51
|
Szymańska M, Hoppe J, Dutkiewicz M, Sobolewski P, Palacz M, Janus E, Zielińska B, Drozd R. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity. Int J Biol Macromol 2022; 208:642-653. [PMID: 35337915 DOI: 10.1016/j.ijbiomac.2022.03.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/24/2023]
Abstract
The versatility and unique properties of bacterial cellulose (BC) motivate research into enhancing its synthesis. Here a silicone polyether surfactant (SPS) was synthesized and tested as a non-nutritional additive to the cultivation media of Komagataeibacter xylinus. The addition of SPS to the Hestrin-Schramm (HS) medium resulted in a concentration-dependent decrease in surface tension from 59.57 ± 0.37 mN/m to 30.05 ± 0.41 mN/m (for 0.1% addition) that was correlated with an increased yield of BC, up to 37% wet mass for surfactant concentration close to its critical micelle concentration (0.008%). Physicochemical characterization of bacterial cellulose obtained in presence of SPS, showed that surfactant is not incorporated into BC structure and has a moderate effect on its crystallinity, thermal stability. Moreover, the water holding capacity was enhanced by over 40%. Importantly, obtained BC did not affect L929 murine fibroblast cell viability. We conclude that SPS provides an eco-friendly approach to increasing BC yield in static culture, enabling more widespread industrial and biomedical applications.
Collapse
Affiliation(s)
- Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland
| | - Jakub Hoppe
- Faculty of Chemistry, Adam Mickiewicz University, 89b Umultowska Str., 61-614 Poznań Poland
| | - Michał Dutkiewicz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, 46 Rubież Str., 61-612 Poznań, Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland
| | - Magdalena Palacz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, 46 Rubież Str., 61-612 Poznań, Poland
| | - Ewa Janus
- Department of Chemical Organic Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pulawskiego Str., 70-322 Szczecin, Poland
| | - Beata Zielińska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland.
| |
Collapse
|
52
|
Betlej I, Antczak A, Szadkowski J, Drożdżek M, Krajewski K, Radomski A, Zawadzki J, Borysiak S. Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers (Basel) 2022; 14:polym14102032. [PMID: 35631914 PMCID: PMC9146238 DOI: 10.3390/polym14102032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Abstract
The influence of bacterial cellulose gel film pretreatment methods on the efficiency of enzymatic hydrolysis was investigated. An increase in the efficiency of enzymatic hydrolysis due to liquid hot water pretreatment or steam explosion was shown. The glucose yield of 88% was obtained from raw, non-purified, bacterial cellulose treated at 130 °C. The results confirm the potential of bacterial cellulose gel film as a source for liquid biofuel production.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Andrzej Antczak
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Jan Szadkowski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Michał Drożdżek
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Krzysztof Krajewski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Andrzej Radomski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Janusz Zawadzki
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
53
|
A turning point in the bacterial nanocellulose production employing low doses of gamma radiation. Sci Rep 2022; 12:7012. [PMID: 35488046 PMCID: PMC9054840 DOI: 10.1038/s41598-022-11010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
In the recent years, huge efforts have been conducted to conceive a cost-effective production process of the bacterial nanocellulose (BNC), thanks to its marvelous properties and broadening applications. Herein, we unveiled the impact of gamma irradiation on the BNC yield by a novel bacterial strain Komagataeibacter hansenii KO28 which was exposed to different irradiation doses via a designed scheme, where the productivity and the structural properties of the BNC were inspected. After incubation for 240 h, the highest BNC yield was perceived from the culture treated twice with 0.5 kGy, recording about 475% higher than the control culture. Furthermore, almost 92% of its BNC yield emerged in the first six days. The physicochemical characteristics of the BNCs were investigated adopting scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Additionally, the water holding capacity, water release rate, surface area (BET), and mechanical properties were configured for the BNC generated from the control and the irradiated cultures. As a whole, there were no significant variations in the properties of the BNC produced by the irradiated cultures versus the control, proposing the strain irradiation as a valuable, facile, and cheap route to augment the BNC yield.
Collapse
|
54
|
Qi Z, Pei P, Zhang Y, Chen H, Yang S, Liu T, Zhang Y, Yang K. 131I-αPD-L1 immobilized by bacterial cellulose for enhanced radio-immunotherapy of cancer. J Control Release 2022; 346:240-249. [PMID: 35469982 DOI: 10.1016/j.jconrel.2022.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
Abstract
Radioisotope therapy (RIT) of cancer is restrained by the nonspecific distribution of radioisotope and ineptitude for metastatic tumors. Meanwhile, the clinical application of immune checkpoint blockade (ICB) confronts problems such as low responsive rate, multiple administration requirements and immune-related adverse events (irAE). To address these challenges, we prepared an injectable suspension by immobilizing 131I-labeled anti-programmed cell death-ligand 1 antibody (αPD-L1) in bacterial cellulose for precise and durable radio-immunotherapy of cancer. The crisscross network structure of bacterial cellulose nanofibers would contribute to the long-term retention of 131I-labeled αPD-L1 within tumors, which could reduce the side effect stemmed from the nonspecific 131I distribution in normal tissues. The potent long-term RIT of 131I, combined with ICB by αPD-L1, could effectively restrain the growth of primary tumor in mice. In addition to the direct killing effect, 131I-αPD-L1 immobilized by bacterial cellulose could enhance the immunogenic cell death (ICD) of cancer cells, activating the maturation of multiple immune cells to induce a systemic anti-tumor immune effect. Our therapeutic strategy could suppress spontaneous cancer metastasis and prolong the survival time of tumor-bearing mice. This study proposed a new approach for combined radio-immunotherapy and a novel solution for tumor metastasis in advanced-stage cancers.
