51
|
Peram MR, Patil SR, Kumbar VM, Kugaji MS, Bhat KG, Diwan PV, Jalalpure S. An RP-HPLC Method for Quantitative Analysis of Linagliptin Entrapped in Nanotransfersomes and its Application to Skin Permeation Studies. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191116103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Linagliptin (LNG) is an oral hypoglycemic agent that acts by inhibiting
the enzyme dipeptidyl peptidase - 4 (DPP-4) and reduces blood sugar levels in type-II diabetic patients.
To date, the literature presents few analytical methods for the determination of LNG. However,
no reversed phase-high performance liquid chromatography (RP-HPLC) method has been reported
for the determination of LNG in nanotransfersomes and in vitro skin permeation samples.
Objective:
The present study involves the development and validation of RP-HPLC method to
quantify LNG in both nanotransfersomes and in vitro skin permeation and deposition samples.
Methods:
The chromatographic analysis was performed on Luna C18 (2) column (250 x 4.6 mm,
5μm particle size) with a mobile phase consisting of a mixture of methanol: 0.2% orthophosphoric
acid (50:50, v/v) at a flow rate of 1.0 mL/min, detection wavelength of 227 nm, and column temperature
of 40 °C.
Results:
The method was found to be specific, linear (r2 ≥ 0.999; 2-12 μg/mL), precise at both
intra and inter-day levels (percentage relative standard deviation; % RSD < 2.00), accurate (percentage
recovery 100.21-103.83%), and robust. The detection and quantification limits were 0.27
and 0.82 μg/mL, respectively. The mean % entrapment efficiency and the cumulative amount of
LNG permeated across the rat skin from different transfersomal formulations ranged between
40.78 ± 2.54 % to 52.26 ± 2.15 % and 79.54 ± 16.67 to 200.74 ± 35.13 μg/cm2 respectively.
Conclusion:
The method was successfully applied to determine the entThe method was successfully applied to determine the entrapment efficiency, in vitro
skin permeation and deposition behavior of LNG-nanotransfersomes.rapment efficiency, in vitro skin permeation and deposition behavior of LNG-nanotransfersomes.
Collapse
Affiliation(s)
- Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Sachin R. Patil
- Department of Pharmaceutics, College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka 590010, India
| | - Vijay M. Kumbar
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Manohar S. Kugaji
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Kishore G. Bhat
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Prakash V. Diwan
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, Indonesia
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| |
Collapse
|
52
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Tailoring of berberine loaded transniosomes for the management of skin cancer in mice. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
54
|
Verma S, Utreja P. Oleic Acid Vesicles as a new Approach for Transdermal Delivery of Econazole Nitrate: Development, Characterization, and In-vivo Evaluation in Wistar rats. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2020; 16:PRI-EPUB-111375. [PMID: 33176662 DOI: 10.2174/1574891x15999201110212725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous candidiasis is a deep-seated skin fungal infection that is most commonly observed in immunocompromised patients. This fungal infection is conventionally treated with various formulations like gels and creams which are having different side effects and least therapeutic efficacy. Hence, it becomes necessary to develop a novel carrier system for the treatment of this deep-seated skin fungal infection. Econazole nitrate is the most widely used antifungal for the treatment of cutaneous candidiasis, therefore, in present research work we developed and evaluated econazole nitrate loaded oleic acid vesicles for treatment of cutaneous candidiasis through transdermal route. METHODS Econazole nitrate loaded oleic acid vesicles were prepared by thin-film hydration and characterized for drug entrapment, vesicle size, zeta potential, polydispersity index (PDI), Fourier Transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis. Furthermore, the oleic acid vesicular gel was evaluated for ex-vivo skin permeation/retention and in-vitro and in-vivo antifungal activity in Wistar rats. RESULTS Econazole nitrate loaded oleic acid vesicles showed high encapsulation of drug (74.76 ± 3.0%), acceptable size (373.4 ± 2.9 nm), and colloidal characteristics (PDI = 0.231 ± 0.078, zeta potential = -13.27 ± 0.80 mV). The oleic acid vesicular gel showed high skin permeation (Transdermal flux = 61.98 ± 2.45 μg/cm2/h), skin retention (35.90 ± 2.06%), in-vitro, and in-vivo antifungal activity compared to marketed cream (EcodermR) of econazole nitrate for a prolonged period of time (4 days). CONCLUSION Developed econazole nitrate loaded oleic acid vesicles could be used effectively in the treatment of cutaneous candidiasis with minimization of side effects of econazole nitrate with increased therapeutic efficacy.
