS Analysis of two highly polymorphic regions of the merozoite surface antigen (MSP)-1 and MSP-2 genes and a dimorphic region of the erythrocyte binding antigen-175 gene showed that 21.4% and 78.6% of the 42 children had SGI and MGI, respectively. It also showed that 37 (89%) of the 42 PRBC samples expressed MSP-1 allelic family K1. Cytoadherence values ranged from 58 to 1811 PRBC/mm(2) of human lung endothelial cells monolayer in SGI and from 5 to 5744 PRBC/mm(2) in MGI. MGI was not associated with higher cytoadherence values or with more severe malaria. CONCLUSIONS These results suggested that infection of the same individual by multiple clones of P. falciparum does not significantly influence PRBC cytoadherence or disease severity and confirmed the predominance of the MSP-1 K1 genotype in southeastern Gabon.
Collapse
Affiliation(s)
- Fousseyni S Touré
- Centre International de Recherches, Médicales de Franceville, BP 769 Franceville, Gabon.
| | | | | | | | | | | | | |
Collapse
|
57
|
Jackson K, Spielmann T, Hanssen E, Adisa A, Separovic F, Dixon M, Trenholme K, Hawthorne P, Gardiner D, Gilberger T, Tilley L. Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem J 2007; 403:167-75. [PMID: 17155936 PMCID: PMC1828889 DOI: 10.1042/bj20061725] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum develops within the mature RBCs (red blood cells) of its human host in a PV (parasitophorous vacuole) that separates the host cell cytoplasm from the parasite surface. The pore-forming toxin, SLO (streptolysin O), binds to cholesterol-containing membranes and can be used to selectively permeabilize the host cell membrane while leaving the PV membrane intact. We found that in mixtures of infected and uninfected RBCs, SLO preferentially lyses uninfected RBCs rather than infected RBCs, presumably because of differences in cholesterol content of the limiting membrane. This provides a means of generating pure preparations of viable ring stage infected RBCs. As an alternative permeabilizing agent we have characterized EqtII (equinatoxin II), a eukaryotic pore-forming toxin that binds preferentially to sphingomyelin-containing membranes. EqtII lyses the limiting membrane of infected and uninfected RBCs with similar efficiency but does not disrupt the PV membrane. It generates pores of up to 100 nm, which allow entry of antibodies for immunofluorescence and immunogold labelling. The present study provides novel tools for the analysis of this important human pathogen and highlights differences between Plasmodium-infected and uninfected RBCs.
Collapse
Affiliation(s)
- Katherine E. Jackson
- *Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tobias Spielmann
- †Bernhard Nocht Institute for Tropical Medicine, Malaria II, 20359 Hamburg, Germany
- ‡Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - Eric Hanssen
- *Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
| | - Akinola Adisa
- *Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
| | - Frances Separovic
- §School of Chemistry, Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Matthew W. A. Dixon
- ‡Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - Katharine R. Trenholme
- ‡Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - Paula L. Hawthorne
- ‡Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - Don L. Gardiner
- ‡Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - Tim Gilberger
- †Bernhard Nocht Institute for Tropical Medicine, Malaria II, 20359 Hamburg, Germany
| | - Leann Tilley
- *Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
- ∥Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, VIC 3086, Australia
- To whom correspondence may be addressed (email )
| |
Collapse
|
58
|
Elliott SR, Spurck TP, Dodin JM, Maier AG, Voss TS, Yosaatmadja F, Payne PD, McFadden GI, Cowman AF, Rogerson SJ, Schofield L, Brown GV. Inhibition of dendritic cell maturation by malaria is dose dependent and does not require Plasmodium falciparum erythrocyte membrane protein 1. Infect Immun 2007; 75:3621-32. [PMID: 17470539 PMCID: PMC1932960 DOI: 10.1128/iai.00095-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red blood cells infected with Plasmodium falciparum (iRBCs) have been shown to modulate maturation of human monocyte-derived dendritic cells (DCs), interfering with their ability to activate T cells. Interaction between Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and CD36 expressed by DCs is the proposed mechanism, but we show here that DC modulation does not require CD36 binding, PfEMP1, or contact between DCs and infected RBCs and depends on the iRBC dose. iRBCs expressing a PfEMP1 variant that binds chondroitin sulfate A (CSA) but not CD36 were phagocytosed, inhibited lipopolysaccharide (LPS)-induced phenotypic maturation and cytokine secretion, and abrogated the ability of DCs to stimulate allogeneic T-cell proliferation. CD36- and CSA-binding iRBCs showed comparable inhibition. P. falciparum lines rendered deficient in PfEMP1 expression by targeted gene knockout or knockdown also inhibited LPS-induced phenotypic maturation, and separation of DCs and iRBCs in transwells showed that inhibition was not contact dependent. Inhibition was observed at an iRBC:DC ratio of 100:1 but not at a ratio of 10:1. High doses of iRBCs were associated with apoptosis of DCs, which was not activation induced. Lower doses of iRBCs stimulated DC maturation sufficient to activate autologous T-cell proliferation. In conclusion, modulation of DC maturation by P. falciparum is dose dependent and does not require interaction between PfEMP1 and CD36. Inhibition and apoptosis of DCs by high-dose iRBCs may or may not be physiological. However, our observation that low-dose iRBCs initiate functional DC maturation warrants reevaluation and further investigation of DC interactions with blood-stage P. falciparum.