Collapse
Affiliation(s)
- Zhongyuan Qi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
55
|
Wood J, van der Gast C, Rivett D, Verran J, Redfern J. Reproducibility of Bacterial Cellulose Nanofibers Over Sub-Cultured Generations for the Development of Novel Textiles. Front Bioeng Biotechnol 2022; 10:876822. [PMID: 35547175 PMCID: PMC9081875 DOI: 10.3389/fbioe.2022.876822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
The textile industry is in crisis and under pressure to minimize the environmental impact on its practices. Bacterial cellulose (BC), a naturally occurring form of cellulose, displays properties superior to those of its cotton plant counterpart, such as enhanced purity, crystallinity, tensile strength, and water retention and is thus suitable for an array of textile applications. It is synthesized from a variety of microorganisms but is produced in most abundance by Komagataeibacter xylinus. K. xylinus is available as a type strain culture and exists in the microbial consortium commonly known as Kombucha. Whilst existing literature studies have described the effectiveness of both K. xylinus isolates and Kombucha in the production of BC, this study investigated the change in microbial communities across several generations of sub-culturing and the impact of these communities on BC yield. Using Kombucha and the single isolate strain K. xylinus as inocula in Hestrin and Schramm liquid growth media, BC pellicles were propagated. The resulting pellicles and residual liquid media were used to further inoculate fresh liquid media, and this process was repeated over three generations. For each generation, the thickness of the pellicles and their appearance under SEM were recorded. 16S rRNA sequencing was conducted on both pellicles and liquid media samples to assess changes in communities. The results indicated that the genus Komagataeibacter was the most abundant species in all samples. Cultures seeded with Kombucha yielded thicker cellulose pellicles than those seeded with K. xylinus, but all the pellicles had similar nanofibrillar structures, with a mix of liquid and pellicle inocula producing the best yield of BC after three generations of sub-culturing. Therefore, Kombucha starter cultures produce BC pellicles which are more reproducible across generations than those created from pure isolates of K. xylinus and could provide a reproducible sustainable model for generating textile materials.
Collapse
Affiliation(s)
- Jane Wood
- Manchester Fashion Institute, Faculty of Arts and Humanities, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher van der Gast
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Damian Rivett
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Joanna Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: James Redfern,
| |
Collapse
|
56
|
da Silva IGR, Pantoja BTDS, Almeida GHDR, Carreira ACO, Miglino MA. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073955. [PMID: 35409314 PMCID: PMC8999934 DOI: 10.3390/ijms23073955] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death in the world, accounting for approximately 85% of sudden death cases. In dogs and cats, sudden cardiac death occurs commonly, despite the scarcity of available pathophysiological and prevalence data. Conventional treatments are not able to treat injured myocardium. Despite advances in cardiac therapy in recent decades, transplantation remains the gold standard treatment for most heart diseases in humans. In veterinary medicine, therapy seeks to control clinical signs, delay the evolution of the disease and provide a better quality of life, although transplantation is the ideal treatment. Both human and veterinary medicine face major challenges regarding the transplantation process, although each area presents different realities. In this context, it is necessary to search for alternative methods that overcome the recovery deficiency of injured myocardial tissue. Application of biomaterials is one of the most innovative treatments for heart regeneration, involving the use of hydrogels from decellularized extracellular matrix, and their association with nanomaterials, such as alginate, chitosan, hyaluronic acid and gelatin. A promising material is bacterial cellulose hydrogel, due to its nanostructure and morphology being similar to collagen. Cellulose provides support and immobilization of cells, which can result in better cell adhesion, growth and proliferation, making it a safe and innovative material for cardiovascular repair.
