51
|
Smirnova EV, Timofeev VI, Rakitina TV, Petrenko DE, Elmeeva OS, Saratov GA, Kudriaeva AA, Bocharov EV, Belogurov AA. Myelin Basic Protein Attenuates Furin-Mediated Bri2 Cleavage and Postpones Its Membrane Trafficking. Int J Mol Sci 2024; 25:2608. [PMID: 38473856 DOI: 10.3390/ijms25052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry E Petrenko
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - Olga S Elmeeva
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry Named after N.A. Preobrazhensky, Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eduard V Bocharov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia
| |
Collapse
|
52
|
Pilotte J, Huang AS, Khoury S, Zhang X, Tafreshi A, Vanderklish P, Sarraf ST, Pulido JS, Milman T. Detection of TTR Amyloid in the Conjunctiva Using a Novel Fluorescent Ocular Tracer. Transl Vis Sci Technol 2024; 13:11. [PMID: 38359019 PMCID: PMC10876017 DOI: 10.1167/tvst.13.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024] Open
Abstract
Background Transthyretin amyloidosis (ATTR) is a significant cause of cardiomyopathy and other morbidities in the elderly and Black Americans. ATTR can be treated with new disease-modifying therapies, but large shortfalls exist in its diagnosis. The objective of this study was to test whether TTR amyloid can be detected and imaged in the conjunctiva using a novel small-molecule fluorescent ocular tracer, with the implication that ATTR might be diagnosable by a simple eye examination. Methods Three approaches were used in this study. First, AMDX-9101 was incubated with in vitro aggregated TTR protein, and changes in its excitation and emission spectra were quantified. Second, a cadaver eye from a patient with familial amyloid polyneuropathy type II TTR mutation and a vitrectomy sample from an hATTR patient were incubated with AMDX-9101 and counterstained with Congo Red and antibodies to TTR to determine whether AMDX-9101 labels disease-related TTR amyloid deposits in human conjunctiva and eye. Last, imaging of in vitro aggregated TTR amyloid labeled with AMDX-9101 was tested in a porcine ex vivo model, using a widely available clinical ophthalmic imaging device. Results AMDX-9101 hyper-fluoresced in the presence of TTR amyloid in vitro, labeled TTR amyloid deposits in postmortem human conjunctiva and other ocular tissues and could be detected under the conjunctiva of a porcine eye using commercially available ophthalmic imaging equipment. Conclusions AMDX-9101 enabled detection of TTR amyloid in the conjunctiva, and the fluorescent binding signal can be visualized using commercially available ophthalmic imaging equipment. Translational Relevance AMDX-9101 detection of TTR amyloid may provide a potential new and noninvasive test for ATTR that could lead to earlier ATTR diagnosis, as well as facilitate development of new therapeutics.
Collapse
Affiliation(s)
| | - Alex S. Huang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | | | - Xiaowei Zhang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Jose S. Pulido
- Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA
| | - Tatyana Milman
- Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA
- Pathology Department, Wills Eye Hospital, Philadelphia, PA, USA
| |
Collapse
|
53
|
Alqarni A, Aljizeeri A, Bakhsh AM, El-Zeftawy HAM, Farghaly HR, Alqadhi MAM, Algarni M, Asiri ZM, Osman A, Haddadin H, Alayary I, Al-Mallah MH. Best Practices in Nuclear Imaging for the Diagnosis of Transthyretin Amyloid Cardiomyopathy (ATTR-CM) in KSA: The Eagle Eyes of Local Experts. Diagnostics (Basel) 2024; 14:212. [PMID: 38248088 PMCID: PMC10814030 DOI: 10.3390/diagnostics14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a complex and serious form of heart failure caused by the accumulation of transthyretin amyloid protein in the heart muscle. Variable symptoms of ATTR-CM can lead to a delayed diagnosis. Recognizing the diagnostic indicators is crucial to promptly detect this condition. A targeted literature review was conducted to examine the latest international consensus recommendations on a comprehensive diagnosis of ATTR-CM. Additionally, a panel consisting of nuclear medicine expert consultants (n = 10) and nuclear imaging technicians (n = 2) convened virtually from the Kingdom of Saudi Arabia (KSA) to formulate best practices for ATTR-CM diagnosis. The panel reached a consensus on a standard diagnostic pathway for ATTR-CM, which commences by evaluating the presence of clinical red flags and initiating a cardiac workup to assess the patient's echocardiogram. Cardiac magnetic resonance imaging may be needed, in uncertain cases. When there is a high suspicion of ATTR-CM, patients undergo nuclear scintigraphy and hematologic tests to rule out primary or light-chain amyloidosis. The expert panel emphasized that implementing best practices will support healthcare professionals in KSA to improve their ability to detect and diagnose ATTR-CM more accurately and promptly. Diagnosing ATTR-CM accurately and early can reduce morbidity and mortality rates through appropriate treatment.
Collapse
Affiliation(s)
- Abdullah Alqarni
- Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia; (A.A.); (H.R.F.)
| | - Ahmed Aljizeeri
- King Abdulaziz Cardiac Center, Ministry of the National Guard Health Affairs, Riyadh 14626, Saudi Arabia;
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 21423, Saudi Arabia
| | | | | | - Hussein R. Farghaly
- Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia; (A.A.); (H.R.F.)
| | | | - Mushref Algarni
- King Fahad Military Medical Complex, Dhahran 34313, Saudi Arabia;
| | | | - Ahmed Osman
- Pfizer Inc., Riyadh 13244, Saudi Arabia; (A.O.)
| | - Haya Haddadin
- Pfizer Gulf FZ LLC, Dubai 29553, United Arab Emirates;
| | | | - Mouaz H. Al-Mallah
- Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA
| |
Collapse
|
54
|
Huang P, Li X, Tan Z, Wang Y, Yan J. Characterization of the G-quadruplexes in the transthyretin gene and its role in silencing transthyretin mRNA transcription. Bioorg Med Chem Lett 2024; 97:129568. [PMID: 38008337 DOI: 10.1016/j.bmcl.2023.129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Transthyretin Amyloidosis arises from the misfolding of monomers or oligomers of the normal transthyretin protein. Our investigation revealed that certain guanine-rich regions within the 5' UTR sequence of the transthyretin gene possess the ability to form G2-quadruplex structures, as determined through analysis with QGRS mapper. We demonstrated that small molecule ligands, including TMPyP4, Braco-19, NMM, and TO, have a significant impact on the stabilization of transthyretin G-quadruplexes. The objective of this study was to confirm the effect of ligands on transthyretin gene transcription through the stabilization of G-quadruplexes. To comprehend the interaction between ligands and transthyretin G-quadruplexes, a range of analytical techniques were employed, includingUV titration, fluorescence titration assays, circular dichroism, quantitative RT-PCR and cytotoxicity tests. The results revealed the presence of four putative G2-quadruplex sequences, which formed stable anti-parallel, parallel, and hybrid G2-quadruplex structures. Notably, Ttrg 3 (5'-GGAAGGAAGGGAGGGAGGG-3') exhibited the highest stability to form G-quadruplex. Furthermore, TmPyP4, Braco-19, NMM and TO were found to stabilize the parallel topology of Ttrg 3. After 48 h of incubation, the RT-PCR experiments revealed a significant reduction in transthyretin mRNA transcription in HepG2 cells when treated with 20 μM TmPyP4 and Braco-19, without inducing apoptosis. Our findings suggested that ligand-mediated stabilization of G-quadruplexes within the 5'-UTR can effectively silence transthyretin expression, highlighting the potential of G-quadruplex as a novel therapeutic target for Transthyretin Amyloidosis. This study might shed valuable lights for the development of innovative therapeutic approach against Transthyretin Amyloidosis.
Collapse
Affiliation(s)
- Peimin Huang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xu Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhonghan Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuqing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
55
|
Pham-Trung C, Veloza-Urrea D, Segura-Domínguez M, De la Rosa Rojas Y, Aguilera-Agudo C, García-Izquierdo EA, García-Rodríguez D, Jiménez-Sánchez D, Lorente-Ros A, Mingo-Santos S, Gonzalez-Lopez E, Domínguez F, Garcia-Pavia P, Toquero-Ramos J, Fernández-Lozano I, Castro-Urda V. Feasibility and safety of left bundle branch area pacing in cardiac amyloidosis. A single center experience. Pacing Clin Electrophysiol 2024; 47:149-155. [PMID: 38055612 DOI: 10.1111/pace.14894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/25/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Conventional right ventricle (RV) pacemaker stimulation has been associated with worse clinical outcomes in patients with cardiac amyloidosis (CA). Left bundle branch area pacing (LABPP) has been suggested as a promising alternative. We sought to assess the safety, feasibility, and outcomes of LABPP in patients with CA. METHODS We retrospectively analyzed echocardiography and pacing parameters and clinical outcomes in 23 consecutive patients with CA and LBBAP implanted from June 2020 to October 2022. RESULTS LBBAP was successfully performed in 22 over 23 patients (19 male, 78.6 ± 11.7 years, 20 ATTR, mean LVEF 45.5 ± 16.2%). After the procedure, 9 patients showed Qr pattern and 11 a qR pattern in V1 on ECG. Average procedure time was 67 ± 28 min. After 7.7 ± 5.2 months follow-up, no procedure-related complications had occurred. Although, a significant reduction in QRS width (p = .001) was achieved, we did not observe significant changes in LVEF and Nt ProBNP at 6 months of follow-up. Pacing parameters were stable during follow-up: LBB capture threshold and R wave amplitude were 1.0 ± 0.5 V and 10.6 ± 6.0 mV versus 0.8 ± 0.1 V, p = .21 and 10.6 ± 5.1 mV (p = .985) at follow up. CONCLUSION LBBAP is safe and feasible pacing technique for patients with CA. LBBAP is associated with significant narrowing of QRSd without worsening in LVEF and Nt-proBNP.
