51
|
Lemus SA, Volz M, Tiozzo E, Perry A, Best TM, Travascio F. The effect of clinically elevated body mass index on physiological stress during manual lifting activities. PLoS One 2022; 17:e0278858. [PMID: 36576923 PMCID: PMC9797066 DOI: 10.1371/journal.pone.0278858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
Individuals with a body mass index (BMI) classified as obesity constitute 27.7% of U.S. workers. These individuals are more likely to experience work-related injuries. However, ergonomists still design work tasks based on the general population and normal body weight. This is particularly true for manual lifting tasks and the calculation of recommended weight limits (RWL) as per National Institute of Occupational Safety & Health (NIOSH) guidelines. This study investigates the effects of BMI on indicators of physiological stress. It was hypothesized that, for clinically elevated BMI individuals, repeated manual lifting at RWL would produce physiological stress above safety limits. A repetitive box lifting task was designed to measure metabolic parameters: volume of carbon dioxide (VCO2) and oxygen (VO2), respiratory exchange ratio (RER), heart rate (HR), and energy expenditure rate (EER). A two-way ANOVA compared metabolic variables with BMI classification and gender, and linear regressions investigated BMI correlations. Results showed that BMI classification represented a significant effect for four parameters: VCO2 (p < 0.001), VO2 (p < 0.001), HR (p = 0.012), and EER (p < 0.001). In contrast, gender only had a significant effect on VO2 (p = 0.014) and EER (p = 0.017). Furthermore, significant positive relationships were found between BMI and VCO2 (R2 = 59.65%, p < 0.001), VO2 (R2 = 45.01%, p < 0.001), HR (R2 = 21.86%, p = 0.009), and EER (R2 = 50.83%, p < 0.001). Importantly, 80% of obese subjects exceeded the EER safety limit of 4.7 kcal/min indicated by NIOSH. Indicators of physiological stress are increased in clinically elevated BMI groups and appear capable of putting these individuals at increased risk for workplace injury.
Collapse
Affiliation(s)
- Sergio A. Lemus
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States of America
| | - Mallory Volz
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States of America
| | - Eduard Tiozzo
- Department of Physical Medicine and Rehabilitation, University of Miami, Miami, FL, United States of America
- * E-mail: (FT); (ET)
| | - Arlette Perry
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States of America
- Laboratory of Clinical and Applied Physiology, University of Miami, Coral Gables, FL, United States of America
- School of Education and Human Development, University of Miami, Coral Gables, FL, United States of America
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States of America
- Department of Orthopaedics, University of Miami, Miami, FL, United States of America
- UHealth Sports Medicine Institute, Coral Gables, FL, United States of America
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States of America
- Department of Orthopaedics, University of Miami, Miami, FL, United States of America
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, United States of America
- * E-mail: (FT); (ET)
| |
Collapse
|
52
|
Development and evaluation of a new assistive device for low back load reduction in caregivers: an experimental study. Sci Rep 2022; 12:19134. [PMID: 36351943 PMCID: PMC9646712 DOI: 10.1038/s41598-022-21800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Low back pain among healthcare professionals is associated with the manual handling of patients. Some bed features for turning and repositioning have been developed; however, the load during patient care remains heavy. We developed a device to reduce low back load in caregivers during patient bedside care and evaluated it objectively and subjectively from a caregiver's perspective using a randomised crossover study. Overall, 28 clinical nurses and care workers were randomly assigned to two interventional groups: administering care with (Device method) and without (Manual method) the device in an experimental room. We measured the caregiver's trunk flexion angle using inertial measurement units and video recording during care and then defined a trunk flexion angle of > 45° as the threshold; the variables were analysed using linear mixed models. Subsequently, participants responded to a survey regarding the usability of the device. Trunk flexion time and percentage of time were 26.5 s (95% confidence interval: 14.1 s, 38.9 s) (p < 0.001) and 23.0% (95% confidence interval: 16.4%, 29.6%) (p < 0.001) lower, respectively, in the Device group than in the Manual group. Furthermore, caregivers evaluated the care they could administer with the device as being better than that associated with manual care.
Collapse
|
53
|
Donisi L, Cesarelli G, Capodaglio E, Panigazzi M, D’Addio G, Cesarelli M, Amato F. A Logistic Regression Model for Biomechanical Risk Classification in Lifting Tasks. Diagnostics (Basel) 2022; 12:2624. [PMID: 36359468 PMCID: PMC9689567 DOI: 10.3390/diagnostics12112624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
Lifting is one of the most potentially harmful activities for work-related musculoskeletal disorders (WMSDs), due to exposure to biomechanical risk. Risk assessment for work activities that involve lifting loads can be performed through the NIOSH (National Institute of Occupational Safety and Health) method, and specifically the Revised NIOSH Lifting Equation (RNLE). Aim of this work is to explore the feasibility of a logistic regression model fed with time and frequency domains features extracted from signals acquired through one inertial measurement unit (IMU) to classify risk classes associated with lifting activities according to the RNLE. Furthermore, an attempt was made to evaluate which are the most discriminating features relating to the risk classes, and to understand which inertial signals and which axis were the most representative. In a simplified scenario, where only two RNLE variables were altered during lifting tasks performed by 14 healthy adults, inertial signals (linear acceleration and angular velocity) acquired using one IMU placed on the subject's sternum during repeated rhythmic lifting tasks were automatically segmented to extract several features in the time and frequency domains. The logistic regression model fed with significant features showed good results to discriminate "risk" and "no risk" NIOSH classes with an accuracy, sensitivity and specificity equal to 82.8%, 84.8% and 80.9%, respectively. This preliminary work indicated that a logistic regression model-fed with specific inertial features extracted by signals acquired using a single IMU sensor placed on the sternum-is able to discriminate risk classes according to the RNLE in a simplified context, and therefore could be a valid tool to assess the biomechanical risk in an automatic way also in more complex conditions (e.g., real working scenarios).
Collapse
Affiliation(s)
- Leandro Donisi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
- Institute of Care and Scientific Research Maugeri, 27100 Pavia, Italy
| | - Giuseppe Cesarelli
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
- Institute of Care and Scientific Research Maugeri, 27100 Pavia, Italy
| | - Edda Capodaglio
- Institute of Care and Scientific Research Maugeri, 27100 Pavia, Italy
| | - Monica Panigazzi
- Institute of Care and Scientific Research Maugeri, 27100 Pavia, Italy
| | - Giovanni D’Addio
- Institute of Care and Scientific Research Maugeri, 27100 Pavia, Italy
| | - Mario Cesarelli
- Institute of Care and Scientific Research Maugeri, 27100 Pavia, Italy
- Department of information Technology and Electrical Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Francesco Amato
- Department of information Technology and Electrical Engineering, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
54
|
Larson RE, Ridge ST, Bruening D, Johnson AW, Mitchell UH. Healthcare worker choice and low back force between self-chosen and highest bed height when boosting a patient up in bed. ERGONOMICS 2022; 65:1373-1379. [PMID: 35084296 DOI: 10.1080/00140139.2022.2034985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Healthcare workers have a high rate of low back injury due to patient handling tasks. These workers receive training in patient handling methods such as adjusting bed height, but often ignore them. In this study, 35 healthcare workers completed patient boosts at a self-chosen bed height and again with the bed in a higher standardised position. Motion capture and force data were collected for analysis. Given the choice, less than half of participants adjusted the bed at all and none of them moved the bed to the highest position (99.1 cm). The self-chosen bed position yielded significantly higher low back force than the higher position at L4-L5 and L5-S1 (p = 0.02, p = 0.01 respectively). Low back forces can be reduced by raising the bed prior to engaging in patient handling tasks, which is a simple step that can reduce forces placed on healthcare workers' low backs. Practitioner summary: Healthcare workers experience high rates of low back pain secondary to patient handling tasks. In this cross-sectional crossover study, healthcare workers consistently chose a low bed height when boosting a patient, which resulted in higher low back loads compared to the highest bed height.
Collapse
Affiliation(s)
- Robert E Larson
- Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sarah T Ridge
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Dustin Bruening
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - A Wayne Johnson
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Ulrike H Mitchell
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
55
|
Zenmyou Y, Kawakami K, Goto M, Watanabe K, Okamoto N, Yoshida M, Yamamoto H, Wada C. A survey of physical and occupational therapists' views on lumbar loading movements. J Phys Ther Sci 2022; 34:683-688. [PMID: 36213190 PMCID: PMC9535249 DOI: 10.1589/jpts.34.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To identify the lumbar loading movements necessary in clinical practice. [Participants and Methods] A questionnaire survey was conducted among physical and occupational therapists in Japan. There were no exclusion criteria regarding the number of years of experience, age, or field of employment. The participants were randomly selected and administered the questionnaire. They were asked to list and rank the lumbar loadings they considered necessary. [Results] A total of 739 respondents participated in the survey. The results of this nationwide survey indicated that the lifting movement of heavy objects in the trunk flexion position was the most common movement (for 354 participants). [Conclusion] The main loading movements of the lumbar spine were reported to be heavy lifting movements (in the trunk flexion position) and trunk rotation movements. As perspectives, we aim to conduct an analytical study of some of lumbar spine loading movements outlined in this study, using a musculoskeletal simulator and electromyography.
