51
|
Lv Y, Zhao Y, Liu Y, Zhou Z, Shen Y, Jiang L. Self-Assembling Oligo(2-oxazoline) Organogelators for the Encapsulation and Slow Release of Bioactive Volatiles. ACS OMEGA 2022; 7:27523-27531. [PMID: 35967068 PMCID: PMC9366986 DOI: 10.1021/acsomega.2c02905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Herein, we report a class of distinctive supramolecular nanostructures in situ-generated from the cationic ring-opening polymerization of a particular 2-oxazoline monomer, i.e., 2-(N-tert-butyloxycarbonylaminomethyl)-2-oxazoline (Ox1). Driven by side-chain hydrogen bonding between neighboring molecules and van der Waals interactions, the growing oligomers of Ox1 precipitate in the form of macroscopic platelets when the degree of polymerization reaches 5-7. A similar self-assembly occurred in the block copolymerization of 2-ethyl-2-oxazoline (EtOx) or 2-pentyl-2-oxazoline (PeOx) and Ox1 as the second monomer. These polymeric aggregates were found to disassemble into rod-like nanoparticles under appropriate conditions, and to form stable organogels in some polar solvents like dimethylformamide as well as in natural liquid fragrances such as (R)-carvone, citronellal, and (R)-limonene. Scanning electron microscopy revealed that the morphology of their xerogels was solvent-dependent, mainly with a lamellar or fibrous structure. The rheology measurements confirmed the as-obtained organogels feature an obvious thixotropic character. The storage modulus was about 7-10 times higher than the loss modulus, indicating the physical crosslinking in the gel. The fragrance release profiles showed that the presented supramolecular gel system exhibits good sustained-release effect for the loaded bioactive volatiles.
Collapse
Affiliation(s)
- Yichao Lv
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Zhao
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhang Liu
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liming Jiang
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
52
|
Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate. Foods 2022; 11:foods11152364. [PMID: 35954132 PMCID: PMC9368340 DOI: 10.3390/foods11152364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rheological and tribological properties of oleogels and water-in-oil (W/O) emulsions are important for application in fat substitutes. This study investigated the roles of glycerol monostearate (GMS) in tailoring the structural, rheological and tribological properties of ethylcellulose (EC)-based oleogels and W/O emulsions as potential fat substitutes. The addition of GMS contributed to more round and compact oil pores in oleogel networks. The oleogel with 5% GMS had higher crystallinity, leading to solid state (lower tanδ value), mechanical reversibility (higher thixotropic recovery), but a brittle (lower critical strain) structure in the samples. GMS gave the oleogels and emulsions higher oil binding capacity, storage modulus and yield stress. Under oral processing conditions, GMS addition contributed to higher textural attributes and viscosity. Friction coefficients in mixed and boundary regions of oleogels and emulsions were reduced with the increase in GMS content from 0~2%, but increased with 5% GMS. Rheological and tribological properties of lard, mayonnaise and cream cheese can be mimicked by EC oleogels with 5% GMS, or emulsions with 2% GMS and 2-5% GMS, respectively. The study showed the potentials of oleogel and W/O emulsions in designing low-fat products by tuning the structures for healthier and better sensory attributes.
Collapse
|
53
|
Yang J, Zheng H, Mo Y, Gao Y, Mao L. Structural characterization of hydrogel-oleogel biphasic systems as affected by oleogelators. Food Res Int 2022; 158:111536. [DOI: 10.1016/j.foodres.2022.111536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
|
54
|
Ultrasound modified protein colloidal particles: Interfacial activity, gel property and encapsulation efficiency. Adv Colloid Interface Sci 2022; 309:102768. [DOI: 10.1016/j.cis.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
55
|
Zhang L, Zheng J, Wang Y, Ye X, Chen S, Pan H, Chen J. Fabrication of rhamnogalacturonan-I enriched pectin-based emulsion gels for protection and sustained release of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
56
|
Physicochemical, Rheological and Structural Properties of Cold-set Emulsion-filled Gels Based on Whey Protein Isolate-basil Seed Gum Mixed Biopolymers. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
57
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
58
|
Palla CA, Aguilera-Garrido A, Carrín ME, Galisteo-González F, Gálvez-Ruiz MJ. Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chem 2022; 378:132132. [DOI: 10.1016/j.foodchem.2022.132132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
|
59
|
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6300-6316. [PMID: 35578738 DOI: 10.1021/acs.jafc.2c01080] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.
