51
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
52
|
Candela P, Saint-Pol J, Kuntz M, Boucau MC, Lamartiniere Y, Gosselet F, Fenart L. In vitro discrimination of the role of LRP1 at the BBB cellular level: focus on brain capillary endothelial cells and brain pericytes. Brain Res 2014; 1594:15-26. [PMID: 25451130 DOI: 10.1016/j.brainres.2014.10.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/23/2014] [Indexed: 01/10/2023]
Abstract
Several studies have demonstrated that the blood-brain barrier (BBB) (dynamic cellular complex composed by brain capillary endothelial cells (BCECs) and surrounded by astrocytic end feet and pericytes) regulates the exchanges of amyloid β (Aβ) peptide between the blood and the brain. Deregulation of these exchanges seems to be a key trigger for the brain accumulation of Aβ peptide observed in Alzheimer's disease (AD). Whereas the involvement of receptor for advanced glycation end-products in Aβ peptide transcytosis has been demonstrated in our laboratory, low-density lipoprotein receptor's role at the cellular level needs to be clarified. For this, we used an in vitro BBB model that consists of a co-culture of bovine BCECs and rat glial cells. This model has already been used to characterize low-density lipoprotein receptor-related peptide (LRP)'s involvement in the transcytosis of molecules such as tPA and angiopep-2. Our results suggest that Aβ peptide efflux across the BCEC monolayer involves a transcellular transport. However, the experiments with RAP discard an involvement of LRP family members at BCECs level. In contrast, our results show a strong transcriptional expression of LRP1 in pericytes and suggest its implication in Aβ endocytosis. Moreover, the observations of pericytes contraction and local downregulation of LRP1 in response to Aβ treatment opens up perspectives for studying this cell type with respect to Aβ peptide metabolism and AD.
Collapse
Affiliation(s)
- Pietra Candela
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France.
| | - Julien Saint-Pol
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France
| | - Mélanie Kuntz
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France
| | - Marie-Christine Boucau
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France
| | - Yordenca Lamartiniere
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France
| | - Fabien Gosselet
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France
| | - Laurence Fenart
- University of Lille Nord de France, Lille, France; Artois University, LBHE, EA 2465, Lens, France; IMPRT-IFR114, Lille, France
| |
Collapse
|
53
|
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 2014; 55:613-31. [PMID: 25340933 DOI: 10.1146/annurev-pharmtox-010814-124852] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer's disease, stroke, and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence the therapeutic potential of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT-targeting strategies have been developed over the past 20 years, and this review explores exciting recent advances, emphasizing studies that show brain targeting in vivo.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | | |
Collapse
|
54
|
Diaz-Rohrer B, Levental KR, Levental I. Rafting through traffic: Membrane domains in cellular logistics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3003-3013. [PMID: 25130318 DOI: 10.1016/j.bbamem.2014.07.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 01/03/2023]
Abstract
The intricate and tightly regulated organization of eukaryotic cells into spatially and functionally distinct membrane-bound compartments is a defining feature of complex organisms. These compartments are defined by their lipid and protein compositions, with their limiting membrane as the functional interface to the rest of the cell. Thus, proper segregation of membrane proteins and lipids is necessary for the maintenance of organelle identity, and this segregation must be maintained despite extensive, rapid membrane exchange between compartments. Sorting processes of high efficiency and fidelity are required to avoid potentially deleterious mis-targeting and maintain cellular function. Although much molecular machinery associated with membrane traffic (i.e. membrane budding/fusion/fission) has been characterized both structurally and biochemically, the mechanistic details underlying the tightly regulated distribution of membranes between subcellular locations remain to be elucidated. This review presents evidence for the role of ordered lateral membrane domains known as lipid rafts in both biosynthetic sorting in the late secretory pathway, as well as endocytosis and recycling to/from the plasma membrane. Although such evidence is extensive and the involvement of membrane domains in sorting is definitive, specific mechanistic details for raft-dependent sorting processes remain elusive.
