51
|
Zhang L, Song J, Xin X, Sun D, Huang H, Chen Y, Zhang T, Zhang Y. Hypoxia stimulates the migration and invasion of osteosarcoma via up-regulating the NUSAP1 expression. Open Med (Wars) 2021; 16:1083-1089. [PMID: 34322597 PMCID: PMC8299310 DOI: 10.1515/med-2020-0180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/17/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a highly aggressive malignant tumor, which most commonly occurs in children and adolescents. This study aims to reveal that hypoxia promotes the invasion of osteosarcoma cells by up-regulating the expression of NUSAP1. The expression of HIF-1α and NUSAP1 was significantly up-regulated in MG63 cells cultured in hypoxia for 6–36 h. Furthermore, hypoxia induced the migration and invasion of MG63 cells and regulated the level of E-cad, N-cad, Vimentin, Snail, Slug, MMP2, and MMP9 proteins. Importantly, knockdown of NUSAP1 inhibited hypoxia-induced cell migration and invasion. In the hypoxia microenvironment, the addition of HIF-1α inhibitor or the transfection of siRNA specifically targeting HIF-1α significantly reduced the expression of HIF-1α and NUSAP1 and markedly inhibited the migration and invasion of MG63 cells under the hypoxia microenvironment. In conclusion, hypoxia induced the expression of NUSAP1 in a HIF-1α-dependent manner, stimulating the migration and invasion of MG63 cells.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Jingtao Song
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Xu Xin
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Donghong Sun
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Huiting Huang
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Yang Chen
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Tao Zhang
- Department of Orthopedics, Tianjin Beichen District Chinese Medicine Hospital, Tianjin 300400, China
| | - Yiming Zhang
- Department of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
52
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
53
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
54
|
Cheng H, Li D. Investigation into the association between obstructive sleep apnea and incidence of all-type cancers: a systematic review and meta-analysis. Sleep Med 2021; 88:274-281. [PMID: 34219029 DOI: 10.1016/j.sleep.2021.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/13/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep-related breathing disorders and is featured by complete or partial obstruction of the upper airway using sleep. Conflicting reports regarding the association between obstructive sleep apnea (OSA) and cancer incidence are existing in different studies. The aim of this study is to determine whether OSA is independently associated with incidence of all-type cancers by using the meta-analysis. Medline, Embase, PubMed, Ovid, the Cochrane Library database, Web of Science, and Google Scholar were searched by two independent reviewers until 31 January 2021. Studies that evaluated OSA and the cancer incidence were included. Pooled risk ratios (RR) and corresponding 95% confidence intervals (CI) were calculated. Twelve studies, involved 184,915 participants, were pooled in this meta-analysis. Fixed-effects model analysis showed that patients with OSA had an increased risk of cancer incidence (RR: 1.52, 95% CI: 1.39-1.66, P < 0.001). The subgroup analysis showed that the pooled RRs of cancer incidence were 1.14 (95% CI: 1.04-1.25, P = 0.006) for mild OSA, 1.36 (95% CI: 1.32-1.92; P < 0.001) for moderate OSA and 1.59 (95% CI: 1.45-1.74; P < 0.001) for severe OSA, respectively. Patients with moderate and severe OSA were identified to have an increased risk of cancer incidence when compared to patients with mild OSA. In addition, patients with severe OSA also showed an increased risk of incident cancer (RR: 1.18, 95% CI: 1.08-1.28, P < 0.001) when compared to patients with moderate OSA. In conclusion, from most updated literatures, our meta-analysis results indicated that OSA was independently associated with incidence of all-type cancers when stratified the severity of OSA. However, further detailed analysis and clinical studies are warranted to decipher the association between OSA and cancer prevalence.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China.
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
55
|
Ding Y, Yang R, Yu W, Hu C, Zhang Z, Liu D, An Y, Wang X, He C, Liu P, Tang Q, Chen D. Chitosan oligosaccharide decorated liposomes combined with TH302 for photodynamic therapy in triple negative breast cancer. J Nanobiotechnology 2021; 19:147. [PMID: 34011362 PMCID: PMC8136194 DOI: 10.1186/s12951-021-00891-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive tumor with extremely high mortality that results from its lack of effective therapeutic targets. As an adhesion molecule related to tumorigenesis and tumor metastasis, cluster of differentiation-44 (also known as CD44) is overexpressed in TNBC. Moreover, CD44 can be effectively targeted by a specific hyaluronic acid analog, namely, chitosan oligosaccharide (CO). In this study, a CO-coated liposome was designed, with Photochlor (HPPH) as the 660 nm light mediated photosensitizer and evofosfamide (also known as TH302) as the hypoxia-activated prodrug. The obtained liposomes can help diagnose TNBC by fluorescence imaging and produce antitumor therapy by synergetic photodynamic therapy (PDT) and chemotherapy. RESULTS Compared with the nontargeted liposomes, the targeted liposomes exhibited good biocompatibility and targeting capability in vitro; in vivo, the targeted liposomes exhibited much better fluorescence imaging capability. Additionally, liposomes loaded with HPPH and TH302 showed significantly better antitumor effects than the other monotherapy groups both in vitro and in vivo. CONCLUSION The impressive synergistic antitumor effects, together with the superior fluorescence imaging capability, good biocompatibility and minor side effects confers the liposomes with potential for future translational research in the diagnosis and CD44-overexpressing cancer therapy, especially TNBC.
Collapse
Affiliation(s)
- Yinan Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Weiping Yu
- Medical School of Southeast University, Nanjing, 210009, China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Affiliated Hospital of Southeast University (The Second Hospital of Nanjing), Nanjing, 210009, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, 210009, China
| | - Yanli An
- Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Xihui Wang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Chen He
- Medical School of Southeast University, Nanjing, 210009, China
| | - Peidang Liu
- Medical School of Southeast University, Nanjing, 210009, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| |
Collapse
|
56
|
D'Aguanno S, Mallone F, Marenco M, Del Bufalo D, Moramarco A. Hypoxia-dependent drivers of melanoma progression. J Exp Clin Cancer Res 2021; 40:159. [PMID: 33964953 PMCID: PMC8106186 DOI: 10.1186/s13046-021-01926-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a condition of low oxygen availability, is a hallmark of tumour microenvironment and promotes cancer progression and resistance to therapy. Many studies reported the essential role of hypoxia in regulating invasiveness, angiogenesis, vasculogenic mimicry and response to therapy in melanoma. Melanoma is an aggressive cancer originating from melanocytes located in the skin (cutaneous melanoma), in the uveal tract of the eye (uveal melanoma) or in mucosal membranes (mucosal melanoma). These three subtypes of melanoma represent distinct neoplasms in terms of biology, epidemiology, aetiology, molecular profile and clinical features.In this review, the latest progress in hypoxia-regulated pathways involved in the development and progression of all melanoma subtypes were discussed. We also summarized current knowledge on preclinical studies with drugs targeting Hypoxia-Inducible Factor-1, angiogenesis or vasculogenic mimicry. Finally, we described available evidence on clinical studies investigating the use of Hypoxia-Inducible Factor-1 inhibitors or antiangiogenic drugs, alone or in combination with other strategies, in metastatic and adjuvant settings of cutaneous, uveal and mucosal melanoma.Hypoxia-Inducible Factor-independent pathways have been also reported to regulate melanoma progression, but this issue is beyond the scope of this review.As evident from the numerous studies discussed in this review, the increasing knowledge of hypoxia-regulated pathways in melanoma progression and the promising results obtained from novel antiangiogenic therapies, could offer new perspectives in clinical practice in order to improve survival outcomes of melanoma patients.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | | |
Collapse
|
57
|
Sebestyén A, Kopper L, Dankó T, Tímár J. Hypoxia Signaling in Cancer: From Basics to Clinical Practice. Pathol Oncol Res 2021; 27:1609802. [PMID: 34257622 PMCID: PMC8262153 DOI: 10.3389/pore.2021.1609802] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Cancer hypoxia, recognized as one of the most important hallmarks of cancer, affects gene expression, metabolism and ultimately tumor biology-related processes. Major causes of cancer hypoxia are deficient or inappropriate vascularization and systemic hypoxia of the patient (frequently induced by anemia), leading to a unique form of genetic reprogramming by hypoxia induced transcription factors (HIF). However, constitutive activation of oncogene-driven signaling pathways may also activate hypoxia signaling independently of oxygen supply. The consequences of HIF activation in tumors are the angiogenic phenotype, a novel metabolic profile and the immunosuppressive microenvironment. Cancer hypoxia and the induced adaptation mechanisms are two of the major causes of therapy resistance. Accordingly, it seems inevitable to combine various therapeutic modalities of cancer patients by existing anti-hypoxic agents such as anti-angiogenics, anti-anemia therapies or specific signaling pathway inhibitors. It is evident that there is an unmet need in cancer patients to develop targeted therapies of hypoxia to improve efficacies of various anti-cancer therapeutic modalities. The case has been opened recently due to the approval of the first-in-class HIF2α inhibitor.