Collapse
Affiliation(s)
- Salenna R Elliott
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Jafarshad A, Dziegiel MH, Lundquist R, Nielsen LK, Singh S, Druilhe PL. A Novel Antibody-Dependent Cellular Cytotoxicity Mechanism Involved in Defense against Malaria Requires Costimulation of Monocytes FcγRII and FcγRIII. THE JOURNAL OF IMMUNOLOGY 2007; 178:3099-106. [PMID: 17312157 DOI: 10.4049/jimmunol.178.5.3099] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clinical experiments have shown that the Ab-dependent cell-mediated inhibition of Plasmodium falciparum is a major mechanism controlling malaria parasitemia and thereby symptoms. In this study, we demonstrate that a single merozoite per monocyte (MN) is sufficient to trigger optimal antiparasitic activity. Using particulate Ag as pseudomerozoites, we show that only Ags, and no other parasite-derived factor, are required to trigger MN activation and that a single Ag is as potent as the complex combination of Ags constituting the merozoite surface. Moreover, we found that soluble Ags binding at least two Abs are as effective as the parasite at stimulating MN and that nonmalarial Ags are as efficient provided they are targeted by cytophilic Abs. Indeed, only cytophilic IgGs are potent and, in agreement with immunoepidemiological findings, IgG3 is superior to IgG1. Very low Ab concentrations (>700 pM), i.e., in the range of molecules having a hormonal effect, are effective, in contrast to Abs having a direct, neutralizing effect. Finally, Ab-dependent cell-mediated inhibition proved to require the synergistic activation of both FcgammaRIIa and FcgammaRIIIa which both distinguish it from other Ab-dependent cellular cytotoxicity and implies that all MN are not equally effective. These findings have both fundamental and practical implications, particularly for vaccine discovery.
Collapse
Affiliation(s)
- Ali Jafarshad
- Bio-Medical Parasitology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
60
|
Pino P, Taoufiq Z, Brun M, Tefit M, Franetich JF, Ciceron L, Krishnamoorthy R, Mazier D. Effects of hydroxyurea on malaria, parasite growth and adhesion in experimental models. Parasite Immunol 2007; 28:675-80. [PMID: 17096647 DOI: 10.1111/j.1365-3024.2006.00907.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently raised concern over using hydroxyurea (HU) in the treatment of sickle cell disease in areas endemic for malaria, becauseit up-regulates the endothelial surface expression of ICAM-1, a major receptor for Plasmodium falciparum-infected erythrocytes in the brain. Using human in vitro models of cerebral malaria, we evaluated the interaction of HU with parasites and demonstrated that HU pretreatment increased the number of infected red blood cells adhering to the endothelium, but did not increase endothelial apoptosis. Moreover, using an experimental cerebral malaria model, HU pretreatment was found to prevent significantly mice from developing neurological syndrome by inhibiting parasite growth, opening potential therapeutic avenues.