Collapse
Affiliation(s)
- Chinh Pham-Trung
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Darwin Veloza-Urrea
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Melodie Segura-Domínguez
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Yuleisy De la Rosa Rojas
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Cristina Aguilera-Agudo
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | - Daniel García-Rodríguez
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Diego Jiménez-Sánchez
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Alvaro Lorente-Ros
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Susana Mingo-Santos
- Cardiac imaging Unit, Cardiology Service. Hospital universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Esther Gonzalez-Lopez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Fernando Domínguez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jorge Toquero-Ramos
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ignacio Fernández-Lozano
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Víctor Castro-Urda
- Electrophysiology Unit, Cardiology Service. Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| |
Collapse
|
56
|
Saro R, Pavan D, Porcari A, Sinagra G, Mojoli M. Lights and Shadows of Clinical Applications of Cardiac Scintigraphy with Bone Tracers in Suspected Amyloidosis. J Clin Med 2023; 12:7605. [PMID: 38137674 PMCID: PMC10743682 DOI: 10.3390/jcm12247605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Radionuclide bone scintigraphy is the cornerstone of an imaging-based algorithm for accurate non-invasive diagnosis of transthyretin cardiac amyloidosis (ATTR-CA). In patients with heart failure and suggestive echocardiographic and/or cardiac magnetic resonance imaging findings, the positive predictive value of Perugini grade 2 or 3 myocardial uptake on a radionuclide bone scan approaches 100% for the diagnosis of ATTR-CA as long as there is no biochemical evidence of a clonal dyscrasia. The technetium-labelled tracers that are currently validated for non-invasive diagnosis of ATTR-CA include pyrophosphate (99mTc-PYP); hydroxymethylene diphosphonate (99mTc-HMDP); and 3,3-diphosphono-1,2-propanodicarboxylate (99mTc-DPD). Although nuclear scintigraphy has transformed the contemporary diagnostic approach to ATTR-CA, a number of grey areas remains, including the mechanism for binding tracers to the infiltrated heart, differences in the kinetics and distribution of these radiotracers, differences in protocols of image acquisition worldwide, the clinical significance of extra-cardiac uptake, and the use of this technique for prognostic stratification, monitoring disease progression and assessing the response to disease-modifying treatments. This review will deal with the most relevant unmet needs and clinical questions concerning scintigraphy with bone tracers in ATTR-CA, providing expert opinions on possible future developments in the clinical application of these radiotracers in order to offer practical information for the interpretation of nuclear images by physicians involved in the care of patients with this ATTR-CA.
Collapse
Affiliation(s)
- Riccardo Saro
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy; (R.S.); (A.P.); (G.S.)
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Giuliano Isontina University Health Authority, 34149 Trieste, Italy
| | - Daniela Pavan
- Ospedale Santa Maria degli Angeli, Azienda Ospedaliera Friuli Occidentale (ASFO), 33170 Pordenone, Italy;
| | - Aldostefano Porcari
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy; (R.S.); (A.P.); (G.S.)
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Giuliano Isontina University Health Authority, 34149 Trieste, Italy
- National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Gianfranco Sinagra
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy; (R.S.); (A.P.); (G.S.)
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Giuliano Isontina University Health Authority, 34149 Trieste, Italy
| | - Marco Mojoli
- Ospedale Santa Maria degli Angeli, Azienda Ospedaliera Friuli Occidentale (ASFO), 33170 Pordenone, Italy;
| |
Collapse
|
57
|
Di Lisi D, Brighina F, Manno G, Comparato F, Di Stefano V, Macaione F, Damerino G, Di Caccamo L, Cannizzo N, Ortello A, Galassi AR, Novo G. Hereditary Transthyretin Amyloidosis: How to Differentiate Carriers and Patients Using Speckle-Tracking Echocardiography. Diagnostics (Basel) 2023; 13:3634. [PMID: 38132218 PMCID: PMC10743162 DOI: 10.3390/diagnostics13243634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Hereditary transthyretin amyloidosis is a rare disease caused by transthyretin (TTR) gene mutations. The aim of our study was to identify early signs of cardiac involvement in patients with a TTR gene mutation in order to differentiate carriers from patients with neurological or cardiac disease. METHODS A case-control study was carried out on 31 subjects with the TTR mutation. Patients were divided into three groups: 23% with cardiac amyloidosis and polyneuropathy (group A), 42% with only polyneuropathy (group B) and 35% carriers (group C). Speckle-tracking echocardiography (left-ventricular global longitudinal strain-GLS, atrial stiffness) was performed in all patients. The apical/basal longitudinal strain ratio (SAB) and relative apical sparing (RAS) were assessed in all subjects. RESULTS Analyzing groups C and B, we only found a significant difference in the SAB (p-value 0.001) and RAS (p-value 0.039). These parameters were significantly more impaired in group A compared to group B (SAB p-value 0.008; RAS p-value 0.002). Also, atrial stiffness was significantly impaired in groups A and B compared to group C. CONCLUSIONS Our study suggests the diagnostic role of the SAB and RAS in cardiac amyloidosis. The SAB and RAS showed a gradual increase from carriers to patients with neurological and cardiac diseases. Thus, these parameters, in addition to atrial stiffness, could be used to monitor carriers. More extensive data are needed.
Collapse
Affiliation(s)
- Daniela Di Lisi
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Filippo Brighina
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy
| | - Girolamo Manno
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Francesco Comparato
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Di Stefano
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesca Macaione
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Damerino
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Leandro Di Caccamo
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Noemi Cannizzo
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Antonella Ortello
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Alfredo R. Galassi
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Giuseppina Novo
- Division of Cardiology, University Hospital Paolo Giaccone, 90127 Palermo, Italy (G.D.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
58
|
Tender-Vieira J, Pinto C, Matias P, Marques P, Almeida JS. A Straining Heart: Transthyretin Amyloidosis as a Cause of Heart Failure. Cureus 2023; 15:e50957. [PMID: 38249187 PMCID: PMC10800150 DOI: 10.7759/cureus.50957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cardiac amyloidosis is a disease caused by the deposition of amyloid fibrils in the extracellular space of the heart, most often by immunoglobulin light chains or by transthyretin. It is often underdiagnosed because the signs and symptoms are nonspecific or due to the false perception that the diagnosis always requires an endomyocardial biopsy. Transthyretin amyloidosis is being increasingly recognized as a cause of heart failure, particularly in patients with heart failure with preserved ejection fraction (HFpEF). We present the clinical case of an 86-year-old man whose diagnosis was based on signs and symptoms compatible with cardiac amyloidosis and in which imaging performed a preponderant role. This case reminds clinicians to consider the diagnosis in older patients with HFpEF, left ventricular hypertrophy and rhythm disturbances. It highlights the importance of evaluating global longitudinal strain (GLS) in a standard echocardiographic evaluation.
Collapse
Affiliation(s)
| | - Claudemira Pinto
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Paula Matias
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Pedro Marques
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Jorge S Almeida
- Medicine, Faculdade de Medicina da Universidade do Porto, Porto, PRT
- Internal Medicine, Centro Hospitalar Universitário de São João, Porto, PRT
| |
Collapse
|
59
|
Albenque G, Bézard M, Kharoubi M, Odouard S, Lunati A, Poullot E, Zaroui A, Teiger E, Hittinger L, Audard V, El Karoui K, Funalot B, Fanen P, Damy T, Oghina S. Comparison of cardiac involvement, extracardiac manifestations and outcomes between homozygote and heterozygote transthyretin p.Val142Ile (V122I) variant in patients with hereditary transthyretin amyloidosis: a cohort study. Amyloid 2023; 30:407-415. [PMID: 37377439 DOI: 10.1080/13506129.2023.2227322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Hereditary transthyretin (ATTRv) p.Val142Ile (V122I) mutation is the most common inherited cause of cardiac amyloidosis and little is known about the phenotype and outcome of the rare homozygotic genotype. This study aimed to compare phenotypic characteristics and outcomes between heterozygous and homozygous patients with ATTRv V122I amyloidosis. MATERIAL AND METHODS This monocentric, observational, retrospective study conducted at the French National Referral Centre for Cardiac Amyloidosis (Henri Mondor Hospital, Créteil), described clinical, electrocardiographic, cardiac imaging features and prognostic data for patients with ATTRv V122I amyloidosis. RESULTS Among 185 ATTRv V122I patients identified, 161 were heterozygous and 24 were homozygous. The homozygous frequency was 13%. Onset occured significantly earlier in the homozygotes compared to heterozygotes with earlier median age at diagnosis (67[63-71] years vs 76[70-79] years, p < .001), age at first cardiac symptom (66[61-71] years vs 74[68-78] years, p < .001) and age at first extracardiac symptom (59[52-70] years vs 69[62-75] years, p = .003). Homozygous ATTRv V122I was also associated with greater disease burden with earlier events (death, transplant or hospitalisation for acute heart failure) compared with heterozygotes (71[67-74] vs 78[76-79] years, p = .018). CONCLUSION This rare, homozygous V122I cohort confirmed the earlier age of onset, death and cardiac events in this population.