Collapse
Affiliation(s)
- Blanca Diaz-Rohrer
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Kandice R Levental
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Ilya Levental
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA; Cancer Prevention and Research Institute of Texas, USA.
| |
Collapse
|
55
|
Molino Y, Jabès F, Lacassagne E, Gaudin N, Khrestchatisky M. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J Vis Exp 2014:e51278. [PMID: 24998179 PMCID: PMC4208856 DOI: 10.3791/51278] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Collapse
|
56
|
Gosselet F, Saint-Pol J, Fenart L. Effects of oxysterols on the blood–brain barrier: Implications for Alzheimer’s disease. Biochem Biophys Res Commun 2014; 446:687-91. [DOI: 10.1016/j.bbrc.2013.11.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
|
57
|
An apolipoprotein E modified liposomal nanoparticle: Ligand dependent efficiency as a siRNA delivery carrier for mouse-derived brain endothelial cells. Int J Pharm 2014; 465:77-82. [DOI: 10.1016/j.ijpharm.2014.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/21/2013] [Accepted: 02/08/2014] [Indexed: 12/26/2022]
|
58
|
Uhernik AL, Li L, LaVoy N, Velasquez MJ, Smith JP. Regulation of monocarboxylic acid transporter-1 by cAMP dependent vesicular trafficking in brain microvascular endothelial cells. PLoS One 2014; 9:e85957. [PMID: 24454947 PMCID: PMC3894203 DOI: 10.1371/journal.pone.0085957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/03/2013] [Indexed: 01/23/2023] Open
Abstract
In this study, a detailed characterization of Monocarboxylic Acid Transporter-1 (Mct1) in cytoplasmic vesicles of cultured rat brain microvascular endothelial cells shows them to be a diverse population of endosomes intrinsic to the regulation of the transporter by a brief 25 to 30 minute exposure to the membrane permeant cAMP analog, 8Br-cAMP. The vesicles are heterogeneous in size, mobility, internal pH, and co-localize with discreet markers of particular types of endosomes including early endosomes, clathrin coated vesicles, caveolar vesicles, trans-golgi, and lysosomes. The vesicular localization of Mct1 was not dependent on its N or C termini, however, the size and pH of Mct1 vesicles was increased by deletion of either terminus demonstrating a role for the termini in vesicular trafficking of Mct1. Using a novel BCECF-AM based assay developed in this study, 8Br-cAMP was shown to decrease the pH of Mct1 vesicles after 25 minutes. This result and method were confirmed in experiments with a ratiometric pH-sensitive EGFP-mCherry dual tagged Mct1 construct. Overall, the results indicate that cAMP signaling reduces the functionality of Mct1 in cerebrovascular endothelial cells by facilitating its entry into a highly dynamic vesicular trafficking pathway that appears to lead to the transporter's trafficking to autophagosomes and lysosomes.
Collapse
Affiliation(s)
- Amy L. Uhernik
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, United States of America
| | - Lun Li
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, United States of America
| | - Nathan LaVoy
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, United States of America
| | - Micah J. Velasquez
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, United States of America
| | - Jeffrey P. Smith
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, United States of America
| |
Collapse
|
59
|
Masserini M. Nanoparticles for brain drug delivery. ISRN BIOCHEMISTRY 2013; 2013:238428. [PMID: 25937958 PMCID: PMC4392984 DOI: 10.1155/2013/238428] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/11/2013] [Indexed: 12/24/2022]
Abstract
The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments.
Collapse
Affiliation(s)
- Massimo Masserini
- Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
60
|
van den Berg SAA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, Berbée JFP, van Harmelen VJA, Pronk ACM, Schreurs M, Havekes LM, Rensen PCN, van Dijk KW. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J 2013; 27:3354-62. [PMID: 23650188 DOI: 10.1096/fj.12-225367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, P<0.05) and became more obese than WT mice. Also, intravenous injection of APOA5-loaded VLDL-like particles lowered food intake (VLDL control, 0.26±0.04 g; VLDL+APOA5, 0.11±0.07 g, P<0.01). In addition, the HFD-induced hyperphagia of Apoa5(-/-) mice was prevented by adenovirus-mediated hepatic overexpression of APOA5. Finally, intracerebroventricular injection of APOA5 reduced food intake compared to injection of the same mouse with artificial cerebral spinal fluid (0.40±0.11 g; APOA5, 0.23±0.08 g, P<0.01). These data indicate that the increased HFD-induced obesity of Apoa5(-/-) mice as compared to WT mice is at least partly explained by hyperphagia and that APOA5 plays a role in the central regulation of food intake.