Collapse
MESH Headings
- Anemia, Sickle Cell/drug therapy
- Animals
- Antisickling Agents/administration & dosage
- Antisickling Agents/pharmacology
- Antisickling Agents/therapeutic use
- Apoptosis
- Cell Adhesion/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Humans
- Hydroxyurea/administration & dosage
- Hydroxyurea/pharmacology
- Hydroxyurea/therapeutic use
- Intercellular Adhesion Molecule-1/metabolism
- Malaria, Cerebral/drug therapy
- Malaria, Cerebral/mortality
- Malaria, Cerebral/parasitology
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/mortality
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred C57BL
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/physiology
- Treatment Outcome
Collapse
Affiliation(s)
- P Pino
- INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Faculté de Médecine Pitié Salpêtrière, Université Pierre et Marie Curie, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Albrecht L, Merino EF, Hoffmann EHE, Ferreira MU, de Mattos Ferreira RG, Osakabe AL, Dalla Martha RC, Ramharter M, Durham AM, Ferreira JE, Del Portillo HA, Wunderlich G. Extense variant gene family repertoire overlap in Western Amazon Plasmodium falciparum isolates. Mol Biochem Parasitol 2006; 150:157-65. [PMID: 16938359 DOI: 10.1016/j.molbiopara.2006.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 07/04/2006] [Accepted: 07/17/2006] [Indexed: 11/29/2022]
Abstract
In order to find a molecular basis for observations of relatively fast developing immunity to malarial infections in the Western Amazon region, the partial var, stevor and rif gene repertoires of nine different Plasmodium falciparum isolates collected in 1985 and 2000-2004 were evaluated. In contrast to previous results from South East Asia, the variant gene repertoire in Brazilian isolates is rather small and redundant. While the individual var repertoire sizes of Brazilian strains did not differ from Southeast Asian/African isolates, we found an over three times higher overlap of var sequence repertoires in Amazonian strains which was also conserved over time, suggesting the ongoing circulation of a similar var gene repertoire. Coincidently, almost 40% of the sequences identified herein showed the highest degree of similarity to var genes from either Brazilian or Venezuelan isolates, indicating a limited var repertoire of P. falciparum in the Amazon Basin as a whole. The intrastrain similarities of var genes were slightly but significantly lower than in Southeast Asian/African samples suggesting a higher selective pressure for diversification in Amazonian isolates. Despite of higher copy numbers per genome, rif genes also showed a significant repertoire overlap. stevor genes, which share the same predominant subtelomeric localization as var and rif genes, showed a still higher repertoire overlap and were highly similar to 3D7 stevor genes, indicating stronger functional conservation than var and rif genes. This is the first study that reveals that P. falciparum variant gene repertoires of certain areas can be limited. This has important implications for the strain-specific immunity against variant antigens occurring in these areas.
Collapse
Affiliation(s)
- Letusa Albrecht
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Taoufiq Z, Pino P, Dugas N, Conti M, Tefit M, Mazier D, Vouldoukis I. Transient supplementation of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced oxidative stress. Mol Biochem Parasitol 2006; 150:166-73. [PMID: 16930739 DOI: 10.1016/j.molbiopara.2006.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022]
Abstract
The pathogenesis of cerebral malaria, a major complication of Plasmodium falciparum infection, relies on mechanisms such as cytokine production and cytoadherence of parasitized red blood cells (PRBCs) on microvascular endothelial cells. In this way parasites avoid spleen clearance by sequestration in post-capillary venules of various organs including the brain. Infected erythrocytes adhesion has also been shown to have molecular signaling consequences providing insight on how tissue homeostasis could be comprised by endothelium perturbation. Our previous work demonstrated that PRBCs adhesion to human lung endothelial cells (HLEC) induces caspases activation, oxidative stress and apoptosis. Cytoplasmic Cu/Zn superoxide dismutase (SOD1), which provides the first line of defense against oxidative stress within a cell, is now used as a treatment of numerous diseases including traumatic brain injury and ischemic stroke. In this report, we demonstrated that transient supplementation of SOD1 protects endothelial cells against P. falciparum induced oxidative stress and apoptosis. We also showed a significant decrease in PRBCs cytoadherence through a downregulation of ICAM-1 and an induction of iNOS. Protection of endothelium via antioxidant delivery may constitute a relevant strategy in cerebral malaria treatment.