Collapse
Affiliation(s)
- Grégoire Albenque
- Department of Cardiology, Amiens University Hospital, Amiens, France
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Mélanie Bézard
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Mounira Kharoubi
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Shirley Odouard
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Ariane Lunati
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Elsa Poullot
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
- Department of Pathology, Henri Mondor Teaching Hospital, APHP, Creteil, France
| | - Amira Zaroui
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Emmanuel Teiger
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Luc Hittinger
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Vincent Audard
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
- Department of Nephrology and Transplantation, Centre de Référence Maladie Rare « Syndrome Néphrotique Idiopathique », Fédération Hospitalo-Universitaire « Innovative therapy for immune disorders », Henri Mondor teaching Hospital, APHP, Créteil, France
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Khalil El Karoui
- Department of Nephrology, Tenon Teaching Hospital, APHP, Paris, France
| | - Benoît Funalot
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
- Department of Genetics, Henri Mondor Teaching Hospital, APHP, Creteil, France
| | - Pascale Fanen
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
- Department of Genetics, Henri Mondor Teaching Hospital, APHP, Creteil, France
| | - Thibaud Damy
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Silvia Oghina
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| |
Collapse
|
60
|
Mir TH, Zargar PA, Sharma A, Jabeen B, Sharma S, Parvaiz MO, Bashir S, Javeed R. Post COVID-19 AA amyloidosis of the kidneys with rapidly progressive renal failure. Prion 2023; 17:111-115. [PMID: 37055928 PMCID: PMC10114959 DOI: 10.1080/19336896.2023.2201151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/15/2022] [Accepted: 01/22/2023] [Indexed: 04/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has taken the world by a storm, posing a gruelling challenge to the medical fraternity globally. Besides its very high infectivityinfectivity, significant organ dysfunction occurs in critically ill COVID-19 patients, leading to severe morbidity and mortality. Pulmonary involvement is the leading cause of death in these patients to be followed by the cardiovascular involvement. Kidney involvement due to COVID-19 is becoming more discernible with AKI adversely affecting the outcome. Besides AKI, a few cases of collapsing FSGS in genetically vulnerable patients and thrombotic microangiopathies have been reported as well. We report a case of AA amyloidosis of the kidney with a rapidly progressive renal failure and congestive heart failure with preserved left ventricular functions, which complicated a moderate COVID-19 pneumonia providing some clues to a possible association of this novel virus disease with this complication, which needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Tajamul H. Mir
- Department of Nephrology, Government Medical College, Srinagar, Jammu and Kashmir, India
- Department of Nephrology, Khyber Medical Institute Nowpora, Srinagar, Jammu and Kashmir, India
| | - Parvaiz A Zargar
- Department of Cardiology, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Alok Sharma
- Department of Renal Pathology, Dr. Lal Path lab/National Reference lab, New Delhi, India
| | - Bushra Jabeen
- Department of Radiology, SMHS Hospital, Srinagar, Jammu and Kashmir, India
| | - Shephali Sharma
- Department of Renal Pathology, Dr. Lal Path lab/National Reference lab, New Delhi, India
| | - M. Omar Parvaiz
- Department of Medicine, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Sabah Bashir
- Department of Nephrology, Khyber Medical Institute Nowpora, Srinagar, Jammu and Kashmir, India
| | - Reem Javeed
- Department of Nephrology, Government Medical College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
61
|
Qi X, Wang Y, Yu H, Liu R, Leppert A, Zheng Z, Zhong X, Jin Z, Wang H, Li X, Wang X, Landreh M, A Morozova-Roche L, Johansson J, Xiong S, Iashchishyn I, Chen G. Spider Silk Protein Forms Amyloid-Like Nanofibrils through a Non-Nucleation-Dependent Polymerization Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304031. [PMID: 37455347 DOI: 10.1002/smll.202304031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-β peptide (Aβ) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aβ capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aβ forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.
Collapse
Affiliation(s)
- Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu Wang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hairui Yu
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Ruifang Liu
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, 17165, Sweden
| | - Zihan Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
- Department of Pharmacology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, 14152, Sweden
| | - Zhen Jin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
- Department of Pharmacology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Han Wang
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, 17165, Sweden
| | | | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Sidong Xiong
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Igor Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90187, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| |
Collapse
|
62
|
Riehani A, Soubani AO. The spectrum of pulmonary amyloidosis. Respir Med 2023; 218:107407. [PMID: 37696313 DOI: 10.1016/j.rmed.2023.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Amyloidosis is a disease caused by misfolded proteins that deposit in the extracellular matrix as fibrils, resulting in the dysfunction of the involved organ. The lung is a common target of Amyloidosis, but pulmonary amyloidosis is uncommonly diagnosed since it is rarely symptomatic. Diagnosis of pulmonary amyloidosis is usually made in the setting of systemic amyloidosis, however in cases of localized pulmonary disease, surgical or transbronchial tissue biopsy might be indicated. Pulmonary amyloidosis can be present in a variety of discrete entities. Diffuse Alveolar septal amyloidosis is the most common type and is usually associated with systemic AL amyloidosis. Depending on the degree of the interstitial involvement, it may affect alveolar gas exchange and cause respiratory symptoms. Localized pulmonary Amyloidosis can present as Nodular, Cystic or Tracheobronchial Amyloidosis which may cause symptoms of airway obstruction and large airway stenosis. Pleural effusions, mediastinal lymphadenopathy and pulmonary hypertension has also been reported. Treatment of all types of pulmonary amyloidosis depends on the type of precursor protein, organ involvement and distribution of the disease. Most of the cases are asymptomatic and require only close monitoring. Diffuse alveolar septal amyloidosis treatment follows the treatment of underlying systemic amyloidosis. Tracheobronchial amyloidosis is usually treated with bronchoscopic interventions including debulking and stenting or with external beam radiation. Long-term prognosis of pulmonary amyloidosis usually depends on the type of lung involvement and other organ function.
Collapse
Affiliation(s)
- Anas Riehani
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ayman O Soubani
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
63
|
Xu D, Zhou J, Soon WL, Kutzli I, Molière A, Diedrich S, Radiom M, Handschin S, Li B, Li L, Sturla SJ, Ewald CY, Mezzenga R. Food amyloid fibrils are safe nutrition ingredients based on in-vitro and in-vivo assessment. Nat Commun 2023; 14:6806. [PMID: 37884488 PMCID: PMC10603083 DOI: 10.1038/s41467-023-42486-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Food protein amyloid fibrils have superior technological, nutritional, sensorial, and physical properties compared to native monomers, but there is as yet insufficient understanding of their digestive fate and safety for wide consumption. By combining SDS-PAGE, ELISA, fluorescence, AFM, MALDI-MS, CD, microfluidics, and SAXS techniques for the characterization of β-lactoglobulin and lysozyme amyloid fibrils subjected to in-vitro gastrointestinal digestion, here we show that either no noticeable conformational differences exist between amyloid aggregates and their monomer counterparts after the gastrointestinal digestion process (as in β-lactoglobulin), or that amyloid fibrils are digested significantly better than monomers (as in lysozyme). Moreover, in-vitro exposure of human cell lines and in-vivo studies with C. elegans and mouse models, indicate that the digested fibrils present no observable cytotoxicity, physiological abnormalities in health-span, nor accumulation of fibril-induced plaques in brain nor other organs. These extensive in-vitro and in-vivo studies together suggest that the digested food amyloids are at least equally as safe as those obtained from the digestion of corresponding native monomers, pointing to food amyloid fibrils as potential ingredients for human nutrition.
Collapse
Affiliation(s)
- Dan Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland
| | - Jiangtao Zhou
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland.
| | - Wei Long Soon
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ines Kutzli
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland
| | - Adrian Molière
- Institute of Translational Medicine, Department of Health Sciences and Technology (HEST), ETH Zurich, Schwerzenbach, Switzerland
| | - Sabine Diedrich
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland
| | - Milad Radiom
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Shana J Sturla
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland
| | - Collin Y Ewald
- Institute of Translational Medicine, Department of Health Sciences and Technology (HEST), ETH Zurich, Schwerzenbach, Switzerland
| | - Raffaele Mezzenga
- Institute of Food, Nutrition and Health (IFNH), Department of Health Sciences and Technology (HEST), ETH Zurich, Zürich, 8092, Switzerland.
- Department of Materials, ETH Zurich, Zürich, 8092, Switzerland.
| |
Collapse
|
64
|
Brito D, Albrecht FC, de Arenaza DP, Bart N, Better N, Carvajal-Juarez I, Conceição I, Damy T, Dorbala S, Fidalgo JC, Garcia-Pavia P, Ge J, Gillmore JD, Grzybowski J, Obici L, Piñero D, Rapezzi C, Ueda M, Pinto FJ. World Heart Federation Consensus on Transthyretin Amyloidosis Cardiomyopathy (ATTR-CM). Glob Heart 2023; 18:59. [PMID: 37901600 PMCID: PMC10607607 DOI: 10.5334/gh.1262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/31/2023] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive and fatal condition that requires early diagnosis, management, and specific treatment. The availability of new disease-modifying therapies has made successful treatment a reality. Transthyretin amyloid cardiomyopathy can be either age-related (wild-type form) or caused by mutations in the TTR gene (genetic, hereditary forms). It is a systemic disease, and while the genetic forms may exhibit a variety of symptoms, a predominant cardiac phenotype is often present. This document aims to provide an overview of ATTR-CM amyloidosis focusing on cardiac involvement, which is the most critical factor for prognosis. It will discuss the available tools for early diagnosis and patient management, given that specific treatments are more effective in the early stages of the disease, and will highlight the importance of a multidisciplinary approach and of specialized amyloidosis centres. To accomplish these goals, the World Heart Federation assembled a panel of 18 expert clinicians specialized in TTR amyloidosis from 13 countries, along with a representative from the Amyloidosis Alliance, a patient advocacy group. This document is based on a review of published literature, expert opinions, registries data, patients' perspectives, treatment options, and ongoing developments, as well as the progress made possible via the existence of centres of excellence. From the patients' perspective, increasing disease awareness is crucial to achieving an early and accurate diagnosis. Patients also seek to receive care at specialized amyloidosis centres and be fully informed about their treatment and prognosis.
