51
|
Kamdar S, Hutchinson R, Laing A, Stacey F, Ansbro K, Millar MR, Costeloe K, Wade WG, Fleming P, Gibbons DL. Perinatal inflammation influences but does not arrest rapid immune development in preterm babies. Nat Commun 2020; 11:1284. [PMID: 32152273 PMCID: PMC7062833 DOI: 10.1038/s41467-020-14923-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infection and infection-related complications are important causes of death and morbidity following preterm birth. Despite this risk, there is limited understanding of the development of the immune system in those born prematurely, and of how this development is influenced by perinatal factors. Here we prospectively and longitudinally follow a cohort of babies born before 32 weeks of gestation. We demonstrate that preterm babies, including those born extremely prematurely (<28 weeks), are capable of rapidly acquiring some adult levels of immune functionality, in which immune maturation occurs independently of the developing heterogeneous microbiome. By contrast, we observe a reduced percentage of CXCL8-producing T cells, but comparable levels of TNF-producing T cells, from babies exposed to in utero or postnatal infection, which precedes an unstable post-natal clinical course. These data show that rapid immune development is possible in preterm babies, but distinct identifiable differences in functionality may predict subsequent infection mediated outcomes.
Collapse
Affiliation(s)
- S Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - R Hutchinson
- Department of Neonatology, Homerton University Hospital, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A Laing
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - F Stacey
- Department of Neonatology, Homerton University Hospital, London, UK
| | - K Ansbro
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- University of Sheffield, Sheffield, UK
| | - M R Millar
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - K Costeloe
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - W G Wade
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - P Fleming
- Department of Neonatology, Homerton University Hospital, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - D L Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
52
|
MicroRNAs regulate innate immunity against uropathogenic and commensal-like Escherichia coli infections in the surrogate insect model Galleria mellonella. Sci Rep 2020; 10:2570. [PMID: 32054914 PMCID: PMC7018962 DOI: 10.1038/s41598-020-59407-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause symptomatic urinary tract infections in humans whereas commensal-like E. coli strains in the urinary bladder cause long-term asymptomatic bacteriuria (ABU). We previously reported that UPEC and ABU strains differentially regulate key DNA methylation and histone acetylation components in the surrogate insect host Galleria mellonella to epigenetically modulate innate immunity-related gene expression, which in turn controls bacterial growth. In this follow-up study, we infected G. mellonella larvae with UPEC strain CFT073 or ABU strain 83972 to identify differences in the expression of microRNAs (miRNAs), a class of non-coding RNAs that regulate gene expression at the post-transcriptional level. Our small RNA sequencing analysis showed that UPEC and ABU infections caused significant changes in the abundance of miRNAs in the larvae, and highlighted the differential expression of 147 conserved miRNAs and 95 novel miRNA candidates. We annotated the G. mellonella genome sequence to investigate the miRNA-regulated expression of genes encoding antimicrobial peptides, signaling proteins, and enzymatic regulators of DNA methylation and histone acetylation in infected larvae. Our results indicate that miRNAs play a role in the epigenetic reprograming of innate immunity in G. mellonella larvae to distinguish between pathogenic and commensal strains of E. coli.
Collapse
|
53
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
54
|
Long C, Lai Y, Li T, Nyunoya T, Zou C. Cigarette smoke extract modulates Pseudomonas aeruginosa bacterial load via USP25/HDAC11 axis in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L252-L263. [PMID: 31746627 DOI: 10.1152/ajplung.00142.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cigarette smoking increases susceptibility for microbial infection in respiratory system. However, the underlying molecular mechanism(s) is not fully elucidated. Here we report that cigarette smoking extract (CSE) increases bacterial load in lung epithelial cells via downregulation of the ubiquitin-specific protease 25 (USP25)/histone deacetylase 11 (HDAC11) axis. CSE treatment decreases HDAC11 at protein level in lung epithelial cells without significant changes of its transcription. Concomitantly, CSE treatment accelerates a ubiquitin-specific protease USP25 ubiquitination and degradation. Coimmunoprecipitation studies showed that USP25 associated with HDAC11. USP25 catalyzes deubiquitination of HDAC11, which regulates HDAC11 protein stability. CSE-mediated degradation of USP25 thereafter reduces HDAC11 at the protein level. Interestingly, CSE-downregulated USP25/HDAC11 axis increases the bacterial load of Pseudomonas aeruginosa in lung epithelial cells. These findings suggest that CSE-downregulated USP25 and HDAC11 may contribute to high susceptibility of bacterial infection in the cigarette smoking population.