Collapse
Affiliation(s)
- Izabela Gabriela Rodrigues da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- NUCEL-Cell and Molecular Therapy Center, School of Medicine, Sao Paulo University, Sao Paulo 05508-270, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- Correspondence:
| |
Collapse
|
57
|
Wu M, Shen Y, Ming Y, Shi Z, Shi Z, Liu D, Li G, Ma T. Characterization of a polysaccharide hydrogel with high elasticity produced by a mutant strain Sphingomonas sanxanigenens NX03. Carbohydr Polym 2022; 280:119030. [PMID: 35027132 DOI: 10.1016/j.carbpol.2021.119030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
Microbial polysaccharides as renewable bioproducts have attracted lots of attention in various industries. Hesan (Highly elastic Sanxan), an exopolysaccharide produced by a plasma mutagenic strain Sphingomonas sanxanigenens NX03, was characterized. It possessed the same monosaccharide composition as the original polysaccharide Sanxan produced from wild-type strain NX02, but significantly reduced acetyl and glyceryl contents. Textural analysis showed the springiness and cohesiveness of Hesan gel was much higher than Sanxan gel, and rheological behaviors indicated it possessed a lower loss factor, and its conformational transition temperatures at different concentrations were obviously lower than Sanxan gel and high-acyl gellan gel, which suggested that Hesan gel was highly elastic and temperature-sensitive. Additionally, Hesan gel could be efficiently produced through micro-aerobic static culture in shallow (10.46 ± 0.30 g/L) and deep liquids (3.21 ± 0.32 g/L), which was significantly different from the fermentation of other water-soluble polysaccharides. In short, this study characterizes a new mutant strain and its polysaccharide products.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaqi Shen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhong Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Dakun Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
58
|
Sar T, Yesilcimen Akbas M. Potential use of olive oil mill wastewater for bacterial cellulose production. Bioengineered 2022; 13:7659-7669. [PMID: 35264062 PMCID: PMC8974174 DOI: 10.1080/21655979.2022.2050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, olive oil mill wastewater (OOMW), an important waste in the Mediterranean basin, was evaluated to produce bacterial cellulose (BC). For this purpose, the effects of different ratios of OOMW fractions (25–100%) and some additional nutrients (yeast extract, peptone and Hestrin-Schramm medium (HS) components) on BC productions were investigated. Unsupplemented OOMW medium (75% and 100%) yielded as much as BC obtained in HS medium (0.65 g/L), while enrichment of OOMW medium (%100) with yeast extract (5 g/L) and peptone (5 g/L) increased the amount of BC by 5.5 times, reaching to 5.33 g/L. In addition, produced BCs were characterized by FT-IR, TGA, XRD and SEM analyses. BC from OOMW medium (100% OOMW with supplementation) has a high thermal decomposition temperature (316.8°C), whereas it has lower crystallinity index (57%). According to the FT-IR analysis, it was observed that the components of OOMW might be absorbed by BCs. Thus, higher yield productions of BCs from OOMW media compared to BC obtained from HS medium indicate that olive oil industry wastes can be integrated into BC production for industrial applications.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
59
|
Di Natale C, De Gregorio V, Lagreca E, Mauro F, Corrado B, Vecchione R, Netti PA. Engineered Bacterial Cellulose Nanostructured Matrix for Incubation and Release of Drug-Loaded Oil in Water Nanoemulsion. Front Bioeng Biotechnol 2022; 10:851893. [PMID: 35356776 PMCID: PMC8959586 DOI: 10.3389/fbioe.2022.851893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Bacterial cellulose (BC) is a highly pure form of cellulose produced by bacteria, which possesses numerous advantages such as good mechanical properties, high chemical flexibility, and the ability to assemble in nanostructures. Thanks to these features, it achieved a key role in the biomedical field and in drug delivery applications. BC showed its ability to modulate the release of several drugs and biomolecules to the skin, thus improving their clinical outcomes. This work displays the loading of a 3D BC nanonetwork with an innovative drug delivery nanoemulsion system. BC was optimized by static culture of SCOBY (symbiotic colony of bacteria and yeast) and characterized by morphological and ultrastructural analyses, which indicate a cellulose fiber diameter range of 30–50 nm. BC layers were then incubated at different time points with a nanocarrier based on a secondary nanoemulsion (SNE) previously loaded with a well-known antioxidant and anti-inflammatory agent, namely, coenzyme-Q10 (Co-Q10). Incubation of Co-Q10–SNE in the BC nanonetwork and its release were analyzed by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
| | - Elena Lagreca
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Francesca Mauro
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Istituto Italiano di Tecnologia, Naples, Italy
- *Correspondence: Raffaele Vecchione,
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
60
|
Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH. Recent progress in cellulose-based composites towards flame retardancy applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
61
|
Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii. Bioprocess Biosyst Eng 2022; 45:573-587. [DOI: 10.1007/s00449-021-02680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
|
62
|
Almeida do Nascimento H, Didier Pedrosa Amorim J, José Galdino da Silva Júnior C, D'Lamare Maia de Medeiros A, Fernanda de Santana Costa A, Carla Napoleão D, Maria Vinhas G, Asfora Sarubbo L. Influence of gamma irradiation on the properties of bacterial cellulose produced with concord grape and red cabbage extracts. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
63
|
Equipment-free and visual detection of Pb2+ ion based on curcumin-modified bacterial cellulose nanofiber. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02305-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
64
|
Geravand SA, Khajavi R, Rahimi MK, Ghiyasvand MS, Meftahi A. Improving some structural and biological characteristics of bacterial cellulose by cross‐linking. J Appl Polym Sci 2021. [DOI: 10.1002/app.52056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sahar Abbasi Geravand
- Department of Biomedical Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| | - Ramin Khajavi
- Department of Polymer and Textile Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| | - Mohammad Karim Rahimi
- Department of Microbiology, Medical Faculty Islamic Azad Medical University of Tehran Tehran Iran
| | | | - Amin Meftahi
- Department of Polymer and Textile Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
65
|
dos Santos KB, Higawa GE, Conceição KS, Endringer DC, Schmitt EFP, Xavier LM, Fronza M, Stevanato A, Tischer CA, Ribeiro-Viana RM. Performance Improvement of Hydrophobized Bacterial Cellulose Films as Wound Dressing. Macromol Res 2021. [DOI: 10.1007/s13233-022-0005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
67
|
Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr Polym 2021; 273:118565. [PMID: 34560976 DOI: 10.1016/j.carbpol.2021.118565] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Bacterial cellulose (BC) is a promising unique material for various biomedical and cosmetic applications due to its morphology, mechanical strength, high purity, high water uptake, non-toxicity, chemical controllability, and biocompatibility. Today, extensive investigation is into the manufacturing of BC-based composites with other components such as nanoparticles, synthetic polymers, natural polymers, carbon materials, and biomolecules, which will allow the development of a wide range of biomedical and cosmetic products. Moreover, the addition of different reinforcement substances into BC and the organized arrangement of BC nano-fibers have proven a promising improvement in their properties for biomedical applications. This review paper highlights the progress in synthesizing BC-based composites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering, and cancer treatment. It emphasizes high-performance BC-based materials and cosmetic applications. Furthermore, it presents challenges yet to be defeated and future possibilities for BC-based composites for biomedical and cosmetic applications.