Collapse
Affiliation(s)
- Dulce Brito
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fabiano Castro Albrecht
- Dante Pazzanese Institute of Cardiology – Cardiac Amyloidosis Center Dante Pazzanese Institute, São Paulo, Brazil
| | | | - Nicole Bart
- St Vincent’s Hospital, Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | - Nathan Better
- Cabrini Health, Malvern, Royal Melbourne Hospital, Parkville, Monash University and University of Melbourne, Victoria, Australia
| | | | - Isabel Conceição
- Department of Neurosciences and Mental Health, CHULN – Hospital de Santa Maria, Portugal
- Centro de Estudos Egas Moniz Faculdade de Medicina da Universidade de Lisboa Portugal, Portugal
| | - Thibaud Damy
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Julian D. Gillmore
- National Amyloidosis Centre, University College London, Royal Free Campus, United Kingdom
| | - Jacek Grzybowski
- Department of Cardiomyopathy, National Institute of Cardiology, Warsaw, Poland
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Claudio Rapezzi
- Cardiovascular Institute, University of Ferrara, Ferrara, Italy
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Fausto J. Pinto
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
65
|
Nandeshwar, Rout J, Panda SM, Tripathy U. Phytoconstituents of Ashwagandha as potential inhibitors of human islet amyloid polypeptide (hIAPP): an in silico investigation. J Biomol Struct Dyn 2023; 42:11020-11036. [PMID: 37753786 DOI: 10.1080/07391102.2023.2259491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Amylin or human islet amyloid polypeptide (hIAPP) is a small peptide co-secreted with insulin. Its peripheral aggregation on the lipid bilayer leads to fibril formation. The formation of hIAPP fibrils is hypothesized to rupture the membrane of β -cells, which culminates in β-cell death. Following additional studies, amylin fibril formation is a hallmark of T2DM and is also implicitly responsible for Alzheimer's disease. This study reports the virtual screening of 1000 phytoconstituents of traditional Indian medicinal plants to get potential inhibitors of amylin, which will likely restrict and block amyloid aggregation, preventing the progression of T2DM and Alzheimer's illness. The compounds having drug-likeness properties (acquired from ADMET calculations) and highest binding affinities (from molecular docking) are subjected to molecular dynamics (MD) simulation to investigate the temporal stability of the conformations of the complexes. This study discovers that Withaferin A and Withacoagulin have the highest binding affinity for amylin, and their stability with amylin was verified further by parameters such as RMSD, RMSF, number of H-bonds and MMPBSA. Individual principle component analysis (PCA) confirms the stable complex formation of amylin with Withaferin A and Withacoagulin. We strongly believe that wet-lab experiments and clinical trials will help to validate our computational findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nandeshwar
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Janmejaya Rout
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Smita Manjari Panda
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
66
|
Hussain M, Yellapragada S, Al Hadidi S. Differential Diagnosis and Therapeutic Advances in Multiple Myeloma: A Review Article. Blood Lymphat Cancer 2023; 13:33-57. [PMID: 37731771 PMCID: PMC10508231 DOI: 10.2147/blctt.s272703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the abnormal clonal proliferation of plasma cells that may result in focal bone lesions, renal failure, anemia, and/or hypercalcemia. Recently, the diagnosis and treatment of MM have evolved due to a better understanding of disease pathophysiology, improved risk stratification, and new treatments. The incorporation of new drugs, including proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies and high-dose chemotherapy followed by hematopoietic stem cell transplantation, has resulted in a significant improvement in patient outcomes and QoL. In this review, we summarize differential diagnoses and therapeutic advances in MM.
Collapse
Affiliation(s)
- Munawwar Hussain
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarvari Yellapragada
- Michael E. DeBakey VA Medical Center and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
67
|
Kachkin DV, Lashkul VV, Gorsheneva NA, Fedotov SA, Rubel MS, Chernoff YO, Rubel AA. The Aβ42 Peptide and IAPP Physically Interact in a Yeast-Based Assay. Int J Mol Sci 2023; 24:14122. [PMID: 37762425 PMCID: PMC10531723 DOI: 10.3390/ijms241814122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Numerous studies have demonstrated that people with type 2 diabetes mellitus (associated with IAPP peptide aggregation) show an increased incidence of Alzheimer's disease (associated with Aβ aggregation), but the mechanism responsible for this correlation is presently unknown. Here, we applied a yeast-based model to study the interactions of IAPP with PrP (associated with TSEs) and with the Aβ42 peptide. We demonstrated that fluorescently tagged IAPP forms detergent-resistant aggregates in yeast cells. Using the FRET approach, we showed that IAPP and Aβ aggregates co-localize and physically interact in yeast cells. We also showed that this interaction is specific and that there is no interaction between IAPP and PrP in the yeast system. Our data confirmed a direct physical interaction between IAPP and Aβ42 aggregates in a living cell. Based on these findings, we hypothesize that this interaction may play a crucial role in seeding Aβ42 aggregation in T2DM patients, thereby promoting the development of AD.
Collapse
Affiliation(s)
- Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
| | - Veronika V. Lashkul
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
| | - Natalia A. Gorsheneva
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
| | - Sergey A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Maria S. Rubel
- Laboratory of DNA-Nanosensor Diagnostics, SCAMT Institute, ITMO University, St. Petersburg 191002, Russia;
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, St. Petersburg 197022, Russia
| |
Collapse
|
68
|
Moreno JCA, Eyzaguirre E, Qiu S. Amyloid goiter secondary to familial Mediterranean fever with E148Q mutation: A unique case. Chronic Dis Transl Med 2023; 9:266-268. [PMID: 37711865 PMCID: PMC10497809 DOI: 10.1002/cdt3.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Juan C. A. Moreno
- Department of PathologyThe University of Texas Medical BranchGalvestonTexasUSA
| | - Eduardo Eyzaguirre
- Department of PathologyThe University of Texas Medical BranchGalvestonTexasUSA
| | - Suimin Qiu
- Department of PathologyThe University of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
69
|
Chuang Y, Chang Y, Tu L. Investigating the inhibitory property of DM hCT on hCT fibrillization via its relevant peptide fragments. Protein Sci 2023; 32:e4711. [PMID: 37354016 PMCID: PMC10360389 DOI: 10.1002/pro.4711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
The irreversible aggregation of proteins or peptides greatly limits their bioavailability; therefore, effective inhibition using small molecules or biocompatible materials is very difficult. Human calcitonin (hCT), a hormone polypeptide with 32 residues, is secreted by the C-cells of the thyroid gland. The biological function of this hormone is to regulate calcium and phosphate concentrations in the blood via several different pathways. One of these is to inhibit the activity of osteoclasts; thus, calcitonin could be used to treat osteoporosis and Paget's disease of the bone. However, hCT is prone to aggregation in aqueous solution and forms amyloid fibrils. Salmon and eel calcitonin are currently used as clinical substitutes for hCT. In a previous study, we found that the replacement of two residues at positions 12 and 17 of hCT with amino acids that appear in the salmon sequence can greatly suppress peptide aggregation. The double mutations of hCT (DM hCT) also act as good inhibitors by disrupting wild-type hCT fibrillization, although the inhibition mechanism is not clear. More importantly, we demonstrated that DM hCT is biologically active in interacting with the calcitonin receptor. To further understand the inhibitory effect of DM hCT on hCT fibrillization, we created four relevant peptide fragments based on the DM hCT sequence. Our examination revealed that the formation of a helix of DM hCT was possibly a key component contributing to its inhibitory effect. This finding could help in the development of peptide-based inhibitors and in understanding the aggregation mechanism of hCT.
Collapse
Affiliation(s)
- Ya‐Ping Chuang
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| | - Yu‐Pei Chang
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| | - Ling‐Hsien Tu
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
70
|
Ikoma T, Ohtani H, Ohno K, Iguchi K, Suwa K, Sawada M, Tanahashi Y, Sakamoto A, Saotome M, Ichikawa S, Goshima S, Maekawa Y. Diagnostic value of heart-to-mediastinum ratio in 99mTc-pyrophospate SPECT/CT for transthyretin cardiac amyloidosis. J Nucl Cardiol 2023; 30:1374-1381. [PMID: 36547805 DOI: 10.1007/s12350-022-03180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND In transthyretin cardiac amyloidosis (ATTR-CA), 99mTc-pyrophosphate myocardial scintigraphy (99mTc-PYP) is a diagnostic tool that utilizes visual and quantitative evaluation. However, false positive cases can occur because of tracer accumulation in the blood. We investigated the effectiveness of the heart-to-mediastinum (H/M) ratio of 99mTc-PYP in ATTR-CA diagnosis. METHODS We retrospectively included 164 patients who underwent 99mTc-PYP single-photon emission computed tomography/computed tomography between March 2019 and January 2022. The diagnostic accuracy of ATTR-CA was examined by the heart-to-contralateral lung (H/CL) and H/M ratio calculated at 3 hours post-tracer administration. RESULTS After the exclusion of patients who did not undergo endomyocardial biopsy, 30 patients (15 each with ATTR-CA and without ATTR-CA) were included. The receiver operating characteristic curve used to distinguish ATTR-CA from non-ATTR-CA patients revealed an area under the curve of 0.986 and 0.943, respectively. A H/M ratio of > 1.41 identified ATTR-CA patients with a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100, 93.3, 93.3, and 100%, respectively. Conversely, an H/CL ratio of > 1.3 identified ATTR-CA patients with 100% sensitivity, 40.0% specificity, 62.5% PPV, and 100% NPV. CONCLUSION The H/M ratio obtained at 3 hours post-injection has the potential to be a novel indicator for ATTR-CA.