Collapse
|
61
|
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36:437-49. [PMID: 23609350 DOI: 10.1007/s10545-013-9608-0] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
The neurons of the central nervous system (CNS) require precise control of their bathing microenvironment for optimal function, and an important element in this control is the blood-brain barrier (BBB). The BBB is formed by the endothelial cells lining the brain microvessels, under the inductive influence of neighbouring cell types within the 'neurovascular unit' (NVU) including astrocytes and pericytes. The endothelium forms the major interface between the blood and the CNS, and by a combination of low passive permeability and presence of specific transport systems, enzymes and receptors regulates molecular and cellular traffic across the barrier layer. A number of methods and models are available for examining BBB permeation in vivo and in vitro, and can give valuable information on the mechanisms by which therapeutic agents and constructs permeate, ways to optimize permeation, and implications for drug discovery, delivery and toxicity. For treating lysosomal storage diseases (LSDs), models can be included that mimic aspects of the disease, including genetically-modified animals, and in vitro models can be used to examine the effects of cells of the NVU on the BBB under pathological conditions. For testing CNS drug delivery, several in vitro models now provide reliable prediction of penetration of drugs including large molecules and artificial constructs with promising potential in treating LSDs. For many of these diseases it is still not clear how best to deliver appropriate drugs to the CNS, and a concerted approach using a variety of models and methods can give critical insights and indicate practical solutions.
Collapse
Affiliation(s)
- N Joan Abbott
- BBB Group, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
62
|
Saint-Pol J, Candela P, Boucau MC, Fenart L, Gosselet F. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Res 2013; 1517:1-15. [PMID: 23603412 DOI: 10.1016/j.brainres.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/03/2023]
Abstract
It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry.
Collapse
|
63
|
A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 2013; 1521:16-30. [PMID: 23603406 PMCID: PMC3694295 DOI: 10.1016/j.brainres.2013.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels and forms the critical interface regulating molecular flux between blood and brain. It contributes to homoeostasis of the microenvironment of the central nervous system and protection from pathogens and toxins. Key features of the BBB phenotype are presence of complex intercellular tight junctions giving a high transendothelial electrical resistance (TEER), and strongly polarised (apical:basal) localisation of transporters and receptors. In vitro BBB models have been developed from primary culture of brain endothelial cells of several mammalian species, but most require exposure to astrocytic factors to maintain the BBB phenotype. Other limitations include complicated procedures for isolation, poor yield and batch-to-batch variability. Some immortalised brain endothelial cell models have proved useful for transport studies but most lack certain BBB features and have low TEER. We have developed an in vitro BBB model using primary cultured porcine brain endothelial cells (PBECs) which is relatively simple to prepare, robust, and reliably gives high TEER (mean~800 Ω cm(2)); it also shows good functional expression of key tight junction proteins, transporters, receptors and enzymes. The model can be used either in monoculture, for studies of molecular flux including permeability screening, or in co-culture with astrocytes when certain specialised features (e.g. receptor-mediated transcytosis) need to be maximally expressed. It is also suitable for a range of studies of cell:cell interaction in normal physiology and in pathology. The method for isolating and growing the PBECs is given in detail to facilitate adoption of the model. This article is part of a Special Issue entitled Companion Paper.
Collapse
|
64
|
How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release 2013; 166:46-56. [DOI: 10.1016/j.jconrel.2012.12.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
|
65
|
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2013; 17:3729-40. [PMID: 21834767 DOI: 10.2174/138161211798220918] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
66
|
Drug delivery to the brain via the blood-brain barrier: a review of the literature and some recent patent disclosures. Ther Deliv 2012; 2:311-27. [PMID: 22834002 DOI: 10.4155/tde.11.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Delivery of drugs to the brain is challenging, not only for large biopharmaceutical molecules, but also for small organics, which are effluxed from the brain capillary endothelial cells. These cells constitute, in part, the selectively permeable blood-brain barrier. Progress is being made using delivery systems comprising a vector, a linker and cargo, which are purported to enter the brain via receptors on the luminal surface of the brain capillary endothelial cells. Unfortunately, from a delivery perspective, these receptors are not expressed only on brain capillary endothelial cells; so the approaches described in this review are for enhanced delivery to the brain, not for specific brain targeting. The inventions disclosed in patents relate to technologies to screen for new blood-brain barrier receptors and to identify new vectors, or describe systems that deliver cargoes to the brain via any blood-brain barrier receptor, or define specified peptide vectors that target a specific receptor. To date, only one of the technologies has reached early clinical trials and, as always, major challenges remain to be addressed.