Collapse
|
68
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
69
|
Zikmanis P, Kolesovs S, Ruklisha M, Semjonovs P. Production of bacterial cellulose from glycerol: the current state and perspectives. BIORESOUR BIOPROCESS 2021; 8:116. [PMID: 38650300 PMCID: PMC10992469 DOI: 10.1186/s40643-021-00468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/20/2021] [Indexed: 11/10/2022] Open
Abstract
Current research in industrial microbiology and biotechnology focuses on the production of biodegradable microbial polymers as an environmentally friendly alternative to the still dominant fossil hydrocarbon-based plastics. Bacterial cellulose (BC) is important among microbial polymers due to its valuable properties and broad applications in variety of fields from medical to industrial technologies. However, the increase in BC production and its wider deployment is still limited by high costs of traditionally used raw materials. It is therefore necessary to focus on less expensive inputs, such as agricultural and industrial by-products or waste including the more extended use of glycerol. It is the environmentally harmful by-product of biofuel production and reducing it will also reduce the risk of environmental pollution. The experimental data obtained so far confirm that glycerol can be used as the renewable carbon source to produce BC through more efficient and environmentally friendly bioprocesses. This review summarizes current knowledge on the use of glycerol for the production of commercially prospective BC, including information on producer cultures, fermentation modes and methods used, nutrient medium composition, cultivation conditions, and bioprocess productivity. Data on the use of some related sugar alcohols, such as mannitol, arabitol, xylitol, for the microbial synthesis of cellulose are also considered, as well as the main methods and applications of glycerol pre-treatment briefly described.
Collapse
Affiliation(s)
- Peteris Zikmanis
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Maija Ruklisha
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia.
| |
Collapse
|
70
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
71
|
Abidi W, Torres-Sánchez L, Siroy A, Krasteva PV. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol Rev 2021; 46:6388354. [PMID: 34634120 PMCID: PMC8892547 DOI: 10.1093/femsre/fuab051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here, we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.
Collapse
Affiliation(s)
- Wiem Abidi
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Lucía Torres-Sánchez
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Axel Siroy
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Petya Violinova Krasteva
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
72
|
Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021; 13:3365. [PMID: 34641185 PMCID: PMC8512337 DOI: 10.3390/polym13193365] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Collapse
Affiliation(s)
- Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. R. M. Huzaifah
- Faculty of Agricultural Science and Forestry, Bintulu Campus, Universiti Putra Malaysia, Bintulu 97000, Sarawak, Malaysia
| | - Nani Harihastuti
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - M. M. Harussani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
| | - M. N. M. Azlin
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Textile Technology, School of Industrial Technology, Universiti Teknologi MARA, Universiti Teknologi Mara Negeri Sembilan, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Rustiana Yuliasni
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - R. Ibrahim
- Innovation & Commercialization Division, Forest Research Institute Malaysia, Kepong 52109, Selangor Darul Ehsan, Malaysia;
| | - M. S. N. Atikah
- Department of Chemical and Environmental Engineering Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Junying Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - K. Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea;
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| |
Collapse
|
73
|
Attallah OA, Mojicevic M, Garcia EL, Azeem M, Chen Y, Asmawi S, Brenan Fournet M. Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties. Polymers (Basel) 2021; 13:2155. [PMID: 34208796 PMCID: PMC8271944 DOI: 10.3390/polym13132155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (Mw) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed-identifying both macro and micro routes promoting favourable bioplastics' production, processability and performance.
Collapse
Affiliation(s)
- Olivia A. Attallah
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Marija Mojicevic
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Eduardo Lanzagorta Garcia
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Muhammad Azeem
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Yuanyuan Chen
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Shumayl Asmawi
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Margaret Brenan Fournet
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| |
Collapse
|
74
|
Lunardi VB, Soetaredjo FE, Putro JN, Santoso SP, Yuliana M, Sunarso J, Ju YH, Ismadji S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers (Basel) 2021; 13:2052. [PMID: 34201884 PMCID: PMC8272055 DOI: 10.3390/polym13132052] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
The 'Back-to-nature' concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers, including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as nanocarriers in drug delivery systems. Modification and functionalization using various processes and chemicals have been carried out to increase the adsorption and drug delivery performance of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical functionalization for covalent drug binding. Current development of nanocarrier formulations such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes, and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics. This review provides insights into selecting appropriate nanocellulose-based hybrid materials and the available modification routes to achieve satisfactory carrier performance and briefly discusses the essential criteria to achieve high-quality nanocellulose.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Sarawak, Malaysia;
| | - Yi-Hsu Ju
- Graduate Institute of Applied Science, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan;
- Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| |
Collapse
|
75
|
Orlovska I, Podolich O, Kukharenko O, Zaets I, Reva O, Khirunenko L, Zmejkoski D, Rogalsky S, Barh D, Tiwari S, Kumavath R, Góes-Neto A, Azevedo V, Brenig B, Ghosh P, de Vera JP, Kozyrovska N. Bacterial Cellulose Retains Robustness but Its Synthesis Declines After Exposure to a Mars-like Environment Simulated Outside the International Space Station. ASTROBIOLOGY 2021; 21:706-717. [PMID: 33646011 DOI: 10.1089/ast.2020.2332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.