Collapse
Affiliation(s)
- Takenori Ikoma
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan.
| | - Hayato Ohtani
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Kazuto Ohno
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Keisuke Iguchi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Kenichiro Suwa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Michifumi Sawada
- Department of Radiology, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Yukichi Tanahashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Atsushi Sakamoto
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Satoshi Goshima
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan
| |
Collapse
|
71
|
Hrudka J, Sticová E, Krbcová M, Schwarzmannová K. Localized Insulin-Derived Amyloidosis in Diabetes Mellitus Type 1 Patient: A Case Report. Diagnostics (Basel) 2023; 13:2415. [PMID: 37510159 PMCID: PMC10378134 DOI: 10.3390/diagnostics13142415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Localized insulin-derived amyloidosis (LIDA) is a rare local complication of subcutaneous insulin application occurring in patients with diabetes type 1 and 2. A 45-year-old woman with an 11-year history of insulin-dependent diabetes mellitus type 1 underwent a mini-abdominoplasty and excision of a long-standing palpable mass in left hypogastric subcutaneous tissue in the area of long-term insulin application. Histopathological examination revealed insulin amyloidosis as a substrate of the mass lesion. Several months after surgery, there was a transient improvement in previously poor diabetes compensation. In addition to local allergic reactions, abscess formation, scarring, lipoatrophy/dystrophy, and lipohypertrophy, LIDA broadens the differential diagnostic spectrum of local insulin injection complications. LIDA has been described as a cause of poor glycemia compensation, probably due to the conversion of soluble insulin into insoluble amyloid fibrils, which prevents insulin from circulating in the blood and regulating glucose blood concentration. Improvement in diabetes compensation has been described in several reports, including our case. LIDA is a rare local complication of subcutaneous insulin application; accurate diagnosis and treatment have clinical consequences. Immunohistochemical or immunofluorescence distinction from other amyloid types is highly recommended.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Eva Sticová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Magdaléna Krbcová
- Department of Internal Medicine, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Klára Schwarzmannová
- Department of Plastic Surgery, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| |
Collapse
|
72
|
Bruno F, Albano D, Agostini A, Benenati M, Cannella R, Caruso D, Cellina M, Cozzi D, Danti G, De Muzio F, Gentili F, Giacobbe G, Gitto S, Grazzini G, Grazzini I, Messina C, Palmisano A, Palumbo P, Bruno A, Grassi F, Grassi R, Fusco R, Granata V, Giovagnoni A, Miele V, Barile A. Imaging of metabolic and overload disorders in tissues and organs. Jpn J Radiol 2023; 41:571-595. [PMID: 36680702 DOI: 10.1007/s11604-022-01379-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/24/2022] [Indexed: 01/22/2023]
Abstract
Metabolic and overload disorders are a heterogeneous group of relatively uncommon but important diseases. While imaging plays a key role in the early detection and accurate diagnosis in specific organs with a pivotal role in several metabolic pathways, most of these diseases affect different tissues as part of a systemic syndromes. Moreover, since the symptoms are often vague and phenotypes similar, imaging alterations can present as incidental findings, which must be recognized and interpreted in the light of further biochemical and histological investigations. Among imaging modalities, MRI allows, thanks to its multiparametric properties, to obtain numerous information on tissue composition, but many metabolic and accumulation alterations require a multimodal evaluation, possibly using advanced imaging techniques and sequences, not only for the detection but also for accurate characterization and quantification. The purpose of this review is to describe the different alterations resulting from metabolic and overload pathologies in organs and tissues throughout the body, with particular reference to imaging findings.
Collapse
Affiliation(s)
- Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100, L'Aquila, Italy.
| | - Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica Delle Marche, Ancona, Italy
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Massimo Benenati
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Cannella
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Michaela Cellina
- Department of Radiology, Ospedale Fatebenefratelli, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Gentili
- Department of Medicine, Surgery and Neuroscience, University of Siena and Department of Radiological Sciences, Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Salvatore Gitto
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy
| | - Giulia Grazzini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Irene Grazzini
- Department of Diagnostic Imaging, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Palmisano
- Experimental Imaging Center, School of Medicine, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Diagnostic Imaging, Abruzzo Health Unit 1, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Alessandra Bruno
- Department of Clinical Special and Dental Sciences, University Politecnica Delle Marche, Ancona, Italy
| | - Francesca Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, Naples, Italy
| | - Andrea Giovagnoni
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Ancona, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I-Lancisi-Salesi", Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
73
|
Abrahamson EE, Padera RF, Davies J, Farrar G, Villemagne VL, Dorbala S, Ikonomovic MD. The flutemetamol analogue cyano-flutemetamol detects myocardial AL and ATTR amyloid deposits: a post-mortem histofluorescence analysis. Amyloid 2023; 30:169-187. [PMID: 36411500 PMCID: PMC10199962 DOI: 10.1080/13506129.2022.2141623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND [18F]flutemetamol is a PET radioligand used to image brain amyloid, but its detection of myocardial amyloid is not well-characterized. This histological study characterized binding of fluorescently labeled flutemetamol (cyano-flutemetamol) to amyloid deposits in myocardium. METHODS Myocardial tissue was obtained post-mortem from 29 subjects with cardiac amyloidosis including transthyretin wild-type (ATTRwt), hereditary/variant transthyretin (ATTRv) and immunoglobulin light-chain (AL) types, and from 10 cardiac amyloid-free controls. Most subjects had antemortem electrocardiography, echocardiography, SPECT and cardiac MRI. Cyano-flutemetamol labeling patterns and integrated density values were evaluated relative to fluorescent derivatives of Congo red (X-34) and Pittsburgh compound-B (cyano-PiB). RESULTS Cyano-flutemetamol labeling was not detectable in control subjects. In subjects with cardiac amyloidosis, cyano-flutemetamol labeling matched X-34- and cyano-PiB-labeled, and transthyretin- or lambda light chain-immunoreactive, amyloid deposits and was prevented by formic acid pre-treatment of myocardial sections. Cyano-flutemetamol mean fluorescence intensity, when adjusted for X-34 signal, was higher in the ATTRwt than the AL group. Cyano-flutemetamol integrated density correlated strongly with echocardiography measures of ventricular septal thickness and posterior wall thickness, and with heart mass. CONCLUSION The high selectivity of cyano-flutemetamol binding to myocardial amyloid supports the diagnostic utility of [18F]flutemetamol PET imaging in patients with ATTR and AL types of cardiac amyloidosis.
Collapse
Affiliation(s)
- Eric E. Abrahamson
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | | | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Sharmila Dorbala
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Brigham and Women’s Hospital, Boston, MA 02115
| | - Milos D. Ikonomovic
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
74
|
Kawahara Y, Kanazawa H, Takashio S, Tsuruta Y, Sumi H, Kiyama T, Kaneko S, Ito M, Hoshiyama T, Hirakawa K, Ishii M, Tabata N, Yamanaga K, Fujisue K, Hanatani S, Sueta D, Arima Y, Araki S, Usuku H, Nakamura T, Yamamoto E, Soejima H, Matsushita K, Kawano H, Tsujita K. Clinical, electrocardiographic, and echocardiographic parameters associated with the development of pacing and implantable cardioverter-defibrillator indication in patients with transthyretin amyloid cardiomyopathy. Europace 2023; 25:euad105. [PMID: 37099643 PMCID: PMC10228612 DOI: 10.1093/europace/euad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS This study aimed to identify factors for attention leading to future pacing device implantation (PDI) and reveal the necessity of prophylactic PDI or implantable cardioverter-defibrillator (ICD) implantation in transthyretin amyloid cardiomyopathy (ATTR-CM) patients. METHODS AND RESULTS This retrospective single-center observational study included consecutive 114 wild-type ATTR-CM (ATTRwt-CM) and 50 hereditary ATTR-CM (ATTRv-CM) patients, neither implanted with a pacing device nor fulfilling indications for PDI at diagnosis. As a study outcome, patient backgrounds were compared with and without future PDI, and the incidence of PDI in each conduction disturbance was examined. Furthermore, appropriate ICD therapies were investigated in all 19 patients with ICD implantation. PR-interval ≥220 msec, interventricular septum (IVS) thickness ≥16.9 mm, and bifascicular block were significantly associated with future PDI in ATTRwt-CM patients, and brain natriuretic peptide ≥35.7 pg/mL, IVS thickness ≥11.3 mm, and bifascicular block in ATTRv-CM patients. The incidence of subsequent PDI in patients with bifascicular block at diagnosis was significantly higher than that of normal atrioventricular (AV) conduction in both ATTRwt-CM [hazard ratio (HR): 13.70, P = 0.019] and ATTRv-CM (HR: 12.94, P = 0.002), whereas that of patients with first-degree AV block was neither (ATTRwt-CM: HR: 2.14, P = 0.511, ATTRv-CM: HR: 1.57, P = 0.701). Regarding ICD, only 2 of 16 ATTRwt-CM and 1 of 3 ATTRv-CM patients received appropriate anti-tachycardia pacing or shock therapy, under the number of intervals to detect for ventricular tachycardia of 16-32. CONCLUSIONS According to our retrospective single-center observational study, prophylactic PDI did not require first-degree AV block in both ATTRwt-CM and ATTRv-CM patients, and prophylactic ICD implantation was also controversial in both ATTR-CM. Larger prospective, multi-center studies are necessary to confirm these results.