Collapse
Affiliation(s)
- Shivani Verma
- Department of Pharmaceutics, Rayat-Bahra College of Pharmacy, Hoshiarpur, Punjab 146001,
India
- Research Scholar, I.K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| | - Puneet Utreja
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, PCTE Group of Institutes, Ludhiana, Punjab 142021, India
- Research Supervisor, I.K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| |
Collapse
|
55
|
Anjum F, Zakir F, Verma D, Aqil M, Singh M, Jain P, Mirza MA, Anwer MK, Iqbal Z. Exploration of Nanoethosomal Transgel of Naproxen Sodium for the Treatment of Arthritis. Curr Drug Deliv 2020; 17:885-897. [PMID: 32713340 DOI: 10.2174/1567201817666200724170203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The present work aimed to develop an ethosomal gel of naproxen sodium for the amelioration of rheumatoid arthritis. OBJECTIVE In the present work, we have explored the potential of ethosomes to deliver naproxen into deeper skin strata. Further, the anti-inflammatory efficacy of naproxen ethosomal formulation was assessed using the carrageenan-induced rat paw edema model. METHODS Naproxen sodium nanoethosomes were prepared using different proportions of lipoid S100 (50mg-200mg), ethanol (20-50%) and water, and were further characterized on the basis of vesicle morphology, entrapment efficiency, zeta potential, in-vitro drug release and ex-vivo permeation studies. RESULTS The optimized ethosomal formulation was found to have 129 ± 0.01 nm particle size, 0.295 Polydispersity Index (PDI), -3.29 mV zeta potential, 88% entrapment efficiency and 96.573% drug release in 24 hours. TEM and SEM analysis of the optimized formulation showed slightly smooth spherical structures. The Confocal laser scanning microscopy showed that ethosomes could easily infiltrate into deeper dermal layers (upto 104.9μm) whereas the hydroalcoholic solution of the drug could penetrate up to 74.9μm. Further, the optimized ethosomal formulation was incorporated into 1% carbopol 934 gel base and optimized wherein the transdermal flux was found to be approximately 10 times more than the hydroethanolic solution. Also, the in-vivo pharmacodynamic study of the optimized ethosomal gel exhibited a higher percentage inhibition of swelling paw edema than marketed diclofenac gel. CONCLUSION The ethosomal gel was successfully developed and has shown the potential to be a good option for the replacement of conventional therapies of rheumatoid arthritis.
Collapse
Affiliation(s)
- Farzana Anjum
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Foziyah Zakir
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Devina Verma
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Manvi Singh
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Jain
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj,11942, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
56
|
Allaw M, Pleguezuelos-Villa M, Manca ML, Caddeo C, Aroffu M, Nacher A, Diez-Sales O, Saurí AR, Ferrer EE, Fadda AM, Manconi M. Innovative strategies to treat skin wounds with mangiferin: fabrication of transfersomes modified with glycols and mucin. Nanomedicine (Lond) 2020; 15:1671-1685. [PMID: 32677507 DOI: 10.2217/nnm-2020-0116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The moisturizing properties of glycerol, the penetration enhancing capability of propylene glycol and the bioadhesive properties of mucin were combined to improve the carrier capabilities of transfersomes and the efficacy of mangiferin in the treatment of skin lesions. Materials & methods: Mangiferin was incorporated in transfersomes and glycoltransfersomes, which were also modified with mucin. The physico-chemical features were assessed, along with the efficacy against oxidative stress and skin wounds in vitro and in vivo. Results: Glycoltransfersomes promoted the deposition of mangiferin in epidermis and dermis, protected fibroblasts from oxidative stress and stimulated their proliferation. The wound healing and anti-inflammatory efficacy of glycoltransfersomes were confirmed in vivo. Conclusion: Results confirmed the potential of glycoltransfersomes in preventing/treating of skin lesions.