Collapse
Affiliation(s)
- Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Danica Zmejkoski
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sergiy Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, West Bengal, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala Tejaswini Hills, Kerala, India
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, Göttingen, Germany
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | |
Collapse
|
76
|
Production of Bacterial Cellulose from Acetobacter Species and Its Applications – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer secreted as a protective cell covering of certain bacterial species. In contrary to plant cellulose, BC possesses some unique features like high moisture-holding capacity, high durability, high liquid absorbing capabilities, biostability, and biodegradability, makes BC an excellent raw material in wide-ranging areas like biomedical, food, agriculture, paper, textile industries and electronics. The main objective of this review is to discuss various aspects of BC production (different sources for bacterial strain isolation, culture media and, its alternatives also major culture techniques). In addition, various applications of BC are also reviewed.
Collapse
|
77
|
Dzyazko Y, Ogenko V. Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
78
|
Moradi M, Jacek P, Farhangfar A, Guimarães JT, Forough M. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review. Int J Biol Macromol 2021; 183:635-650. [PMID: 33957199 DOI: 10.1016/j.ijbiomac.2021.04.173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
Natural polysaccharides are well-known biomaterials because of their availability and low-cost, with applications in diverse fields. Cellulose, a renowned polysaccharide, can be obtained from different sources including plants, algae, and bacteria, but recently much attention has been paid to the microorganisms due to their potential of producing renewable compounds. In this regard, bacterial nanocellulose (BNC) is a novel type of nanocellulose material that is commercially synthesized mainly by Komagataeibacter spp. Characteristics such as purity, porosity, and remarkable mechanical properties made BNC a superior green biopolymer with applications in pharmacology, biomedicine, bioprocessing, and food. Genetic manipulation of BNC-producing strains and in situ modifications of the culturing conditions can lead to BNC with enhanced yield/productivity and properties. This review mainly highlights the role of genetic engineering of Komagataeibacter strains and co-culturing of bacterial strains with additives such as microorganisms and nanomaterials to synthesize BNC with improved functionality and productivity rate.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Paulina Jacek
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany.
| | | | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| |
Collapse
|
79
|
Sommer A, Dederko-Kantowicz P, Staroszczyk H, Sommer S, Michalec M. Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites-A Comparative Study. Int J Mol Sci 2021; 22:ijms22073346. [PMID: 33805875 PMCID: PMC8037045 DOI: 10.3390/ijms22073346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed—resulting in increased thermal stability and crystallinity of the material. The C2–C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups’ formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.
Collapse
Affiliation(s)
- Agata Sommer
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
| | - Paulina Dederko-Kantowicz
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Laboratory of Molecular Diagnostics and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Bonin Research Center, Bonin 3, 76-009 Bonin, Poland
| | - Hanna Staroszczyk
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Correspondence:
| | - Sławomir Sommer
- Department of Automotive Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland;
| | - Marek Michalec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| |
Collapse
|
80
|
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. Int J Mol Sci 2021; 22:2836. [PMID: 33799554 PMCID: PMC8000719 DOI: 10.3390/ijms22062836] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the skin care field, bacterial nanocellulose (BNC), a versatile polysaccharide produced by non-pathogenic acetic acid bacteria, has received increased attention as a promising candidate to replace synthetic polymers (e.g., nylon, polyethylene, polyacrylamides) commonly used in cosmetics. The applicability of BNC in cosmetics has been mainly investigated as a carrier of active ingredients or as a structuring agent of cosmetic formulations. However, with the sustainability issues that are underway in the highly innovative cosmetic industry and with the growth prospects for the market of bio-based products, a much more prominent role is envisioned for BNC in this field. Thus, this review provides a comprehensive overview of the most recent (last 5 years) and relevant developments and challenges in the research of BNC applied to cosmetic, aiming at inspiring future research to go beyond in the applicability of this exceptional biotechnological material in such a promising area.
Collapse
Affiliation(s)
| | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (T.A.); (A.J.D.S.); (C.V.)