Collapse
Affiliation(s)
- Zacharie Taoufiq
- INSERM UMR511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie, 91 bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
63
|
Massimine KM, McIntosh MT, Doan LT, Atreya CE, Gromer S, Sirawaraporn W, Elliott DA, Joiner KA, Schirmer RH, Anderson KS. Eosin B as a novel antimalarial agent for drug-resistant Plasmodium falciparum. Antimicrob Agents Chemother 2006; 50:3132-41. [PMID: 16940112 PMCID: PMC1563504 DOI: 10.1128/aac.00621-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4',5'-Dibromo-2',7'-dinitrofluorescein, a red dye commonly referred to as eosin B, inhibits Toxoplasma gondii in both enzymatic and cell culture studies with a 50% inhibitory concentration (IC(50)) of 180 microM. As a non-active-site inhibitor of the bifunctional T. gondii dihydrofolate reductase-thymidylate synthase (DHFR-TS), eosin B offers a novel mechanism for inhibition of the parasitic folate biosynthesis pathway. In the present study, eosin B was further evaluated as a potential antiparasitic compound through in vitro and cell culture testing of its effects on Plasmodium falciparum. Our data revealed that eosin B is a highly selective, potent inhibitor of a variety of drug-resistant malarial strains, with an average IC(50) of 124 nM. Furthermore, there is no indication of cross-resistance with other clinically utilized compounds, suggesting that eosin B is acting via a novel mechanism. The antimalarial mode of action appears to be multifaceted and includes extensive damage to membranes, the alteration of intracellular organelles, and enzymatic inhibition not only of DHFR-TS but also of glutathione reductase and thioredoxin reductase. In addition, preliminary studies suggest that eosin B is also acting as a redox cycling compound. Overall, our data suggest that eosin B is an effective lead compound for the development of new, more effective antimalarial drugs.
Collapse
Affiliation(s)
- Kristen M Massimine
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Maier AG, Rug M, O'Neill MT, Beeson JG, Marti M, Reeder J, Cowman AF. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood 2006; 109:1289-97. [PMID: 17023587 PMCID: PMC1785152 DOI: 10.1182/blood-2006-08-043364] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding splenic clearance. Because the erythrocyte is devoid of protein transport machinery, the parasite provides infrastructure for trafficking across membranes it traverses. In this study, we show that the P falciparum skeleton-binding protein 1 (PfSBP1) is required for transport of PfEMP1 to the P falciparum-infected erythrocyte surface. We present evidence that PfSBP1 functions at the parasitophorous vacuole membrane to load PfEMP1 into Maurer clefts during formation of these structures. Furthermore, the major reactivity of antibodies from malaria-exposed multigravid women is directed toward PfEMP1 because this is abolished in the absence of PfSBP1.
Collapse
Affiliation(s)
- Alexander G. Maier
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - Melanie Rug
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - Matthias Marti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - John Reeder
- Papua New Guinea Institute of Medical Research, Goroka, Papua, New Guinea
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
- Correspondence: Alan F. Cowman, The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, 3050, Melbourne, Australia; e-mail:
| |
Collapse
|
65
|
Li A, Mansoor AH, Tan KSW, Lim CT. Observations on the internal and surface morphology of malaria infected blood cells using optical and atomic force microscopy. J Microbiol Methods 2006; 66:434-9. [PMID: 16519955 DOI: 10.1016/j.mimet.2006.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 01/16/2006] [Accepted: 01/23/2006] [Indexed: 11/30/2022]
Abstract
We describe a simple and fast method to probe the morphological changes on the exterior and interior of a malaria infected erythrocyte at different stages of parasite development. This involves the imaging and scanning of Giemsa stained malaria infected erythrocytes using optical microscopy and atomic force microscopy, respectively.