Collapse
Affiliation(s)
- Yuta Zenmyou
- Department of Physical Therapy, Kokura Rehabilitation
Academy: 2-2-10 Kuzuharahigashi, Kokuraminami-ku, Kitakyusyu-shi, Fukuoka 800-0206,
Japan
- Department of Life Science and System Engineering, Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology,
Japan
| | - Kei Kawakami
- Department of Rehabilitation, Shinkomonji Hospital,
Japan
| | - Masaki Goto
- Department of Rehabilitation, Shinkomonji Hospital,
Japan
| | - Kazuya Watanabe
- Department of Physical Therapy, Shimonoseki Nursing &
Rehabilitation School, Japan
| | - Nobuhiro Okamoto
- Department of Physical Therapy, Fukuoka Wajiro
Rehabilitation Academy, Japan
| | - Mariko Yoshida
- A Nursing Home for the Elderly, Maruyama Choujuen,
Japan
| | - Hiroaki Yamamoto
- Department of Physical Therapy, Fukuoka Tenjin Medical
Rehabilitation School, Japan
| | - Chikamune Wada
- Department of Life Science and System Engineering, Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology,
Japan
| |
Collapse
|
56
|
Kopp V, Holl M, Schalk M, Daub U, Bances E, García B, Schalk I, Siegert J, Schneider U. Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons. WEARABLE TECHNOLOGIES 2022; 3:e22. [PMID: 38486909 PMCID: PMC10936367 DOI: 10.1017/wtc.2022.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 03/17/2024]
Abstract
Industrial exoskeletons have recently gained importance as ergonomic interventions for physically demanding work activities. The growing demand for exoskeletons is leading to a need for new knowledge on the effectiveness of these systems. The Exoworkathlon, as a prospective study approach, aims to assess exoskeletons in realistic use cases and to evaluate them neutrally in their entirety. For this purpose, a first set of four realistic Parcours was developed with experts from relevant industries, the German Social Accident Insurance, and the Federal Institute for Occupational Safety and Health. In addition, a set of ratings was defined to assess subjective user feedback, work quality, and objective physiological parameters. Exoworkathlon aims to bring together developers, researchers, and end-users, strengthen collaborative exchanges, and promote a platform for the prospective holistic data collection for exoskeleton evaluation. In this article, the focus is on the background and methodology of Exoworkathlon.
Collapse
Affiliation(s)
- Verena Kopp
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
| | - Mirjam Holl
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Marco Schalk
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Urban Daub
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
| | - Enrique Bances
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Braulio García
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Ines Schalk
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Jörg Siegert
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Urs Schneider
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| |
Collapse
|
57
|
Hassani M, Hesampour R, Bartnicka J, Monjezi N, Ezbarami SM. Evaluation of working conditions, work postures, musculoskeletal disorders and low back pain among sugar production workers. Work 2022; 73:273-289. [DOI: 10.3233/wor-210873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: It is generally agreed that musculoskeletal disorders (MSDs) are a severe health concern, particularly for agricultural laborers. OBJECTIVES: The study aimed to identify risk factors and work-related disorders among agricultural workers at Amirkabir agro-industry company in Iran. METHOD: A total of 158 workers, of which 66 were manual harvesting workers (four postures), 40 were fertilizer transportation workers (three postures), and 52 were spraying workers (one posture), were included in the study. The research used questionnaires to collect data, and the postures were analyzed using 3DSSPP software. Related risk factors such as age, body mass index, work experience, working hours, and sports activity were analyzed. RESULTS: The incidence rate of lower back pain (94%), knee pain (82%), neck pain (69%), upper-back (63%), and shoulder (63%) were calculated. The logistic regression revealed that working hours and sports activities are significantly correlated to the wrist/hand and neck MSD with 5.62 and 6.38 times more likely among manual harvesting workers. The 3DSSPP software estimated that the lower back pain, especially in the first posture, for manure transportation workers was very high. Maximum L5-S1 compression, shear, and moment forces in the first posture among manure transportation workers were 7113 N and 472 N, -381 N-m, respectively. CONCLUSION: The 3DSSPP results also illustrated that compression, shear, and moment forces exceeded the NIOSH limit for the other postures. After interventions, compression, shear, and moment forces among all farm workers decreased. These findings emphasize that farm workers need to be under surveillance continuously at their workstations where interventions and improvement in specific tasks are required.
Collapse
Affiliation(s)
- Mehrdad Hassani
- Department of Biosystems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Hesampour
- Department of Agricultural Machinery and Mechanization, Ramin University of Agriculture and Natural Resources, Mollasani, Iran
| | - Joanna Bartnicka
- Department of Organization and Management, Silesian University of Technology, Gliwice, Poland
| | - Nasim Monjezi
- Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahebeh Mirzaei Ezbarami
- Department of Biomedical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| |
Collapse
|
58
|
Zaman R, Arefeen A, Quarnstrom J, Barman S, Yang J, Xiang Y. Optimization-based biomechanical lifting models for manual material handling: A comprehensive review. Proc Inst Mech Eng H 2022; 236:1273-1287. [DOI: 10.1177/09544119221114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lifting is a main task for manual material handling (MMH), and it is also associated with lower back pain. There are many studies in the literature on predicting lifting strategies, optimizing lifting motions, and reducing lower back injury risks. This survey focuses on optimization-based biomechanical lifting models for MMH. The models can be classified as two-dimensional and three-dimensional models, as well as skeletal and musculoskeletal models. The optimization formulations for lifting simulations with various cost functions and constraints are reviewed. The corresponding equations of motion and sensitivity analysis are briefly summarized. Different optimization algorithms are utilized to solve the lifting optimization problem, such as sequential quadratic programming, genetic algorithm, and particle swarm optimization. Finally, the applications of the optimization-based lifting models to digital human modeling which refers to modeling and simulation of humans in a virtual environment, back injury prevention, and ergonomic safety design are summarized.
Collapse
Affiliation(s)
- Rahid Zaman
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Asif Arefeen
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Joel Quarnstrom
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Shuvrodeb Barman
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA
| | - James Yang
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Yujiang Xiang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
59
|
Tang R, Kapellusch JM, Hegmann KT, Thiese MS, Wang I, Merryweather AS. Evaluating Different Measures of Low Back Pain Among U.S. Manual Materials Handling Workers: Comparisons of Demographic, Psychosocial, and Job Physical Exposure. HUMAN FACTORS 2022; 64:973-996. [PMID: 33300376 DOI: 10.1177/0018720820971101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To examine differences in demographic, psychosocial, and job physical exposure risk factors between multiple low back pain (LBP) outcomes in a prospective cohort of industrial workers. BACKGROUND LBP remains a leading cause of lost industrial productivity. Different case definitions involving pain (general LBP), medication use (M-LBP), seeking healthcare (H-LBP), and lost time (L-LBP) are often used to study LBP outcomes. However, the relationship between these outcomes remains unclear. METHOD Demographic, health status, psychosocial, and job physical exposure risk factors were quantified for 635 incident-eligible industrial workers. Incident cases of LBP outcomes and pain symptoms were quantified and compared across the four outcomes. RESULTS Differences in age, gender, medical history, and LBP history were found between the four outcomes. Most incident-eligible workers (67%) suffered an LBP outcome during follow-up. Cases decreased from 420 for LBP (25.4 cases/100 person-years) to 303 for M-LBP (22.0 cases/100 person-years), to 151 for H-LBP (15.6 cases/100 person-years), and finally to 56 for L-LBP (8.7 cases/100 person-years). Conversely, pain intensity and duration increased from LBP to H-LBP. However, pain duration was relatively lower for L-LBP than for H-LBP. CONCLUSION Patterns of cases, pain intensity, and pain duration suggest the influence of the four outcomes. However, few differences in apparent risk factors were observed between the outcomes. Further research is needed to establish consistent case definitions. APPLICATION Knowledge of patterns between different LBP outcomes can improve interpretation of research and guide future research and intervention studies in industry.
Collapse
Affiliation(s)
- Ruoliang Tang
- 12530 Sichuan University-Pittsburgh Institute, Chengdu, China
- 14751 University of Wisconsin-Milwaukee, USA
| | | | | | | | - Inga Wang
- 14751 University of Wisconsin-Milwaukee, USA
| | | |
Collapse
|
60
|
Zehr JD, Callaghan JP. Towards the estimation of ultimate compression tolerance as a function of cyclic compression loading history: implications for lifting-related low back injury risk assessment. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2022. [DOI: 10.1080/1463922x.2022.2114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jackie D. Zehr
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Canada
| | - Jack P. Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
61
|
Rykaczewski K. Thermophysiological aspects of wearable robotics: Challenges and opportunities. Temperature (Austin) 2022; 10:313-325. [PMID: 37554385 PMCID: PMC10405755 DOI: 10.1080/23328940.2022.2113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022] Open
Abstract
Technological advancements in the last two decades have enabled development of a variety of mechanically supporting wearable robots (i.e. exoskeletons) that are transitioning to practice in medical and industrial settings. The feedback from industry and recent controlled studies is highlighting thermal discomfort as a major reason for the disuse of the devices and a substantial barrier to their long-term adoption. Furthermore, a brief overview of the devices and their intended applications reveals that many of the potential users are likely to face thermal comfort issues because of either high exertion or medically related high heat sensitivity. The aim of this review is to discuss these emerging thermal challenges and opportunities surrounding wearable robots. This review discusses mechanisms, potential solutions, and a platform for systematically measuring heat transfer inhibition caused by wearing of an exoskeleton. Lastly, the potential for substantial metabolic rate reduction provided by exoskeletons to reduce worker thermal strain in warm-to-hot conditions is also considered.
Collapse
Affiliation(s)
- Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, US
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
62
|
Kataria KK, Sharma M, Mohan Suri N, Kant S, Luthra S. Analyzing musculoskeletal risk-severity among small scale casting workers using ergonomic assessment tools: A statistical approach. Work 2022; 72:1429-1442. [DOI: 10.3233/wor-210867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Work-related musculoskeletal disorders (WMSDs) are leading cause of injuries among economically backward workers employed under small scale metal casting units especially in developing countries. In India, most casting unit’s falls under small and medium enterprises having inadequacy of advanced technological equipment’s due to several economic constraints and rely intensively on manual labour. Foundry work is very much prone to WMSDs involving much physical interaction of workers with their jobs which includes several risk factors. OBJECTIVE: The study objectives were to analyse the musculoskeletal risk prevalence among small scale casting workers using ergonomic assessment tools and statistical approach. METHODS: In present study, WMSDs risk prevalence has been examined using Rapid Entire Body Assessment (REBA) and virtual ergonomics. Further, risk evaluations were analysed using Mann–Whitney U test and Taguchi L25 orthogonal array. RESULTS: Results revealed manual handling task as being most vulnerable followed by the fettling section. Statistically significant differences were observed (p-value < 0.05) among all the work-sections except lift-lower task and molding section (p = 0.361; p > 0.05) for left side region; and lift-lower task and fettling section (p = 0.230; p > 0.05) for the right side region, where differences were not statistically significant. ANOVA results indicated that workstation height followed by population percentile and object weight were dominant factors significantly affecting the response parameter i.e. L4-L5 spine compression (p-value < 0.01); however workstation width (p-value > 0.05) had no significant effect. CONCLUSION: The present study may guide foundry industrialists in analysing the mismatch between the workers’ job profile and redesigning existing workstation layouts in small scale foundries based on minimizing the WMSDs risk severity associated with the work tasks.