Collapse
Affiliation(s)
- Mohamad Allaw
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Maria Pleguezuelos-Villa
- Department of Pharmacy & Pharmaceutical Technology & Parasitology, University of Valencia, Burjassot, Vicente Andrés Estellés s/n, Valencia, 46100, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Carla Caddeo
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Amparo Nacher
- Department of Pharmacy & Pharmaceutical Technology & Parasitology, University of Valencia, Burjassot, Vicente Andrés Estellés s/n, Valencia, 46100, Spain.,Institute of Molecular Recognition & Technological Development, Inter-University Institute from Polytechnic University of Valencia & University of Valencia, Burjassot, 46100, Spain
| | - Octavio Diez-Sales
- Department of Pharmacy & Pharmaceutical Technology & Parasitology, University of Valencia, Burjassot, Vicente Andrés Estellés s/n, Valencia, 46100, Spain.,Institute of Molecular Recognition & Technological Development, Inter-University Institute from Polytechnic University of Valencia & University of Valencia, Burjassot, 46100, Spain
| | - Amparo Ruiz Saurí
- Department of Pathology, University of Valencia, Avda Blasco Ibañez 17, Valencia, 46010, Spain
| | - Elvira Escribano Ferrer
- Biopharmaceutics & Pharmacokinetics Unit, Institute for Nanoscience & Nanotechnology, University of Barcelona, Barcelona, 08193, Spain
| | - Anna Maria Fadda
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| |
Collapse
|
57
|
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46:1318-1333. [PMID: 32598186 DOI: 10.1080/03639045.2020.1788068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulitis is a common bacterial infection of the skin and soft tissues immediately beneath the skin. Despite the successful use of antibiotics in the treatment of infectious diseases, bacterial infections continue to impose significant global health challenges because of the rapid emergence of antibiotic resistance. The aim of this work was to develop an in situ hydrogel forming system containing highly permeable cephalexin-loaded nanotransfersomes (NTs), suitable for antibacterial drug delivery. Response surface design was applied for the optimization of NTs. Cephalexin NTs were prepared using thin-film hydration method and then embedded into a 3D hydrogel network. The in vitro antibacterial activity of the optimized NTs was assayed against indicator bacteria of Staphylococcus aureus (S. aureus). The drug permeation was evaluated using an ex vivo rat skin model. The in vivo efficacy of the cephalexin NT hydrogel was also determined against rat skin infection. The resulting data verified the formation of NTs, the size of which was approximately 192 nm. The cephalexin NTs exhibited higher antibacterial activity against S. aureus as compared to the untreated drug. The NT hydrogel improved drug penetration through the skin after 8 h. When applied on the rat skin for 10 days, the cephalexin NT hydrogel exhibited superior antibacterial activity with normal hair growth and skin appearance as compared with the plain drug hydrogel. These findings suggest that the cephalexin NT-hydrogel system can serve as a valuable drug delivery platform against bacterial infections.