Collapse
Affiliation(s)
- Chen Long
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yandong Lai
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tiao Li
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Toru Nyunoya
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Chunbin Zou
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
55
|
Persistent peripheral presence of Staphylococcus aureus promotes histone H3 hypoacetylation and decreases tyrosine hydroxylase protein level in rat brain tissues. Neuroreport 2019; 30:1087-1094. [PMID: 31503205 DOI: 10.1097/wnr.0000000000001322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Growing evidences suggest systemic pathogen-induced neuroimmune interaction is a major risk factor for several neurological disorders. Our goal was to investigate whether asymptomatic peripheral carriage of Staphylococcus aureus, a widespread opportunistic pathogen, could modulate selective molecular features in brain tissues. METHODS To address this, a peripheral infection model was developed by challenging Wistar rats repeatedly with a clinical strain of S. aureus. Animals infected with S. aureus (10 CFU for three times in 10 days) showed significant changes in acetylation profile of selective lysine (K) residues K9 (H3K9), K14 (H3K14) and K27 (H3K27) of histone H3 in the hippocampus and prefrontal cortex (PFC). RESULTS Although S. aureus was restricted peripherally, the infection induced hypoacetylation of H3K9, H3K14 and H3K27 in the hippocampus and H3K27 in the PFC. Histone H3 hypoacetylation in the hippocampus and PFC was also detected when rats were challenged with an engineered invasive strain of E. coli K12, SK3842. This confirmed that modulation of epigenetic landscape in distal brain tissues may not be specific to S. aureus. Moreover, the tyrosine hydroxylase protein, the rate limiting enzyme in dopamine synthesis pathway whose gene-expression is regulated by H3 acetylation at the promoter, was remarkably reduced in the brain tissues of the infected hosts. CONCLUSION The results indicate that commensals like S. aureus, in spite of being largely restricted to the peripheral tissues, could modulate the homeostasis of molecular features in brain tissues whose maintenance is critical for preserving normal neurological functions.
Collapse
|
56
|
Lagosz KB, Bysiek A, Macina JM, Bereta GP, Kantorowicz M, Lipska W, Sochalska M, Gawron K, Kaczmarzyk T, Chomyszyn-Gajewska M, Fossati G, Potempa J, Grabiec AM. HDAC3 Regulates Gingival Fibroblast Inflammatory Responses in Periodontitis. J Dent Res 2019; 99:98-106. [PMID: 31693860 PMCID: PMC6927072 DOI: 10.1177/0022034519885088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene expression that are aberrantly regulated in several inflammatory and infectious diseases. HDAC inhibitors (HDACi) suppress inflammatory activation of various cell types through epigenetic and non-epigenetic mechanisms, and ameliorate pathology in a mouse model of periodontitis. Activation of gingival fibroblasts (GFs) significantly contributes to the development of periodontitis and the anaerobic bacterium Porphyromonas gingivalis plays a key role in driving chronic inflammation. Here, we analyzed the role of HDACs in inflammatory responses of GFs. Pan-HDACi suberoylanilide hydroxamic acid (SAHA) and/or ITF2357 (givinostat) significantly reduced TNFα- and P. gingivalis–inducible expression and/or production of a cluster of inflammatory mediators in healthy donor GFs (IL1B, CCL2, CCL5, CXCL10, COX2, and MMP3) without affecting cell viability. Selective inhibition of HDAC3/6, but not specific HDAC1, HDAC6, or HDAC8 inhibition, reproduced the suppressive effects of pan-HDACi on the inflammatory gene expression profile induced by TNFα and P. gingivalis, suggesting a critical role for HDAC3 in GF inflammatory activation. Consistently, silencing of HDAC3 expression with siRNA largely recapitulated the effects of HDAC3/6i on mRNA levels of inflammatory mediators in P. gingivalis–infected GFs. In contrast, P. gingivalis internalization and intracellular survival in GFs remained unaffected by HDACi. Activation of mitogen-activated protein kinases and NFκB signaling was unaffected by global or HDAC3/6-selective HDACi, and new protein synthesis was not required for gene suppression by HDACi. Finally, pan-HDACi and HDAC3/6i suppressed P. gingivalis–induced expression of IL1B, CCL2, CCL5, CXCL10, MMP1, and MMP3 in GFs from patients with periodontitis. Our results identify HDAC3 as an important regulator of inflammatory gene expression in GFs and suggest that therapeutic targeting of HDAC activity, in particular HDAC3, may be clinically beneficial in suppressing inflammation in periodontal disease.