Collapse
Affiliation(s)
- Yunzhen Zhang
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lezhen Dong
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lingyi Liu
- University of Nebraska Lincoln, Department of Food Science & Technology, Lincoln, Nebraska 68588, United States
| | - Zufang Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Daodong Pan
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lianliang Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| |
Collapse
|
60
|
Liu K, Chen YY, Pan LH, Li QM, Luo JP, Zha XQ. Co-encapsulation systems for delivery of bioactive ingredients. Food Res Int 2022; 155:111073. [DOI: 10.1016/j.foodres.2022.111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
61
|
W/O emulsions featuring ethylcellulose structuring in the water phase, interface and oil phase for multiple delivery. Carbohydr Polym 2022; 283:119158. [DOI: 10.1016/j.carbpol.2022.119158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
|
62
|
Yue J, Chen X, Yao X, Gou Q, Li D, Liu H, Yao X, Nishinari K. Stability improvement of emulsion gel fabricated by Artemisia sphaerocephala Krasch. polysaccharide fractions. Int J Biol Macromol 2022; 205:253-260. [PMID: 35183599 DOI: 10.1016/j.ijbiomac.2022.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 12/22/2022]
Abstract
Artemisia sphaerocephala Krasch. polysaccharide (ASKP) contained two fractions of 60P and 60S with different molecular weight. It was found the potential performance of interface adsorption and gelation activities for the high molecular weight of 60P in comparison with low molecular weight of 60S. The emulsion stability and droplets filling in gel network was highly dependent on the medium chain triglyceride (MCT) concentrations. The emulsion gels fabricated through a complexation of 60P and gelatin or collagen peptides exhibited significantly improved emulsifying activity and gel strength at higher concentration of MCT. Gelatin or collagen peptide could be adsorbed on the droplets interface and interact with 60P in gel matrix, thus presenting an active filling. However, 60P based emulsion gel complexed with pullulan contributed to a lower strength than hydrogel, which was probably due to the existence of spaces between droplets and gel matrix, weakening the stability of gel network, considered as an inactive filling.
Collapse
Affiliation(s)
- Jianxiong Yue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaoyu Chen
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China.
| | - Qingxia Gou
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Huabing Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaoxue Yao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
63
|
Ade C, Marcelino TF, Dulchavsky M, Wu K, Bardwell JCA, Städler B. Microreactor equipped with naturally acid-resistant histidine ammonia lyase from an extremophile. MATERIALS ADVANCES 2022; 3:3649-3662. [PMID: 36238657 PMCID: PMC9555226 DOI: 10.1039/d2ma00051b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extremophile enzymes are useful in biotechnology and biomedicine due to their abilities to withstand harsh environments. The abilities of histidine ammonia lyases from different extremophiles to preserve their catalytic activities after exposure to acid were assessed. Thermoplasma acidophilum histidine ammonia lyase was identified as an enzyme with a promising catalytic profile following acid treatment. The fusion of this enzyme with the maltose-binding protein or co-incubation with the chaperone HdeA further helped Thermoplasma acidophilum histidine ammonia lyase to withstand acid treatments down to pH 2.8. The assembly of a microreactor by encapsulation of MBP-Thermoplasma acidophilum histidine ammonia lyase into a photocrosslinked poly(vinyl alcohol) hydrogel allowed the enzyme to recover over 50% of its enzymatic activity following exposure to simulated gastric and intestinal fluids. Our results show that using engineered proteins obtained from extremophiles in combination with polymer-based encapsulation can advance the oral formulations of biologicals.
Collapse
Affiliation(s)
- Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Thaís F Marcelino
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, China
| | - Mark Dulchavsky
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin Wu
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
64
|
Fontes-Candia C, Martínez JC, López-Rubio A, Salvia-Trujillo L, Martín-Belloso O, Martínez-Sanz M. Emulsion gels and oil-filled aerogels as curcumin carriers: Nanostructural characterization of gastrointestinal digestion products. Food Chem 2022; 387:132877. [PMID: 35397271 DOI: 10.1016/j.foodchem.2022.132877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
Agar and κ-carrageenan emulsion gels and oil-filled aerogels were investigated as curcumin carriers and their structure and mechanical properties, as well as their structural changes upon in vitro gastrointestinal digestion were characterized. Agar emulsion gels presented stiffer behaviour, with smaller and more homogeneous oil droplets (ϕ ∼ 12 µm) than those from κ-carrageenan (ϕ ∼ 243 µm). The structure of κ-carrageenan gels was characterized by the presence of rigid swollen linear chains, while agar produced more branched networks. After simulated gastrointestinal digestion bile salt lamellae/micelles (∼5 nm) and larger vesicles of partially digested oil (Rg ∼ 20-50 nm) were the predominant structures, being their proportion dependent of the polysaccharide type and the physical state of the gel network. The presence of curcumin induced the formation of larger vesicles and limited the formation of mixed lamellae/micelles.