Collapse
Affiliation(s)
- Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - László Kopper
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
58
|
Hu S, Xie D, Zhou P, Liu X, Yin X, Huang B, Guan H. LINCS gene expression signature analysis revealed bosutinib as a radiosensitizer of breast cancer cells by targeting eIF4G1. Int J Mol Med 2021; 47:72. [PMID: 33693953 PMCID: PMC7952247 DOI: 10.3892/ijmm.2021.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022] Open
Abstract
Radioresistance is the predominant cause for radiotherapy failure and disease progression, resulting in increased breast cancer‑associated mortality. Using gene expression signature analysis of the Library of Integrated Network‑Based Cellular Signatures (LINCS) and Gene Expression Omnibus (GEO), the aim of the present study was to systematically identify potential candidate radiosensitizers from known drugs. The similarity of integrated gene expression signatures between irradiated eukaryotic translation initiation factor 4 γ 1 (eIF4G1)‑silenced breast cancer cells and known drugs was measured using enrichment scores (ES). Drugs with positive ES were selected as potential radiosensitizers. The radiosensitizing effects of the candidate drugs were analyzed in breast cancer cell lines (MCF‑7, MX‑1 and MDA‑MB‑231) using CCK‑8 and colony formation assays following exposure to ionizing radiation. Cell apoptosis was measured using flow cytometry. The expression levels of eIF4G1 and DNA damage response (DDR) proteins were analyzed by western blotting. Bosutinib was identified as a promising radiosensitizer, as its administration markedly reduced the dosage required both for the drug and for ionizing radiation, which may be associated with fewer treatment‑associated adverse reactions. Moreover, combined treatment of ionizing radiation and bosutinib significantly increased cell killing in all three cell lines, compared with ionizing radiation or bosutinib alone. Among the three cell lines, MX‑1 cells were identified as the most sensitive to both ionizing radiation and bosutinib. Bosutinib markedly downregulated the expression of eIF4G1 in a dose‑dependent manner and also reduced the expression of DDR proteins (including ATM, XRCC4, ATRIP, and GADD45A). Moreover, eIF4G1 was identified as a key target of bosutinib that may regulate DNA damage induced by ionizing radiation. Thus, bosutinib may serve as a potential candidate radiosensitizer for breast cancer therapy.
Collapse
Affiliation(s)
- Sai Hu
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pingkun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaoyao Yin
- College of Computer, National University of Defence Technology, Changsha, Hunan 410073, P.R. China
| | - Bo Huang
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
59
|
Berger Fridman I, Ugolini GS, VanDelinder V, Cohen S, Konry T. High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. Biofabrication 2021; 13. [PMID: 33440359 DOI: 10.1088/1758-5090/abdb88] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology inin vitromodels. Environmental oxygen levels, applied in mostin vitromodels, poorly imitate the oxygen conditions cells experiencein vivo, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy. Though this phenomenon offers a specific target for cancer therapy, appropriatein vitroplatforms are still lacking. Microfluidic models offer advanced spatio-temporal control of physico-chemical parameters. However, most of the systems described to date control a single oxygen level per chip, thus offering limited experimental throughput. Here, we developed a multi-layer microfluidic device coupling the high throughput generation of 3D tumor spheroids with a linear gradient of five oxygen levels, thus enabling multiple conditions and hundreds of replicates on a single chip. We showed how the applied oxygen gradient affects the generation of reactive oxygen species (ROS) and the cytotoxicity of Doxorubicin and Tirapazamine in breast tumor spheroids. Our results aligned with previous reports of increased ROS production under hypoxia and provide new insights on drug cytotoxicity levels that are closer to previously reportedin vivofindings, demonstrating the predictive potential of our system.
Collapse
Affiliation(s)
- Ilana Berger Fridman
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.,Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Giovanni Stefano Ugolini
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Virginia VanDelinder
- Center for Integrated Technologies, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1315, United States of America
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| |
Collapse
|
60
|
Alternatively Expressed Transcripts Analysis of Non-Small Cell Lung Cancer Cells under Different Hypoxic Microenvironment. JOURNAL OF ONCOLOGY 2021; 2021:5558304. [PMID: 33936200 PMCID: PMC8055392 DOI: 10.1155/2021/5558304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the most fatal form of malignancy. Numerous studies have shown that people living at high altitudes are at a higher risk for cancer. Hypoxia is one of the most important features in high altitude area. Compared with normal cells, cancer cells are more adapted to hypoxia atmosphere. However, at high altitudes, hypoxic conditions are also accompanied by other altered environmental conditions. To identify the single influence of hypoxia, we performed second-generation sequencing to identify gene expression changes triggered by the different oxygen concentrations. We identified 782 genes in A549 cells and 1122 genes in H520 cells that showed altered expression by the combined analysis in 5% oxygen concentration group and 1% oxygen concentration group control group. We further analyzed these targets and found 113 genes altered in both cell lines. Interestingly, we found KxD1 was the only one in both top 10 lists. Further analysis revealed KxD1 to be significantly elevated in NSCLC patients and negatively correlated with prognosis in stage I and II NSCLC patients. Moreover, this correlation reversed in stage III patients. Additionally, compared with patients who only received clean margin operation or chemotherapy, patients who received radiotherapy also showed opposite result. Thus, KxD1 may be a promising target for the treatment of NSCLC in high-altitude areas.
Collapse
|
61
|
Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021; 11:jpm11040286. [PMID: 33917956 PMCID: PMC8068342 DOI: 10.3390/jpm11040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play an essential role in radiation-induced indirect actions. In terms of DNA damage, double strand breaks (DSBs) have the greatest effects on the repair of DNA damage, cell survival and transformation. This study evaluated the biological effects of the presence of ROS and oxygen on DSB induction and mutation frequency. The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of 62 MeV therapeutic proton beams and 3.31 MeV helium ions were calculated using Monte Carlo damage simulation (MCDS) software. Monte Carlo excision repair (MCER) simulations were used to calculate the repair outcomes (mutation frequency). The RBE values of proton beams decreased to 0.75 in the presence of 0.4 M dimethylsulfoxide (DMSO) and then increases to 0.9 in the presence of 2 M DMSO while the RBE values of 3.31 MeV helium ions increased from 2.9 to 5.7 (0–2 M). The mutation frequency of proton beams also decreased from 0.008–0.065 to 0.004–0.034 per cell per Gy by the addition of 2 M DMSO, indicating that ROS affects both DSB induction and repair outcomes. These results show that the combined use of DMSO in normal tissues and an increased dose in tumor regions increases treatment efficiency.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022 (ext. 12010)
| |
Collapse
|
62
|
Wang Y, Liu S. LncRNA GHET1 Promotes Hypoxia-Induced Glycolysis, Proliferation, and Invasion in Triple-Negative Breast Cancer Through the Hippo/YAP Signaling Pathway. Front Cell Dev Biol 2021; 9:643515. [PMID: 33869194 PMCID: PMC8047212 DOI: 10.3389/fcell.2021.643515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Objective This study was to assess the specific impacts and mechanism of lncRNA GHET1 in the development of triple-negative breast cancer (TNBC). Methods The lncRNA GHET1 expression in TNBC tissues and adjacent healthy tissues was detected by qRT-PCR, and its expression was then measured at the cellular level, including TNBC cells and human normal breast epithelial cell line MCF10A. On the completion of transfection of negative shRNA or lncRNA GHET1 shRNA, the TNBC cells, HCC1937 and MDA-MB-468, were then cultured in a normoxia or hypoxia environment, respectively. 5-Ethynyl-2′-deoxyuridine (EdU) assay, colony formation assay, and transwell assay were applicable to the determination of cell proliferation, cell viability, and invasion in each group, respectively. Reagent kits were used for testing glucose consumption and lactate production levels. HCC1937 cells with knockdown or overexpression of lncRNA GHET1 were injected into the nude mice, followed by the examination of resulting tumor volume and weight. The distribution and expression of Hippo/YAP signaling pathway-related proteins were probed using western blotting. Results Highly expressed lncRNA GHET1 in TNBC tissues and cells and induction of lncRNA GHET1 by hypoxia were proved. Knockdown of lncRNA GHET1 significantly reduced proliferation, viability, and invasion of TNBC cells, and decreased glucose consumption and lactate production levels under the hypoxia condition. Furthermore, lncRNA GHET1 knockdown decreased HIF-1α expression in hypoxia and significantly inhibited tumor development in vivo. Knockdown of lncRNA GHET1 increased the phosphorylation levels of LATS1 and Yes-associated protein (YAP) to retain YAP within the cytoplasm, while the overexpression of lncRNA GHET1 or hypoxia promoted nuclear translocation of YAP and TNBC development. Conclusion LncRNA GHET1 expression can be induced by hypoxia, which leads to excessive activation of the Hippo/YAP signaling pathway, thus promoting TNBC progression.
Collapse
Affiliation(s)
- Yu Wang
- Research Center for Sectional and Imaging Anatomy Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Basic Medical Sciences, Shandong University, Jinan, China.,Molecular Testing Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
63
|
Zeng Z, Lei S, He Z, Chen T, Jiang J. YEATS2 is a target of HIF1α and promotes pancreatic cancer cell proliferation and migration. J Cell Physiol 2021; 236:2087-2098. [PMID: 32749678 DOI: 10.1002/jcp.29995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Hypoxia is involved in the development of pancreatic cancer (PC). The responses of hypoxia-associated genes and their regulated mechanisms are largely unknown. In this study, through bioinformatic analysis and quantitative real-time polymerase chain reaction, the YEATS domain containing 2 (YEATS2) was determined to be a key hypoxia-associated gene. It was increased in PC cells under hypoxia, upregulated in PC tissues, and predicted poor outcome. YEATS2 inhibition decreased the proliferation and migration of PC cells under both normoxia and hypoxia in vitro as well as proliferation and metastasis in vivo. We found that hypoxia-inducible factor 1α (HIF1α) regulated the expression of YEATS2 via binding to the hypoxia response element (HRE) of YEATS2 and coexpressed with YEATS2 in PC tissues. Overexpression of YEATS2 blocked the inhibitory effects of HIF1α silence on PC cell proliferation and migration under hypoxia. Collectively, our study revealed that YEATS2 is a target gene of HIF1α and promotes PC development under hypoxia.