Collapse
Affiliation(s)
- K B Lagosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - A Bysiek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - J M Macina
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - G P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - M Kantorowicz
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - W Lipska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - M Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - K Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - T Kaczmarzyk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - M Chomyszyn-Gajewska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - G Fossati
- Italfarmaco, Cinisello Balsamo, Milan, Italy
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
57
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
58
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
59
|
Zhu C, Cai Y, Zhu J, Zhang L, Xing A, Pan L, Jia H, Mo S, Feng CG, Shen H, Chen X, Zhang Z. Histone deacetylase inhibitors impair the host immune response against Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2019; 118:101861. [PMID: 31526947 DOI: 10.1016/j.tube.2019.101861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 01/14/2023]
Abstract
Histone deacetylase inhibitors (HDACi), a novel class of anti-cancer drug, have been recently reported to suppress host immunity and increase susceptibility to infection. Tuberculosis, a leading infectious disease killer caused by Mycobacterium tuberculosis (M.tb), is basically the product of the interaction between bacterial virulence and host resistance. However, the effects of HDACi in host immunity against M.tb is largely unknown. In this study, we found that HDACi including Trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) significantly impaired phagocytosis and killing activity of macrophage. In line with these findings, we noted that M.tb induced reactive oxygen species (ROS) production and autophagy are significantly suppressed by TSA. Transcriptome analysis revealed that the suppression of autophagy by TSA might due to its inhibiting autophagy-regulating genes such as CACNA2D3, which regulates intracellular Ca2+ levels. Finally, we confirmed that HDACi including TSA and SAHA significantly exacerbated the histopathological damage and M.tb load in the lung of M.tb infected mice. Taken together, our results indicated that HDACi at least TSA and SAHA significantly impaired macrophage immunity against M.tb and therefore increase susceptibility to TB, our findings raised the concern that the potential side effects of HDACi on latent TB reactivation should be considered in clinic.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yi Cai
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Jialou Zhu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Lanyue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Aiying Xing
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongyan Jia
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Siwei Mo
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Carl G Feng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China; Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hongbo Shen
- Unit of Anti-Tuberculosis Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinchun Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China.
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
60
|
Maksylewicz A, Bysiek A, Lagosz KB, Macina JM, Kantorowicz M, Bereta G, Sochalska M, Gawron K, Chomyszyn-Gajewska M, Potempa J, Grabiec AM. BET Bromodomain Inhibitors Suppress Inflammatory Activation of Gingival Fibroblasts and Epithelial Cells From Periodontitis Patients. Front Immunol 2019; 10:933. [PMID: 31114581 PMCID: PMC6503739 DOI: 10.3389/fimmu.2019.00933] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
BET bromodomain proteins are important epigenetic regulators of gene expression that bind acetylated histone tails and regulate the formation of acetylation-dependent chromatin complexes. BET inhibitors suppress inflammatory responses in multiple cell types and animal models, and protect against bone loss in experimental periodontitis in mice. Here, we analyzed the role of BET proteins in inflammatory activation of gingival fibroblasts (GFs) and gingival epithelial cells (GECs). We show that the BET inhibitors I-BET151 and JQ1 significantly reduced expression and/or production of distinct, but overlapping, profiles of cytokine-inducible mediators of inflammation and bone resorption in GFs from healthy donors (IL6, IL8, IL1B, CCL2, CCL5, COX2, and MMP3) and the GEC line TIGK (IL6, IL8, IL1B, CXCL10, MMP9) without affecting cell viability. Activation of mitogen-activated protein kinase and nuclear factor-κB pathways was unaffected by I-BET151, as was the histone acetylation status, and new protein synthesis was not required for the anti-inflammatory effects of BET inhibition. I-BET151 and JQ1 also suppressed expression of inflammatory cytokines, chemokines, and osteoclastogenic mediators in GFs and TIGKs infected with the key periodontal pathogen Porphyromonas gingivalis. Notably, P. gingivalis internalization and intracellular survival in GFs and TIGKs remained unaffected by BET inhibitors. Finally, inhibition of BET proteins significantly reduced P. gingivalis-induced inflammatory mediator expression in GECs and GFs from patients with periodontitis. Our results demonstrate that BET inhibitors may block the excessive inflammatory mediator production by resident cells of the gingival tissue and identify the BET family of epigenetic reader proteins as a potential therapeutic target in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Anna Maksylewicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna B Lagosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna M Macina
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
61
|
Cross-species interference of gene expression. Nat Commun 2018; 9:5019. [PMID: 30479328 PMCID: PMC6258686 DOI: 10.1038/s41467-018-07353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
Microbes can contribute to protection of animals and plants against diseases. A recent study reveals a mechanism by which a bacterium controls fungal infection in wheat, involving secretion of a metabolite that affects histone acetyltransferase activity of a plant pathogenic fungus.