Collapse
Affiliation(s)
- Cynthia Fontes-Candia
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Juan Carlos Martínez
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
65
|
Hao J, Xu J, Zhang W, Li X, Liang D, Xu D, Cao Y, Sun B. The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Chen M, Li W, Wang W, Cao Y, Lan Y, Huang Q, Xiao J. Effects of gelation on the stability, tribological properties and time-delayed release profile of double emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
68
|
Zhang M, Yin L, Yan W, Gao C, Jia X. Preparation and Characterization of a Novel Soy Protein Isolate-Sugar Beet Pectin Emulsion Gel and Its Application as a Multi-Phased Nutrient Carrier. Foods 2022; 11:469. [PMID: 35159619 PMCID: PMC8833956 DOI: 10.3390/foods11030469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Emulsion gel, a novel oral delivery carrier, provides the possibility to co-load hydrophilic and lipophilic nutrients simultaneously. In this study, duo-induction methods of laccase and glucono-δ-lactone (L&GDL) or laccase and transglutaminase (L&MTG) were used to prepare the soy protein isolate-sugar beet pectin (SPI-SBP) emulsion gel. The textural data of the emulsion gel was normalized to analyze the effect of different induction methods on the gel property of the SPI-SBP emulsion gels. The characterization studies showed the structure of L&MTG emulsion gel was denser with a lower swelling ratio and reduced degree of digestion, compared with L&GDL emulsion gel. Moreover, the release profiles of both β-carotene and riboflavin co-loaded in the SPI-SBP emulsion gels were correlated to the digestion patterns of the gel matrix; the controlled-release of encapsulated functional factors was regulated by a gel network induced by different induction methods, mainly due to the resulting porosity of the structure and swelling ratio during digestion. In conclusion, SPI-SBP emulsion gels have the capability of encapsulating multiple functional factors with different physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Z.); (L.Y.); (W.Y.); (C.G.)
| |
Collapse
|
69
|
Zhang R, Cui M, Ye J, Yuan D, Mao L. Physicochemical stability of oleogel-in-water emulsions loaded with β-carotene against environmental stresses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Wang B, Wang X, Xiong Z, Lu G, Ma W, Lv Q, Wang L, Jia X, Feng L. A review on the applications of Traditional Chinese medicine polysaccharides in drug delivery systems. Chin Med 2022; 17:12. [PMID: 35033122 PMCID: PMC8760834 DOI: 10.1186/s13020-021-00567-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 01/03/2023] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) are plentiful and renewable resources with properties such as biocompatibility, hydrophilicity, biodegradability, and low cytotoxicity. Because the polysaccharide molecular chain contains a variety of active groups, different polysaccharide derivatives can be easily produced through chemical modification. They have been increasingly used in drug delivery systems (DDS). However, the potential of polysaccharides is usually ignored due to their structural complexity, poor stability or ambiguity of mechanisms of actions. This review summarized the applications of TCMPs in DDS around four main aspects. The general characteristics of TCMPs as drug delivery carriers, as well as the relationships between structure and function of them were summarized. Meanwhile, the direction of preparing multifunctional drug delivery materials with synergistic effect by using TCMPs was discussed. This review aims to become a reference for further research of TCMPs and their derivatives, especially applications of them as carriers in pharmaceutical preparation industry.
Collapse
|
71
|
Lv D, Zhang P, Chen F, Yin L. Effects of emulsion concentration on the physicochemical properties of wheat bran arabinoxylan-soy protein isolate emulsion-filled gels used as β-carotene carriers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Developing psyllium fibre gel-based foods: Physicochemical, nutritional, optical and mechanical properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
73
|
Martín-Illana A, Notario-Pérez F, Cazorla-Luna R, Ruiz-Caro R, Bonferoni MC, Tamayo A, Veiga MD. Bigels as drug delivery systems: From their components to their applications. Drug Discov Today 2021; 27:1008-1026. [PMID: 34942374 DOI: 10.1016/j.drudis.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
Bigels are systems that usually result from mixing a hydrogel and an organogel: the aqueous phase is commonly formed by a hydrophilic biopolymer, whereas the organic phase comprises a gelled vegetable oil because of the presence of an organogelator. The proportion of the corresponding gelling agent in each phase, the organogel/hydrogel ratio, and the mixing temperature and speed all need to be taken into consideration for bigel manufacturing. Bigels, which are particularly useful drug delivery systems, have already been formulated for transdermal, buccal, and vaginal routes. Mechanical assessments and microscopy are the most reported characterization techniques. As we review here, their composition and unique structure confer promising drug delivery attributes, such as mucoadhesion, the ability to control drug release, and the possibility of including both hydrophilic and lipophilic drugs in the same system.