Collapse
Affiliation(s)
- Zhirui Zeng
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shan Lei
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease of Wuhan University, Wuhan, China
| |
Collapse
|
64
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Determination of hypoxia signature to predict prognosis and the tumor immune microenvironment in melanoma. Mol Omics 2021; 17:307-316. [PMID: 33624645 DOI: 10.1039/d0mo00159g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanoma is one of the highly malignant skin tumors, the incidence and death of which continue to increase. The hypoxic microenvironment drives tumor growth, progression, and heterogeneity; it also triggers a cascade of immunosuppressive responses and affects the levels of T cells, macrophages, and natural killer cells. Here, we aim to develop a hypoxia-based gene signature for prognosis evaluation and help evaluate the status of hypoxia and the immune microenvironment in melanoma. Based on the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, we performed integrated bioinformatics to analyze the hypoxia-related genes. Using Lasso Cox regression, a hypoxia model was constructed. The receiver operating characteristic and the Kaplan-Meier curve were used to evaluate the predictive capacity of the model. With the CIBERSORT algorithm, the abundance of 22 immune cells in the melanoma microenvironment was analyzed. A total of 20 hypoxia-related genes were significantly related to prognosis in the log-rank test. Lasso regression showed that FBP1, SDC3, FOXO3, IGFBP1, S100A4, EGFR, ISG20, CP, PPARGC1A, KIF5A, and DPYSL4 displayed the best features. Based on these genes, a hypoxia model was established, and the area under the curve for the model was 0.734. Furthermore, the hypoxia score was identified as an independent prognostic factor. Besides, the hypoxia score could also predict the immune microenvironment in melanoma. Down-regulated activated CD4 memory T cells, CD8 T cells, and M1-like macrophages, and up-regulated Tregs were observed in patients with a high hypoxia score. The hypoxia-related genes were identified, and the hypoxia score was found to be a prognostic factor for overall survival and a predictor for the immune microenvironment. Our findings provide new ideas for evaluation and require further validation in clinical practice.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, P. R. China.
| | | | | | | | | | | |
Collapse
|
65
|
Zhang MX, Wang L, Zeng L, Tu ZW. LCN2 Is a Potential Biomarker for Radioresistance and Recurrence in Nasopharyngeal Carcinoma. Front Oncol 2021; 10:605777. [PMID: 33604288 PMCID: PMC7885862 DOI: 10.3389/fonc.2020.605777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Radioresistance-induced local failure, which can result in residual or recurrent tumors, remains one of the major causes of treatment failure in nasopharyngeal carcinoma (NPC). Lipocalin 2 (LCN2) is known to play important roles in cancer initiation, progression, and treatment responses. However, its role in the radioresistance of NPC remains unclear. Methods Microarray data from the Gene Expression Omnibus (GEO) was screened for candidate biomarkers relating to the radioresistance of NPC. The expression of LCN2 in NPC cell lines was verified by quantitative real-time PCR (RT-qPCR) and western blotting. The effects of knockdown or overexpression of LCN2 on NPC radiosensitivity were examined using a soft agar colony formation assay and a γH2AX assay. LCN2 expression in NPC specimens was evaluated by immunohistochemistry. Survival outcomes were analyzed. A possible correlation between LCN2 and hypoxia-inducible factor 1-alpha (HIF-1A) was examined by western blotting and a tissue microarray. Results LCN2 was highly expressed in the radioresistant NPC cell line CNE2R. Knocking down LCN2 enhanced the radiosensitivity of NPC cells by impairing their ability to repair DNA damage or proliferate, while ectopic expression of LCN2 conferred additional radioresistance to NPC cells. Immunohistochemical analysis of 100 NPC specimens revealed that LCN2 expression was significantly upregulated in radioresistant NPC tissues and was associated with NPC recurrence. Furthermore, a significant correlation between the expression of LCN2 and HIF-1A was detected. Conclusion LCN2 is associated with radioresistance and recurrence in NPC and may facilitate the development of a radioresistant phenotype through interacting with HIF-1A. Our data indicate that LCN2 is a promising target for predicting and overcoming radioresistance in NPC.
Collapse
Affiliation(s)
- Meng-Xia Zhang
- State Key Laboratory of Oncology in South China, Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Wang
- Department of Radiotherapy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lei Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi-Wei Tu
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| |
Collapse
|
66
|
De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol 2021; 41:101884. [PMID: 33561740 PMCID: PMC7872972 DOI: 10.1016/j.redox.2021.101884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022] Open
Abstract
DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein. DJ-1 has been shown to confer protection in ischemia-reperfusion injury models. DJ-1 protection relies on the activation of antioxidant signaling pathways. DJ-1 regulates mitochondrial homeostasis during ischemia and reperfusion. DJ-1 seems to modulate ion homeostasis during ischemia and reperfusion. DJ-1 may represent a promising therapeutic target for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Federica De Lazzari
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy
| | - Hiran A Prag
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Alexander J Whitworth
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
67
|
Calori IR, Bi H, Tedesco AC. Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer. ACS APPLIED BIO MATERIALS 2021; 4:195-228. [PMID: 35014281 DOI: 10.1021/acsabm.0c00945] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive clinical protocol that combines a nontoxic photosensitizer (PS), appropriate visible light, and molecular oxygen for cancer treatment. This triad generates reactive oxygen species (ROS) in situ, leading to different cell death pathways and limiting the arrival of nutrients by irreversible destruction of the tumor vascular system. Despite the number of formulations and applications available, the advancement of therapy is hindered by some characteristics such as the hypoxic condition of solid tumors and the limited energy density (light fluence) that reaches the target. As a result, the use of PDT as a definitive monotherapy for cancer is generally restricted to pretumor lesions or neoplastic tissue of approximately 1 cm in size. To expand this limitation, researchers have synthesized functional nanoparticles (NPs) capable of carrying classical photosensitizers with self-supplying oxygen as well as targeting specific organelles such as mitochondria and lysosomes. This has improved outcomes in vitro and in vivo. This review highlights the basis of PDT, many of the most commonly used strategies of functionalization of smart NPs, and their potential to break the current limits of the classical protocol of PDT against cancer. The application and future perspectives of the multifunctional nanoparticles in PDT are also discussed in some detail.
Collapse
Affiliation(s)
- Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo-Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo-Ribeirão Preto, São Paulo 14040-901, Brazil.,School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei 230601, China
| |
Collapse
|
68
|
Sheng Y, Li J, Yang Y, Lu Y. Hypoxia-inducible lipid droplet-associated (HILPDA) facilitates the malignant phenotype of lung adenocarcinoma cells in vitro through modulating cell cycle pathways. Tissue Cell 2021; 70:101495. [PMID: 33535136 DOI: 10.1016/j.tice.2021.101495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoxia-inducible lipid droplet-associated (HILPDA) is considered to have tumorigenic activity, but its function in lung adenocarcinoma (LUAD) is rarely known. This work aimed to assess the regulatory functions as well as the in-depth mechanism of HILPDA in LUAD. METHODS The expression of HILPDA in LUAD tissues was analyzed based on TCGA database, and then qRT-PCR was performed to confirm the HILPDA expression in LUAD cell lines. Kaplan-Meier analysis was used to measure the correlation of HILPDA expression and overall survival in patients with LUAD. Then, Cell-Counting Kit-8 (CCK-8), colony formation and transwell assays were performed to detect cell proliferation, invasion and migration. Moreover, the pathways closely related to the high HILPDA expression was analyzed by Kyoto Encyclopedia of genes and Genomes (KEGG) analysis. The levels of Cell cycle pathway-related proteins were assessed using western blotting. RESULTS Herein, we revealed that HILPDA was expressed at high levels in LUAD tissues and cell lines, and LUAD patients with the higher HILPDA expression presented the shorter survival time. Down-regulation of HILPDA in Calu-3 cells can retard cell proliferation, migration and invasion as well as arrest cells in the G1 phase, whereas overexpression of HILPDA in A549 cells presented a marked promotion on these phenotypes. Moreover, we surveyed that knockdown of HILPDA restrained the activation of cell cycle pathway, while up-regulation of HILPDA led to opponent outcomes. CONCLUSIONS In summing, HILPDA may act as an oncogenic factor in LUAD cells via modulating cell cycle pathway, which represent a novel biomarker of tumorigenesis in LUAD patients.