Collapse
Affiliation(s)
- Yusei Kawahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Cardiac Arrhythmias, Kumamoto University, Kumamoto, Japan, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichiro Tsuruta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hitoshi Sumi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takuya Kiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shozo Kaneko
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Cardiac Arrhythmias, Kumamoto University, Kumamoto, Japan, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tadashi Hoshiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kyoko Hirakawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirofumi Soejima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenichi Matsushita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
75
|
Tigro H, Shimozawa M, Nilsson P, Lyashkov A, Khadeer M, Järving I, Ferrucci L, Shimmo R, Johansson J, Moaddel R. Identification of glycolytic proteins as binding partners of Bri2 BRICHOS domain. J Pharm Biomed Anal 2023; 232:115465. [PMID: 37220701 DOI: 10.1016/j.jpba.2023.115465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, that can attenuate Aβ pathology in the brain. As a result, the identification of novel Bri2 BRICHOS client proteins has been sought to help elucidate signaling pathways and the potential identification of novel therapeutic targets. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, in combination with proteomic analysis on cytosolic and membrane fractions of cortical homogenates from C57BL/6 J WT mouse. We identified 4 proteins from the cytosolic fractions and 44 proteins from the membrane fractions that had significant interactions (p < 0.05) with Bri2 BRICHOS domain, of which 11 proteins were previously identified as proteins that interacted with Bri2 BRICHOS domain. Enrichment analysis of the retained proteins identified glycolysis/gluconeogenesis as the most enriched pathway, with several proteins identified playing roles in carbon metabolism, amino acid synthesis. The data suggested that Bri2 BRICHOS may have a role in cellular energy demands in the brain via glycolysis and mitochondrial oxidative phosphorylation and may play a role in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Helene Tigro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Alexey Lyashkov
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Mohammed Khadeer
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Luigi Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ruin Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
76
|
Chen R, Chen Q, Zheng J, Zeng Z, Chen M, Li L, Zhang S. Serum amyloid protein A in inflammatory bowel disease: from bench to bedside. Cell Death Discov 2023; 9:154. [PMID: 37164984 PMCID: PMC10172326 DOI: 10.1038/s41420-023-01455-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) is featured by gastrointestinal inflammation and a disease course with alternating recurrence and remission. The global burden caused by IBD has significantly boosted in recent years, necessitating treatment optimization. Serum amyloid A (SAA) is a class of 104 amino acid conservative acute-phase proteins, which is essential in immune-mediated inflammatory processes, like IBD. The SAA monomeric structure is composed of four α-helical regions and a C-terminal amorphous tail. Its disordered structure enables multiple bindings to different ligands and permits multiple functions. It has been proven that SAA has dual roles in the inflammatory process. SAA stimulates the pro-inflammatory cytokine expression and promotes the pathogenic differentiation of TH17 cells. In addition, SAA can remove toxic lipids produced during inflammatory responses and membrane debris from dead cells, redirect HDL, and recycle cholesterol for tissue repair. In IBD, SAA acts on gut epithelium barriers, induces T-cell differentiation, and promotes phagocytosis of Gram-negative bacteria. Owing to the tight connection between SAA and IBD, several clinical studies have taken SAA for a biomarker for diagnosis, assessing disease activity, and predicting prognosis in IBD. Furthermore, 5-MER peptide, a drug specifically targeting SAA, has shown anti-inflammatory effects in some SAA-dependent animal models, providing novel insights into the therapeutic targets of IBD.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieqi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
77
|
La Bella S, Di Ludovico A, Di Donato G, Scorrano G, Chiarelli F, Vivarelli M, Breda L. Renal involvement in monogenic autoinflammatory diseases: A narrative review. Nephrology (Carlton) 2023. [PMID: 37142240 DOI: 10.1111/nep.14166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Autoinflammatory diseases (AIDs) are mostly caused by dysfunctions in single genes encoding for proteins with a prominent role in the regulation of innate immunity, such as complement factors, inflammasome components, tumour necrosis factor (TNF)-α, and proteins belonging to type I-interferon (IFN) signalling pathways. Due to the deposition of amyloid A (AA) fibrils in the glomeruli, unprovoked inflammation in AIDs frequently affects renal health. In fact, secondary AA amyloidosis is the most common form of amyloidosis in children. It is caused by the extracellular deposition of fibrillar low-molecular weight protein subunits resulting from the degradation and accumulation of serum amyloid A (SAA) in numerous tissues and organs, primarily the kidneys. The molecular mechanisms underlying AA amyloidosis in AIDs are the elevated levels of SAA, produced by the liver in response to pro-inflammatory cytokines, and a genetic predisposition due to specific SAA isoforms. Despite the prevalence of amyloid kidney disease, non-amyloid kidney diseases may also be responsible for chronic renal damage in children with AIDs, albeit with distinct characteristics. Glomerular damage can result in various forms of glomerulonephritis with distinct histologic characteristics and a different underlying pathophysiology. This review aims to describe the potential renal implications in patients with inflammasomopathies, type-I interferonopathies, and other rare AIDs in an effort to improve the clinical course and quality of life in paediatric patients with renal involvement.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Marina Vivarelli
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Luciana Breda
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
78
|
Abstract
In addition to being the primary target of infections such as viral hepatitis, the liver may also be affected by systemic disease. These include bacterial, mycotic, and viral infections, as well as autoimmune and infiltrative diseases. These conditions generally manifest as abnormal liver biochemistries, often with a cholestatic profile, and may present with additional signs/symptoms such as jaundice and fever. A high index of suspicion and familiarity with potential causal entities is necessary to guide appropriate testing, diagnosis, and treatment.
Collapse
Affiliation(s)
- Humberto C Gonzalez
- Division of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Stuart C Gordon
- Division of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA
| |
Collapse
|
79
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
80
|
Botero SA, Bass M, Botero Suarez CS, Kar P, Abreu E. Renal Amyloidosis (AL Kappa Type) With an Uncommon Presentation: A Case Report. Cureus 2023; 15:e36867. [PMID: 37123730 PMCID: PMC10147497 DOI: 10.7759/cureus.36867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
Amyloidosis is a disease associated with deposits of amyloid fibrils that aggregate in various tissues leading to progressive organ failure and often multi-systemic involvement. It may be classified as localized or systemic, acquired or hereditary. Renal presentation is variable but can include nephrotic syndrome, acute renal failure, tubular dysfunction, or just varying degrees of proteinuria. Although most cases of renal amyloidosis are due to acquired causes, in rare instances, the cause can be gene mutations leading to hereditary amyloidosis. We present the case of a 77-year-old Caucasian man diagnosed with renal biopsy-proven AL (kappa) type amyloidosis with isolated renal involvement who had a significant family history of renal biopsy-proven amyloidosis.
Collapse
|
81
|
Tsoi MR, Lin JH, Patel AR. Emerging Therapies for Transthyretin Amyloidosis. Curr Oncol Rep 2023; 25:549-558. [PMID: 36943555 DOI: 10.1007/s11912-023-01397-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of the available therapies for treating neuropathic and/or cardiac manifestations of transthyretin amyloidosis (ATTR), as well as investigational therapeutic agents in ongoing clinical trials. We discuss additional emergent approaches towards thwarting this life-threatening disease that until recently was considered virtually untreatable. RECENT FINDINGS Advances in noninvasive diagnostic methods for detecting ATTR have facilitated easier diagnosis and detection at an earlier stage of disease when therapeutic interventions are likely to be more effective. There are now several ATTR-directed treatments that are clinically available, as well as investigational agents that are being studied in clinical trials. Therapeutic strategies include tetramer stabilization, gene silencing, and fibril disruption. ATTR has been historically underdiagnosed. With advances in diagnostic methods and the advent of disease-modifying treatments, early diagnosis and initiation of treatment is revolutionizing management of this disease.
Collapse
Affiliation(s)
- Melissa R Tsoi
- Department of Medicine, Tufts Medical Center, MA, 02111, Boston, USA
| | - Jeffrey H Lin
- Department of Medicine, Tufts Medical Center, MA, 02111, Boston, USA
| | - Ayan R Patel
- Cardiac Amyloidosis Program, Tufts Medical Center, 800 Washington St., MA, 02111, Boston, USA.
| |
Collapse
|
82
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
83
|
Ruiz-Hueso R, Salamanca-Bautista P, Quesada-Simón MA, Yun S, Conde-Martel A, Morales-Rull JL, Suárez-Gil R, García-García JÁ, Llàcer P, Fonseca-Aizpuru EM, Amores-Arriaga B, Martínez-González Á, Armengou-Arxe A, Peña-Somovilla JL, López-Reboiro ML, Aramburu-Bodas Ó. Estimating the Prevalence of Cardiac Amyloidosis in Old Patients with Heart Failure—Barriers and Opportunities for Improvement: The PREVAMIC Study. J Clin Med 2023; 12:jcm12062273. [PMID: 36983274 PMCID: PMC10057876 DOI: 10.3390/jcm12062273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Cardiac amyloidosis (CA) could be a common cause of heart failure (HF). The objective of the study was to estimate the prevalence of CA in patients with HF. Methods: Observational, prospective, and multicenter study involving 30 Spanish hospitals. A total of 453 patients ≥ 65 years with HF and an interventricular septum or posterior wall thickness > 12 mm were included. All patients underwent a 99mTc-DPD/PYP/HMDP scintigraphy and monoclonal bands were studied, following the current criteria for non-invasive diagnosis. In inconclusive cases, biopsies were performed. Results: The vast majority of CA were diagnosed non-invasively. The prevalence was 20.1%. Most of the CA were transthyretin (ATTR-CM, 84.6%), with a minority of cardiac light-chain amyloidosis (AL-CM, 2.2%). The remaining (13.2%) was untyped. The prevalence was significantly higher in men (60.1% vs 39.9%, p = 0.019). Of the patients with CA, 26.5% had a left ventricular ejection fraction less than 50%. Conclusions: CA was the cause of HF in one out of five patients and should be screened in the elderly with HF and myocardial thickening, regardless of sex and LVEF. Few transthyretin-gene-sequencing studies were performed in older patients. In many patients, it was not possible to determine the amyloid subtype.