Collapse
Affiliation(s)
- Sara Salatin
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
58
|
Akhter MH, Kumar S, Nomani S. Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: design, optimization, and in vitro studies. Drug Dev Ind Pharm 2020; 46:659-672. [PMID: 32208984 DOI: 10.1080/03639045.2020.1747485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: In vitro, optimization, characterization, and cytotoxic studies of NAR nanoparticles (NPs) to against pancreatic cancer.Method: The sonication tailored Naringenin (NARG)-loaded poly (lactide-co-glycolic acid) (PLGA) NPs was fabricated for potential cytotoxic effect against pancreatic cancer. NARG NPs were prepared by emulsion-diffusion evaporation technique applying BoxBehnken experimental design based on three-level and three-factors. The effect of independent variables surfactant concentration (X1), polymer concentration (X2), and sonication time (X3) were studied on responses particle size (Y1), and drug release % (Y2). NPs characterized for particles size and size distribution, polydispersity index (PDI), zeta potential, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimeter (DSC), and X-ray diffraction (XRD) studies. Further, the studies was fitted to various drug release kinetic model and cytotoxicity evaluated in vitro.Results: The nanosized particles were spherical, uniform with an average size of 150.45 ± 12.45 nm, PDI value 0.132 ± 0.026, zeta potential -20.5 ± 2.5 mV, and cumulative percentage release 85.67 ± 6.23%. In vitro release of NARG from nanoparticle evaluated initially burst followed by sustained release behavior. The Higuchi was best fitted model to drug release from NARG NPs. The cytotoxicity study of NARG NPs apparently showed higher cytotoxic effect over free NARG (p < 0.05). The stability study of optimized formulation revealed no significant physico-chemical changes during 3 months.Conclusions: Thus, NARG-loaded NPs gave ameliorated anticancer effect over plain NARG.
Collapse
Affiliation(s)
| | - Sandeep Kumar
- Alwar Pharmacy College Rajasthan University of Health Sciences (RUHS), M.I.A. Alwar-Rajasthan, Alwar, India.,Karnataka Antibiotics and Pharmaceutical Limited, Bengaluru, India
| | | |
Collapse
|
59
|
|
60
|
Mostafa DM, Abd El-Alim SH, Asfour MH, Al-Okbi SY, Mohamed DA, Hamed TES, Awad G. Transdermal fennel essential oil nanoemulsions with promising hepatic dysfunction healing effect: in vitro and in vivo study. Pharm Dev Technol 2019; 24:729-738. [DOI: 10.1080/10837450.2019.1584633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | | | - Doha Abdou Mohamed
- Department of Food Sciences and Nutrition, National Research Centre, Cairo, Egypt
| | | | - Gamal Awad
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| |
Collapse
|
61
|
Bhattacharya A, Brea RJ, Song JJ, Bhattacharya R, Sinha SK, Devaraj NK. Single-Chain β-d-Glycopyranosylamides of Unsaturated Fatty Acids: Self-Assembly Properties and Applications to Artificial Cell Development. J Phys Chem B 2019; 123:3711-3720. [DOI: 10.1021/acs.jpcb.9b01055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jing-Jin Song
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Rupak Bhattacharya
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Sunil K. Sinha
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
62
|
Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, Sultana Y, Mujeeb M, Iqbal Z. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:755-765. [PMID: 29730964 DOI: 10.1080/21691401.2018.1469025] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study was conducted for the optimization of transethosomes formulation for dermal fisetin delivery. The optimization of the formulation was carried out using "Box-Behnken design". The independent variables were Lipoid S 100, ethanol and sodium cholate. The prepared formulations were characterized for vesicle size, entrapment efficiency and in vitro skin penetration study. The vesicles-skin interaction, confocal laser scanning microscopy and dermatokinetic studies were performed with optimized formulation. Results of the present study demonstrated that the optimized formulation presented vesicle size of 74.21 ± 2.65 nm, zeta potential of -11.0 mV, entrapment efficiency of 68.31 ± 1.48% and flux of 4.13 ± 0.17 µg/cm2/h. The TEM image of optimized formulation exhibited sealed and spherical shape vesicles. Results of thermoanalytical techniques demonstrated that the prepared transethosomes vesicles formulation had fluidized the rigid membrane of rat's skin for smoother penetration of fisetin transethosomes. The confocal study results presented well distribution and penetration of Rhodamine B loaded transethosomes vesicles formulation up to deeper layers of the rat's skin as compared to the Rhodamine B-hydro alcoholic solution. Present study data revealed that the developed transethosomes vesicles formulation was found to be a potentially useful drug carrier for fisetin dermal delivery.