Collapse
Affiliation(s)
- Yanrui Sheng
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, PR China
| | - Jinlong Li
- Department of Respiratory Medicine, Suixi County Hospital, Huaibei, PR China
| | - Yanna Yang
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yingyun Lu
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
69
|
Li N, Li Y, Zheng P, Zhan X. Cancer Stemness-Based Prognostic Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front Endocrinol (Lausanne) 2021; 12:755805. [PMID: 34745015 PMCID: PMC8567176 DOI: 10.3389/fendo.2021.755805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) refer to cells with self-renewal capability in tumors. CSCs play important roles in proliferation, metastasis, recurrence, and tumor heterogeneity. This study aimed to identify immune-related gene-prognostic models based on stemness index (mRNAsi) in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), respectively. METHODS X-tile software was used to determine the best cutoff value of survival data in LUAD and LUSC based on mRNAsi. Tumor purity and the scores of infiltrating stromal and immune cells in lung cancer tissues were predicted with ESTIMATE R package. Differentially expressed immune-related genes (DEIRGs) between higher- and lower-mRNAsi subtypes were used to construct prognostic models. RESULTS mRNAsi was negatively associated with StromalScore, ImmuneScore, and ESTIMATEScore, and was positively associated with tumor purity. LUAD and LUSC samples were divided into higher- and lower-mRNAsi groups with X-title software. The distribution of immune cells was significantly different between higher- and lower-mRNAsi groups in LUAD and LUSC. DEIRGs between those two groups in LUAD and LUSC were enriched in multiple cancer- or immune-related pathways. The network between transcriptional factors (TFs) and DEIRGs revealed potential mechanisms of DEIRGs in LUAD and LUSC. The eight-gene-signature prognostic model (ANGPTL5, CD1B, CD1E, CNTFR, CTSG, EDN3, IL12B, and IL2)-based high- and low-risk groups were significantly related to overall survival (OS), tumor microenvironment (TME) immune cells, and clinical characteristics in LUAD. The five-gene-signature prognostic model (CCL1, KLRC3, KLRC4, CCL23, and KLRC1)-based high- and low-risk groups were significantly related to OS, TME immune cells, and clinical characteristics in LUSC. These two prognostic models were tested as good ones with principal components analysis (PCA) and univariate and multivariate analyses. Tumor T stage, pathological stage, or metastasis status were significantly correlated with DEIRGs contained in prognostic models of LUAD and LUSC. CONCLUSION Cancer stemness was not only an important biological process in cancer progression but also might affect TME immune cell infiltration in LUAD and LUSC. The mRNAsi-related immune genes could be potential biomarkers of LUAD and LUSC. Evaluation of integrative characterization of multiple immune-related genes and pathways could help to understand the association between cancer stemness and tumor microenvironment in lung cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Radiation Oncology, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Yalin Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Peixian Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Department of Radiation Oncology, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
- *Correspondence: Xianquan Zhan,
| |
Collapse
|
70
|
Balanophorin B inhibited glycolysis with the involvement of HIF-1α. Life Sci 2020; 267:118910. [PMID: 33359671 DOI: 10.1016/j.lfs.2020.118910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cancer cells exhibit a metabolic change called aerobic glycolysis compared with normal cells. Balanophorin B is a terpenoid ingredient reported from the genus Balanophora. In this research, we studied the effect of balanophorin B on glycolysis of HepG2 cells and Huh-7 cells under hypoxia. MAIN METHODS The Warburg effect was monitored by assessing glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Key enzymes in the glycolytic pathway and HIF-1α protein expression and degradation were analyzed by real-time PCR and western blotting. The anti-cancer effect of balanophorin B in vivo was also investigated. KEY FINDINGS Balanophorin B inhibited the proliferation, glucose uptake, and ECAR in both HepG2 cells and Huh-7 cells. In addition, balanophorin B inhibited the protein level of HIF-1α and its downstream targets LDHA and HKII under hypoxia, whereas HIF-1α mRNA level did not change after balanophorin B treatment. The HIF-1α plasmid reversed the inhibition of balanophorin B on glycolysis, and the proteasome inhibitor MG132 attenuated the effect of balanophorin B on HIF-1α protein expression, suggesting that balanophorin B might post-transcriptionally affect HIF-1α. Moreover, balanophorin B increased the expression of VHL and PHD2. HIF-1α siRNA also greatly attenuated the inhibitory effect of balanophorin B on HepG2 cells glucose uptake. Balanophorin B significantly inhibited tumor growth in vivo, without causing obvious toxicity to mice. SIGNIFICANCE These data suggest that balanophorin B inhibits glycolysis probably via an HIF-1α-dependent pathway, and the ubiquitin-proteasome pathway was greatly involved in the induction of balanophorin B on HIF-1α degradation.
Collapse
|
71
|
Xue F, Du W, Chen S, Ma M, Kuang Y, Chen J, Yi T, Chen H. Hypoxia-Induced Photogenic Radicals by Eosin Y for Efficient Phototherapy of Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2020; 3:8962-8969. [PMID: 35019572 DOI: 10.1021/acsabm.0c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current reported photosensitizers generally show a decreased reactive oxygen species (ROS) generation property under hypoxia conditions, which is the main reason for the clinical failure of photodynamic therapy (PDT) in treatment of solid tumors. Herein, for the first time, hypoxia-induced photogenic radicals by eosin Y (Eos) were reported for efficient phototherapy of hypoxic tumors. More importantly, Eos shows a higher ROS and radical production efficiency under hypoxia conditions than under normoxia conditions. The photogenic radicals were captured by electron paramagnetic resonance and further verified by ROS and radical probe. Introducing CoCl2 as a hypoxia inducer, the photoinduced therapy of the hypoxia cancer cell model and tumor-bearing mice indicated that bovine serum albumin-Eos in hypoxic tumor sites can produce even higher tumor toxicity, thereby crossing the clinical obstacles of hypoxic tumor therapy. This non-oxygen-dependent PDT may open up an avenue for fighting with hypoxia.
Collapse
Affiliation(s)
- Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China
| | - Wenxian Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Shixiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Jufeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, P. R. China
| | - Tao Yi
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Songhu Road 2005, Shanghai 200433, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
72
|
Dual Function Molecules and Processes in Cell Fate Decision: A Preface to the Special Issue. Int J Mol Sci 2020; 21:ijms21249601. [PMID: 33339424 PMCID: PMC7766797 DOI: 10.3390/ijms21249601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
A lot of water has passed under the bridge since 1999, when C [...].
Collapse
|
73
|
Zhou X, Ma W, Li X, Xu J. Glaucocalyxin a prevents hypoxia-induced epithelial-mesenchymal transition in human gastric cancer cells through the PI3K/Akt signaling pathway. J Recept Signal Transduct Res 2020; 42:109-116. [PMID: 33307912 DOI: 10.1080/10799893.2020.1853160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is a frequent occurrence in most solid tumors and associated with multiple cancer progression. Glaucocalyxin A (GLA) has been found to exhibit anti-tumor effect in several types of cancer, except gastric cancer (GC). The present study aimed to evaluate the function of GLA in GC and explore the underlying mechanism under hypoxia condition. Our results showed that GLA suppressed cell viability of MGC-803 cells in both normoxic or hypoxic conditions. MGC-803 cells were more sensitive to GLA in hypoxic condition. GLA attenuated hypoxia-induced migration and invasion of GC cells. Western blot assay proved that GLA elevated E-cadherin expression, as well reduced N-cadherin and vimentin expressions in hypoxia-induced GC cells. Moreover, we also found that GLA suppressed the expression of HIF-1α in both mRNA and protein levels. Furthermore, GLA blocked hypoxia-induced activation of PI3K/Akt pathway in GC cells. Notably, insulin like growth factor 1 (IGF-1), an activator of PI3K/Akt pathway, reversed the effects of GLA on cell migration, invasion and EMT in hypoxia-treated MGC-803 cells. In conclusion, these findings demonstrated that GLA exerted inhibitory effects on cell migration, invasion and epithelial to mesenchymal transition (EMT) via the PI3K/Akt signaling pathway in GC cells.
Collapse
Affiliation(s)
- Xihan Zhou
- Department of Gastroenterology, Wuhan Fifth Hospital, Wuhan, China
| | - Weijin Ma
- Hospital-acquired infection control department, Wuhan Fifth Hospital, Wuhan, China
| | - Xiaohui Li
- Department of Paediatrics, Wuhan Fifth Hospital, Wuhan, China
| | - Jiali Xu
- Department of supervision, Wuhan Fifth Hospital, Wuhan, China
| |
Collapse
|
74
|
Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020; 42:101093. [PMID: 33007425 PMCID: PMC7578269 DOI: 10.1016/j.molmet.2020.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tumor cells experience hypoxia, acidosis, and hypoglycemia. Metabolic adaptation to glucose shortage is essential to maintain tumor cells' survival because of their high glucose requirement. This study evaluated the hypothesis that acidosis might promote tumor survival during glucose shortage and if so, explored a novel drug targeting metabolic vulnerability to glucose shortage. METHODS Cell survival and bioenergetics metabolism were assessed in lung cancer cell lines. Our in-house small-molecule compounds were screened to identify those that kill cancer cells under low-glucose conditions. Cytotoxicity against non-cancerous cells was also assessed. Tumor growth was evaluated in vivo using a mouse engraft model. RESULTS Acidosis limited the cellular consumption of glucose and ATP, causing tumor cells to enter a metabolically dormant but energetically economic state, which promoted tumor cell survival during glucose deficiency. We identified ESI-09, a previously known exchange protein directly activated by cAMP (EAPC) inhibitor, as an anti-cancer compound that inhibited cancer cells under low-glucose conditions even when associated with acidosis. Bioenergetic studies showed that independent of EPAC inhibition, ESI-09 was a safer mitochondrial uncoupler than a classical uncoupler and created a futile cycle of mitochondrial respiration, leading to decreased ATP production, increased ATP dissipation, and fuel scavenging. Accordingly, ESI-09 exhibited more cytotoxic effects under low-glucose conditions than under normal glucose conditions. ESI-09 was also more effective than actively proliferating cells on quiescent glucose-restricted cells. Cisplatin showed opposite effects. ESI-09 inhibited tumor growth in lung cancer engraft mice. CONCLUSIONS This study highlights the acidosis-induced promotion of tumor survival during glucose shortage and demonstrates that ESI-09 is a novel potent anti-cancer mitochondrial uncoupler that targets a metabolic vulnerability to glucose shortage even when associated with acidosis. The higher cytotoxicity under lower-than-normal glucose conditions suggests that ESI-09 is safer than conventional chemotherapy, can target the metabolic vulnerability of tumor cells to low-glucose stress, and is applicable to many cancer cell types.
Collapse
Affiliation(s)
- Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Tsuji
- Department of Medicine, Otsuki Municipal Hospital, 1255 Hanasaki, Otsuki-chou, Otsuki-shi, Yamanashi, 401-0015, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| |
Collapse
|
75
|
Miar A, Arnaiz E, Bridges E, Beedie S, Cribbs AP, Downes DJ, Beagrie RA, Rehwinkel J, Harris AL. Hypoxia Induces Transcriptional and Translational Downregulation of the Type I IFN Pathway in Multiple Cancer Cell Types. Cancer Res 2020; 80:5245-5256. [PMID: 33115807 PMCID: PMC7611234 DOI: 10.1158/0008-5472.can-19-2306] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Hypoxia is a common phenomenon in solid tumors and is strongly linked to hallmarks of cancer. Recent evidence has shown that hypoxia promotes local immune suppression. Type I IFN supports cytotoxic T lymphocytes by stimulating the maturation of dendritic cells and enhancing their capacity to process and present antigens. However, little is known about the relationship between hypoxia and the type I IFN pathway, which comprises the sensing of double-stranded RNA and DNA (dsRNA/dsDNA) followed by IFNα/β secretion and transcriptional activation of IFN-stimulated genes (ISG). In this study, we determined the effects of hypoxia on the type I IFN pathway in breast cancer and the mechanisms involved. In cancer cell lines and xenograft models, mRNA and protein expressions of the type I IFN pathway were downregulated under hypoxic conditions. This pathway was suppressed at each level of signaling, from the dsRNA sensors RIG-I and MDA5, the adaptor MAVS, transcription factors IRF3, IRF7, and STAT1, and several ISG including RIG-I, IRF7, STAT1, and ADAR-p150. Importantly, IFN secretion was reduced under hypoxic conditions. HIF1α- and HIF2α-mediated regulation of gene expression did not explain most of the effects. However, ATAC-seq data revealed in hypoxia that peaks with STAT1 and IRF3 motifs had decreased accessibility. Collectively, these results indicate that hypoxia leads to an overall downregulation of the type I IFN pathway due to repressed transcription and lower chromatin accessibility in an HIF1/2α-independent manner, which could contribute to immunosuppression in hypoxic tumors. SIGNIFICANCE: These findings characterize a new mechanism of immunosuppression by hypoxia via downregulation of the type I IFN pathway and its autocrine/paracrine effects on tumor growth.