Collapse
Affiliation(s)
- Ang Li
- Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | | | | | | |
Collapse
|
66
|
Elliott SR, Duffy MF, Byrne TJ, Beeson JG, Mann EJ, Wilson DW, Rogerson SJ, Brown GV. Cross-reactive surface epitopes on chondroitin sulfate A-adherent Plasmodium falciparum-infected erythrocytes are associated with transcription of var2csa. Infect Immun 2005; 73:2848-56. [PMID: 15845490 PMCID: PMC1087379 DOI: 10.1128/iai.73.5.2848-2856.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria in pregnancy is associated with placental accumulation of Plasmodium falciparum-infected erythrocytes (IE) that adhere to chondroitin sulfate A (CSA). Adhesion is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1), a variant parasite protein expressed on the surface of IE and encoded by var genes. Rabbit antiserum was generated against the CSA-adherent P. falciparum line CS2, in which the dominant var transcribed is var2csa, a relatively conserved var gene that has been associated with CSA adhesion. Anti-CS2 recognized genetically distinct CSA-adherent P. falciparum lines but not CD36-adherent parent lines. Reactivity with anti-CS2 correlated with the level of adhesion to CSA. Fluorescence-activated cell sorting according to binding of anti-CS2 showed reactivity was associated with CSA adhesion and transcription of var2csa. These data are consistent with the hypothesis that var2csa encodes a PfEMP1 expressed on the surface of IE, which mediates adhesion to CSA and is relatively conserved between genetically distinct strains of P. falciparum.
Collapse
Affiliation(s)
- Salenna R Elliott
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Victoria 3050 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Vielemeyer O, McIntosh MT, Joiner KA, Coppens I. Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 2004; 135:197-209. [PMID: 15110461 DOI: 10.1016/j.molbiopara.2003.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 06/23/2003] [Accepted: 08/18/2003] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells the neutral lipids, steryl esters and triacylglycerol, are synthesized by membrane-bound O-acyltransferases and stored in cytosolic lipid bodies. We show here that the intraerythrocytic stages of Plasmodium falciparum produce triacylglycerol using oleate and diacylglycerol as substrates. Parasite membrane preparations reveal a synthesis rate of 4.5 +/- 0.8 pmol x min(-1)mg(-1) of protein with maximal production occurring in the mid- and late-trophozoite stages in both, membrane preparations and live parasites. In contrast to other eukaryotic cells, no discernable amounts of steryl esters are produced, and the parasite is insensitive to cholesterol esterification inhibitors. Synthesized neutral lipids are stored as lipid bodies in the parasite cytosol in a stage specific manner. Their biogenesis is not modified upon incubation with excess fatty acids or lipoproteins or after lipoprotein depletion of the culture medium. We investigated on the enzymes involved in neutral lipid synthesis and found that only one gene with significant homology to known members of the membrane-bound O-acyltransferase family is present in the P. falciparum genome. It encodes a microsomal transmembrane protein with a predicted size of 78.1 kDa, which we named PfDGAT because of its close identity with various known acyl-CoA:diacylglycerol acyltransferases. PfDGAT is expressed in a stage specific manner as documented by Western blotting and immunoprecipitation assays using antibodies against Toxoplasma DGAT, suggesting that PfDGAT is the most likely candidate for plasmodial triacylglycerol synthesis.
Collapse
Affiliation(s)
- Ole Vielemeyer
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, PO Box 20822, New Haven, CT 06520-8022, USA
| | | | | | | |
Collapse
|
68
|
Afonso Nogueira P, Wunderlich G, Shugiro Tada M, d'Arc Neves Costa J, José Menezes M, Scherf A, Pereira-da-Silva LH. Plasmodium falciparum: analysis of transcribed var gene sequences in natural isolates from the Brazilian Amazon region. Exp Parasitol 2002; 101:111-20. [PMID: 12427465 DOI: 10.1016/s0014-4894(02)00107-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Parasite isolates from Brazilian Western Amazonian patients suffering from uncomplicated falciparum malaria were matured in vitro and their var gene transcripts were analysed by RT-PCR and sequencing. Additionally, the cytoadherence patterns of these isolates were determined by panning techniques using transfected CHO cell lines expressing different surface receptors. All of the isolates tested showed between 4 and 13 different var gene transcripts per isolate. Several of these transcripts were present in more than one isolate and three sequences appeared to be preferentially expressed in natural infections. In most of the isolates, cytoadherence occurred to the receptors ICAM-1 and CD36. Several isolates showed a multiadherent profile. Analysis of MSP1 and MSP2 allelic polymorphism indicated polyclonal infections, that could be responsible for the multiadherent phenotype.