| |
Collapse
|
81
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
82
|
Santoso SP, Lin SP, Wang TY, Ting Y, Hsieh CW, Yu RC, Angkawijaya AE, Soetaredjo FE, Hsu HY, Cheng KC. Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. Int J Biol Macromol 2021; 175:526-534. [PMID: 33524483 DOI: 10.1016/j.ijbiomac.2021.01.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Toxic compounds in pineapple peel waste hydrolysate (PPWH), namely formic acid, 5-hydroxymethylfurfural (HMF), and furfural, are the major predicament in its utilization as a carbon source for bacterial cellulose (BC) fermentation. A rapid detoxification procedures using atmospheric cold plasma (ACP) technique were employed to reduce the toxic compounds. ACP treatment allows the breakdown of toxic compounds without causing excessive breakdown of sugars. Herein, the performance of two available laboratory ACP reactors for PPWH detoxification was being demonstrated. ACP-reactor-1 (R1) runs on plasma power of 80-200 W with argon (Ar) plasma source, while ACP-reactor-2 (R2) runs at 500-600 W with air plasma source. Treatment in R1, at 200 W for 15 min, results in 74.06%, 51.38%, and 21.81% reduction of furfural, HMF, and formic acid. Treatment in R2 at 600 W gives 45.05%, 32.59%, and 60.41% reductions of furfural, HMF, and formic acid. The BC yield from the fermentation of Komagateibacter xylinus in the R1-treated PPWH, R2-treated PPWH, and untreated-PPWH is 2.82, 3.82, and 2.97 g/L, respectively. The results show that ACP treatment provides a novel detoxified strategy in achieving agricultural waste hydrolysate reuse in fermentation. Furthermore, the results also imply that untreated PPWH can be an inexpensive and sustainable resource for fermentation media supplementation.
Collapse
Affiliation(s)
- Shella Permatasari Santoso
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, #37, Kalijudan Rd., Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, #250, Wuxing Street, Xinyi Dist., Taipei 11042, Taiwan
| | - Tan-Ying Wang
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Roch-Chui Yu
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, #37, Kalijudan Rd., Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
83
|
Nicoara AI, Stoica AE, Ene DI, Vasile BS, Holban AM, Neacsu IA. In Situ and Ex Situ Designed Hydroxyapatite: Bacterial Cellulose Materials with Biomedical Applications. MATERIALS 2020; 13:ma13214793. [PMID: 33121009 PMCID: PMC7663409 DOI: 10.3390/ma13214793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/27/2023]
Abstract
Hydroxyapatite (HAp) and bacterial cellulose (BC) composite materials represent a promising approach for tissue engineering due to their excellent biocompatibility and bioactivity. This paper presents the synthesis and characterization of two types of materials based on HAp and BC, with antibacterial properties provided by silver nanoparticles (AgNPs). The composite materials were obtained following two routes: (1) HAp was obtained in situ directly in the BC matrix containing different amounts of AgNPs by the coprecipitation method, and (2) HAp was first obtained separately using the coprecipitation method, then combined with BC containing different amounts of AgNPs by ultrasound exposure. The obtained materials were characterized by means of XRD, SEM, and FT-IR, while their antimicrobial effect was evaluated against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast (Candida albicans). The results demonstrated that the obtained composite materials were characterized by a homogenous porous structure and high water absorption capacity (more than 1000% w/w). These materials also possessed low degradation rates (<5% in simulated body fluid (SBF) at 37 °C) and considerable antimicrobial effect due to silver nanoparticles (10–70 nm) embedded in the polymer matrix. These properties could be finetuned by adjusting the content of AgNPs and the synthesis route. The samples prepared using the in situ route had a wider porosity range and better homogeneity.
Collapse
Affiliation(s)
- Adrian Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (B.S.V.); (I.A.N.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (B.S.V.); (I.A.N.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence: ; Tel.: +40-784069104
| | - Denisa-Ionela Ene
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (B.S.V.); (I.A.N.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (B.S.V.); (I.A.N.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
84
|
Sriplai N, Pinitsoontorn S. Bacterial cellulose-based magnetic nanocomposites: A review. Carbohydr Polym 2020; 254:117228. [PMID: 33357842 DOI: 10.1016/j.carbpol.2020.117228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023]
Abstract
Bacterial cellulose (BC) is a natural polymer that has unique and interesting structural, physical and chemical properties. These characteristics make it very attractive as a starting point for several novel developments in innovative research. However, the pristine BC lacks certain properties, in particular, magnetic property, which can be imparted to BC by incorporation of several types of magnetic nanoparticles. Magnetic nanocomposites based on BC exhibit additional magnetic functionality on top of the excellent properties of pristine BC, which make them promising materials with potential uses in various medical and environmental applications, as well as in advanced electronic devices. This review has compiled information about all classes of BC magnetic nanocomposites fabricated by various synthesis approaches and an overview of applications as well as improved features of these materials. A summary of the key developments of BC magnetic nanocomposites and emphasis on novel advances in this field is presented.