Collapse
Affiliation(s)
- Ana Miar
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Esther Arnaiz
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Esther Bridges
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shaunna Beedie
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adam P Cribbs
- Botnar Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford BRU, University of Oxford, United Kingdom
| | - Damien J Downes
- Medical Research Council (MRC) Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert A Beagrie
- Medical Research Council (MRC) Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
76
|
Liang SB, Chen LS, Yang XL, Chen DM, Wang DH, Cui CY, Xie CB, Liu LZ, Xu XY. Influence of tumor necrosis on treatment sensitivity and long-term survival in nasopharyngeal carcinoma. Radiother Oncol 2020; 155:219-225. [PMID: 33217495 DOI: 10.1016/j.radonc.2020.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the impact of tumor necrosis on treatment sensitivity and long-term survival in patients with nasopharyngeal carcinoma (NPC) treated using intensity-modulated radiation therapy (IMRT). PARTICIPANTS AND METHODS In total, 757 patients with non-metastatic, histologically confirmed NPC were retrospectively examined. All patients were treated using IMRT; 93.7% patients with stage T3-T4/N1-N3 disease also received cisplatin-based chemotherapy. RESULTS The incidence rates of tumor necrosis in primary tumor, retropharyngeal lymph nodes, neck lymph nodes, and total tumor were 2%, 17.7%, 21.5%, and 31.4%. Overall, 40.8% patients with necrosis of the total tumor achieved complete response (CR) and 54.7% patients without tumor necrosis achieved CR at the end of treatment (χ2 = 12.728, P < 0.001). The estimated 7-year overall survival (OS), failure-free survival (FFS), distant metastasis-free survival (DMFS), and loco-regional relapse-free survival (LRRFS) for patients with tumor necrosis and without tumor necrosis of the total tumor were 68.5% vs. 88.4%, 70.5% vs. 88.1%, 77.6% vs. 90.6%, and 85.9% vs. 91.3%, respectively (all P < 0.001). Multivariate analyses indicated that necrosis of the total tumor was an independent predictor of OS, FFS, DMFS, and LRRFS. The impact of lymph node necrosis on long-term survival was similar to that of necrosis of the total tumor. ROC curves verified that inclusion of lymph node necrosis improved the predictive value of the current N classification criteria (P = 0.006). CONCLUSIONS Tumor necrosis served as a predictor of treatment sensitivity and poor prognosis for patients with NPC. Lymph node necrosis significantly improved the prognostic value of the current N classification criteria for NPC.
Collapse
Affiliation(s)
- Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lu-Si Chen
- Radiotherapy Department of Nasopharyngeal Carcinoma, Cancer Center, First People's Hospital of Foshan Affiliated to Sun Yat-sen University, Foshan, China
| | - Xing-Li Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Dan-Ming Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dong-Hui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chun-Yan Cui
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chuan-Bo Xie
- Cancer Prevention Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li-Zhi Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiang-Ying Xu
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
77
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
78
|
Investigating the Benefit of Combined Androgen Modulation and Hypofractionation in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21228447. [PMID: 33182844 PMCID: PMC7698244 DOI: 10.3390/ijms21228447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hypofractionation is currently considered a valid alternative to conventional radiotherapy for the treatment of patients with organ-confined prostate cancer. Recent data have demonstrated that extreme hypofractionation, which involves the use of a high radiation dose per delivered fraction and concomitant reduction of sessions, is a safe and effective treatment, even though its radiobiological rationale is still lacking. The present work aims to investigate the biological basis sustaining this approach and to evaluate the potential of a hypofractionated regimen in combination with androgen deprivation therapy, one of the major standards of care for prostate cancer. Findings show that androgen receptor (AR) modulation, by use of androgens and antiandrogens, has a significant impact on cell survival, especially in hypoxic conditions (4% O2). Subsequent experiments have revealed that AR activity as a transcription factor is involved in the onset of malignant senescence-associated secretory phenotype (SASP) and activation of DNA repair cascade. In particular, we found that AR stimulation in hypoxic conditions promotes the enhanced transcription of ATM gene, the cornerstone kinase of the DNA damage repair genes. Together, these data provide new potential insights to justify the use of androgen deprivation therapy, in particular with second-generation anti-androgens such as enzalutamide, in combination with radiotherapy.
Collapse
|
79
|
Xu M, Wang P, Sun S, Gao L, Sun L, Zhang L, Zhang J, Wang S, Liang X. Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy. NANOSCALE 2020; 12:21519-21533. [PMID: 33095224 DOI: 10.1039/d0nr05501h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hypoxia, as a typical factor in a tumor microenvironment, plays a vital role in tumor treatment resistance, tumor invasion and migration. Hypoxia inducible factor (HIF), as the vital response element of hypoxia, mediates these untoward effects through a series of downstream reactions. Cancer treatments such as photodynamic therapy (PDT), radiotherapy (RT) and chemotherapy are severely hindered by hypoxia and HIF, back, however, could be intelligently manipulated through nanocomposite materials for their great potentiality to combine different functions. Herein, we reviewed the smart strategies in emerging research studies to overcome hypoxia toward the enhancement of tumor therapy.
Collapse
Affiliation(s)
- Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
NEAT1 and Paraspeckles in Cancer Development and Chemoresistance. Noncoding RNA 2020; 6:ncrna6040043. [PMID: 33143162 PMCID: PMC7712271 DOI: 10.3390/ncrna6040043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNA were previously thought to be biologically useless molecules arising from simple transcriptional noise. These are now known to be an integral part of cellular biology and pathology. The wide range of RNA molecules have a diverse range of structures, functions, and mechanisms of action. However, structural long non-coding RNAs (lncRNAs) are a particular class of ncRNA that are proving themselves more and more important in cellular biology, as the exact structures that such RNAs form and stabilise become more understood. Nuclear Enriched Abundant Transcript 1 (NEAT1) is a specific structural RNA emerging as a critical component in the progress and development of cancer. NEAT1 forms part of multiple biological pathways, acting through a diverse group of mechanisms. The most important of these is the formation of the paraspeckle, through which it can influence the stability of a tumour to develop resistance to drugs. This review will thus cover the range of effects by which NEAT1 interacts with cancer progression in order to describe the various roles of NEAT1 in chemoresistance, as well as to identify drug targets that protein research alone could not provide.
Collapse
|
81
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
82
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Identification of Signatures of Prognosis Prediction for Melanoma Using a Hypoxia Score. Front Genet 2020; 11:570530. [PMID: 33133157 PMCID: PMC7550673 DOI: 10.3389/fgene.2020.570530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
Melanoma is one of the most aggressive cancers. Hypoxic microenvironment affects multiple cellular pathways and contributes to tumor progression. The purpose of the research was to investigate the association between hypoxia and melanoma, and identify the prognostic value of hypoxia-related genes. Based on the GSVA algorithm, gene expression profile collected from The Cancer Genome Atlas (TCGA) was used for calculating the hypoxia score. The Kaplan–Meier plot suggested that a high hypoxia score was correlated with the inferior survival of melanoma patients. Using differential gene expression analysis and WGCNA, a total of 337 overlapping genes associated with hypoxia were determined. Protein-protein interaction network and functional enrichment analysis were conducted, and Lasso Cox regression was performed to establish the prognostic gene signature. Lasso regression showed that seven genes displayed the best features. A novel seven-gene signature (including ABCA12, PTK6, FERMT1, GSDMC, KRT2, CSTA, and SPRR2F) was constructed for prognosis prediction. The ROC curve inferred good performance in both the TCGA cohort and validation cohorts. Therefore, our study determined the prognostic implication of the hypoxia score in melanoma and showed a novel seven-gene signature to predict prognosis, which may provide insights into the prognosis evaluation and clinical decision making.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongsheng Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Dermatology, Shanghai, China
| |
Collapse
|
83
|
Cannabidiol and Oxygen-Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers (Basel) 2020; 12:cancers12102774. [PMID: 32992648 PMCID: PMC7600087 DOI: 10.3390/cancers12102774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer (PC) is related to lifestyle risks, chronic inflammation, and germline mutations. Surgical resection and adjuvant chemotherapy are the main therapeutic strategies but are less effective in patients with high-grade tumors. Oxygen-ozone (O2/O3) therapy is an emerging alternative tool for the treatment of several clinical disorders. The advantages of using cannabinoids have been evaluated in several human cancers. Regarding PC, activation of cannabinoid receptors was found to induce PC cell apoptosis without affecting the normal pancreas cells. Herein, we evaluate the anticancer effect of cannabidiol (CBD) and O2/O3, alone or in combination, on two human pancreatic ductal adenocarcinoma (PDAC) cell lines, PANC-1 and MiaPaCa-2, examining expression profiles of 92 pancreatic adenocarcinoma associated genes, cytotoxicity, migration properties, and cell death. Finally, we assess the combination effects with gemcitabine and paclitaxel. Summarizing, for the first time the antitumoral effect of combined therapy with CBD and oxygen-ozone therapy in PDAC is evidenced. Abstract Pancreatic cancer (PC) is related to lifestyle risks, chronic inflammation, and germline mutations in BRCA1/2, ATM, MLH1, TP53, or CDKN2A. Surgical resection and adjuvant chemotherapy are the main therapeutic strategies but are less effective in patients with high-grade tumors. Oxygen-ozone (O2/O3) therapy is an emerging alternative tool for the treatment of several clinical disorders. O2/O3 therapy has been found to ameliorate mechanisms promoting chronic pain and inflammation, including hypoxia, inflammatory mediators, and infection. The advantages of using cannabinoids have been evaluated in vitro and in vivo models of several human cancers. Regarding PDAC, activation of cannabinoid receptors was found to induce pancreatic cancer cell apoptosis without affecting the normal pancreas cells. In a murine model of PDAC, a combination of cannabidiol (CBD) and gemcitabine increased survival length by nearly three times. Herein, we evaluate the anticancer effect of CBD and O2/O3, alone or in combination, on two human PDAC cell lines, PANC-1 and MiaPaCa-2, examining expression profiles of 92 pancreatic adenocarcinoma associated genes, cytotoxicity, migration properties, and cell death. Finally, we assess the combination effects with gemcitabine and paclitaxel. Summarizing, for the first time the antitumoral effect of combined therapy with CBD and oxygen-ozone therapy in PDAC is evidenced.