Collapse
Affiliation(s)
- Paulo Afonso Nogueira
- Centro de Pesquisa em Medicina Tropical, CP 87, Correio Central, 78.910-210 Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | | |
Collapse
|
69
|
Waterkeyn JG, Cowman AF, Cooke BM. Plasmodium falciparum: gelatin enrichment selects for parasites with full-length chromosome 2. implications for cytoadhesion assays. Exp Parasitol 2001; 97:115-8. [PMID: 11281709 DOI: 10.1006/expr.2000.4593] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Waterkeyn, J. G., Cowman, A. F., and Cooke, B. M. 2001. Plasmodium falciparum: Gelatin enrichment selects for parasites with full-length chromosome 2. Implications for cytoadhesion assays. Experimental Parasitology 97, 115-118.
Collapse
Affiliation(s)
- J G Waterkeyn
- The Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Melbourne 3052, Australia
| | | | | |
Collapse
|
70
|
Cooke BM, Nicoll CL, Baruch DI, Coppel RL. A recombinant peptide based on PfEMP-1 blocks and reverses adhesion of malaria-infected red blood cells to CD36 under flow. Mol Microbiol 1998; 30:83-90. [PMID: 9786187 DOI: 10.1046/j.1365-2958.1998.01040.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During falciparum malaria infection, severe complications ensue because parasitized red blood cells (PRBCs) adhere to endothelial cells and accumulate in the microvasculature. At the molecular level, adhesion is mediated by interaction of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1) on the PRBC surface with receptors on the surface of endothelial cells, including CD36. We have shown that a recombinant 179-residue subfragment of PfEMP-1 (rC1-2[1-179]), which encompasses the CD36-binding region, inhibits and reverses adhesion of PRBCs to CD36 under physiologically relevant flow conditions. rC1-2[1-179] inhibited adhesion in a concentration-dependent manner over the range 100 pM to 2 microM, with up to 99% of adhesion blocked at the highest concentration tested. The antiadhesive activity of rC1-2[1-179] was not strain specific and almost totally ablated adhesion of four different parasite lines. Furthermore, rC1-2[1-179] showed remarkable ability to progressively reverse adhesion when flowed over adherent PRBCs for 2h. The effect of rC1-2[1-179] was, however, specific for CD36-mediated adhesion and had no effect on adhesion mediated by CSA. Interference with binding of PRBCs to the vascular endothelium using rC1-2[1-179] or smaller organic mimetics may be a useful therapeutic approach to ameliorate severe complications of falciparum malaria.
Collapse
Affiliation(s)
- B M Cooke
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
71
|
Goodyer ID, Pouvelle B, Schneider TG, Trelka DP, Taraschi TF. Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Mol Biochem Parasitol 1997; 87:13-28. [PMID: 9233670 DOI: 10.1016/s0166-6851(97)00039-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously provided evidence for a pathway in Plasmodium falciparum-infected erythrocytes, coined the parasitophorous duct pathway, which provides serum (macro)molecules direct access to intraerythrocytic parasites . The present study addresses the purity of the fluorescent macromolecules used to define the duct pathway and provides ultrastructural evidence for its presence. The fluorescent tracers used to characterize transport remain intact during their incubation with infected erythrocytes. Transport of macromolecules in the external medium or host cell cytosol to the intracellular parasites is shown to occur by two distinct pathways. Fluorescent dextrans in the erythrocyte cytosol are ingested by the parasite via a specialized organelle, the cytostome, and are transported to the parasite food vacuole. Transport through this pathway occurs throughout the asexual life cycle. By contrast, fluorescent dextrans in the external medium bypass the erythrocyte cytosol, and are internalized by the parasite by a process resembling fluid-phase endocytosis. Serial sections of mature parasites fixed and stained by various methods for transmission electron microscopy reveal areas of apparent membrane continuity between the erythrocyte membrane and the parasitophorous vacuolar membrane that surrounds the parasite, that could leave the parasites exposed to the external medium. Using carboxylate and amidine-modified fluorescent latex spheres and laser scanning confocal microscopy, macromolecules up to 50-70 nm in diameter are found to have direct access to intraerythrocytic parasites. This size exclusion is consistent with the dimensions of the parasitophorous duct pathway revealed by electron microscopy. This investigation reports for the first time the existence of two, distinct macromolecular transport pathways in malaria-infected erythrocytes.