Collapse
Affiliation(s)
- Krishan Kumar Kataria
- Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Milap Sharma
- Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Narendra Mohan Suri
- Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Suman Kant
- Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Sunil Luthra
- Department of Mechanical Engineering, Ch. Ranbir Singh State Institute of Engineering and Technology, Jhajjar, Haryana, India
| |
Collapse
|
63
|
D’Anna C, Varrecchia T, Ranavolo A, De Nunzio AM, Falla D, Draicchio F, Conforto S. Centre of pressure parameters for the assessment of biomechanical risk in fatiguing frequency-dependent lifting activities. PLoS One 2022; 17:e0266731. [PMID: 35947818 PMCID: PMC9365398 DOI: 10.1371/journal.pone.0266731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Lifting tasks, among manual material handling activities, are those mainly associated with low back pain. In recent years, several instrumental-based tools were developed to quantitatively assess the biomechanical risk during lifting activities. In this study, parameters related to balance and extracted from the Centre of Pressure (CoP) data series are studied in fatiguing frequency-dependent lifting activities to: i) explore the possibility of classifying people with LBP and asymptomatic people during the execution of task; ii) examine the assessment of the risk levels associated with repetitive lifting activities, iii) enhance current understanding of postural control strategies during lifting tasks. Data were recorded from 14 asymptomatic participants and 7 participants with low back pain. The participants performed lifting tasks in three different lifting conditions (with increasing lifting frequency and risk levels) and kinetic and surface electromyography (sEMG) data were acquired. Kinetic data were used to calculated the CoP and parameters extracted from the latter show a discriminant capacity for the groups and the risk levels. Furthermore, sEMG parameters show a trend compatible with myoelectric manifestations of muscular fatigue. Correlation results between sEMG and CoP velocity parameters revealed a positive correlation between amplitude sEMG parameters and CoP velocity in both groups and a negative correlation between frequency sEMG parameters and CoP velocity. The current findings suggest that it is possible to quantitatively assess the risk level when monitoring fatiguing lifting tasks by using CoP parameters as well as identify different motor strategies between people with and without LBP.
Collapse
Affiliation(s)
- Carmen D’Anna
- Department of Engineering, Roma Tre University, Roma, Lazio, Italy
| | - Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Alessandro Marco De Nunzio
- LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
- Luxembourg Health & Sport Sciences Research Institute A.s.b.l., Differdange, Luxembourg
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Silvia Conforto
- Department of Engineering, Roma Tre University, Roma, Lazio, Italy
| |
Collapse
|
64
|
Beliveau PJ, Johnston H, Van Eerd D, Fischer SL. Musculoskeletal disorder risk assessment tool use: A Canadian perspective. APPLIED ERGONOMICS 2022; 102:103740. [PMID: 35344795 DOI: 10.1016/j.apergo.2022.103740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Canadian ergonomics professionals from the Association of Canadian Ergonomists (ACE) and Board of Canadian Registered Safety Professionals (BCRSP) participated in a web-based survey of their awareness, use, and factors influencing use of ergonomics musculoskeletal disorder (MSD) risk assessment tools. A total of 791 respondents (21.0% response rate) participated in the survey. Certified ergonomics professionals represented an important subpopulation of MSD risk assessment tool users, however; the vast majority (86.4%) of users within Canada were certified safety professionals. Average tool use varied between ACE and BCRSP groups, where ACE respondents on average use more tools than BCRSP respondents, however the top 10 tools used were similar between the groups. Over 45% of assessment tools were learned at school and average tool use was not influenced by years of experience or continuing education.
Collapse
Affiliation(s)
- Peter Jh Beliveau
- Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | - Steven L Fischer
- Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
65
|
Fanti G, Spinazzè A, Borghi F, Rovelli S, Campagnolo D, Keller M, Borghi A, Cattaneo A, Cauda E, Cavallo DM. Evolution and Applications of Recent Sensing Technology for Occupational Risk Assessment: A Rapid Review of the Literature. SENSORS (BASEL, SWITZERLAND) 2022; 22:4841. [PMID: 35808337 PMCID: PMC9269318 DOI: 10.3390/s22134841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 05/19/2023]
Abstract
Over the last decade, technological advancements have been made available and applied in a wide range of applications in several work fields, ranging from personal to industrial enforcements. One of the emerging issues concerns occupational safety and health in the Fourth Industrial Revolution and, in more detail, it deals with how industrial hygienists could improve the risk-assessment process. A possible way to achieve these aims is the adoption of new exposure-monitoring tools. In this study, a systematic review of the up-to-date scientific literature has been performed to identify and discuss the most-used sensors that could be useful for occupational risk assessment, with the intent of highlighting their pros and cons. A total of 40 papers have been included in this manuscript. The results show that sensors able to investigate airborne pollutants (i.e., gaseous pollutants and particulate matter), environmental conditions, physical agents, and workers' postures could be usefully adopted in the risk-assessment process, since they could report significant data without significantly interfering with the job activities of the investigated subjects. To date, there are only few "next-generation" monitors and sensors (NGMSs) that could be effectively used on the workplace to preserve human health. Due to this fact, the development and the validation of new NGMSs will be crucial in the upcoming years, to adopt these technologies in occupational-risk assessment.
Collapse
Affiliation(s)
- Giacomo Fanti
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Davide Campagnolo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Marta Keller
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Andrea Borghi
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Emanuele Cauda
- Center for Direct Reading and Sensor Technologies, National Institute for Occupational Safety and Health, Pittsburgh, PA 15236, USA;
- Centers for Disease Control and Prevention, Pittsburgh, PA 15236, USA
| | - Domenico Maria Cavallo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| |
Collapse
|
66
|
Ahmad S, Muzammil M. Predicting load constant of RNLE based on demographics. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2022:1-9. [PMID: 35758150 DOI: 10.1080/10803548.2022.2095131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Manual material handling (MMH) and lifting activities have been identified as risk factors for low back pain (LBP). Of the many tools available to analyse and design lifting tasks, the Revised NIOSH Lifting Equation (RNLE) is perhaps the most widely used. However, the equation is based on data primarily from the west. To make it universally applicable, the effect of worker characteristics like age, gender, weight, and anthropometry on MAWL was studied. A psychophysical methodology was adopted to arrive at the maximum acceptable weight limits (MAWLs). 58 industrial workers (30 men and 28 women) participated in the study. Based on the observations of the study, an equation was developed that would allow the RNLE load constant to be modified for different populations based on simple anthropometric data. The load constant for the Indian population was found to be comparable to the RNLE recommendations.
Collapse
Affiliation(s)
- Saman Ahmad
- Department of Mechanical Engineering, Z.H. College of Engineering and Technology, A.M.U, Aligarh 202001, Uttar Pradesh, India
| | - Mohammad Muzammil
- Department of Mechanical Engineering, Z.H. College of Engineering and Technology, A.M.U, Aligarh 202001, Uttar Pradesh, India
| |
Collapse
|
67
|
Nematimoez M, Thomas JS. The effect of head movement restriction on the kinematics of the spine during lifting and lowering tasks. ERGONOMICS 2022; 65:842-856. [PMID: 34694212 DOI: 10.1080/00140139.2021.1998646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to examine the effects of head movement restriction on relative angles and their derivatives using the stepwise segmentation approach during lifting and lowering tasks. Ten healthy men lifted and lowered a box using two styles (stoop and squat), with two loads (i.e. 10% and 20% of body weight); they performed these tasks with two instructed head postures [(1) Flexing the neck to keep contact between chin and chest over the task cycle; (2) No instruction, free head posture]. The neck flexion significantly affected the flexion angle of all segments of the spine and specifically the lumbar part. Additionally, this posture significantly affected the derivatives of the relative angles and manifested latency in spine segments movement, that is, cephalad-to-caudad or caudad-to-cephalad patterns. Conclusively, neck flexion as an awkward posture could increase the risk of low back pain during lifting and lowering tasks in occupational environments. Practitioner summary: Little information is available about the effects of neck flexion on other spine segments' kinematics and movement patterns, specifically about the lumbar spine. The result of this experimental study shows that neck flexion can increase the risk of low back pain by increasing lumbar flexion angle and spine awkward posture.
Collapse
Affiliation(s)
- Mehdi Nematimoez
- Department of Sport Science, University of Bojnord, Bojnord, Iran
| | - James S Thomas
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
68
|
Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions. SENSORS 2022; 22:s22114060. [PMID: 35684682 PMCID: PMC9185583 DOI: 10.3390/s22114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
Manual material handling tasks in industry cause work-related musculoskeletal disorders. Exoskeletons are being introduced to reduce the risk of musculoskeletal injuries. This study investigated the effect of using a passive lumbar exoskeleton in terms of moderate ergonomic risk. Eight participants were monitored by electromyogram (EMG) and motion capture (MoCap) while performing tasks with and without the lumbar exoskeleton. The results showed a significant reduction in the root mean square (VRMS) for all muscles tracked: erector spinae (8%), semitendinosus (14%), gluteus (5%), and quadriceps (10.2%). The classic fatigue parameters showed a significant reduction in the case of the semitendinosus: 1.7% zero-crossing rate, 0.9% mean frequency, and 1.12% median frequency. In addition, the logarithm of the normalized Dimitrov’s index showed reductions of 11.5, 8, and 14% in erector spinae, semitendinosus, and gluteus, respectively. The calculation of range of motion in the relevant joints demonstrated significant differences, but in almost all cases, the differences were smaller than 10%. The findings of the study indicate that the passive exoskeleton reduces muscle activity and introduces some changes of strategies for motion. Thus, EMG and MoCap appear to be appropriate measurements for designing an exoskeleton assessment procedure.