Collapse
|
84
|
Harmouch E, Seitlinger J, Chaddad H, Ubeaud-Sequier G, Barths J, Saidu S, Désaubry L, Grandemange S, Massfelder T, Fuhrmann G, Fioretti F, Dontenwill M, Benkirane-Jessel N, Idoux-Gillet Y. Flavagline synthetic derivative induces senescence in glioblastoma cancer cells without being toxic to healthy astrocytes. Sci Rep 2020; 10:13750. [PMID: 32792639 PMCID: PMC7426813 DOI: 10.1038/s41598-020-70820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive types of cancer, which begins within the brain. It is the most invasive type of glioma developed from astrocytes. Until today, Temozolomide (TMZ) is the only standard chemotherapy for patients with GBM. Even though chemotherapy extends the survival of patients, there are many undesirable side effects, and most cases show resistance to TMZ. FL3 is a synthetic flavagline which displays potent anticancer activities, and is known to inhibit cell proliferation, by provoking cell cycle arrest, and leads to apoptosis in a lot of cancer cell lines. However, the effect of FL3 in glioblastoma cancer cells has not yet been examined. Hypoxia is a major problem for patients with GBM, resulting in tumor resistance and aggressiveness. In this study, we explore the effect of FL3 in glioblastoma cells under normoxia and hypoxia conditions. Our results clearly indicate that this synthetic flavagline inhibits cell proliferation and induced senescence in glioblastoma cells cultured under both conditions. In addition, FL3 treatment had no effect on human brain astrocytes. These findings support the notion that the FL3 molecule could be used in combination with other chemotherapeutic agents or other therapies in glioblastoma treatments.
Collapse
Affiliation(s)
- Ezeddine Harmouch
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Joseph Seitlinger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
- Hôpitaux Universitaire de Strasbourg (HUS), 67000, Strasbourg, France
| | - Hassan Chaddad
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Geneviève Ubeaud-Sequier
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Jochen Barths
- Core Facility for Flow Cytometry, Cell Sorting and EliSpot, UMR 1110, INSERM, Strasbourg, France
| | - Sani Saidu
- CNRS UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Strasbourg, France
| | - Laurent Désaubry
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, Strasbourg, France
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Stéphanie Grandemange
- CNRS, UMR 7039 CRAN, Université de Lorraine, Campus Sciences, 30 bvd des Aiguillettes, 54505, Vandoeuvre les Nancy Cedex, France
| | - Thierry Massfelder
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Guy Fuhrmann
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
- Hôpitaux Universitaire de Strasbourg (HUS), 67000, Strasbourg, France
| | - Monique Dontenwill
- CNRS UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France.
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
85
|
Hypoxia and HIF Signaling: One Axis with Divergent Effects. Int J Mol Sci 2020; 21:ijms21165611. [PMID: 32764403 PMCID: PMC7460602 DOI: 10.3390/ijms21165611] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The correct concentration of oxygen in all tissues is a hallmark of cellular wellness, and the negative regulation of oxygen homeostasis is able to affect the cells and tissues of the whole organism. The cellular response to hypoxia is characterized by the activation of multiple genes involved in many biological processes. Among them, hypoxia-inducible factor (HIF) represents the master regulator of the hypoxia response. The active heterodimeric complex HIF α/β, binding to hypoxia-responsive elements (HREs), determines the induction of at least 100 target genes to restore tissue homeostasis. A growing body of evidence demonstrates that hypoxia signaling can act by generating contrasting responses in cells and tissues. Here, this dual and controversial role of hypoxia and the HIF signaling pathway is discussed, with particular reference to the effects induced on the complex activities of the immune system and on mechanisms determining cell and tissue responses after an injury in both acute and chronic human diseases related to the heart, lung, liver, and kidney.
Collapse
|
86
|
Yan X, Qu X, Tian R, Xu L, Jin X, Yu S, Zhao Y, Ma J, Liu Y, Sun L, Su J. Hypoxia-induced NAD + interventions promote tumor survival and metastasis by regulating mitochondrial dynamics. Life Sci 2020; 259:118171. [PMID: 32738362 DOI: 10.1016/j.lfs.2020.118171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, an important feature of the tumor microenvironment, is responsible for the chemo-resistance and metastasis of malignant solid tumors. Recent studies indicated that mitochondria undergo morphological transitions as an adaptive response to maintain self-stability and connectivity under hypoxic conditions. NAD+ may not only provide reducing equivalents for biosynthetic reactions and in determining energy production, but also functions as a signaling molecule in mitochondrial dynamics regulation. In this review, we describe the upregulated KDAC deacetylase expression in the mitochondria and cytoplasm of tumor cells that results from sensing the changes in NAD+ to control mitochondrial dynamics and distribution, which is responsible for survival and metastasis in hypoxia.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Rui Tian
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xue Jin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Sihang Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
87
|
Bennani-Baiti B, Pinker K, Zimmermann M, Helbich TH, Baltzer PA, Clauser P, Kapetas P, Bago-Horvath Z, Stadlbauer A. Non-Invasive Assessment of Hypoxia and Neovascularization with MRI for Identification of Aggressive Breast Cancer. Cancers (Basel) 2020; 12:cancers12082024. [PMID: 32721996 PMCID: PMC7464174 DOI: 10.3390/cancers12082024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the potential of magnetic resonance imaging (MRI) for a non-invasive synergistic assessment of tumor microenvironment (TME) hypoxia and induced neovascularization for the identification of aggressive breast cancer. Fifty-three female patients with breast cancer underwent multiparametric breast MRI including quantitative blood-oxygen-level-dependent (qBOLD) imaging for hypoxia and vascular architecture mapping for neovascularization. Quantitative MRI biomarker maps of oxygen extraction fraction (OEF), metabolic rate of oxygen (MRO2), mitochondrial oxygen tension (mitoPO2), microvessel radius (VSI), microvessel density (MVD), and microvessel type indicator (MTI) were calculated. Histopathology was the standard of reference. Histopathological markers (vascular endothelial growth factor receptor 1 (FLT1), podoplanin, hypoxia-inducible factor 1-alpha (HIF-1alpha), carbonic anhydrase 9 (CA IX), vascular endothelial growth factor C (VEGF-C)) were used to confirm imaging biomarker findings. Univariate and multivariate regression analyses were performed to differentiate less aggressive luminal from aggressive non-luminal (HER2-positive, triple negative) malignancies and assess the interplay between hypoxia and neoangiogenesis markers. Aggressive non-luminal cancers (n = 40) presented with significantly higher MRO2 (i.e., oxygen consumption), lower mitoPO2 values (i.e., hypoxia), lower MTI, and higher MVD than less aggressive cancers (n = 13). Data suggest that a model derived from OEF, mitoPO2, and MVD can predict tumor proliferation rate. This novel MRI approach, which can be easily implemented in routine breast MRI exams, aids in the non-invasive identification of aggressive breast cancer.
Collapse
Affiliation(s)
- Barbara Bennani-Baiti
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria; (B.B.-B.); (K.P.); (P.A.B.); (P.C.); (P.K.)
| | - Katja Pinker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria; (B.B.-B.); (K.P.); (P.A.B.); (P.C.); (P.K.)
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (A.S.)
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria; (B.B.-B.); (K.P.); (P.A.B.); (P.C.); (P.K.)
- Correspondence: ; Tel.: +43-1-40400-48980
| | - Pascal A. Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria; (B.B.-B.); (K.P.); (P.A.B.); (P.C.); (P.K.)
| | - Paola Clauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria; (B.B.-B.); (K.P.); (P.A.B.); (P.C.); (P.K.)
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria; (B.B.-B.); (K.P.); (P.A.B.); (P.C.); (P.K.)
| | | | - Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (A.S.)