Collapse
Affiliation(s)
- Nipaporn Sriplai
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supree Pinitsoontorn
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
85
|
Wu M, Zhang Q, Zhou X, Kong S, Zhao H, Liu M, Yang P, Cao W. An ultrafast and highly efficient enrichment method for both N-Glycopeptides and N-Glycans by bacterial cellulose. Anal Chim Acta 2020; 1140:60-68. [PMID: 33218490 DOI: 10.1016/j.aca.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
A powerful and fast glycopeptide/glycan enrichment method is critical for the efficiency and throughput of mass spectrometry (MS)-based glycoproteomic and glycomic analyses, especially for large-scale sample analysis. Here, we report an ultrafast and effective method for both intact N-glycopeptide and N-glycan enrichment and apply it to human serum samples. In this method, a natural hydrophilic material, bacterial cellulose (BC), was adopted and fully optimized for enrichment. This method offers the following advantages: (i) The enrichment material has natural hydrophilicity and is low-cost, biocompatible, biodegradable and easily accessible; (ii) the whole enrichment procedure is remarkably simple and fast. It takes only 10 min for intact glycopeptides/glycans to be easily purified from mixtures; (iii) the specificity of this method is over 94% for both glycan and glycopeptide enrichment; and (iv) the outstanding specificity of this technique enables high isolation efficiency for the enrichment of both intact glycopeptides and glycans. A total of 36 N-glycans and 31 N-glycopeptides were identified from human immunoglobulin G (IgG). The glycan and glycopeptide absorption capacity of BC was as high as 333 μg/mg and 250 μg/mg (IgG/BC) respectively. The selectivity for glycan and glycopeptide enrichment reached 1:100 (IgG/bovine serum albumin (BSA), molar ratio) and 1:200 (maltoheptaose (DP7)/BSA, molar ratio), respectively. Furthermore, a total of 159 N-glycans and 523 N-glycopeptides were identified in human serum by using this method. Overall, the BC-based enrichment method we present here provides an ultrafast and highly efficient method for the enrichment of both N-glycopeptides and N-glycans in complex samples and shows great potential in large-scale glycoproteomic and glycomic analyses.
Collapse
Affiliation(s)
- Mengxi Wu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200032, China
| | - Quanqing Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinwen Zhou
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Siyuan Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huanhuan Zhao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mingqi Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, 200032, China.
| | - Weiqian Cao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, 200032, China.
| |
Collapse
|
86
|
Kolesovs S, Semjonovs P. Production of bacterial cellulose from whey-current state and prospects. Appl Microbiol Biotechnol 2020; 104:7723-7730. [PMID: 32761463 DOI: 10.1007/s00253-020-10803-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a biopolymer with a wide range of potential applications starting from the food industry and biomedicine to electronics and cosmetics. Despite that, BC industrial production to date still is associated with certain difficulties. One of them is the high cost of growth media, which can reach up to 30% of production costs. To decrease production costs, use of industrial and agricultural by-products, including whey, as alternative growth media has been reported. Whey, as the main high-volume by-product of dairy industry, which is known for its low valorisation opportunities and negative environmental impact, can nevertheless be considered as an alternative growth medium for BC production. To date, several studies aimed at evaluating BC production on whey and lactose substrates have been reported, but they are still insufficient. Reviews of them showed that, in general, BC production on untreated whey- and lactose-containing media was lower than that on the standard medium. However, some wild and recombinant strains have been reported to produce BC on whey as good as the standard medium. Enzymatic and acidic pre-treatment of whey significantly enhanced BC yield. Changes in the microstructure of BC obtained from whey were also recognised, which should be considered regarding the impact on physical properties of the desired BC product. This mini-review indicates that currently whey can be recognised as quite a problematic alternative growth substrate for industrial BC production; however, further extensive studies may improve the prospects in both the search for a cheap alternative growth substrate for industrial BC production and valorisation of whey. KEY POINTS: • Whey is a by-product in which valorisation is still challenging. • Whey can be used for bacterial cellulose (BC) production. • BC yield and properties vary upon cultivation conditions and producer strains.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa street 4, Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa street 4, Riga, LV-1004, Latvia.
| |
Collapse
|
87
|
Fernandes IDAA, Pedro AC, Ribeiro VR, Bortolini DG, Ozaki MSC, Maciel GM, Haminiuk CWI. Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol 2020; 164:2598-2611. [PMID: 32750475 DOI: 10.1016/j.ijbiomac.2020.07.255] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Bacterial cellulose (BC) is a biopolymer of great significance to the medical, pharmaceutical, and food industries. However, a high concentration of carbon sources (mainly glucose) and other culture media components is usually required to promote a significant yield of BC, which increases the bioprocess cost. Thus, optimization strategies (conventional or statistical) have become relevant for the cost-effective production of bacterial cellulose. Additionally, this biopolymer may present new properties through modifications with exogenous compounds. The present review, explores and discusses recent studies (last five years) that report the optimization of BC production and its yield as well as in situ and ex situ modifications, resulting in improved mechanical, antioxidant, and antimicrobial properties of BC for new applications.
Collapse
Affiliation(s)
| | - Alessandra Cristina Pedro
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), CEP (81531-980), Curitiba, PR, Brazil
| | - Valéria Rampazzo Ribeiro
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), CEP (81531-980), Curitiba, PR, Brazil
| | - Débora Gonçalves Bortolini
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), CEP (81531-980), Curitiba, PR, Brazil
| | - Mellany Sarah Cabral Ozaki
- Universidade Tecnológica Federal do Paraná (UTFPR), Departamento Acadêmico de Química e Biologia (DAQBi), Laboratório de Biotecnologia, CEP (81280-340), Curitiba, PR, Brazil
| | - Giselle Maria Maciel
- Universidade Tecnológica Federal do Paraná (UTFPR), Departamento Acadêmico de Química e Biologia (DAQBi), Laboratório de Biotecnologia, CEP (81280-340), Curitiba, PR, Brazil
| | - Charles Windson Isidoro Haminiuk
- Universidade Tecnológica Federal do Paraná (UTFPR), Departamento Acadêmico de Química e Biologia (DAQBi), Laboratório de Biotecnologia, CEP (81280-340), Curitiba, PR, Brazil.