Collapse
|
69
|
Trkov M, Stevenson DT, Merryweather AS. Classifying hazardous movements and loads during manual materials handling using accelerometers and instrumented insoles. APPLIED ERGONOMICS 2022; 101:103693. [PMID: 35144123 PMCID: PMC8897225 DOI: 10.1016/j.apergo.2022.103693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 05/03/2023]
Abstract
Improper manual material handling (MMH) techniques are shown to lead to low back pain, the most common work-related musculoskeletal disorder. Due to the complex nature and variability of MMH and obtrusiveness and subjectiveness of existing hazard analysis methods, providing systematic, continuous, and automated risk assessment is challenging. We present a machine learning algorithm to detect and classify MMH tasks using minimally-intrusive instrumented insoles and chest-mounted accelerometers. Six participants performed standing, walking, lifting/lowering, carrying, side-to-side load transferring (i.e., 5.7 kg and 12.5 kg), and pushing/pulling. Lifting and carrying loads as well as hazardous behaviors (i.e., stooping, overextending and jerky lifting) were detected with 85.3%/81.5% average accuracies with/without chest accelerometer. The proposed system allows for continuous exposure assessment during MMH and provides objective data for use with analytical risk assessment models that can be used to increase workplace safety through exposure estimation.
Collapse
Affiliation(s)
- Mitja Trkov
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, 08028, United States.
| | - Duncan T Stevenson
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, 08028, United States.
| | - Andrew S Merryweather
- Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT, 84112, United States; Rocky Mountain Center for Occupational and Environmental Health (RMCOEH), Salt Lake City, UT, 84108, United States.
| |
Collapse
|
70
|
Greene RL, Lu ML, Barim MS, Wang X, Hayden M, Hu YH, Radwin RG. Estimating Trunk Angle Kinematics During Lifting Using a Computationally Efficient Computer Vision Method. HUMAN FACTORS 2022; 64:482-498. [PMID: 32972247 PMCID: PMC10009882 DOI: 10.1177/0018720820958840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE A computer vision method was developed for estimating the trunk flexion angle, angular speed, and angular acceleration by extracting simple features from the moving image during lifting. BACKGROUND Trunk kinematics is an important risk factor for lower back pain, but is often difficult to measure by practitioners for lifting risk assessments. METHODS Mannequins representing a wide range of hand locations for different lifting postures were systematically generated using the University of Michigan 3DSSPP software. A bounding box was drawn tightly around each mannequin and regression models estimated trunk angles. The estimates were validated against human posture data for 216 lifts collected using a laboratory-grade motion capture system and synchronized video recordings. Trunk kinematics, based on bounding box dimensions drawn around the subjects in the video recordings of the lifts, were modeled for consecutive video frames. RESULTS The mean absolute difference between predicted and motion capture measured trunk angles was 14.7°, and there was a significant linear relationship between predicted and measured trunk angles (R2 = .80, p < .001). The training error for the kinematics model was 2.3°. CONCLUSION Using simple computer vision-extracted features, the bounding box method indirectly estimated trunk angle and associated kinematics, albeit with limited precision. APPLICATION This computer vision method may be implemented on handheld devices such as smartphones to facilitate automatic lifting risk assessments in the workplace.
Collapse
Affiliation(s)
| | - Ming-Lun Lu
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | - Xuan Wang
- University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Hayden
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Yu Hen Hu
- University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
71
|
Potash Z, Harari Y, Riemer R. Effect of using real motion versus predicted motion as input for digital human modeling of back and shoulder loads during manual material handling. APPLIED ERGONOMICS 2022; 101:103675. [PMID: 35123300 DOI: 10.1016/j.apergo.2021.103675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Digital human modeling (DHM) technology is considered the state of the art in designing and evaluating workstations. Previous studies examined the differences between DHM's posture and motion prediction relative to human experimental data. Yet, the effect the two different inputs on biomechanical loads was not assessed. Therefore, this study evaluates the differences in L4/L5 compression force and shoulder torques during a work process calculated using DHM with motion prediction (Jack by Siemens) and DHM with experimental data. The work process is a sequential removing, carrying, and depositing task performed by nine females and nine males and recorded using a motion capture system. The analysis shows that using experimental data results in larger back compression force during the removing task (average 15.4%), similar force during the depositing task (average 0.68%), and less force during the carrying task (19.875%). Using experimental data resulted in larger shoulder torque during all tasks (average 24.97%).
Collapse
Affiliation(s)
- Zohar Potash
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel
| | - Yaar Harari
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel
| | - Raziel Riemer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
72
|
Schmid S. The Stoop-Squat-Index: a simple but powerful measure for quantifying whole-body lifting behavior. Arch Physiother 2022; 12:8. [PMID: 35449120 PMCID: PMC9027351 DOI: 10.1186/s40945-022-00135-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background Most of the studies evaluating lifting behavior only focus on very localized parameters such as lumbar spine flexion, while evaluations of whole-body strategies are largely lacking. To enable relatively simple evaluations of whole-body strategies, this study aimed at developing a novel index for quantifying the stoop-squat behavior, and to establish normative values of the index for healthy pain-free adults. Methods A novel index, the Stoop-Squat-Index, was developed, which describes the proportion between trunk forward lean and lower extremity joint flexion, with possible values ranging from 0 (full squat lifting) to 100 (full stoop lifting). To enable the interpretation of the index in a real-life setting, normative values for lifting a moderately-weighted object (15-kg-box) with a full squat and a full stoop technique were established using motion capture data from 30 healthy pain-free individuals that underwent motion analysis of squat and stoop lifting in the context of a previously conducted study. Results The results showed mean index values of lower than 30 and higher than 90 for the most relevant phases of the squat and stoop movements, respectively, with mean index values differing significantly from each other for the full duration of the lifting phases. Conclusions The main advantages of the index are that it is simple to calculate and can not only be derived from motion capture data but also from conventional video recordings, which enables large-scale in-field measurements with relatively low expenditure. When used in combination with lumbar spine flexion measurements, the index can contribute important information, which is necessary for comprehensively evaluating whole-body lifting strategies and to shed more light on the debate over the connection between lifting posture and back complaints.
Collapse
Affiliation(s)
- Stefan Schmid
- Bern University of Applied Sciences, Department of Health Professions, Division of Physiotherapy, Spinal Movement Biomechanics Group, Murtenstrasse 10, 3008, Bern, Switzerland. .,University of Basel, Faculty of Medicine, Klingelbergstrasse 61, 4056, Basel, Switzerland.
| |
Collapse
|
73
|
Meng Z, Zheng J, Fu K, Kang Y, Wang L. Curative Effect of Foraminal Endoscopic Surgery and Efficacy of the Wearable Lumbar Spine Protection Equipment in the Treatment of Lumbar Disc Herniation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6463863. [PMID: 35368945 PMCID: PMC8975632 DOI: 10.1155/2022/6463863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Lumbar disc herniation is a common and frequently-occurring disease in pain clinics. The incidence rate of affliction is increasing with every passing year. Besides the aged, young people also suffer from long-term pain, which not only affects their daily routines but may also lead to serious impairment. The causes of chronic low back and leg pain caused by lumbar disc herniation are mainly related to mechanical compression, the adhesion of epidural space, intervertebral space, and aseptic inflammatory reaction. The treatment of lumbar disc herniation should follow the principle of step-by-step treatment. An appropriate treatment scheme needs to be adopted according to the patient's condition. About 80% of patients received nonsurgical treatment to get relief from the pain symptoms. However, 10% to 15% of patients still need traditional open surgery. Spinal foraminal surgery is a new method for the treatment of lumbar disc herniation, lumbar surgery failure syndrome, and lumbar spinal stenosis. However, there are only scattered clinical reports on the efficacy of spinal foraminal surgery. Based on it, this paper proposes a method to explore the efficacy of spinal foraminal mirror surgery in the treatment of lumbar disc herniation. Besides, postoperative wearable lumbar protective equipment is proposed to ensure a seamless rehabilitation effect on the patients. Statistical analysis performed using a t-test revealed that there was a significant difference between the visual analog scales (VAS) scores of the two groups after 3 and 6 months of treatment (P < 0.05). The paper analyzes and summarizes the cases with definite and poor curative effects, which not only provides the basis for clinical practice but also paves the way to multicenter clinical research.
Collapse
Affiliation(s)
- ZhaoWu Meng
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - JinYang Zheng
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - Kai Fu
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - YiZhao Kang
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - Liang Wang
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| |
Collapse
|
74
|
Moon C, Bae J, Kwak J, Hong D. A Lower-Back Exoskeleton with a Four-bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force. IEEE Trans Neural Syst Rehabil Eng 2022; 30:729-737. [PMID: 35286262 DOI: 10.1109/tnsre.2022.3159178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lower back pain and related injuries are prevalent and serious problems in various industries, and high compression force to the lumbosacral (L5/S1) region has been known as one of the key factors. Previous research on passive lower back exoskeletons focused on reducing lumbar muscle activation by providing an extensor moment. Additionally, lumbar traction forces can reduce the compression force, and is a common treatment method for lower back pain in clinics. In this paper, we propose a novel passive lower back exoskeleton that provides both extensor moment and lumbar traction force. The working principle of the exoskeleton, extending the coil springs during lumbar flexion, and its design criteria regarding the amount of each force element were provided. The kinematic model explained its operation, and the dynamic simulation estimated its performance and validated its satisfaction with the design criteria. The biomechanical model provided a brief insight into the expected exoskeleton's effect on the reduced lower back compression force. Ten subjects performed static holding and dynamic lifting tasks, and the generated force elements in two directions, parallel and perpendicular to the trunk, were evaluated using a force sensor and electromyography sensors, respectively. The experiment demonstrated a pulling force opposite to the direction of intradiscal pressure and reduced erector spinae activation. This implies the effect of wearing the exoskeleton to decrease the intervertebral pressure during static back bending or heavy lifting tasks.