Collapse
Affiliation(s)
- Rocío Ruiz-Hueso
- Internal Medicine Department, Hospital Universitario Virgen Macarena, Avda. Dr. Fedriani, 3, 41009 Sevilla, Spain
| | - Prado Salamanca-Bautista
- Internal Medicine Department, Hospital Universitario Virgen Macarena, Avda. Dr. Fedriani, 3, 41009 Sevilla, Spain
- Department of Medicine, Universidad de Sevilla, San Fernando, 4, 41004 Sevilla, Spain
- Correspondence:
| | | | - Sergi Yun
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, Carrer de la Feixa Llarga, s/n., 08907 Barcelona, Spain
- Department of Internal Medicine, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Alicia Conde-Martel
- Internal Medicine Department, Hospital Universitario Dr. Negrín, Pl. Barranco de la Ballena s/n. 35010 Las Palmas de Gran Canaria, Spain
| | - José Luis Morales-Rull
- Internal Medicine Deparment, Hospital Universitario Arnau de Vilanova, IRBLleida, Avda. Alcalde Rovira Roure, 80, 25198 Lérida, Spain
| | - Roi Suárez-Gil
- Internal Medicine Department, Hospital Universitario Lucus Augusti, Rua Dr. Ulises Romero, 1, 27003 Lugo, Spain
| | - José Ángel García-García
- Internal Medicine Department, Hospital Universitario Virgen del Valme, Ctra. Cádiz, km 548,9, 41014 Sevilla, Spain
| | - Pau Llàcer
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, M-607, 9, 100, 28034 Madrid, Spain
| | | | - Beatriz Amores-Arriaga
- Internal Medicine Deparment, Hospital Universitario Lozano Blesa, C/San Juan Bosco, 15, 50009 Zaragoza, Spain
| | | | - Arola Armengou-Arxe
- Internal Medicine Department, Leon University Hospital Complex, Hospital Universitario Josep Trueta, Avinguda de Franca s/n., 17007 Gerona, Spain
| | | | - Manuel Lorenzo López-Reboiro
- Internal Medicine Department, Hospital Comarcal Monforte de Lemos., Rua Corredoira s/n., 27400 Monforte de Lemos, Spain
| | - Óscar Aramburu-Bodas
- Internal Medicine Department, Hospital Universitario Virgen Macarena, Avda. Dr. Fedriani, 3, 41009 Sevilla, Spain
- Department of Medicine, Universidad de Sevilla, San Fernando, 4, 41004 Sevilla, Spain
| |
Collapse
|
84
|
Pinto MV, França MC, Gonçalves MVM, Machado-Costa MC, Freitas MRGD, Gondim FDAA, Marrone CD, Martinez ARM, Moreira CL, Nascimento OJM, Covaleski APP, Oliveira ASBD, Pupe CCB, Rodrigues MMJ, Rotta FT, Scola RH, Marques W, Waddington-Cruz M. Brazilian consensus for diagnosis, management and treatment of hereditary transthyretin amyloidosis with peripheral neuropathy: second edition. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:308-321. [PMID: 37059440 PMCID: PMC10104762 DOI: 10.1055/s-0043-1764412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Hereditary transthyretin amyloidosis with peripheral neuropathy (ATTRv-PN) is an autosomal dominant inherited sensorimotor and autonomic polyneuropathy with over 130 pathogenic variants identified in the TTR gene. Hereditary transthyretin amyloidosis with peripheral neuropathy is a disabling, progressive and life-threatening genetic condition that leads to death in ∼ 10 years if untreated. The prospects for ATTRv-PN have changed in the last decades, as it has become a treatable neuropathy. In addition to liver transplantation, initiated in 1990, there are now at least 3 drugs approved in many countries, including Brazil, and many more are being developed. The first Brazilian consensus on ATTRv-PN was held in the city of Fortaleza, Brazil, in June 2017. Given the new advances in the area over the last 5 years, the Peripheral Neuropathy Scientific Department of the Brazilian Academy of Neurology organized a second edition of the consensus. Each panelist was responsible for reviewing the literature and updating a section of the previous paper. Thereafter, the 18 panelists got together virtually after careful review of the draft, discussed each section of the text, and reached a consensus for the final version of the manuscript.
Collapse
Affiliation(s)
- Marcus Vinicius Pinto
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil
- Mayo Clinic, Department of Neurology, Rochester, Minnesota, United States
| | | | | | | | - Marcos Raimundo Gomes de Freitas
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil
| | | | - Carlo Domenico Marrone
- Pontifícia Universidade Católica do Rio Grande do Sul, Hospital São Lucas, Clínica Marrone e Ambulatório de Doenças Neuromusculare, Porto Alegre RS, Brazil
| | | | | | | | | | | | | | | | - Francisco Tellechea Rotta
- Hospital Moinhos de Vento, Porto Alegre RS, Brazil
- Santa Casa de Misericórdia de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Wilson Marques
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto SP, Brazil
| | - Márcia Waddington-Cruz
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil
| |
Collapse
|
85
|
Ream S, Ma J, Rodriguez T, Sarabia-Gonzalez A, Alvarado LA, Dwivedi AK, Mukherjee D. Ethnic/racial differences in risk factors and clinical outcomes among patients with amyloidosis. Am J Med Sci 2023; 365:232-241. [PMID: 36543303 DOI: 10.1016/j.amjms.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cardiac amyloidosis is caused by abnormal extracellular deposition of insoluble fibrils in cardiac tissue. It can be fatal when untreated and is often underdiagnosed. Understanding the ethnic/racial differences in risk factors is critical for early diagnosis and treatment to improve clinical outcomes. METHODS We performed a retrospective cross-sectional study utilizing the National Inpatient Sample database from 2015 to 2018 using ICD-10-CM codes. The primary variables of interest were race/ethnicity and amyloidosis subtypes, while the primary outcomes were in-hospital mortality, gastrointestinal bleeding, renal failure, and hospital length-of-stay. RESULTS Amyloidosis was reported in 0.17% of all hospitalizations (N = 19,678,415). Of these, 0.09% were non-Hispanic whites, 0.04% were non-Hispanic blacks, and 0.02% were Hispanic. Hospitalizations with ATTR amyloidosis subtype were frequently observed in older individuals and males with coronary artery disease, whereas AL amyloidosis subtype was associated with non-Hispanic whites, congestive heart failure, and longer hospital length of stay. Renal failure was associated with non-Hispanic blacks (adjusted relative risk [RR] = 1.31, p < 0.001), Hispanics (RR = 1.08, p = 0.028) and had an increased risk of mortality. Similarly, the hospital length of stay was longer with non-Hispanic blacks (RR = 1.19, p < 0.001) and Hispanics (RR = 1.05, p = 0.03) compared to non-Hispanic whites. Hispanics had a reduced risk of mortality (RR = 0.77, p = 0.028) compared to non-Hispanic whites and non-Hispanic blacks, and no significant difference in mortality was seen between non-Hispanic whites and non-Hispanic blacks (RR = 1.00, p = 0.963). CONCLUSIONS Our findings highlight significant ethnic/racial differences in risk factors and outcomes among amyloidosis-related US hospitalizations that can possibly be used for early detection, treatment, and better clinical outcomes.
Collapse
Affiliation(s)
- Sarah Ream
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Jennifer Ma
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Tayana Rodriguez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Alejandro Sarabia-Gonzalez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Luis A Alvarado
- Biostatitsics and Epidemiology Consulting Lab (BECL), Office of Research, Texas Tech University of Health Sciences Center, El Paso, TX, United States
| | - Alok Kumar Dwivedi
- Biostatitsics and Epidemiology Consulting Lab (BECL), Office of Research, Texas Tech University of Health Sciences Center, El Paso, TX, United States; Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX, United States
| | - Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center at El Paso, TX, United States.
| |
Collapse
|
86
|
Olivotto I, Udelson JE, Pieroni M, Rapezzi C. Genetic causes of heart failure with preserved ejection fraction: emerging pharmacological treatments. Eur Heart J 2023; 44:656-667. [PMID: 36582184 DOI: 10.1093/eurheartj/ehac764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/31/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major driver of cardiac morbidity and mortality in developed countries, due to ageing populations and the increasing prevalence of comorbidities. While heart failure with reduced ejection fraction is dominated by left ventricular impairment, HFpEF results from a complex interplay of cardiac remodelling, peripheral circulation, and concomitant features including age, hypertension, obesity, and diabetes. In an important subset, however, HFpEF is subtended by specific diseases of the myocardium that are genetically determined, have distinct pathophysiology, and are increasingly amenable to targeted, innovative treatments. While each of these conditions is rare, they collectively represent a relevant subset within HFpEF cohorts, and their prompt recognition has major consequences for clinical practice, as access to dedicated, disease-specific treatments may radically change the quality of life and outcome. Furthermore, response to standard heart failure treatment will generally be modest for these individuals, whose inclusion in registries and trials may dilute the perceived efficacy of treatments targeting mainstream HFpEF. Finally, a better understanding of the molecular underpinnings of monogenic myocardial disease may help identify therapeutic targets and develop innovative treatments for selected HFpEF phenotypes of broader epidemiological relevance. The field of genetic cardiomyopathies is undergoing rapid transformation due to recent, groundbreaking advances in drug development, and deserves greater awareness within the heart failure community. The present review addressed existing and developing therapies for genetic causes of HFpEF, including hypertrophic cardiomyopathy, cardiac amyloidosis, and storage diseases, discussing their potential impact on management and their broader implications for our understanding of HFpEF at large.
Collapse
Affiliation(s)
- Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer University Children Hospital and Careggi University Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - James E Udelson
- Division of Cardiology and The CardioVascular Center, Tufts Medical Center, and the Tufts University School of Medicine, 800 Washington St, Boston, MA 02111, USA
| | - Maurizio Pieroni
- Cardiology Department, Hospital San Donato, Via Pietro Nenni, 20 - 52100 Arezzo, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Via Fossato di Mortara, 64/B - 44121 Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Via Corriera, 1, 48033 Cotignola, Emilia-Romagna, Italy
| |
Collapse
|
87
|
Fu Z, Lv J, Gao X, Zhang B, Li Y, Xu X, Zheng H, Wu H, Song Q. Research trends and hotspots evolution of cardiac amyloidosis: a bibliometric analysis from 2000 to 2022. Eur J Med Res 2023; 28:89. [PMID: 36805827 PMCID: PMC9940355 DOI: 10.1186/s40001-023-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
In the new century, cardiac amyloidosis has received more attention from many countries and institutions, leading to innovations in the essence of the pathology, biological markers, noninvasive tests, and staging diagnoses and treatments for this disease. However, few reviews have summarized the research trends and hotspots in cardiac amyloidosis. Bibliometrics analysis is a statistically based approach to research that visualizes the contributions of academic institutions and changes in research hotspots. Therefore, in this paper, we used Citespace and VOSviewer software to conduct co-occurrence analysis and collaborative network analysis on the countries, institutions, and authors in the articles related to cardiac amyloidosis since the new century. And further find out burst keywords and references to obtain the research history, disciplinary development, and new hotspots and topics.