Collapse
Affiliation(s)
- Thasleem Moolakkadath
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Mohd Aqil
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Abdul Ahad
- b Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Syed Sarim Imam
- c School of Pharmacy , Glocal University , Saharanpur , India
| | - Babar Iqbal
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Yasmin Sultana
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Mohd Mujeeb
- d Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Zeenat Iqbal
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| |
Collapse
|
63
|
Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:472-487. [PMID: 29378433 DOI: 10.1080/21691401.2018.1430695] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Skin is the largest external organ in the human body but its use for therapeutic purposes has been minimal. Stratum corneum residing on the uppermost layer of the skin provides a tough barrier to transport the drugs across the skin. Very small group of drugs sharing Lipinski properties, i.e. drugs having molecular weight not larger than 500 Da, having high lipophilicity and optimum polarity are fortunate enough to be used on skin therapeutics. But, at a time where modern therapeutics is slowly shifting from use of small molecular drugs towards the use of macromolecular therapeutic agents such as peptides, proteins and nucleotides in origin, skin therapeutics need to be evolved accordingly to cater the delivery of these agents. Physical technologies like iontophoresis, laser ablation, micro-needles and ultrasound, etc. have been introduced to enhance skin permeability. But their success is limited due to their complex working mechanisms and involvement of certain irreversible skin damage in some or other way. This review therefore explores the delivery strategies for transport of mainly peptide and protein drugs that do not involve any injuries (non-invasive) to the skin termed as passive delivery techniques. Chemical enhancers, nanocarriers, certain biological peptides and miscellaneous approaches like prodrugs are also thoroughly reviewed for their applications in protein delivery.
Collapse
Affiliation(s)
- Bivek Chaulagain
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Ankit Jain
- b Institute of Pharmaceutical Research, GLA University , Mathura , India
| | - Ankita Tiwari
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Amit Verma
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Sanjay K Jain
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| |
Collapse
|
64
|
Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci 2017; 111:409-417. [PMID: 29030177 DOI: 10.1016/j.ejps.2017.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023]
Abstract
The objective of the present study was to formulate eprosartan mesylate loaded nano-bilosomes and investigates its potential for controlling streptozotocin induced diabetes nephropathy in Wistar rats. The eprosartan mesylate loaded nano-bilosomes comprising of various ratios of soybean phosphatidylcholine/sodium deoxycholate were prepared by thin film hydration technique. The prepared formulations were evaluated for vesicles size, polydispersity index, zeta potential and entrapment efficiency. Further the optimized formulation was characterized for vesicles morphology, and its efficacy for the management of diabetic nephropathy in Wistar rats. The optimized eprosartan mesylate loaded nano-bilosomes exhibited vesicles size, polydispersity index, zeta potential and entrapment efficiency of 63.88±3.46nm, 0.172±0.026, -30.40±2.75mV and 61.19±0.88% respectively. In vivo activity demonstrated that the prepared eprosartan mesylate loaded nano-bilosomes formulation demonstrated a nephro-protecting outcome as shown by the substantial decrease in serum creatinine, urea, lactate dehydrogenase, total albumin, and malondialdehyde. Additionally, an oral administration of eprosartan mesylate loaded nano-bilosomes decreases the raised expressions of Angiotensin II type 1 receptor, inducible nitric oxide synthase, and transforming growth factor-β1 in Wistar rats. Further, histopathological examination established the nephro-protective effect of prepared formulation. In conclusion, the research work in the paper suggests that the prepared eprosartan mesylate loaded nano-bilosomes could serve as a practical oral formulation for diabetic nephropathy in future therapy and may offer potential benefits in cases with hypertension and renal disease.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|