Collapse
|
67
|
Ifuku M, Katafuchi T, Mawatari S, Noda M, Miake K, Sugiyama M, Fujino T. Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 2012; 9:197. [PMID: 22889165 PMCID: PMC3444880 DOI: 10.1186/1742-2094-9-197] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer's disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction. METHODS In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice. RESULTS Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3-16)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls. CONCLUSIONS These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD.
Collapse
Affiliation(s)
- Masataka Ifuku
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
68
|
Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 2012; 1521:1-15. [PMID: 22789905 PMCID: PMC3694297 DOI: 10.1016/j.brainres.2012.06.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/14/2012] [Accepted: 06/28/2012] [Indexed: 12/11/2022]
Abstract
Good in vitro blood-brain barrier (BBB) models that mimic the in vivo BBB phenotype are essential for studies on BBB functionality and for initial screening in drug discovery programmes, as many potential therapeutic drug candidates have poor BBB permeation. Difficulties associated with the availability of human brain tissue, coupled with the time and cost associated with using animals for this kind of research have led to the development of non-human cell culture models. However, most BBB models display a low transendothelial electrical resistance (TEER), which is a measure of the tightness of the BBB. To address these issues we have established and optimised a robust, simple to use in vitro BBB model using porcine brain endothelial cells (PBECs). The PBEC model gives high TEER without the need for co-culture with astrocytes (up to 1300 O cm(2) with a mean TEER of ~800 O cm(2)) with well organised tight junctions as shown by immunostaining for occludin and claudin-5. Functional assays confirmed the presence of high levels of alkaline phosphatase (ALP), and presence of the efflux transporter, P-glycoprotein (P-gp, ABCB1). Presence of the breast cancer resistance protein (BCRP, ABCG2) was confirmed by TaqMan real-time RT-PCR assay. Real-time RT-PCR assays for BCRP, occludin and claudin-5 demonstrated no significant differences between batches of PBECs, and also between primary and passage 1 PBECs. A permeability screen of 10 compounds demonstrated the usefulness of the model as a tool for drug permeability studies. Qualitative and quantitative results from this study confirm that this in vitro porcine BBB model is reliable and robust; it is also simpler to generate than most other BBB models. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Adjanie Patabendige
- King's College London, Institute of Pharmaceutical Science, BBB Group, Franklin Wilkins Building, 150 Stamford St, London SE1 9NH, UK
| | | | | |
Collapse
|
69
|
Abstract
Alzheimer's disease (AD) is a cognitive disorder with a number of complex neuropathologies, including, but not limited to, neurofibrillary tangles, neuritic plaques, neuronal shrinkage, hypomyelination, neuroinflammation and cholinergic dysfunction. The role of underlying pathological processes in the evolution of the cholinergic deficit responsible for cognitive decline has not been elucidated. Furthermore, generation of testable hypotheses for defining points of pharmacological intervention in AD are complicated by the large scale occurrence of older individuals dying with no cognitive impairment despite having a high burden of AD pathology (plaques and tangles). To further complicate these research challenges, there is no animal model that reproduces the combined hallmark neuropathologies of AD. These research limitations have stimulated the application of 'omics' technologies in AD research with the goals of defining biologic markers of disease and disease progression and uncovering potential points of pharmacological intervention for the design of AD therapeutics. In the case of sporadic AD, the dominant form of dementia, genomics has revealed that the ε4 allele of apolipoprotein E, a lipid transport/chaperone protein, is a susceptibility factor. This seminal observation points to the importance of lipid dynamics as an area of investigation in AD. In this regard, lipidomics studies have demonstrated that there are major deficits in brain structural glycerophospholipids and sphingolipids, as well as alterations in metabolites of these complex structural lipids, which act as signaling molecules. Peroxisomal dysfunction appears to be a key component of the changes in glycerophospholipid deficits. In this review, lipid alterations and their potential roles in the pathophysiology of AD are discussed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| |
Collapse
|
70
|