Collapse
Affiliation(s)
- Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Notario-Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raúl Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria C Bonferoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aitana Tamayo
- Department of Chemical-Physics of Surfaces and Processes, Institute of Ceramics and Glass, Spanish National Research Council, 28049 Madrid, Spain
| | - María D Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
74
|
Wang S, Chen K, Liu G. Monoglyceride oleogels for lipophilic bioactive delivery - Influence of self-assembled structures on stability and in vitro bioaccessibility of astaxanthin. Food Chem 2021; 375:131880. [PMID: 34952389 DOI: 10.1016/j.foodchem.2021.131880] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The present study investigated the influence of self-assembled structures on stability and in vitro bioaccessibility of astaxanthin by modifying the structures with different processing conditions. The self-assembled structures of GMS oleogels were changed to produce smaller crystals and more compact network at higher glycerol monostearate (GMS) concentration and lower cooling temperature, resulting in higher hardness, oil binding capacity, and viscoelastic properties of oleogels. In the stability test, the highest retention ratio of astaxanthin was observed in oleogels formed at 4 °C and 10% GMS, indicating that the denser network structures were more effective to prevent the degradation of astaxanthin. During in vitro digestion, the self-assembled structures of oleogels and the nature of GMS molecules affected the lipolysis and micellization, which in turn regulated the bioaccessibility of astaxanthin. Collectively, GMS oleogels were effective delivery materials for improving the stability and bioaccessibility of lipophilic bioactives.
Collapse
Affiliation(s)
- Shujie Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kefei Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
75
|
Zhuang X, Clark S, Acevedo N. Bigels-oleocolloid matrices-as probiotic protective systems in yogurt. J Food Sci 2021; 86:4892-4900. [PMID: 34643273 DOI: 10.1111/1750-3841.15928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The probiotic yogurt market is strong because of the potential benefits that probiotics provide to the host, such as relieving lactose intolerance symptoms, easing diarrhea, and improving the immune system. However, probiotics are sensitive to processing conditions and the high acidity of yogurt can reduce survival of probiotics and limit yogurt shelf life. Here, oleocolloid technology (bigels) was used to improve the survival of probiotics during yogurt shelf life. Bigels are semisolid systems containing a polar and a non-polar phase mixed forming a material with improved properties. Probiotic bigels were prepared by mixing a soy lecithin-stearic acid oleogel emulsion and a whey protein hydrogel, followed by the incorporation of Lactobacillus acidophilus and Bifidobacterium lactis suspended in milk. Yogurt was prepared with 18% wt/wt probiotic bigels with (Swiss-style) and without (sundae-style) agitation. Probiotic viability was monitored for 6 weeks. The total counts of L. acidophilus and B. lactis entrapped in bigels were significantly higher than free bacteria in yogurt after 3 and 5 weeks, respectively, indicating that probiotics could be entrapped and their survival enhanced. Both yogurt styles showed a meant total count of 3.3 and 4.5 log CFU/g for L. acidophilus and B. lactis, respectively at the end of storage time suggesting that despite agitation of yogurt, bigel structure played a key role in protecting probiotic viability.
Collapse
Affiliation(s)
- Xiaoqing Zhuang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Stephanie Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Nuria Acevedo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
76
|
Structural characteristics of binary biopolymers-based emulsion-filled gels: A case of mixed sodium caseinate/methyl cellulose emulsion gels. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
77
|
Zhao Y, Xue S, Zhang X, Zhang T, Shen X. Improved Gel Properties of Whey Protein-Stabilized Emulsions by Ultrasound and Enzymatic Cross-Linking. Gels 2021; 7:gels7030135. [PMID: 34563021 PMCID: PMC8482177 DOI: 10.3390/gels7030135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of high-intensity ultrasound (HUS) and transglutaminase pretreatment on the gelation behavior of whey protein soluble aggregate (WPISA) emulsions. HUS pretreatment and TGase-mediated cross-linking delayed the onset of gelation but significantly increased (p < 0.05) the gel firmness (G') both after gel formation at 25 °C and during storage at 4 °C. The frequency sweep test indicated that all gels had a similar frequency dependence at 4 and 25 °C, and the elasticity and viscosity of the WPISA-stabilized emulsion gel were significantly enhanced by HUS pretreatment and TGase-mediated cross-linking (p < 0.05). HUS and TGase-mediated cross-linking greatly improved the textural properties of WPISA-stabilized emulsion gels, as revealed by their increases in gel hardness, cohesiveness, resilience, and chewiness. HUS pretreatment and TGase-mediated cross-linking significantly increased the water-holding capacity but decreased the swelling ratios of the gels (p < 0.05). Interactive force analysis confirmed that noncovalent interactions, disulfide bonds, and TGase-induced covalent cross-links were all involved in the formation of gel networks. In conclusion, the combination of HUS and TGase-mediated cross-linking were beneficial for improving the gelation properties of WPISA-stabilized emulsion as a controlled release vehicle for potential food industrial applications.