Collapse
|
75
|
Varrecchia T, Conforto S, De Nunzio AM, Draicchio F, Falla D, Ranavolo A. Trunk Muscle Coactivation in People with and without Low Back Pain during Fatiguing Frequency-Dependent Lifting Activities. SENSORS (BASEL, SWITZERLAND) 2022; 22:1417. [PMID: 35214319 PMCID: PMC8874369 DOI: 10.3390/s22041417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
Lifting tasks are manual material-handling activities and are commonly associated with work-related low back disorders. Instrument-based assessment tools are used to quantitatively assess the biomechanical risk associated with lifting activities. This study aims at highlighting different motor strategies in people with and without low back pain (LBP) during fatiguing frequency-dependent lifting tasks by using parameters of muscle coactivation. A total of 15 healthy controls (HC) and eight people with LBP performed three lifting tasks with a progressively increasing lifting index (LI), each lasting 15 min. Bilaterally erector spinae longissimus (ESL) activity and rectus abdominis superior (RAS) were recorded using bipolar surface electromyography systems (sEMG), and the time-varying multi-muscle coactivation function (TMCf) was computed. The TMCf can significantly discriminate each pair of LI and it is higher in LBP than HC. Collectively, our findings suggest that it is possible to identify different motor strategies between people with and without LBP. The main finding shows that LBP, to counteract pain, coactivates the trunk muscles more than HC, thereby adopting a strategy that is stiffer and more fatiguing.
Collapse
Affiliation(s)
- Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, 00078 Rome, Italy; (T.V.); (F.D.); (A.R.)
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy
| | - Silvia Conforto
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy
| | - Alessandro Marco De Nunzio
- Department of Sport and Exercise Science, LUNEX International University of Health, Exercise and Sports, 4671 Luxembourg, Luxembourg;
- Luxembourg Health & Sport Sciences Research Institute A.s.b.l., 4671 Luxembourg, Luxembourg
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, 00078 Rome, Italy; (T.V.); (F.D.); (A.R.)
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, 00078 Rome, Italy; (T.V.); (F.D.); (A.R.)
| |
Collapse
|
76
|
Zelik KE, Nurse CA, Schall MC, Sesek RF, Marino MC, Gallagher S. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk. APPLIED ERGONOMICS 2022; 99:103619. [PMID: 34740072 PMCID: PMC9827614 DOI: 10.1016/j.apergo.2021.103619] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Low back disorders (LBDs) are a leading injury in the workplace. Back exoskeletons (exos) are wearable assist devices that complement traditional ergonomic controls and reduce LBD risks by alleviating musculoskeletal overexertion. However, there are currently no ergonomic assessment tools to evaluate risk for workers wearing back exos. Exo-LiFFT, an extension of the Lifting Fatigue Failure Tool, is introduced as a means to unify the etiology of LBDs with the biomechanical function of exos. We present multiple examples demonstrating how Exo-LiFFT can assess or predict the effect of exos on LBD risk without costly, time-consuming electromyography studies. For instance, using simulated and real-world material handling data we show an exo providing a 30 Nm lumbar moment is projected to reduce cumulative back damage by ∼70% and LBD risk by ∼20%. Exo-LiFFT provides a practical, efficient ergonomic assessment tool to assist safety professionals exploring back exos as part of a comprehensive occupational health program.
Collapse
Affiliation(s)
- Karl E Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, USA; HeroWear, LLC, Nashville, TN, USA.
| | - Cameron A Nurse
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mark C Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Richard F Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | | | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
77
|
Kee D. Systematic Comparison of OWAS, RULA, and REBA Based on a Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010595. [PMID: 35010850 PMCID: PMC8744662 DOI: 10.3390/ijerph19010595] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
This study aimed to systematically compare three representative observational methods for assessing musculoskeletal loadings and their association with musculoskeletal disorders (MSDs): Ovako Working Posture Analysis System (OWAS), Rapid Upper Limb Assessment (RULA), and Rapid Entire Body Assessment (REBA). The comparison was based on a literature review without time limitations and was conducted on various factors related to observational methods. The comparisons showed that although it has a significant limitation of comprising only two classifications for the leg postures, (1) the RULA is the most frequently used method among the three techniques; (2) many studies adopted the RULA even in evaluation of unstable lower limb postures; (3) the RULA assessed postural loads as higher risk levels in most studies reviewed in this research; (4) the intra- and inter-reliabilities for the RULA were not low; and (5) the risk levels assessed by the RULA were more significantly associated with postural load criteria such as discomfort, MHTs and % capable at the trunk, and MSDs.
Collapse
Affiliation(s)
- Dohyung Kee
- Department of Industrial Engineering, Keimyung University, Daegu 42601, Korea
| |
Collapse
|
78
|
Optimal bed height for passive manual tasks. J Bodyw Mov Ther 2022; 29:127-133. [DOI: 10.1016/j.jbmt.2021.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/05/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
|
79
|
Lazzaroni M, Fanti V, Sposito M, Chini G, Draicchio F, Natali CD, G. Caldwell D, Ortiz J. Improving the Efficacy of an Active Back-Support Exoskeleton for Manual Material Handling Using the Accelerometer Signal. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3183757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Lazzaroni
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Vasco Fanti
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Matteo Sposito
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Giorgia Chini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Jesus Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
80
|
Winiarski S, Molek-Winiarska D, Chomątowska B, Sipko T, Dyvak M. Added value of motion capture technology for occupational health and safety innovations. HUMAN TECHNOLOGY 2021. [DOI: 10.14254/1795-6889.2021.17-3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ergonomic principles in production assembly and manufacturing operations have become an essential part of comprehensive health and safety innovations. We aim to provide new insights into occupational health and safety innovations and how they utilise biomechanical methods and cutting-edge motion capture technology by assessing movements at a workplace. The practical goal is to quantify a connection between work exposure and ergonomic risk measures to determine biomechanical risk factors of diseases or health-related disorders objectively. The target group consisted of 62 factory employees working in manufacturing (26 participants on 12 devices) or assembly areas (36 participants on 9 devices). Body posture, body parts position, movements, energy cost and workloads were assessed using an inertial motion capture (MC) system. MC technology accurately assesses the operator’s movements. The proposed methodology could complement ergonomic procedures in the design of workstations, which is the added value of the motion capture technology for occupational health and safety innovations.
Collapse
|
81
|
Wang H, Xie Z, Lu L, Li L, Xu X. A computer-vision method to estimate joint angles and L5/S1 moments during lifting tasks through a single camera. J Biomech 2021; 129:110860. [PMID: 34794041 DOI: 10.1016/j.jbiomech.2021.110860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Weight lifting is a risk factor of work-related low-back musculoskeletal disorders (MSD). From the ergonomics perspective, it is important to measure workers' body motion during a lifting task and estimate low-back joint moments to ensure the low-back biomechanical loadings are within the failure tolerance. With the recent development of advanced deep neural networks, an increasing number of computer vision algorithms have been presented to estimate 3D human poses through videos. In this study, we first performed a 3D pose estimation of lifting tasks using a single RGB camera and VideoPose3D, an open-source library with a fully convolutional model. Joint angle trajectories and L5/S1 joint moment were then calculated following a top-down inverse dynamic biomechanical model. To evaluate the accuracy of the computer-vision-based angular trajectories and L5/S1 joint moments, we conducted an experiment in which participants performed a variety of lifting tasks. The body motions of the participants were concurrently captured by an RGB camera and a laboratory-grade motion tracking system. The body joint angles and L5/S1 joint moments obtained from the camera were compared with those obtained from the motion tracking system. The results showed a strong correlation (r > 0.9, RMSE < 10°) between the two methods for shoulder flexion, trunk flexion, trunk rotation, and elbow flexion. The computer-vision-based method also yielded a good estimate for the total L5/S1 moment and the L5/S1 moment in the sagittal plane (r > 0.9, RMSE < 20 N·m). This study showed computer vision could facilitate safety practitioners to quickly identify the jobs with high MSD risks through field survey videos.
Collapse
Affiliation(s)
- Hanwen Wang
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Ziyang Xie
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lu Lu
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Li Li
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xu Xu
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
82
|
Kee D. Development and evaluation of the novel postural loading on the entire body assessment. ERGONOMICS 2021; 64:1555-1568. [PMID: 33724153 DOI: 10.1080/00140139.2021.1903084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to develop and evaluate a novel observational technique for postural Loading on the Entire Body Assessment (LEBA). The technique was developed based on discomfort and epidemiological data from previous research, from which posture classification and scoring systems of representative observational methods were adopted and modified. The LEBA score reflected the effects of posture, external load, motion repetition, static loading, and coupling. The LEBA score for a given posture was obtained by summing the scores for these factors (except coupling) and multiplying the sum by the coupling multiplier. LEBA scores were classified into four action categories, depending on the urgency of corrective actions. Correlation analyses between LEBA scores and postural load criteria yielded confirmative results, with correlation coefficients of >0.60. Application to epidemiological cases of work-related musculoskeletal disorders indicated that LEBA action categories aided in determining whether musculoskeletal disorders were work-related. Acceptable reliability and usability were also observed. Practitioner summary: This study developed and evaluated a novel observational technique for postural loading on the entire body assessment (LEBA), based on perceived discomfort and epidemiological data from previous studies. LEBA scores aided in determining risk levels and urgent indications for more detailed assessments and/or interventions and the work-relatedness of musculoskeletal disorders.