Wood PL, Smith T, Lane N, Khan MA, Ehrmantraut G, Goodenowe DB. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease. Lipids Health Dis 2011; 10:227. [PMID: 22142382 PMCID: PMC3260122 DOI: 10.1186/1476-511x-10-227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 12/03/2022] Open
Abstract
Introduction Docosahexaenoic acid (DHA) and DHA-containing ethanolamine plasmalogens (PlsEtn) are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn). Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3 phosphoethanolamine group and desaturation at sn-1 to generate the target plasmalogen. The second pool, like the PtdEtn, resulted from increased availability of DHA released during remodeling of sn-2. In the case of sn-1 18:0 and 18:1 plasmalogens with [13C3]DHA at sn-2, labeling was the result of increased availability of [13C3]DHA from lipid remodeling. Isotope and repeated dosing (2 weeks) experiments also demonstrated that plasmalogens and/or plasmalogen precursors derived from PPI-1011 are able to cross both the blood-retinal and blood-brain barriers. Conclusions Our data demonstrate that PPI-1011, an ether lipid precursor of plasmalogens is orally bioavailable in the rabbit, augmenting the circulating levels of unesterified DHA and DHA-containing PlsEtn and PtdEtn. Other ethanolamine plasmalogens were generated from the precursor via lipid remodeling (de-acylation/re-acylation reactions at sn-2) and phosphatidylethanolamines were generated via de-alkylation/re-acylation reactions at sn-1. Repeated oral dosing for 2 weeks with PPI-1011 resulted in dose-dependent increases in circulating DHA and DHA-containing plasmalogens. These products and/or precursors were also able to cross the blood-retinal and blood-brain barriers.
Collapse
Affiliation(s)
- Paul L Wood
- Dept, of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752 USA.
| | | | | | | | | | | |
Collapse
|
71
|
Gosselet F, Candela P, Cecchelli R, Fenart L. La barrière hémato-encéphalique. Med Sci (Paris) 2011; 27:987-92. [DOI: 10.1051/medsci/20112711015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
72
|
Wood PL, Khan MA, Smith T, Ehrmantraut G, Jin W, Cui W, Braverman NE, Goodenowe DB. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. Lipids Health Dis 2011; 10:182. [PMID: 22008564 PMCID: PMC3238230 DOI: 10.1186/1476-511x-10-182] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 01/21/2023] Open
Abstract
Background Childhood peroxisomal disorders and leukodystrophies are devastating diseases characterized by dysfunctional lipid metabolism. Plasmalogens (ether glycerophosphoethanolamine lipids) are decreased in these genetic disorders. The biosynthesis of plasmalogens is initiated in peroxisomes but completed in the endoplasmic reticulum. We therefore undertook a study to evaluate the ability of a 3-substituted, 1-alkyl, 2-acyl glyceryl ether lipid (PPI-1011) to replace plasmalogens in rhizomelic chrondrodysplasia punctata type 1 (RCDP1) and rhizomelic chrondrodysplasia punctata type 2 (RCDP2) lymphocytes which possess peroxisomal mutations culminating in deficient plasmalogen synthesis. We also examined plasmalogen synthesis in Pelizaeus-Merzbacher disease (PMD) lymphocytes which possess a proteolipid protein-1 (PLP1) missense mutation that results in abnormal PLP1 folding and it's accumulation in the endoplasmic reticulum (ER), the cellular site of the last steps in plasmalogen synthesis. In vivo incorporation of plasmalogen precursor into tissue plasmalogens was also evaluated in the Pex7 mouse model of plasmalogen deficiency. Results In both RCDP1 and RCDP2 lymphocytes, PPI-1011 repleted the target ethanolamine plasmalogen (PlsEtn16:0/22:6) in a concentration dependent manner. In addition, deacylation/reacylation reactions resulted in repletion of PlsEtn 16:0/20:4 in both RCDP1 and RCDP2 lymphocytes, repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP2 lymphocytes, and partial repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP1 lymphocytes. In the Pex7 mouse, oral dosing of labeled PPI-1011 demonstrated repletion of tissue levels of the target plasmalogen PlsEtn 16:0/22:6 with phospholipid remodeling also resulting in significant repletion of PlsEtn 16:0/20:4 and PlsEtn 16:0/18:1. Metabolic conversion of PPI-1011 to the target plasmalogen was most active in the liver. Conclusions Our data demonstrate that PPI-1011 is activated (removal of 3-substitution) and converted to PlsEtn in vitro in both RCDP1 and RCDP2 lymphocytes and in vivo in the Pex7 mouse model of RCPD1 effectively bypassing the peroxisomal dysfunction present in these disorders. While PPI-1011 was shown to replete PlsEtns 16:0/x, ether lipid precursors of PlsEtn 18:0/x and PlsEtn 18:1/x may also be needed to achieve optimal clinical benefits of plasmalogen replacement in these complex patient populations. In contrast, only limited plasmalogen replacement was observed in PMD lymphocytes suggesting that the effects of protein misfolding and accumulation in the ER negatively affect processing of plasmalogen precursors in this cellular compartment.