Collapse
|
78
|
Rangel Euzcateguy G, Parajua-Sejil C, Marchal P, Chapron D, Averlant-Petit MC, Stefan L, Pickaert G, Durand A. Rheological investigation of the influence of dextran on the self-assembly of lysine derivatives in water/dimethylsulfoxide mixtures. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
79
|
Hydrophobic interaction and hydrogen bonding driving the self-assembling of quinoa protein and flavonoids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
80
|
Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021; 10:foods10091991. [PMID: 34574098 PMCID: PMC8465917 DOI: 10.3390/foods10091991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.
Collapse
|
81
|
Modi B, Timilsina H, Bhandari S, Achhami A, Pakka S, Shrestha P, Kandel D, GC DB, Khatri S, Chhetri PM, Parajuli N. Current Trends of Food Analysis, Safety, and Packaging. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9924667. [PMID: 34485507 PMCID: PMC8410450 DOI: 10.1155/2021/9924667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/07/2021] [Indexed: 12/22/2022]
Abstract
Food is a basic necessity for life, growth, survival, and maintaining a proper body function. Rising food demand leads both producers and consumers to search for alternative food sources with high nutritional value. However, food products may never be completely safe. The oxidation reaction may alter both the physicochemical and immunological properties of food products. Maillard and caramelization nonenzymatic browning reactions can play a pivotal role in food acceptance through the ways they influence quality factors such as flavor, color, texture, nutritional value, protein functionality, and digestibility. There is a multitude of adulterated foods that portray adverse risks to the human condition. To maintain food safety, the packaging material is used to preserve the quality and freshness of food products. Food safety is jeopardized by plenty of pathogens by the consumption of adulterated food resulting in multiple foodborne illnesses. Though different analytical tools are used in the analysis of food products, yet, adulterated food has repercussions for the community and is a growing issue that adversely impairs human health and well-being. Thus, pathogenic agents' rapid and effective identification is vital for food safety and security to avoid foodborne illness. This review highlights the various analytical techniques used in the analysis of food products, food structure, and quality of food along with chemical reactions in food processing. Moreover, we have also discussed the effect on health due to the consumption of adulterated food and focused on the importance of food safety, including the biodegradable packaging material.
Collapse
Affiliation(s)
- Bindu Modi
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Hari Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sobika Bhandari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Ashma Achhami
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sangita Pakka
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Prakash Shrestha
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Devilal Kandel
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Dhan Bahadur GC
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sabina Khatri
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Pradhumna Mahat Chhetri
- Department of Chemistry, Amrit Campus, Tribhuvan University, Leknath Marg, Kathmandu 44600, Nepal
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
82
|
Liu K, Chen YY, Zha XQ, Li QM, Pan LH, Luo JP. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res Int 2021; 147:110542. [PMID: 34399519 DOI: 10.1016/j.foodres.2021.110542] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Some bioactive ingredients in foods are unstable and easily degraded during processing, storage, transportation and digestion. To enhance the stability and bioavailability, some food hydrogels have been developed to encapsulate these unstable compounds. In this paper, the preparation methods, formation mechanisms, physicochemical and functional properties of some protein hydrogels, polysaccharide hydrogels and protein-polysaccharide composite hydrogels were comprehensively summarized. Since the hydrogels have the ability to control the release and enhance the bioavailability of bioactive ingredients, the encapsulation and release mechanisms of polyphenols, flavonoids, carotenoids, vitamins and probiotics by hydrogels were further discussed. This review will provide a comprehensive reference for the deep application of polysaccharide/protein hydrogels in food industry.