- Institute of Medical Radiology, University Clinic of St. Pölten, 3100 St. Pölten, Austria
| |
Collapse
|
88
|
Carbonic Anhydrase Inhibitor Acetazolamide Enhances CHOP Treatment Response and Stimulates Effector T-Cell Infiltration in A20/BalbC Murine B-Cell Lymphoma. Int J Mol Sci 2020; 21:ijms21145001. [PMID: 32679833 PMCID: PMC7403988 DOI: 10.3390/ijms21145001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The inhibition of cancer-related carbonic anhydrase (CA) activity is a promising way to intensify anti-tumor responses. In vitro data suggest improved efficacy of cytotoxic drugs in combination with CA-inhibitors in several cancer types. Despite accumulating data on CA-expression, experimental or clinical studies towards B-cell lymphoma therapy are missing. We therefore decided to test the effect of the CA-inhibitor acetazolamide (AA) on the conventional CHOP treatment regimen using the A20/BalbC in vivo syngeneic mouse lymphoma model. Tumor growth characteristics, 18F-MISO-PET activity, histomorphology, cell proliferation, and T-cell immune infiltrate were determined following single or multiple dose combinations. All results point to a significant increase in the anti-tumor effect of CHOP+AA combinations compared with the untreated controls or with the single CHOP or AA treatments. CD3+ and CD8+ T-cell immune infiltrate increased 3–4 times following CHOP+AA combination compared with the classical CHOP protocol. In conclusion, CA-inhibitor AA seems to act synergistically with the anti-tumor treatment CHOP in aggressive lymphoma. Further to a cytotoxic effect, AA and other more selective blockers potentially support tumor-associated immune responses through the modification of the microenvironment. Therefore, CA-inhibitors are promising candidates as adjuvants in support of specific immunotherapies in lymphoma and other malignancies.
Collapse
|
89
|
Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer. Noncoding RNA 2020; 6:ncrna6030027. [PMID: 32640630 PMCID: PMC7549355 DOI: 10.3390/ncrna6030027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides. They participate in cancer development and progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing body of evidence supports the role of lncRNAs in the hypoxic and normoxic regulation of HIF and its subunits HIF-1α and HIF-2α in cancer. This review provides a comprehensive update and overview of lncRNAs as regulators of HIFs expression and activation and discusses and highlights potential involved pathways.
Collapse
|
90
|
Huang Z, Yu P, Tang J. Characterization of Triple-Negative Breast Cancer MDA-MB-231 Cell Spheroid Model. Onco Targets Ther 2020; 13:5395-5405. [PMID: 32606757 PMCID: PMC7295545 DOI: 10.2147/ott.s249756] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
Background The tumor three-dimensional (3D) spheroid model in vitro is effective on detecting malignant cells and tumorigenesis, and assessing drug resistance. Compared with two-dimensional (2D) monolayer culture, breast cancer (BC) spheroids more accurately reflect the complex microenvironment in vivo, which have been extensively reported in BC research. MDA-MB-231 cells, the triple-negative breast cancer (TNBC) cell line, display representative epithelial to mesenchymal transition (EMT) associated with BC metastasis. However, the characterization of MDA-MB-231 spheroids has been largely unknown at present, which requires further attention. Materials and Methods Microwell array was conducted for the formation of MDA-MB-231 spheroids. In addition, H&E staining, immunohistochemistry (IHC), CellTiter-Glo® 3D cell viability assay, and flow cytometry were performed to investigate the structure and growth characteristics. Besides, Transwell and scratch healing assays were carried out to detect the migratory capacities compared with 2D culture. Western blotting and confocal fluorescence were selected to detect the expression of EMT-associated proteins. Additionally, the half maximal inhibitory concentration (IC50) values of antitumor compounds Carboplatin and Doxorubicin were measured to assess drug resistance. Results The MDA-MB-231 spheroids were viable, which maintained a compact structure with zonation features for up to 9 days. Moreover, those spheroids had a slower growth rate than those cultured as a monolayer and differential zones of proliferation. The migratory capacities were significantly enhanced by transferring the spheroids to 2D adherent culture. Compared with 2D culture, the levels of EMT-associated proteins were significantly up-regulated in spheroids. Furthermore, toxicity assessment showed that spheroids exhibited an increased resistance to the antitumor compounds. Conclusion This study develops the simple spheroids and demonstrates their structure, growth and proliferation characteristics. According to our results, the spheroids are associated with superior EMT and high resistance to toxicological response compared with the standard 2D monocultures.
Collapse
Affiliation(s)
- Zhaoming Huang
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei 437000, People's Republic of China
| | - Panpan Yu
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei 437000, People's Republic of China
| | - Jianhui Tang
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei 437000, People's Republic of China
| |
Collapse
|
91
|
Gao L, Zhao A, Wang X. Upregulation of lncRNA AGAP2-AS1 is an independent predictor of poor survival in patients with clear cell renal carcinoma. Oncol Lett 2020; 19:3993-4001. [PMID: 32382344 PMCID: PMC7202287 DOI: 10.3892/ol.2020.11484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) AGAP2-AS1 has been reported to be a potential biomarker for a variety of cancer types, while its function in clear cell renal carcinoma (ccRCC) has not yet been fully determined. The current study aimed to determine the value of lncRNA AGAP2-AS1 in ccRCC based on The Cancer Genome Atlas (TCGA) database. The association between AGAP2-AS1 expression and associated clinical characters were analyzed using the Wilcoxon signed-rank test and logistic regression. The diagnostic value of AGAP2-AS1 expression in ccRCC tissue was assessed using receiver operating characteristic (ROC) curve analysis. Clinicopathological characteristics associated with overall survival in patients with TCGA were analyzed using Cox regression and the Kaplan-Meier method. Gene set enrichment analysis (GSEA) was also performed to assess the biological function of AGAP2-AS1. The results demonstrated that increased expression of AGAP2-AS1 in ccRCC was significantly associated with male, T3/T4, lymph node metastasis, distant metastasis and high tumor stage (III/IV; all, P<0.05). The area under the ROC curve (normal vs. all tumors) was revealed to be 0.891. Kaplan-Meier survival analysis indicated that ccRCC with high lncRNA AGAP2-AS1 exhibited a worse prognosis compared with low AGAP2-AS1 (P<0.001). The univariate analysis revealed that high expression of AGAP2-AS1 was significantly associated with poor overall survival [hazard ratio (HR). 1.85; 95% confidence interval (CI), 1.48-2.33; P<0.001). Multivariate analysis revealed that AGAP2-AS1 remained independently associated with overall survival, with a HR of 1.57 (CI, 1.21-2.03; P<0.01). GSEA outcome demonstrated that stromal stimulation, angiogenesis, epithelial to mesenchymal transition, basal cell carcinoma, ECM receptor interaction and the Notch signaling pathway were differentially enriched in the AGAP2-AS1 high expression phenotype. Therefore, the high expression of AGAP2-AS1 may be an independent predictor of poor survival in patients with ccRCC.
Collapse
Affiliation(s)
- Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 05000, P.R. China
| | - Anning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 05000, P.R. China
| | - Xiaolu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 05000, P.R. China
| |
Collapse
|
92
|
Abstract
IMPACT STATEMENT Tumor hypoxia promotes cancer cell aggressiveness, and is strongly associated with poor prognosis across multiple tumor types. The hypoxic microenvironments inside tumors also limit the effectiveness of radiotherapy, chemotherapy, and immunotherapy. Several approaches to eliminate hypoxic state in tumors have been proposed to delay cancer progression and improve therapeutic efficacies. This review will summarize current knowledge on hyperoxia, used alone or in combination with other therapeutic modalities, in cancer treatment. Molecular mechanisms and undesired side effects of hyperoxia will also be discussed.
Collapse
Affiliation(s)
- Sei W Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - In K Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang H Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
93
|
Buravchenko GI, Scherbakov AM, Korlukov AА, Dorovatovskii PV, Shchekotikhin AE. Revision of the Regioselectivity of the Beirut Reaction of Monosubstituted Benzofuroxans with Benzoylacetonitrile. 6-Substituted quinoxaline-2-carbonitrile 1,4- dioxides: Structural Characterization and Estimation of Anticancer Activity and Hypoxia Selectivity. Curr Org Synth 2020; 17:29-39. [PMID: 32103715 DOI: 10.2174/1570179416666191210100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good hypoxia-selectivity. OBJECTIVE The preparation, isolation, structure characterization, and screening for anticancer activity of the first representatives of 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides have been described. MATERIALS AND METHODS A series of 7- and 6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides was synthesized by the Beirut reaction. The cytotoxicity was assessed by MTT test (72 h incubation) in normoxia (21% O2) and hypoxia (1% O2) conditions. RESULTS We found that during the Beirut reaction between a benzofuroxan bearing an electron withdrawing group and benzoylacetonitrile in the presence of triethylamine, in addition to well-known 7-substituted quinoxaline-2-carbonitrile 1,4-dioxides 7-11a, the 6-isomers 7-11b are formed. Moreover, the yield of the 6- isomers increased with the increase in the electron-withdrawing character of the substituent. For benzofuroxans with CO2Me and CF3 groups, 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides 10-11b were the major products. Despite similarities in physicochemical and spectroscopic properties, the obtained isomers exhibit considerable differences in their anticancer activity and hypoxia selectivity. CONCLUSION Substituents and their electronic effects play a key role in the formation of 7- and 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides in the Beirut reaction and in the cytotoxicity properties of the obtained isomers.
Collapse
Affiliation(s)
- Galina I Buravchenko
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation.,Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russian Federation
| | - Alexander M Scherbakov
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye sh., Moscow 115522, Russian Federation
| | - Alexander А Korlukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., Moscow 119991, Russian Federation.,Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow 117997, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation.,Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russian Federation
| |
Collapse
|
94
|
Energy Metabolism in Cancer: The Roles of STAT3 and STAT5 in the Regulation of Metabolism-Related Genes. Cancers (Basel) 2020; 12:cancers12010124. [PMID: 31947710 PMCID: PMC7016889 DOI: 10.3390/cancers12010124] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
A central characteristic of many types of cancer is altered energy metabolism processes such as enhanced glucose uptake and glycolysis and decreased oxidative metabolism. The regulation of energy metabolism is an elaborate process involving regulatory proteins such as HIF (pro-metastatic protein), which reduces oxidative metabolism, and some other proteins such as tumour suppressors that promote oxidative phosphorylation. In recent years, it has been demonstrated that signal transducer and activator of transcription (STAT) proteins play a pivotal role in metabolism regulation. STAT3 and STAT5 are essential regulators of cytokine- or growth factor-induced cell survival and proliferation, as well as the crosstalk between STAT signalling and oxidative metabolism. Several reports suggest that the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of hypoxia-inducible factors and therefore, the alteration of mitochondrial activity. It seems that STAT proteins function as an integrative centre for different growth and survival signals for energy and respiratory metabolism. This review summarises the functions of STAT3 and STAT5 in the regulation of some metabolism-related genes and the importance of oxygen in the tumour microenvironment to regulate cell metabolism, particularly in the metabolic pathways that are involved in energy production in cancer cells.