Collapse
Affiliation(s)
- I D Goodyer
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
72
|
Goodyer ID, Hayes DJ, Eisenthal R. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. Mol Biochem Parasitol 1997; 84:229-39. [PMID: 9084042 DOI: 10.1016/s0166-6851(96)02802-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucose transport in human erythrocytes infected with the malaria parasite, Plasmodium falciparum, has been studied using 6-deoxy-D-glucose (6DOG) as a non-metabolised glucose analogue. Inhibition studies using cytochalasin B, a powerful inhibitor of the erythrocyte glucose transporter, GLUT1, indicate that in the infected red blood cell (IRBC), glucose is transported via a saturable carrier. However, inhibition is not as complete as in the uninfected erythrocyte. The synergistic inhibition effect of 6DOG entry by niflumic acid, an inhibitor of the non-specific malaria-induced pore, in the presence of cytochalasin B suggests that some glucose may also enter the infected erythrocytes through the pore, if entry via the carrier is blocked. The time course of 6DOG efflux from infected erythrocytes in the presence of cytochalasin B did not follow simple first-order kinetics. To elucidate the kinetic mechanism of 6DOG efflux from the infected erythrocytes, the concentration dependence of efflux was determined. Eight two-compartment kinetic models were simulated, involving first-order pore diffusion and carrier-mediated saturable diffusion in two systems, one ductless and one assuming the existence of a parasitophorous duct. The only two models showing reasonable fits to the efflux data each involve two saturable carriers. It is likely that one of the saturable carriers is associated with the parasite itself. Evidence that the parasite carrier has different inhibitor sensitivities from that of GLUT1 is presented.
Collapse
Affiliation(s)
- I D Goodyer
- School of Biology and Biochemistry, University of Bath, UK
| | | | | |
Collapse
|
73
|
Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. J Biol Chem 1995; 270:15045-52. [PMID: 7797486 DOI: 10.1074/jbc.270.25.15045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human erythrocytes parasitized with the malarial protozoan Plasmodium falciparum showed rates of L-lactate, D-lactate, and pyruvate uptake many fold greater than control cells. Thus it was necessary to work at 0 degrees C to resolve true initial rates of transport. Studies on the dependence of the rate of transport on substrate concentration implied the presence in parasitized cells of both a saturable mechanism blocked by alpha-cyano-4-hydroxycinnamate (CHC) and a nonsaturable mechanism insensitive to CHC. The former was dominant at physiological substrate concentrations with Km values for pyruvate and D-lactate of 2.3 and 5.2 mM, respectively, with no stereoselectivity for L- over D-lactate. CHC was significantly less effective as an inhibitor of lactate transport in parasitized erythrocytes than in uninfected cells, whereas p-chloromercuribenzenesulfonate, a potent inhibitor in control cells, gave little or no inhibition of lactate transport into parasitized erythrocytes. Inhibition of transport into infected cells was also observed with phloretin, furosemide, niflumic acid, stilbenedisulfonate derivatives, and 5-nitro-2-(3-phenylpropylamino)benzoic acid at concentrations similar to those that inhibit the lactate carrier of control erythrocytes. These compounds were more effective inhibitors of the rapid transport of chloride into infected cells than of lactate transport, whereas CHC was more effective against lactate transport. This implies that different pathways are involved in the parasite-induced transport pathways for lactate and chloride. The transport of L-lactate into infected erythrocytes was also inhibited by D-lactate, pyruvate, 2-oxobutyrate, and 2-hydroxybutyrate. The intracellular accumulation of L-lactate at equilibrium was dependent on the transmembrane pH gradient, suggesting a protogenic transport mechanism. Our data are consistent with lactate and pyruvate having direct access to the malarial parasite, perhaps via the proposed parasitophorous duct or some close contact between the host cell and parasite plasma membranes, with transport across the latter by both a proton-linked carrier (CHC-sensitive, saturable, and the major route) and free diffusion of the undissociated acid (CHC-insensitive, unsaturable, and a minor route).
Collapse
Affiliation(s)
- S L Cranmer
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | | | | | |
Collapse
|