Collapse
Affiliation(s)
- Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
83
|
Torres M, Fradinho P, Raymundo A, Sousa I, Falqué E, Domínguez H. The key role of thermal waters in the development of innovative gelled starch-based matrices. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
84
|
Pinto TC, Martins AJ, Pastrana L, Pereira MC, Cerqueira MA. Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels 2021; 7:gels7030086. [PMID: 34287270 PMCID: PMC8293095 DOI: 10.3390/gels7030086] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
Oleogels are semi-solid materials containing a large fraction of liquid oil entrapped in a network of structuring molecules. In the food industry, these formulations can be used to mimic fats and to deliver bioactive compounds. In the last decade, there has been increasing interest in these structures, not only from a scientific point of view, i.e., studying new molecules, methodologies for gelification, and new structures, but also from a technological point of view, with researchers and companies exploring these structures as a way to overcome certain challenges and/or create new and innovative products. One of the exciting applications of oleogels is the delivery of functional molecules, where the incorporation of oil-soluble functional compounds can be explored not only at the macroscale but also at micro- and nanoscales, resulting in different release behaviors and also different applications. This review presents and discusses the most recent works on the development, production, characterization, and applications of oleogels and other oleogel-based systems to deliver functional molecules in foods.
Collapse
Affiliation(s)
- Tiago C. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Artur J. Martins
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Lorenzo Pastrana
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
- Correspondence:
| |
Collapse
|
85
|
Lu Y, Zhang Y, Yuan F, Gao Y, Mao L. Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
86
|
Ćorković I, Pichler A, Šimunović J, Kopjar M. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds. Foods 2021; 10:1252. [PMID: 34072886 PMCID: PMC8229619 DOI: 10.3390/foods10061252] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Complex challenges are facing the food industry as it develops novel and innovative products for the consumer marketplace. Food processing and preservation are primarily based on achievement and maintenance of safety in order to protect consumers, as well as extending product shelf life under the relevant conditions of storage, transport and distribution. Maximizing retention of bioactives with recognized positive effects on health typically comes under consideration when the previous two priorities have been achieved. This review introduces the potential applications of hydrogels as delivery systems of high-value bioactives like phenolics and aromas. If they are successfully encapsulated within the gel structures, their release can be controlled, which opens a wide range of applications, not only in food, but also in the pharmaceutical and cosmetic industries. Hydrogels are three-dimensional network structures which can absorb significant amounts of water. They have the ability to thicken the system and therefore can be used to design products with desired properties. In order to preserve the valuable components, it is necessary to know their physicochemical properties, in addition to the properties of the polymer used for hydrogel preparation.
Collapse
Affiliation(s)
- Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| |
Collapse
|
87
|
Noguerol AT, Igual M, Pagán-Moreno MJ. Nutritional, Physico-Chemical and Mechanical Characterization of Vegetable Fibers to Develop Fiber-Based Gel Foods. Foods 2021; 10:foods10051017. [PMID: 34066936 PMCID: PMC8148593 DOI: 10.3390/foods10051017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this research was to evaluate the nutritional and physico-chemical properties of six different vegetable fibers and explore the possibility of using them as a thickener or gelling agent in food. To determine the technological, nutritional and physical parameters, the following analyses were carried out: water-holding capacity, water retention capacity, swelling, fat absorption capacity, solubility, particle size, moisture, hygroscopicity, pH, water activity, bulk density, porosity, antioxidant activity, phenolic compounds and mineral content. Gels were prepared at concentrations from 4% to 7% at 5 °C and analyzed at 25 °C before and after treatment at 65 °C for 20 min. A back extrusion test, texture profile analysis and rheology were performed and the pH value, water content and color were analyzed. As a result, all the samples generally showed significant differences in all the tested parameters. Hydration properties were different in all the tested samples, but the high values found for chia flour and citrus fiber are highlighted in functional terms. Moreover, chia flour was a source of minerals with high Fe, Mn and Cu contents. In gels, significant differences were found in the textural and rheological properties among the samples, and also due to the heat treatment used (65 °C, 20 min). As a result, chia flour, citrus, potato and pea fibers showed more appropriate characteristics for thickening. Moreover, potato fiber at high concentrations and both combinations of fibers (pea, cane sugar and bamboo fiber and bamboo, psyllium and citric fiber) were more suitable for gelling agents to be used in food products.