Collapse
|
95
|
Zhou L, Zhao Y. B7-H3 Induces Ovarian Cancer Drugs Resistance Through An PI3K/AKT/BCL-2 Signaling Pathway. Cancer Manag Res 2019; 11:10205-10214. [PMID: 31819652 PMCID: PMC6899073 DOI: 10.2147/cmar.s222224] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose This study was aimed to investigate the underlying mechanism of B7-H3 induced ovarian cancer proliferation and drugs resistance. Materials and methods We compared the expression of B7-H3 in ovarian tumor tissues from high-malignant or low-malignant patients by immunohistochemistry. We established B7-H3 overexpression and knockout ovarian cells by CRISPR-Cas9 technology and examined the expression of the PI3K/AKT/BCL-2 signals in tumor cells by Western blot or immunofluorescence. We detected the B7-H3 overexpression ovarian cancer cells drugs resistance by CCK8 cell proliferation analysis and Annexin V/PI staining. Tumor-bearing mice were used to investigate the anticancer effects of PI3K/AKT inhibitors in combination with B7-H3 neutralizing antibodies. Results Enhanced expression of B7-H3 was observed in ovarian tumor tissues from high-malignant patients compared to those from low-malignant patients. Notably, B7-H3 overexpression caused enhanced cells proliferation and chemo-resistance in vitro and in vivo through the activation of PI3K/AKT signaling pathways and up-regulation of BCL-2 protein. Combination of chemotherapeutic agents and B7-H3 neutralizing antibodies efficiently reverses the drugs resistance induced by B7-H3, resulting in improved anticancer effects in ovarian cancer. Conclusion B7-H3 expression induces the activation the PI3K/AKT signaling pathway and up-regulates BCL-2 in protein level, resulting in the sustained growth and chemo-resistance in ovarian cancer. Blockade of B7-H3 signals efficiently reverses the chemo-resistance, which provides an innovative target in ovarian cancer treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yangchun Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
96
|
Xu Q, Liu Z, Guo L, Liu R, Li R, Chu X, Yang J, Luo J, Chen F, Deng M. Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells. Mol Cells 2019; 42:763-772. [PMID: 31659886 PMCID: PMC6883976 DOI: 10.14348/molcells.2019.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible factor-1α (HIF-1α) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of HIF-1α, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of HIF-1α, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride (CoCl2, 100 μmol/L), an agonist of HIF-1α, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, 10 μmol/L), an antagonist of HIF-1α. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF (hVEGF165) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via HIF-1α-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.
Collapse
Affiliation(s)
- Qian Xu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
- Department of Stomatology, Children’s Hospital of Chongqing Medical University, Chongqing 400014,
China
| | - Zhihua Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Ling Guo
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Rui Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Rulei Li
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Xiang Chu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Jiajia Yang
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Jia Luo
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| | - Faming Chen
- Department of Periodontology, School of Stomatology, Air Force Medical University, Xi’an 710032,
China
| | - Manjing Deng
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University, Chongqing 400042,
China
| |
Collapse
|
97
|
Prospective Long-Term Follow-Up of Pulmonary Diffusion Capacity Reduction Caused by Dose-Dense Chemotherapy in Patients with Breast Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2584859. [PMID: 31772578 PMCID: PMC6854974 DOI: 10.1155/2019/2584859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
Abstract
Background Our previous study of pulmonary function in 34 patients with early breast cancer without preexisting lung disease showed that anthracycline- and taxane-based adjuvant dose-dense chemotherapy (DDC) caused a significant 16.4% mean reduction in carbon monoxide diffusing capacity (DLCO). The present study reports the pulmonary and oncological outcomes of these patients on long-term follow-up. Patients and methods The primary endpoint was DLCO measured by the pulmonary function test (PFT) performed at a median of 27 months after DDC (range, 8–97) in 25 patients without disease recurrence. DLCO values were recorded as a percentage of predicted values according to age, height, and hemoglobin level and analyzed relative to baseline pre-DDC DLCO values. The secondary endpoints were symptoms, additional therapies, and cancer outcomes during a median of 11 years' follow-up (range, 4.4–11.4). Results A longitudinal general linear model showed significant effects of time on DLCO and its trend (F(1, 87) = 14.68, p < 0.001 and F(1, 87) = 10.26, p=0.002, respectively). Complementary descriptive analysis showed a significant recovery on the follow-up PFT (75.6% vs. 81.9%, p=0.002), but it was still significantly lower than the baseline DLCO (81.9% vs. 92.0%, p=0.003). Five patients (20%) still showed a >20% relative DLCO reduction from baseline. Patients with dyspnea or fatigue at later clinical follow-up had a significantly lower DLCO value on the follow-up PFT than nonsymptomatic patients (80.5% vs. 92.1%, p=0.02). DLCO recovery was inversely correlated with age (R = −0.39, p=0.05), but no significant correlation was found with the length of time until the follow-up PFT or additional therapies. There was no association of DDC-related DLCO reduction with cancer outcomes. Conclusions The significant reduction in DLCO seen after DDC in patients with potentially curable breast cancer is evident years afterwards, especially in older patients. While most patients partly recover, some will have a lasting symptomatic DLCO impairment.
Collapse
|
98
|
Zhang CY, Jiang ZM, Ma XF, Li Y, Liu XZ, Li LL, Wu WH, Wang T. Saikosaponin-d Inhibits the Hepatoma Cells and Enhances Chemosensitivity Through SENP5-Dependent Inhibition of Gli1 SUMOylation Under Hypoxia. Front Pharmacol 2019; 10:1039. [PMID: 31616295 PMCID: PMC6764240 DOI: 10.3389/fphar.2019.01039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Chemosensitivity is one of the key factors affecting the therapeutic effect on cancer, but the clinical application of corresponding drugs is rare. Hypoxia, a common feature of many solid tumors, including hepatocellular carcinoma (HCC), has been associated with resistance to chemotherapy in part through the activation of the Sonic Hedgehog (SHh) pathway. Hypoxia has also been associated with the increased SUMOylation of multiple proteins, including GLI family proteins, which are key mediators of SHh signaling, and has become a promising target to develop drug-resistant drugs for cancer treatment. However, there are few target drugs to abrogate chemotherapy resistance. Saikosaponin-d (Ssd), one of the main bioactive components of Radix bupleuri, has been reported to exert multiple biological effects, including anticancer activity. Here, we first found that Ssd inhibits the malignant phenotype of HCC cells while increasing their sensitivity to the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) drug system under hypoxia in vitro and in vivo. Furthermore, we had explored that GLI family activation and extensive protein SUMOylation were characteristics of HCC cells, and hypoxia could activate the SHh pathway and promote epithelial-mesenchymal transition (EMT), invasion, and chemosensitivity in HCC cells. SUMOylation is required for hypoxia-dependent activation of GLI proteins. Finally, we found that Ssd could reverse the effects promoted by hypoxia, specifically active sentrin/small ubiquitin-like modifier (SUMO)-specific protease 5 (SENP5), a SUMO-specific protease, in a time- and dose-dependent manner while inhibiting the expression of SUMO1 and GLI proteins. Together, these findings confirm the important role of Ssd in the chemoresistance of liver cancer, provide some data support for further understanding the molecular mechanisms of Ssd inhibition of malignant transformation of HCC cells, and provide a new perspective for the application of traditional Chinese medicine in the chemical resistance of liver cancer.
Collapse
Affiliation(s)
- Chun-Yan Zhang
- Department of Pharmacy, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhong-Min Jiang
- Department of Pathology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiao-Fang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Yue Li
- Department of Pharmacy, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Zhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Li-Li Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wen-Han Wu
- Department of General Surgery, Peking University First Hospital, Beijing, China.,Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
99
|
Cellular Stress Responses in Radiotherapy. Cells 2019; 8:cells8091105. [PMID: 31540530 PMCID: PMC6769573 DOI: 10.3390/cells8091105] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.
Collapse
|
100
|
Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci 2019; 9:62. [PMID: 31402975 PMCID: PMC6683569 DOI: 10.1186/s13578-019-0325-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Colon-cancer-cell-derived exosomes (CDEs) are emerging mediators of tumorigenesis and serve as messengers of intercellular communication; however, whether the CDEs affect the proliferation of colon cancer cells themselves remains unknown. In the current study, the CDEs isolated from human colon cancer cell line SW480 and HCT116 showed a size range of 60-150 nm, typical bilayer-encapsulated vesicles, and expressed the exosomal markers CD81 and CD63. Incubation of SW480 cells with CDEs labelled with PKH67 fluorescent markers revealed that SW480 cells were able to absorb CDEs, which were mostly distributed around the nucleus. Hypoxic conditions promoted colon cancer cells to release a greater number of CDEs than normoxic conditions. MTT cell proliferation assay demonstrated CDEs promoted the proliferation of colon cancer cells in a time- and dose-dependent manner. Mechanistically, CDEs promoted colon cancer cell growth mainly through shortening mitosis duration. Meanwhile, the levels of phosphorylated STAT3 in colon cancer cells was up-regulated with the treatment of CDEs derived from hypoxic tumor cells. Our data suggests that colon cancer cells are able to promote self-growth through the secretion of exosomes, especially under hypoxic conditions, which shortens mitosis duration and activates STAT3.
Collapse
|