Collapse
Affiliation(s)
- Dohyung Kee
- Department of Industrial Engineering, Keimyung University, Daegu, Korea
| |
Collapse
|
83
|
Remedios SM, Fischer SL. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation. JOURNAL OF OCCUPATIONAL REHABILITATION 2021; 31:754-767. [PMID: 34515942 DOI: 10.1007/s10926-021-10002-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Purpose The objective of this study was to determine the agreement of kinematic parameters calculated from motion data collected via a 2D video-based pose-estimation (markerless motion capture) approach and a laboratory-based 3D motion capture approach during a floor-to-waist height functional lifting test. Method Twenty healthy participants each performed three floor-to-waist height lifts. Participants' lifts were captured simultaneously using 2D video (camcorder) in the sagittal plane and 3D motion capture (Vicon, Oxford, UK). The three lifts were representative of a perceived light, medium, and heavy load. Post-collection, video data were processed through a pose-estimation software (i.e., markerless motion capture). Motion data from 3D motion capture and video-based markerless motion capture were each used to calculate objective measures of interest relevant to a functional capacity evaluation (i.e., posture, balance, distance of the load from the body, and coordination). Bland-Altman analyses were used to calculate agreement between the two methods. Results Bland-Altman analysis revealed that mean differences ranged from 1.9° to 22.1° for posture and coordination-based metrics calculated using markerless and 3D motion capture, respectively. Limits of agreement for most posture and coordination measures were approximately + 20°. Conclusions 2D video-based pose estimation offers a strategy to objectively measure movement and subsequently calculated metrics of interest within an FCE context and setting, but at present the agreement between metrics calculated using 2D video-based methods and 3D motion capture is insufficient. Therefore, continued effort is required to improve the accuracy of 2D-video based pose estimation prior to inclusion into functional testing paradigms.
Collapse
Affiliation(s)
- Sarah M Remedios
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Steven L Fischer
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
84
|
Wang X, Hu YH, Lu ML, Radwin RG. Load Asymmetry Angle Estimation Using Multiple view Videos. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2021; 51:734-739. [PMID: 35677387 PMCID: PMC9170187 DOI: 10.1109/thms.2021.3112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A robust computer vision-based approach is developed to estimate the load asymmetry angle defined in the revised NIOSH lifting equation (RNLE). The angle of asymmetry enables the computation of a recommended weight limit for repetitive lifting operations in a workplace to prevent lower back injuries. An open-source package OpenPose is applied to estimate the 2D locations of skeletal joints of the worker from two synchronous videos. Combining these joint location estimates, a computer vision correspondence and depth estimation method is developed to estimate the 3D coordinates of skeletal joints during lifting. The angle of asymmetry is then deduced from a subset of these 3D positions. Error analysis reveals unreliable angle estimates due to occlusions of upper limbs. A robust angle estimation method that mitigates this challenge is developed. We propose a method to flag unreliable angle estimates based on the average confidence level of 2D joint estimates provided by OpenPose. An optimal threshold is derived that balances the percentage variance reduction of the estimation error and the percentage of angle estimates flagged. Tested with 360 lifting instances in a NIOSH-provided dataset, the standard deviation of angle estimation error is reduced from 10.13° to 4.99°. To realize this error variance reduction, 34% of estimated angles are flagged and require further validation.
Collapse
Affiliation(s)
- Xuan Wang
- University of Wisconsin-Madison, Wisconsin, USA
| | - Yu Hen Hu
- University of Wisconsin-Madison, Wisconsin, USA
| | - Ming-Lun Lu
- National Institute for Occupational Safety and Health, Ohio, USA
| | | |
Collapse
|
85
|
Song J, Zhu A, Tu Y, Zou J. Multijoint passive elastic spine exoskeleton for stoop lifting assistance. INT J ADV ROBOT SYST 2021. [DOI: 10.1177/17298814211062033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the task of carrying heavy objects, it is easy to cause back injuries and other musculoskeletal diseases. Although wearable robots are designed to reduce this danger, most existing exoskeletons use high-stiffness mechanisms, which are beneficial to load-bearing conduction, but this restricts the natural movement of the human body, thereby causing ergonomic risks. This article proposes a back exoskeleton composed of multiple elastic spherical hinges inspired by the biological spine. This spine exoskeleton can assist in the process of bending the body and ensure flexibility. We deduced the kinematics model of this mechanism and established an analytical biomechanical model of human–robot interaction. The mechanism of joint assistance of the spine exoskeleton was discussed, and experiments were conducted to verify the flexibility of the spine exoskeleton and the effectiveness of the assistance during bending.
Collapse
Affiliation(s)
- Jiyuan Song
- Institute of Robotics & Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi’an, China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
| | - Yao Tu
- Institute of Robotics & Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an, China
| | - Jiajun Zou
- Institute of Robotics & Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
86
|
Lee S, Heo S, Lee JY. A pilot study to assess a risk of a high-risk group of low back pain membership in workers who perform the manual material handling tasks. Ann Occup Environ Med 2021; 33:e34. [PMID: 35024151 PMCID: PMC8668807 DOI: 10.35371/aoem.2021.33.e34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND We conducted this experimental study to estimate a risk of a high-risk group of low back pain (LBP) membership in workers who perform the manual material handling (MMH) tasks in an actual workplace setting. METHODS The subjects include healthy workers who were engaged in 12 MMH tasks at 6 manufacturing companies. We assessed the dynamic motion of trunk or lumbar spine using an industrial lumbar motion monitor (BioDynamics Laboratory of Ohio State University). The subjects were evaluated for the age, gender, years of working and anthropometric measurements (e.g., height, weight, shoulder height, elbow height, iliac height, leg length, trunk length, trunk circumference, iliac width, iliac depth, xiphoid width and xiphoid depth). Moreover, they were also evaluated for a risk of a high-risk group of LBP membership based on lift frequency, average twisting velocity, maximum moment, maximum sagittal flexion and maximum lateral velocity. RESULTS The subjects who were engaged in a packaging at a detergent manufacturing company are at the greatest risk of LBP (63.76%). This was followed by packaging at a leather product manufacturing company (57.06%), packaging at a non-metallic casting material manufacturing company (57.03%), manual injection at a non-metallic casting material manufacturing company (52.00%), toggling at a leather product manufacturing company (46.09%), non-metallic casting material manufacturing company (42.88%), rolling at a non-metallic mineral product manufacturing company (42.12%), shooting at a non-metallic casting material manufacturing company (40.99%), vacuum processes at a leather product manufacturing company (35.00%), looping at a general industrial machinery manufacturing company (33.93%), setting at a leather product manufacturing company (30.22%) and packaging at a general metal product manufacturing company (22.02%). CONCLUSIONS Our approach indicates that there is a risk of a high-risk group of LBP membership in workers who perform the MMH tasks.
Collapse
Affiliation(s)
- Sungho Lee
- Department of Occupational and Environmental Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Korea
| | - Seongchan Heo
- Department of Occupational and Environmental Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Korea
| | - Jong-Young Lee
- Department of Occupational and Environmental Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Korea
| |
Collapse
|
87
|
Erezuma UL, Espin A, Torres-Unda J, Esain I, Irazusta J, Rodriguez-Larrad A. Use of a passive lumbar back exoskeleton during a repetitive lifting task: effects on physiologic parameters and intersubject variability. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:2377-2384. [PMID: 34608854 DOI: 10.1080/10803548.2021.1989179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives. This study evaluated the effects of wearing the Laevo v2.56 exoskeleton (Laevo, The Netherlands) on physiological parameters related to working load and metabolic cost (MC) during a lifting task, explored the variability in exoskeleton performance among users and determined whether perceived discomfort negatively correlates with a reduction in MC. Methods. Twenty participants completed a 4-min repetitive lifting task with/without the exoskeleton. Respiratory gases, heart rate, blood lactate and ratings of perceived exertion and experienced discomfort were collected, and MC was calculated. Results. Wearing the exoskeleton significantly reduced MC and oxygen uptake during the lifting task by 4.8 and 3.8%, respectively. Workload reduction occurred in 65% of the participants. Conclusion. The Laevo v2.56 exoskeleton reduced MC and workload in a repetitive lifting task in a subject-dependent manner. Future studies should focus on identifying factors that could cause performance variability such as user-robot interaction forces.
Collapse
Affiliation(s)
- Unai Latorre Erezuma
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| | - Ander Espin
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| | - Jon Torres-Unda
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain
| | - Izaro Esain
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain
| | - Jon Irazusta
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| | - Ana Rodriguez-Larrad
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| |
Collapse
|
88
|
Hostler D, Schwob J, Schlader ZJ, Cavuoto L. Heat Stress Increases Movement Jerk During Physical Exertion. Front Physiol 2021; 12:748981. [PMID: 34759839 PMCID: PMC8573129 DOI: 10.3389/fphys.2021.748981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Movement efficiency can be quantified during physical tasks by measuring the rate of change of acceleration (jerk). Jerk captures the smoothness of a motion and has been used to quantify movement for upper extremity and torso-based tasks. We collected triaxial accelerometer data during four physical tasks commonly performed in the work place to determine if jerk increases with physiologic strain. Methods: Participants completed a circuit of activities that mimicked the demands of manual labor in hot (40°C) and temperate (18°C) conditions. The circuit included walking on a treadmill carrying a load on the shoulder, lifting objects from the floor to the table, using a dead blow to strike the end of a heavy steel beam, and a kneeling rope pull. After the 9 min circuit, the participant had a standing rest for 1 min before repeating the circuit 3 additional times. Participants were instrumented with four 3-axis accelerometers (Actigraph wGT3X) secured to the torso, wrist, and upper arm. Results: There were 20 trials in the hot condition and 12 trials in the temperate condition. Heart rate and core body temperature increased during both protocols (p < 0.001). Measures of jerk varied by accelerometer location and activity. During treadmill walking, the wrist, torso, arm accelerometers measured higher jerk during the fourth circuit in the hot condition. During the lifting task, mean jerk increased in the hot condition in all accelerometers. Max jerk increased in the temperate condition in the arm accelerometer and jerk cost increased in the hot condition in the torso and arm accelerometers. Conclusions: Forty minutes of paced work performed in the heat resulted in increased acceleration and jerk in accelerometers placed on the torso, arm, and wrist. The accelerometers most consistently reporting these changes were task specific and suggest that a limited number of worn sensors could identify the onset of fatigue and increased injury risk.