Collapse
|
88
|
Physical properties and salt release of potato starch-based emulsion gels with OSA starch-stabilized oil droplets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
89
|
Guo Y, Bao YH, Sun KF, Chang C, Liu WF. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106293] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
90
|
Effect of interfacial compositions on the physical properties of alginate-based emulsion gels and chemical stability of co-encapsulated bioactives. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
Zhao R, Wu S, Liu S, Li B, Li Y. Structure and Rheological Properties of Glycerol Monolaurate-Induced Organogels: Influence of Hydrocolloids with Different Surface Charge. Molecules 2020; 25:E5117. [PMID: 33158027 PMCID: PMC7662997 DOI: 10.3390/molecules25215117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Organogel (OG) is a class of semi-solid gel, entrapping organic solvent within a three-dimensional network, which is formed via the self-assembly of organogelators. In the present study, OG was produced by glycerol monolaurate (GML) as organogelator. The influence of hydrocolloids with different surface charges (chitosan (CS), konjac glucomannan (KGM) and sodium alginate (SA)) on the physiochemical properties of OG was investigated. Rheological studies demonstrated that OG and pure hydrocolloid solution showed shear-thinning behavior. After incorporation of the hydrocolloid, the initial viscosity of OG was lowered from ~100 Pa·s to <10 Pa·s, and then the viscosity increased to more than 100 Pa·s at a low shear rate of 0.1-0.2 s-1, which subsequently decreased with a higher shear rate. OGs in the presence of hydrocolloids still kept the thermo-sensitivity, while the melting point of the OG decreased with the incorporation of hydrocolloids. Hydrocolloid addition greatly shortened the gelling time of the OG from 21 min to less than 2 min. The presence of hydrocolloids increased the particle size of oil droplets in the molten OG. Some aggregation and coalescence of oil droplets occurred in the presence of positive-charged CS and negative-charged SA, respectively. After gelling, the gel structure converted into a biphasic-like network. Hydrocolloids improved the hardness, stickiness and the oil-holding stability of OGs by 18.8~33.9%. Overall, hydrocolloid incorporation could modulate the properties of OGs through their different surface charge properties. These novel OGs have potential as nutrient carriers or low-fat margarine alternatives and avoid the trans-fatty acid intake.
Collapse
Affiliation(s)
- Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
| | - Shan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Functional Food Engineering &Technology Research Center of Hubei Province, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Functional Food Engineering &Technology Research Center of Hubei Province, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Functional Food Engineering &Technology Research Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
92
|
Khalesi H, Lu W, Nishinari K, Fang Y. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 2020; 285:102278. [PMID: 33010577 DOI: 10.1016/j.cis.2020.102278] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production. This paper reviews innovative techniques such as particle/fiber-reinforced hydrogel, double network, dual crosslinking, freeze-thaw cycles, physical conditioning and soaking methods to improve the mechanical properties of hydrogels. Additionally, their fundamental mechanisms, advantages and disadvantages have been discussed. Important biopolymers that have been employed for these strategies and also their potentials in food applications have been summarized. The general mechanism of these strategies is based on increasing the degree of crosslinking between interacting polymers in hydrogels. These links can be formed by adding fillers (oil droplets or fibers in filled gels) or cross-linkers (regarding double network and soaking method) and also by condensation or alignment of the biopolymers (freeze-thaw cycle and physical conditioning) in the gel network. The properties of particle/fiber-reinforced hydrogels extremely depend on the filler, gel matrix and the interaction between them. In freeze-thaw cycles and physical conditioning methods, it is possible to form new links in the gel network without adding any cross-linkers or fillers. It is expected that the utilization of gels will get broader and more varied in food industries by using these strategies.
Collapse
|
93
|
Liu N, Lu Y, Zhang Y, Gao Y, Mao L. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. Int J Biol Macromol 2020; 165:2286-2294. [PMID: 33096181 DOI: 10.1016/j.ijbiomac.2020.10.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
The current study developed ethylcellulose (EC) based oleogels with the addition of a surface active ingredient (sorbitan monopalmitate, SP), in order to increase the active loading of curcumin by reducing lipid oxidation, improving curcumin solubility and chemical stability. With the increase in SP content, EC oleogels had more compact gel networks with evenly distributed smaller pores. Rheological analysis revealed that the gels had shear-thinning behavior, and higher concentration of SP contributed to the systems with higher viscosity. The inclusion of SP also worked to reinforce gel strength as determined by frequency sweep, creep recovery and textural analyses. EC oleogels with higher content of SP were capable to hold more liquid oil during centrifugation, and the T2 relaxation time was much lower as determined by NMR. Peroxide value of the oleogels was significantly lower in the systems with SP, and a SP content of 4% or 6% was effective in inhibiting lipid oxidation during storage. When curcumin was incorporated within the gel networks, its effective concentration was more retained with the addition of SP, as no curcumin crystals were detected by DSC during a 9-day storage test, and curcumin had much higher retention when exposed to UV light for 8 h.