Collapse
|
62
|
Gong J, Yan S, Yu H, Zhang W, Zhang D. Increased Expression of Lysine-Specific Demethylase 5B (KDM5B) Promotes Tumor Cell Growth in Hep3B Cells and is an Independent Prognostic Factor in Patients with Hepatocellular Carcinoma. Med Sci Monit 2018; 24:7586-7594. [PMID: 30353907 PMCID: PMC6210936 DOI: 10.12659/msm.910844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Lysine-specific demethylase 5B (KDM5B) is overexpressed in several types of cancer. However, the clinical significance of KDM5B expression in hepatocellular carcinoma (HCC) remains unclear. The aims of the present study were to examine the functional effects of KDM5B in the Hep3B cell line, the expression levels of KDM5B in human HCC tissues, and the association between KDM5B expression and clinical outcome in patients with HCC. MATERIAL AND METHODS Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression levels of KDM5B in HCC tissues and adjacent normal liver tissues. In the HCC cell line, Hep3B, the effects of KDM5B on cell proliferation and migration, and KDM5B small interfering RNA (siRNA) were used to study KDM5B knockdown. Univariate and multivariate analysis assessed the prognostic role of KDM5B in HCC patients. Kaplan-Meier analysis and the log-rank test evaluated clinical outcomes. RESULTS In the HCC cell line, Hep3B, KDM5B expression promoted promote tumor cell proliferation and colony formation. Increased expression of KDM5B in HCC tissues, compared with adjacent normal liver tissues, and was associated with larger tumor size, advanced TNM stage, and reduced overall survival in patients with HCC. Multivariate analysis identified KDM5B expression as an independent prognostic factor. CONCLUSIONS Increased expression of KDM5B was significantly correlated with poorer prognosis in patients with patients with HCC, indicating the possible potential of KDM5B as a novel clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jian Gong
- Department of Infectious Disease, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Shuyuan Yan
- Child Health Care Center, Changsha Hospital for Maternal and Child Health Care, Changsha, Hunan, P.R. China
| | - Hui Yu
- Child Health Care Center, Changsha Hospital for Maternal and Child Health Care, Changsha, Hunan, P.R. China
| | - Wenhua Zhang
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Di Zhang
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
63
|
Valproic Acid Downregulates Cytokine Expression in Human Macrophages Infected with Dengue Virus. Diseases 2018; 6:diseases6030059. [PMID: 29986388 PMCID: PMC6165057 DOI: 10.3390/diseases6030059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Natural infection with dengue virus (DENV) induces an increase in the production of cytokines that play an important role in disease pathogenesis. Despite numerous scientific studies, there are still no commercially available disease-specific therapeutics. Previous evidence shows that inhibiting histone deacetylase enzymes (HDACs) regulates the immune response in several inflammatory disease models. The aim of the current study was to evaluate the effect of HDAC inhibition in the production of inflammatory cytokines in human monocyte-derived macrophages infected with DENV serotype 2 (DENV-2). To this end, human monocyte-derived macrophages (MDMs) were treated with valproic acid (VPA) before or after infection and the inflammatory cytokine concentration was quantified by flow cytometry. We found that infected MDMs secreted IL-8, IL-1b, IL-6, TNF-alpha, and IL-10, but not IL-12. Strikingly, treatment of infected cells with VPA had a differential and concentration-dependent effect on the production of specific cytokines without eliciting significant changes in cell viability. Using the highest concentration of VPA, a significant reduction in the production of all cytokines was observed. These results suggest that HDAC inhibition during DENV-2 infection could exert an important regulatory effect in the production of inflammatory cytokines, representing a significant advance in the design of novel therapeutic dengue treatments.
Collapse
|
64
|
Chen XP, Zheng H, Li WG, Chen GD, Lu JX. Bacteria-induced susceptibility to Candida albicans super-infection in mice via monocyte methyltransferase Setdb2. Cell Microbiol 2018; 20:e12860. [PMID: 29749709 DOI: 10.1111/cmi.12860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
Systemic bacterial infections are prone to secondary Candida albicans super-infection. However, the molecular mechanisms involved remain poorly understood. In this study, a model comprising sublethal cecal ligation and puncture plus C. albicans intravenous injection was applied to mimic the situation in super-infection. Compared with mice without systemic bacterial infection, mice with systemic bacterial infection had lower antifungal gene expression (including Il1b, Tnf, Il6, Ifnb, Ifng, Cxcl1, and Ccr2) in monocytes and less inflammatory monocytes and neutrophils infiltrating into the kidney when challenged with C. albicans. Further, lentivirus-mediated Setdb2-knockout and overexpression experiments verified that Setdb2 levels in monocytes correlated negatively with antifungal gene expression and survival rates. Transcriptional repression was probably achieved by Setdb2 through H3 methylation at lysine 9 in promoter regions of these antifungal genes.
Collapse
Affiliation(s)
- Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Nosocomial Infection, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Nosocomial Infection, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Ge Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Nosocomial Infection, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guo-Dong Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Nosocomial Infection, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|