Collapse
Affiliation(s)
- David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, NY, United States
| | - Jacqueline Schwob
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, NY, United States
| | - Zachary J Schlader
- Department of Kinesiology, Indiana University, Bloomington, IN, United States
| | - Lora Cavuoto
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
89
|
Lavender SA, Sun C, Xu Y, Sommerich CM. Ergonomic considerations when slotting piece-pick operations in distribution centers. APPLIED ERGONOMICS 2021; 97:103554. [PMID: 34399371 DOI: 10.1016/j.apergo.2021.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Many warehouse slotting algorithms have overlooked worker ergonomics. This research aimed to develop ergonomics slotting guidelines based upon the back and shoulder postures and electromyographic (EMG) responses of the deltoid and erector spinae muscles when individual items are picked from, or full cases replenished to, different shelf heights In the first study of two studies, participants lifted small items representative of piece-pick tasks from seven shelf heights. In the second study, participants performed a simulated full case replenishment task in which they lifted boxes weighing between 2.7 and 10.9 kg from a cart into a flow rack. Shelf height significantly affected all postural and EMG variables and there was a trade-off between back and shoulder muscle activity across the varying shelf heights. Together, these studies were used to develop some general ergonomic slotting guidelines that could be implemented to reduce biomechanical load exposures experienced by distribution center workers.
Collapse
Affiliation(s)
- Steven A Lavender
- Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA; Orthopaedics, The Ohio State University, Columbus, OH, USA.
| | - Chunyi Sun
- Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - Yilun Xu
- Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| | - Carolyn M Sommerich
- Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
90
|
Pitts G, Custer M, Foister RD, Uhl T. The hand therapist's role in the prevention and management of upper extemity injuries in the modern mass production industrial setting. J Hand Ther 2021; 34:237-249. [PMID: 34034914 DOI: 10.1016/j.jht.2021.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND This case study presents the role of an onsite hand therapist (Certified Hand Therapist, Occupational Therapist, Physical Therapist) in an industrial setting and the services that can be provided in this comprehensive care model. Onsite hand therapists can impact on Occupational Safety and Health Administration (OSHA) first aid programs and can provide state of the art treatment for the injured worker in both a direct and indirect capacity. PURPOSE The purpose of this case study article is to review the many potential services the hand therapist can offer to facilitate the return-to-work of injured employees and provide employers with a proactive case management and state-of-the-art ergonomic prevention, improving profit margins and facilitating safe work environments. STUDY DESIGN A Case Study design demonstrating the diverse and positive impact of hand therapy on the mass production industrial setting. METHODS Novel to this approach is a description of outcome instruments (QuickDASH) administered in a periodic manner to understand the trajectory of change in patient-level disability throughout the rehabilitation process. The Optimal Screening for Prediction of Referral and Outcome (OSPRO-YF) is utilized to help predict the functional outcome for the injured worker. Case studies on common upper extremity pathologies will be discussed, demonstrating the benefits of onsite hand therapy with enhanced treatment and case management. RESULTS The utilization of the QuickDASH and the OSPRO-YF creates a process to determine the progression of injured workers in therapy, the trajectory of change in patient-level disability and to observe when changes occurred. An example of the periodic assessment approach is described in a case study to identify when the most significant change occurred and creating a mechanism to determine if patients were progressing as expected. CONCLUSIONS Inherent in this case study process is a fluidity in which the therapist can monitor patient progress and adjust the rehabilitation process that benefits both the patient and the industrial setting. A hierarchical functional level system is presented to describe an appropriate intervention strategy to coincide with a patient's progression of wound healing which can be provided by a hand therapist with specialized knowledge.
Collapse
Affiliation(s)
- Greg Pitts
- Commonwealth Hand Therapy, Lexington Kentucky 40504, Auerbach School of Occupational Therapy, Spalding University, Louisville, KY, USA.
| | - Melba Custer
- Auerbach School of Occupational Therapy, Spalding University, Chair, Research Ethics Committee REC, Louisville, KY, USA
| | | | - Tim Uhl
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
91
|
Skals S, Bláfoss R, de Zee M, Andersen LL, Andersen MS. Effects of load mass and position on the dynamic loading of the knees, shoulders and lumbar spine during lifting: a musculoskeletal modelling approach. APPLIED ERGONOMICS 2021; 96:103491. [PMID: 34126573 DOI: 10.1016/j.apergo.2021.103491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Musculoskeletal models may enhance our understanding of the dynamic loading of the joints during manual material handling. This study used state-of-the-art musculoskeletal models to determine the effects of load mass, asymmetry angle, horizontal location and deposit height on the dynamic loading of the knees, shoulders and lumbar spine during lifting. Recommended weight limits and lifting indices were also calculated using the NIOSH lifting equation. Based on 1832 lifts from 22 subjects, we found that load mass had the most substantial effect on L5-S1 compression. Increments in asymmetry led to large increases in mediolateral shear, while load mass and asymmetry had significant effects on anteroposterior shear. Increased deposit height led to higher shoulder forces, while the horizontal location mostly affected the forces in the knees and shoulders. These results generally support the findings of previous research, but notable differences in the trends and magnitudes of the estimated forces were observed.
Collapse
Affiliation(s)
- Sebastian Skals
- Musculoskeletal Disorders and Physical Workload, National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen East, Denmark; Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg East, Denmark.
| | - Rúni Bláfoss
- Musculoskeletal Disorders and Physical Workload, National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen East, Denmark; Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Mark de Zee
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg East, Denmark.
| | - Lars Louis Andersen
- Musculoskeletal Disorders and Physical Workload, National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen East, Denmark; Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg East, Denmark.
| | - Michael Skipper Andersen
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark.
| |
Collapse
|
92
|
Zhu Y, Weston EB, Mehta RK, Marras WS. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions. APPLIED ERGONOMICS 2021; 96:103494. [PMID: 34126572 DOI: 10.1016/j.apergo.2021.103494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Industrial passive low-back exoskeletons have gained recent attention as ergonomic interventions to manual handling tasks. This research utilized a two-armed experimental approach (single vs dual-task paradigms) to quantify neural and biomechanical tradeoffs associated with short-term human-exoskeleton interaction (HEI) during asymmetrical lifting in twelve healthy adults balanced by gender. A dynamic, electromyography-assisted spine model was employed that indicated statistical, but marginal, biomechanical benefits of the tested exoskeleton, which diminished with the introduction of the cognitive dual-task. Using Near Infrared Spectroscopy (fNIRS)-based brain connectivity analyses, we found that the tested exoskeleton imposed greater neurocognitive and motor adaptation efforts by engaging action monitoring and error processing brain networks. Collectively, these findings indicate that a wearer's biomechanical response to increased cognitive demands in the workplace may offset the mechanical advantages of exoskeletons. We also demonstrate the utility of ambulatory fNIRS to capture the neural cost of HEI without the need for elaborate dual-task manipulations.
Collapse
Affiliation(s)
- Yibo Zhu
- Wm. Michael Barnes '64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Eric B Weston
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, 43210, USA; Spine Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Ranjana K Mehta
- Wm. Michael Barnes '64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, 77840, USA.
| | - William S Marras
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, 43210, USA; Spine Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
93
|
Poliero T, Sposito M, Toxiri S, Di Natali C, Iurato M, Sanguineti V, Caldwell DG, Ortiz J. Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies. WEARABLE TECHNOLOGIES 2021; 2:e12. [PMID: 38486626 PMCID: PMC10936340 DOI: 10.1017/wtc.2021.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 03/17/2024]
Abstract
Assistive strategies for occupational back-support exoskeletons have focused, mostly, on lifting tasks. However, in occupational scenarios, it is important to account not only for lifting but also for other activities. This can be done exploiting human activity recognition algorithms that can identify which task the user is performing and trigger the appropriate assistive strategy. We refer to this ability as exoskeleton versatility. To evaluate versatility, we propose to focus both on the ability of the device to reduce muscle activation (efficacy) and on its interaction with the user (dynamic fit). To this end, we performed an experimental study involving healthy subjects replicating the working activities of a manufacturing plant. To compare versatile and non-versatile exoskeletons, our device, XoTrunk, was controlled with two different strategies. Correspondingly, we collected muscle activity, kinematic variables and users' subjective feedbacks. Also, we evaluated the task recognition performance of the device. The results show that XoTrunk is capable of reducing muscle activation by up to in lifting and in carrying. However, the non-versatile control strategy hindered the users' natural gait (e.g., reduction of hip flexion), which could potentially lower the exoskeleton acceptance. Detecting carrying activities and adapting the control strategy, resulted in a more natural gait (e.g., increase of hip flexion). The classifier analyzed in this work, showed promising performance (online accuracy > 91%). Finally, we conducted 9 hours of field testing, involving four users. Initial subjective feedbacks on the exoskeleton versatility, are presented at the end of this work.