Collapse
Affiliation(s)
- Nan Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Lu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
94
|
Characterization of β-carotene loaded emulsion gels containing denatured and native whey protein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105600] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
95
|
α-Tocopherol and resveratrol in emulsion-filled whey protein gels: Co-encapsulation and in vitro digestion. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
96
|
Ahlawat J, Neupane R, Deemer E, Sreenivasan ST, Narayan M. Chitosan-Ellagic Acid Nanohybrid for Mitigating Rotenone-induced Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18964-18977. [PMID: 32216327 DOI: 10.1021/acsami.9b21215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antioxidants derived from nature, such as ellagic acid (EA), demonstrated high potency to mitigate neuronal oxidative stress and related pathologies, including Parkinson's disease. However, the application of EA is limited due to its toxicity at moderate doses and poor solubility, cellular permeability, and bioavailability. Here, we introduce a sustainably resourced, green nanoencasement strategy to overcome the limitations of EA and derive synergistic effects to prevent oxidative stress in neuronal cells. Chitosan, with its high biocompatibility, potential antioxidant properties, and flexible surface chemistry, was chosen as the primary component of the nanoencasement in which EA is immobilized. Using a rotenone model to mimic intracellular oxidative stress, we examined the effectiveness of EA and chitosan to limit cell death. Our studies indicate a synergistic effect between EA and chitosan in mitigating rotenone-induced reactive oxygen species death. Our analysis suggests that chitosan encapsulation of EA reduces the inherent cytotoxicity of the polyphenol (a known anticancer molecule). Furthermore, its encapsulation permits its delivery via a rapid burst phase and a relatively slow phase making the nanohybrid suitable for drug release over extended time periods.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rabin Neupane
- Department of Industrial Pharmacy, The University of Toledo, Toledo, Ohio 43606, United States
| | - Eva Deemer
- Department of Material Science and Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
97
|
Klein M, Poverenov E. Natural biopolymer-based hydrogels for use in food and agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2337-2347. [PMID: 31960453 DOI: 10.1002/jsfa.10274] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Hydrogels are important materials that are of high scientific interest and with numerous applications. Natural polymer-based hydrogels are preferred to synthetic ones due to their safety, biocompatibility, and ecofriendly properties. They have been studied extensively and implemented in various fields, such as medicine, cosmetics, personal-care products, water purification, and more. This review focuses on the applications of nature-sourced polymer-based hydrogels in food and agriculture. Different types of biopolymers and crosslinking agents, and various methods for hydrogel formation are described. The physicomechanical properties and applied activities of the resulting materials are also comprehensively discussed. Biodegradable synthetic polymers are outside the scope of this review. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miri Klein
- The Institute of Postharvest and Food Science, Agro-Nanotechnology and Advanced Materials Center, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Elena Poverenov
- The Institute of Postharvest and Food Science, Agro-Nanotechnology and Advanced Materials Center, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
98
|
Chen H, Mao L, Hou Z, Yuan F, Gao Y. Roles of additional emulsifiers in the structures of emulsion gels and stability of vitamin E. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105372] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
99
|
Li S, Zhang B, Li C, Fu X, Huang Q. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chem 2020; 305:125476. [DOI: 10.1016/j.foodchem.2019.125476] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
100
|
Papadaki A, Kopsahelis N, Freire DMG, Mandala I, Koutinas AA. Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate. Biomolecules 2020; 10:E106. [PMID: 31936326 PMCID: PMC7022785 DOI: 10.3390/biom10010106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
Oleogelation is an emerging technology to structure oils, which can be widely used to substitute saturated and trans fats. Extra virgin olive oil is widely recognized for its high nutritional value, but its utilization in oleogel production is currently limited. In this study, extra virgin olive oil was utilized for the production of a novel oleogel using wax esters derived from soybean fatty acid distillate (SFAD), a byproduct of industrial soybean oil refining. Different concentrations (7%, 10%, 20%, w/w) of SFAD-wax esters were used to evaluate the minimum concentration requirement to achieve oleogelation. Analyses of the mechanical properties of oleogel showed a firmness of 3.8 N, which was then reduced to around 2.1-2.5 N during a storage period of 30 days at 4 °C. Rheological analysis demonstrated that G' is higher than G″ at 20-27 °C, which confirms the solid properties of the oleogel at this temperature range. Results showed that SFAD was successfully utilized for the oleogelation of olive oil, resulting in a novel oleogel with desirable properties for food applications. This study showed that industrial fatty side streams could be reused for the production of value-added oleogels with novel food applications.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece;
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece;
| | - Denise M. G. Freire
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Technology Center, A, Lab 549, Rio de Janeiro 21941-901, Brazil
| | - Ioanna Mandala
- Department of Food Science Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Apostolis A. Koutinas
- Department of Food Science Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| |
Collapse
|