| |
Collapse
|
88
|
Fleury B, Abraham E, De La Cruz JA, Chandrasekar VS, Senyuk B, Liu Q, Cherpak V, Park S, Ten Hove JB, Smalyukh II. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34115-34121. [PMID: 32615033 DOI: 10.1021/acsami.0c08879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Improving building energy performance requires the development of new highly insulative materials. An affordable retrofitting solution comprising a thin film could improve the resistance to heat flow in both residential and commercial buildings and reduce overall energy consumption. Here, we propose cellulose aerogel films formed from pellicles produced by the bacteria Gluconacetobacter hansenii as insulation materials. We studied the impact of the density and nanostructure on the aerogels' thermal properties. A thermal conductivity as low as 13 mW/(K·m) was measured for native pellicle-based aerogels that were dried as-is with minimal post-treatment. The use of waste from the beer brewing industry as a solution to grow the pellicle maintained the cellulose yield obtained with standard Hestrin-Schramm media, making our product more affordable and sustainable. In the future, our work can be extended through further diversification of food wastes as the substrate sources, facilitating higher potential production and larger applications.
Collapse
Affiliation(s)
- Blaise Fleury
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Eldho Abraham
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Joshua A De La Cruz
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Varun S Chandrasekar
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Bohdan Senyuk
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Qingkun Liu
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Vladyslav Cherpak
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Sungoh Park
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Jan Bart Ten Hove
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Soft Materials Research Center and Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
89
|
Lin D, Liu Z, Shen R, Chen S, Yang X. Bacterial cellulose in food industry: Current research and future prospects. Int J Biol Macromol 2020; 158:1007-1019. [PMID: 32387361 DOI: 10.1016/j.ijbiomac.2020.04.230] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose, a pure exocellular polysaccharide produced by microorganisms, has many excellent properties as compared with plant-derived cellulose, including high water holding capability, high surface area, rheological properties, biocompatibility. Due to its suspending, thickening, water holding, stabilizing, bulking and fluid properties, BC has been demonstrated as a promising low calorie bulking ingredient for the development of novel rich functional foods of different forms such as powder gelatinous or shred foams, which facilitate its application in food industry. In this review, the recent reports on the biosynthesis, structure and general application of bacterial cellulose in food industry have been summarized and discussed. The main application of bacterial cellulose in current food industry includes raw food materials, additive ingredients, packing materials, delivery system, enzyme and cell immobilizers. In addition, we also propose the potential challenges and explore the solution of expanding the application of BC in various fields.
Collapse
Affiliation(s)
- Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhe Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Siqian Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
90
|
Wang X, Wang Q, Xu C. Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review. Bioengineering (Basel) 2020; 7:E40. [PMID: 32365578 PMCID: PMC7355978 DOI: 10.3390/bioengineering7020040] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocelluloses have emerged as a catalogue of renewable nanomaterials for bioink formulation in service of 3D bioprinting, thanks to their structural similarity to extracellular matrices and excellent biocompatibility of supporting crucial cellular activities. From a material scientist's viewpoint, this mini-review presents the key research aspects of the development of the nanocellulose-based bioinks in 3D (bio)printing. The nanomaterial properties of various types of nanocelluloses, including bacterial nanocellulose, cellulose nanofibers, and cellulose nanocrystals, are reviewed with respect to their origins and preparation methods. Different cross-linking strategies to integrate into multicomponent nanocellulose-based bioinks are discussed in terms of regulating ink fidelity in direct ink writing as well as tuning the mechanical stiffness as a bioactive cue in the printed hydrogel construct. Furthermore, the impact of surface charge and functional groups on nanocellulose surface on the crucial cellular activities (e.g., cell survival, attachment, and proliferation) is discussed with the cell-matrix interactions in focus. Aiming at a sustainable and cost-effective alternative for end-users in biomedical and pharmaceutical fields, challenging aspects such as biodegradability and potential nanotoxicity of nanocelluloses call for more fundamental comprehension of the cell-matrix interactions and further validation in in vivo models.
Collapse
Affiliation(s)
- Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3-5, 20500 Turku, Finland; (Q.W.); (C.X.)
| | | | | |
Collapse
|
91
|
Marestoni LD, Barud HDS, Gomes RJ, Catarino RPF, Hata NNY, Ressutte JB, Spinosa WA. Commercial and potential applications of bacterial cellulose in Brazil: ten years review. POLIMEROS 2020. [DOI: 10.1590/0104-1428.09420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
92
|
Raghavendran V, Asare E, Roy I. Bacterial cellulose: Biosynthesis, production, and applications. Adv Microb Physiol 2020; 77:89-138. [PMID: 34756212 DOI: 10.1016/bs.ampbs.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a natural polymer produced by the acetic acid producing bacterium and has gathered much interest over the last decade for its biomedical and biotechnological applications. Unlike the plant derived cellulose nanofibres, which require pretreatment to deconstruct the recalcitrant lignocellulosic network, BC are 100% pure, and are extruded by cells as nanofibrils. Moreover, these nanofibrils can be converted to macrofibers that possess excellent material properties, surpassing even the strength of steel, and can be used as substitutes for fossil fuel derived synthetic fibers. The focus of the review is to present the fundamental long-term research on the influence of environmental factors on the organism's BC production capabilities, the production methods that are available for scaling up/scaled-up processes, and its use as a bulk commodity or for biomedical applications.
Collapse
Affiliation(s)
- Vijayendran Raghavendran
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Asare
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|