Collapse
Affiliation(s)
- Tommaso Poliero
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Sposito
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
| | - Stefano Toxiri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Iurato
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genova, Italy
| | - Vittorio Sanguineti
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genova, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jesús Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
94
|
Ergonomic Risk Assessment during an Informal Hand-Made Cookware Operation: Extending an Existing Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189459. [PMID: 34574384 PMCID: PMC8469040 DOI: 10.3390/ijerph18189459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
The work conducted in the informal sector is highly variable within and between days. Characterizing ergonomic exposures remains a challenge because of unstructured work settings and schedules. The existing ergonomic risk assessment tools have been widely used in formal work settings with a narrow range of exposure, and for predefined tasks that primarily constitute a daily routine. There is limited information in the literature on how they have been applied in informal workplaces. The aim of this study was to extend an existing risk assessment tool and to evaluate the applicability of the extended tool by assessing ergonomic exposure related to hand-made cookware operations. Eighteen hand-made cookware makers were recruited from six sites. A walkthrough risk assessment questionnaire was used to collect information on workers, tasks, work stations and workplace structures. The Rapid Upper Limb Assessment (RULA) screening tool was extended by including duration and vibration. An action priority matrix was used to guide intervention. According to the RULA action levels, the workers required investigation and changes soon, and immediate investigation and changes. The use of an action priority matrix was appropriate, and indicated that all the workers assessed were within the high to very high exposure domain and required immediate corrective measures. The methodology used proved to be an effective and reliable strategy for identifying ergonomic exposure among hand-made cookware makers.
Collapse
|
95
|
Varrecchia T, Ranavolo A, Conforto S, De Nunzio AM, Arvanitidis M, Draicchio F, Falla D. Bipolar versus high-density surface electromyography for evaluating risk in fatiguing frequency-dependent lifting activities. APPLIED ERGONOMICS 2021; 95:103456. [PMID: 33984582 DOI: 10.1016/j.apergo.2021.103456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Workers often develop low back pain due to manually lifting heavy loads. Instrumental-based assessment tools are used to quantitatively assess the biomechanical risk in lifting activities. This study aims to verify the hypothesis that high-density surface electromyography (HDsEMG) allows an optimized discrimination of risk levels associated with different fatiguing lifting conditions compared to traditional bipolar sEMG. 15 participants performed three lifting tasks with a progressively increasing lifting index (LI) each lasting 15 min. Erector spinae (ES) activity was recorded using both bipolar and HDsEMG systems. The amplitude of both bipolar and HDsEMG can significantly discriminate each pair of LI. HDsEMG data could discriminate across the different LIs starting from the fourth minute of the task while bipolar sEMG could only do so towards the end. The higher discriminative power of HDsEMG data across the lifting tasks makes such methodology a valuable tool to be used to monitor fatigue while lifting and could extend the possibilities offered by currently available instrumental-based tools.
Collapse
Affiliation(s)
- Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00040, Rome, Italy; Department of Engineering, Roma Tre University, Via Vito Volterra 62, Roma, Lazio, Italy.
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00040, Rome, Italy.
| | - Silvia Conforto
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, Roma, Lazio, Italy.
| | - Alessandro Marco De Nunzio
- LUNEX International University of Health, Exercise and Sports, 50, Avenue du Parc des Sports, Differdange, 4671, Luxembourg; Luxembourg Health & Sport Sciences Research Institute A.s.b.l., 50, Avenue du Parc des Sports, Differdange, 4671, Luxembourg.
| | - Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B152TT, United Kingdom.
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00040, Rome, Italy.
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B152TT, United Kingdom.
| |
Collapse
|
96
|
Potvin JR, Ciriello VM, Snook SH, Maynard WS, Brogmus GE. The Liberty Mutual manual materials handling (LM-MMH) equations. ERGONOMICS 2021; 64:955-970. [PMID: 33729096 DOI: 10.1080/00140139.2021.1891297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
We summarise more than 40 years of Liberty Mutual psychophysical research on lifting, lowering, pushing, pulling and carrying, including the 7 studies used to develop the 1991 Liberty Mutual Tables and 12 subsequent studies. Predictive equations were developed based on 612 mean maximum acceptable loads (MALs), representing 388 unique conditions from 123 female and 149 male participants, starting with a maximum reference load that is scaled based on frequency, height, distance (vertical for lift & lower, horizontal for push, pull and carry tasks) and horizontal reach (for lift & lower tasks). Representative coefficients of variation are provided to allow for the calculation of MALs for any percentile. Each equation performed well and, overall, they explained 90% of the variance in MAL values, with RMS differences of 6.7% and 4.8% of the full range for females and males, respectively. We propose that these equations replace the 1991 Liberty Mutual Tables. Practitioner summary: We propose predictive equations to replace the 14 manual materials handling tables in Snook and Ciriello (1991). These equations are based on 12 more publications, matched the empirical data well, are easier to use and allow for both a wider range and more specific inputs than the tables.
Collapse
Affiliation(s)
- Jim R Potvin
- Liberty Mutual Insurance, Boston, MA, USA
- Potvin Biomechanics Inc, Tecumseh, ON, Canada
| | | | | | | | | |
Collapse
|
97
|
Trunk Posture during Manual Materials Handling of Beer Kegs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147380. [PMID: 34299831 PMCID: PMC8307858 DOI: 10.3390/ijerph18147380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 12/03/2022]
Abstract
Craft brewing is a rapidly growing industry in the U.S. Most craft breweries are small businesses with few resources for robotic or other mechanical-assisted equipment, requiring work to be performed manually by employees. Craft brewery workers frequently handle stainless steel half-barrel kegs, which weigh between 13.5 kg (29.7 lbs.) empty and 72.8 kg (161.5 lbs.) full. Moving kegs may be associated with low back pain and even injury. In the present study, researchers performed a quantitative assessment of trunk postures using an inertial measurement unit (IMU)-based kinematic measurement system while workers lifted kegs at a craft brewery. Results of this field-based study indicated that during keg handling, craft brewery workers exhibited awkward and non-neutral trunk postures. Based on the results of the posture data, design recommendations were identified to reduce the hazardous exposure for musculoskeletal disorders among craft brewery workers.
Collapse
|
98
|
Hall AD, La Delfa NJ, Loma C, Potvin JR. A comparison between measured female linear arm strengths and estimates from the 3D Static Strength Prediction Program (3DSSPP). APPLIED ERGONOMICS 2021; 94:103415. [PMID: 33799124 DOI: 10.1016/j.apergo.2021.103415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
This study performed a direct comparison between empirically measured female linear arm strengths and those estimated with the 3D Static Strength Prediction Program (3DSSPP). Linear arm strengths were collected from 15 female participants, at four hand locations and six primary directions (n = 360), and then estimated with 3DSSPP incorporating each participant's own segment lengths, body masses and joint strengths, and the measured arm postures from each trial to optimize the accuracy of 3DSSPP. In spite of this, the errors in 3DSSPP's estimated arm strength values were very high (RMS error = 56.0 N and 40.4%) and poorly correlated (r2 = 29.2%) with measured strengths. These results seriously question the accuracy of 3DSSPP to estimate female linear arm strengths and percent capable values, for the range of conditions tested, likely due to the overly simplified assumptions made to estimate triaxial shoulder strength.
Collapse
Affiliation(s)
- Andrew D Hall
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Chris Loma
- Advanced Ergonomics Studies Program, Fanshawe College, London, ON, Canada
| | - Jim R Potvin
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
99
|
Vu LQ, Kim KH, Rajulu SL. Ergonomic Risk Identification for Spacesuit Movements Using Factorial Analysis. IISE Trans Occup Ergon Hum Factors 2021. [PMID: 34605376 DOI: 10.1080/24725838.2021.1972056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OCCUPATIONAL APPLICATIONSBiomechanical risk factors associated with spacesuit manual material handling tasks were evaluated using the singular value decomposition (SVD) technique. SVD analysis decomposed each lifting tasks into primitive motion patterns called eigenposture progression (EP) that contributed to the overall task. Biomechanical metrics, such as total joint displacement, were calculated for each EP. The first EP (a simultaneous knee, hip, and waist movement) had greater biomechanical demands than other EPs. Thus, tasks such as lifting from the floor were identified as "riskier" by having a greater composition of the first EP. The results of this work can be used to improve a task as well as spacesuit design by minimizing riskier movement patterns as shown in this case study. This methodology can be applied in civilian occupational settings to analyze open-ended tasks (e.g., complex product assembly and construction) for ergonomics assessments. Using this method, worker task strategies can be evaluated quantitatively, compared, and redesigned when necessary.
Collapse
Affiliation(s)
- Linh Q Vu
- Human Factors Engineer, MEI Technologies, Houston, TX, USA
| | - K Han Kim
- Senior Human Factors Engineer, Leidos Inc., Houston, TX, USA
| | - Sudhakar L Rajulu
- Technical Monitor of NASA Anthropometry and Biomechanics Facility, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
100
|
Pascual AI, Högberg D, Lämkull D, Luque EP, Syberfeldt A, Hanson L. Optimization of Productivity and Worker Well-Being by Using a Multi-Objective Optimization Framework. IISE Trans Occup Ergon Hum Factors 2021. [PMID: 34724884 DOI: 10.1080/24725838.2021.1997834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OCCUPATIONAL APPLICATIONSWorker well-being and overall system performance are important elements in the design of production lines. However, studies of industry practice show that current design tools are unable to consider concurrently both productivity aspects (e.g., line balancing and cycle time) and worker well-being related aspects (e.g., the risk of musculoskeletal disorders). Current practice also fails to account for anthropometric diversity in the workforce and does not use the potential of multi-objective simulation-based optimization techniques. Accordingly, a framework consisting of a workflow and a digital tool was designed to assist in the proactive design of workstations to accommodate worker well-being and productivity. This framework uses state-of-the-art optimization techniques to make it easier and quicker for designers to find successful workplace design solutions. A case study to demonstrate the framework is provided.
Collapse
Affiliation(s)
| | - Dan Högberg
- School of Engineering Science, University of Skövde, Skövde, Sweden
| | - Dan Lämkull
- Advanced Manufacturing Engineering, Volvo Car Corporation, Göteborg, Sweden
| | | | - Anna Syberfeldt
- School of Engineering Science, University of Skövde, Skövde, Sweden
| | - Lars Hanson
- School of Engineering Science, University of Skövde, Skövde, Sweden.,Global Industrial Development, Scania CV AB, Södertälje, Sweden
| |
Collapse
|