Collapse
Affiliation(s)
- Paul L Wood
- Dept, of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Pang Z, Gao H, Yu Y, Chen J, Guo L, Ren J, Wen Z, Su J, Jiang X. Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. Int J Pharm 2011; 415:284-92. [DOI: 10.1016/j.ijpharm.2011.05.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/23/2011] [Accepted: 05/24/2011] [Indexed: 12/21/2022]
|
74
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
75
|
Georgieva JV, Kalicharan D, Couraud PO, Romero IA, Weksler B, Hoekstra D, Zuhorn IS. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol Ther 2010; 19:318-25. [PMID: 21045812 DOI: 10.1038/mt.2010.236] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A polarized layer of endothelial cells that comprises the blood-brain barrier (BBB) precludes access of systemically administered medicines to brain tissue. Consequently, there is a need for drug delivery vehicles that mediate transendothelial transport of such medicines. Endothelial cells use a variety of endocytotic pathways for the internalization of exogenous materials, including clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis. The different modes of endocytosis result in the delivery of endocytosed material to distinctive intracellular compartments and therewith correlated differential processing. To obtain insight into the properties of drug delivery vehicles that direct their intracellular processing in brain endothelial cells, we investigated the intracellular processing of fixed-size nanoparticles in an in vitro BBB model as a function of distinct nanoparticle surface modifications. Caveolar endocytosis, adsorptive-mediated endocytosis, and receptor-mediated endocytosis were promoted by the use of uncoated 500-nm particles, attachment of the cationic polymer polyethyleneimine (PEI), and attachment of prion proteins, respectively. We demonstrate that surface modifications of nanoparticles, including charge and protein ligands, affect their mode of internalization by brain endothelial cells and thereby their subcellular fate and transcytotic potential.
Collapse
Affiliation(s)
- Julia V Georgieva
- Department of Cell Biology, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
76
|
Umeda T, Mori H, Zheng H, Tomiyama T. Regulation of cholesterol efflux by amyloid beta secretion. J Neurosci Res 2010; 88:1985-94. [PMID: 20155813 DOI: 10.1002/jnr.22360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid beta (Abeta) is a key molecule in the pathogenesis of Alzheimer's disease, but its physiological function remains unclear. Abeta is produced from amyloid precursor protein (APP) by beta- and gamma-secretases, which is enhanced by high levels of cellular cholesterol, so cholesterol is a risk factor for Alzheimer's disease. This linkage led us to hypothesize that Abeta is produced to regulate cellular cholesterol levels in response to high-cholesterol stimulation. Here we show that Abeta production caused a reduction of cellular cholesterol levels in transfected HEK293 cells and neuronal IMR-32 and Neuro2a cells, which was accompanied by an increase in efflux of cholesterol from cells. Fractionation of the culture media by ultracentrifugation and subsequent immunoelectron microscopic observation revealed that Abeta assembled high-density lipoprotein-like particles with cellular cholesterol during its secretion. This assembly was mediated by the ATP-binding cassette transporter A1. APP transgenic and knockout mice exhibited lower and higher levels of cellular cholesterol in their brains, suggesting that Abeta-mediated regulation of cellular cholesterol is physiological. Furthermore, we found that, when injected into mouse cerebral ventricle, reconstituted lipoproteins with Abeta were excreted into the peripheral tissues more efficiently than those without Abeta. This result suggests that Abeta mediates cholesterol transport from the brain to the circulation. We propose, based on these findings, a novel, apolipoprotein-like function for Abeta that is involved in maintenance of cellular and cerebral cholesterol homeostasis.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | |
Collapse
|
77
|
Abstract
The blood-brain barrier (BBB) regulates passage of nutrients and signaling molecules from the circulation into the brain. Whether lipoproteins cross the BBB in vivo has been controversial, and no clear requirement for circulating lipoproteins in brain development has been shown. We address these issues in Drosophila, which has an functionally conserved BBB, and lipoproteins that resemble those of vertebrates. We show that the Drosophila lipoprotein lipophorin exists in two isoforms. Both isoforms cross the BBB, but accumulate on distinct subsets of cells within the brain. In addition to acting as a lipid carrier, lipophorin carries both sterol-linked and GPI-linked proteins into the circulation and transports them across the BBB. Finally, lipophorin promotes neuroblast proliferation by a mechanism that does not depend on delivery of dietary lipids. Transport of lipophorin and its cargo across the BBB represents a novel mechanism by which peripherally synthesized proteins might enter the brain and influence its development. Furthermore, lipid-linkage may be an efficient method to transport therapeutic molecules across the BBB.
Collapse
|
78
|
Wang P, Xue Y, Shang X, Liu Y. Diphtheria toxin mutant CRM197-mediated transcytosis across blood-brain barrier in vitro. Cell Mol Neurobiol 2010; 30:717-25. [PMID: 20082134 DOI: 10.1007/s10571-010-9496-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 01/06/2010] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) is specialized to limit brain drug delivery. Cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin, could act as a diphtheria toxin receptor-specific carrier protein and deliver drugs across the BBB. CRM197 has previously been shown to inhibit phospatidyl-3-inositol-kinase (PI3K)/Akt signaling. Other studies have demonstrated a link between PI3K/Akt signaling and forkhead transcription factors in endothelial cells. We therefore investigated the effects and mechanisms underlying the potential of CRM197, not only as a carrier protein for targeted drug delivery to the brain, but also for inducing signaling to affect endocytosis in endothelial cells. The hCMEC/D3 cell line had been used to establish a BBB in vitro model; the transport efficiency of CRM197 was analyzed both by association and transcytosis experiments. CRM197 was shown to prefer apical-to-basal transcytosis, which involved the caveolae-mediated pathway. The uptake of CRM197 conjugates by endothelial cells reached equilibrium after 60 min of treatment. The caveolin-1 mRNA and protein expression levels were significantly increased by CRM197. The up-regulation of caveolin-1 may be mediated by CRM197 via a PI3K/Akt dependent pathway and reduction of the phospho-FOXO1A (forkhead box O) transcription factor. Our results indicate that carrier protein CRM197-mediated delivery across the BBB is involved in the induction of FOXO1A transcriptional activity and upregulation of caveolin-1 expression.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neurobiology, China Medical University, Shenyang 110001, China
| | | | | | | |
Collapse
|
79
|
Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 2010; 88:1457-74. [PMID: 20025060 DOI: 10.1002/jnr.22316] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) refers to the network of microvessels that selectively restricts the passage of substances between the circulation and the central nervous system (CNS). This microvascular network is comprised of arterioles, capillaries and venules, yet the respective contribution of each of these to the BBB awaits clarification. In this regard, it has been postulated that brain microvascular endothelial cells (BMEC) from these different tributaries might exhibit considerable heterogeneity in form and function, with such diversity underlying unique roles in physiological and pathophysiological processes. Means to begin exploring such endothelial differences in situ, free from caveats associated with cell isolation and culturing procedures, are crucial to comprehending the nature and treatment of CNS diseases with vascular involvement. Here, the recently validated approach of immuno-laser capture microdissection (immuno-LCM) coupled to quantitative real-time PCR (qRT-PCR) was used to analyze gene expression patterns of BMEC retrieved in situ from either capillaries or venules. From profiling 87 genes known to play a role in BBB function and/or be enriched in isolated brain microvessels, results imply that most BBB properties reside in both segments, but that capillaries preferentially express some genes related to solute transport, while venules tend toward higher expression of an assortment of genes involved in inflammatory-related tasks. Fuller appreciation of such heterogeneity will be critical for efficient therapeutic targeting of the endothelium and the management of CNS disease.
Collapse
Affiliation(s)
- Jennifer A Macdonald
- Blood-Brain Barrier Laboratory, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 07070, USA
| | | | | |
Collapse
|
80
|
Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int J Pharm 2009; 379:285-92. [DOI: 10.1016/j.ijpharm.2009.04.035] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 04/20/2009] [Indexed: 11/21/2022]
|