Collapse
Affiliation(s)
- Zhenyue Fu
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China ,grid.24695.3c0000 0001 1431 9176Present Address: Beijing University of Chinese Medicine, Beijing, China
| | - Jiayu Lv
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiya Gao
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China ,grid.24695.3c0000 0001 1431 9176Present Address: Beijing University of Chinese Medicine, Beijing, China
| | - Bingxuan Zhang
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Xu
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Zheng
- grid.464297.aDepartment of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China ,grid.24695.3c0000 0001 1431 9176Present Address: Beijing University of Chinese Medicine, Beijing, China
| | - Huaqin Wu
- grid.410318.f0000 0004 0632 3409Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
88
|
Impaired Extracellular Proteostasis in Patients with Heart Failure. Arch Med Res 2023; 54:211-222. [PMID: 36797157 DOI: 10.1016/j.arcmed.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the β-turns were significantly increased in patients with HFpEF. CONCLUSION Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.
Collapse
|
89
|
Disassembly of Amyloid Fibril with Infrared Free Electron Laser. Int J Mol Sci 2023; 24:ijms24043686. [PMID: 36835098 PMCID: PMC9967569 DOI: 10.3390/ijms24043686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Amyloid fibril causes serious amyloidosis such as neurodegenerative diseases. The structure is composed of rigid β-sheet stacking conformation which makes it hard to disassemble the fibril state without denaturants. Infrared free electron laser (IR-FEL) is an intense picosecond pulsed laser that is oscillated through a linear accelerator, and the oscillation wavelengths are tunable from 3 μm to 100 μm. Many biological and organic compounds can be structurally altered by the mode-selective vibrational excitations due to the wavelength variability and the high-power oscillation energy (10-50 mJ/cm2). We have found that several different kinds of amyloid fibrils in amino acid sequences were commonly disassembled by the irradiation tuned to amide I (6.1-6.2 μm) where the abundance of β-sheet decreased while that of α-helix increased by the vibrational excitation of amide bonds. In this review, we would like to introduce the IR-FEL oscillation system briefly and describe combination studies of experiments and molecular dynamics simulations on disassembling amyloid fibrils of a short peptide (GNNQQNY) from yeast prion and 11-residue peptide (NFLNCYVSGFH) from β2-microglobulin as representative models. Finally, possible applications of IR-FEL for amyloid research can be proposed as a future outlook.
Collapse
|
90
|
Pudis M, Bastarrika Alemañ G. [Current role of imaging techniques in cardiac amyloidosis]. Med Clin (Barc) 2023; 160:121-128. [PMID: 36543710 DOI: 10.1016/j.medcli.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022]
Abstract
Cardiac amyloidosis (CA) is an underdiagnosed disease and, if left untreated, rapidly fatal. Emerging therapies for CA increase the urgency of developing non-invasive diagnostic methods for its early detection and for monitoring therapeutic response. Classic imaging features on echocardiography and cardiac magnetic resonance, although typical for cardiac amyloidosis, are not specific enough to distinguish light chain amyloidosis from transthyretin. Myocardial bone-avid radiotracer uptake is highly specific for transthyretin cardiac amyloidosis when plasma cell dyscrasia has been excluded; it is now replacing the need for biopsy in many patients. Detection of early cardiac amyloidosis, quantitation of its burden, and assessment of response to therapy are important next steps for imaging to advance the evaluation and management of cardiac amyloidosis.
Collapse
Affiliation(s)
- Michal Pudis
- Servicio de Medicina Nuclear-PET (IDI), Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España.
| | | |
Collapse
|
91
|
Fiock KL, Betters RK, Hefti MM. Thioflavin S Staining and Amyloid Formation Are Unique to Mixed Tauopathies. J Histochem Cytochem 2023; 71:73-86. [PMID: 36861683 PMCID: PMC10071402 DOI: 10.1369/00221554231158428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.
Collapse
Affiliation(s)
- Kimberly L. Fiock
- Department of Pathology, University of Iowa,
Iowa City, Iowa
- Experimental Pathology Graduate Program,
University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, Iowa City,
Iowa
| | - Ryan K. Betters
- Department of Pathology, University of Iowa,
Iowa City, Iowa
- Interdisciplinary Neuroscience Graduate
Program, University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, Iowa City,
Iowa
| | - Marco M. Hefti
- Department of Pathology, University of Iowa,
Iowa City, Iowa
- Experimental Pathology Graduate Program,
University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, Iowa City,
Iowa
| |
Collapse
|
92
|
Manchanda S, Galan-Acosta L, Abelein A, Tambaro S, Chen G, Nilsson P, Johansson J. Intravenous treatment with a molecular chaperone designed against β-amyloid toxicity improves Alzheimer's disease pathology in mouse models. Mol Ther 2023; 31:487-502. [PMID: 35982621 PMCID: PMC9931549 DOI: 10.1016/j.ymthe.2022.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Attempts to treat Alzheimer's disease with immunotherapy against the β-amyloid (Aβ) peptide or with enzyme inhibitors to reduce Aβ production have not yet resulted in effective treatment, suggesting that alternative strategies may be useful. Here we explore the possibility of targeting the toxicity associated with Aβ aggregation by using the recombinant human (rh) Bri2 BRICHOS chaperone domain, mutated to act selectively against Aβ42 oligomer generation and neurotoxicity in vitro. We find that treatment of Aβ precursor protein (App) knockin mice with repeated intravenous injections of rh Bri2 BRICHOS R221E, from an age close to the start of development of Alzheimer's disease-like pathology, improves recognition and working memory, as assessed using novel object recognition and Y maze tests, and reduces Aβ plaque deposition and activation of astrocytes and microglia. When treatment was started about 4 months after Alzheimer's disease-like pathology was already established, memory improvement was not detected, but Aβ plaque deposition and gliosis were reduced, and substantially reduced astrocyte accumulation in the vicinity of Aβ plaques was observed. The degrees of treatment effects observed in the App knockin mouse models apparently correlate with the amounts of Bri2 BRICHOS detected in brain sections after the end of the treatment period.
Collapse
Affiliation(s)
- Shaffi Manchanda
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Lorena Galan-Acosta
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden.
| |
Collapse
|
93
|
Zanwar S, Gertz MA, Muchtar E. Immunoglobulin Light Chain Amyloidosis: Diagnosis and Risk Assessment. J Natl Compr Canc Netw 2023; 21:83-90. [PMID: 36630897 PMCID: PMC10164359 DOI: 10.6004/jnccn.2022.7077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
Immunoglobulin light chain (AL) amyloidosis is a clonal plasma cell disorder with multiple clinical presentations. The diagnosis of AL amyloidosis requires a high index of suspicion, making a delay in diagnosis common, which contributes to the high early mortality seen in this disease. Establishing the diagnosis of AL amyloidosis requires the demonstration of tissue deposition of amyloid fibrils. A bone marrow biopsy and fat pad aspirate performed concurrently have a high sensitivity for the diagnosis of AL amyloidosis and negate the need for organ biopsies in most patients. An accurate diagnosis requires amyloid typing via additional testing, including tissue mass spectrometry. Prognostication for AL amyloidosis is largely driven by the organs impacted. Cardiac involvement represents the single most important prognostic marker, and the existing staging systems are driven by cardiac biomarkers. Apart from organ involvement, plasma cell percentage on the bone marrow biopsy, specific fluorescence in situ hybridization findings, age at diagnosis, and performance status are important prognostic markers. This review elaborates on the diagnostic testing and prognostication for patients with newly diagnosed AL amyloidosis.
Collapse
Affiliation(s)
- Saurabh Zanwar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
94
|
Tanaka H. Illustrative review of cardiac amyloidosis by multimodality imaging. Heart Fail Rev 2023; 28:113-122. [PMID: 35474404 DOI: 10.1007/s10741-022-10245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
Cardiac involvement in amyloidosis is characterized by the extracellular deposition of misfolded proteins in the heart with the pathognomonic histological property of green birefringence when viewed under cross-polarized light after staining with Congo red. Although considered a rare disease, recent data suggest that cardiac amyloidosis is underappreciated as a cause of common cardiac diseases or syndromes. The prognosis for transthyretin (TTR) amyloidosis (ATTR) amyloidosis is better than that for amyloid light-chain amyloidosis; however, it is not as good as for other etiologies heart failure. Although there is no proven therapy for patients with ATTR cardiomyopathy (ATTR-CM), tafamidis meglumine, a TTR stabilizer, a study in 2018 found it was associated with reductions in all-cause mortality and cardiovascular-related hospitalizations, as well as with a reduction in the decline in functional capacity and quality of life compared with a placebo for patients with ATTR-CM. As a result of these findings, tafamidis meglumine is currently the only drug approved for patients with both wild-type and variant ATTR-CM, and should be considered for patients whose survival can be reasonably expected. In addition, recent advances in cardiac imaging, diagnostic strategies, and therapies have improved so that interest has been growing in the diagnosis of ATTR-CM by means of non-invasive imaging modalities as a potential means for better management of patients with ATTR-CM. This article reviews the efficacy of non-invasive imaging, especially echocardiography, cardiac magnetic imaging, and 99mTc-pyrophosphate scintigraphy for diagnosis of cardiac amyloidosis.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
95
|
Zegkos T, Gossios T, Ntelios D, Parcharidou D, Karvounis H, Efthimiadis G. Wild-Type Transthyretin Amyloid Cardiomyopathy: The Gordian-Knot of Novel Therapeutic Regimens. Cardiol Rev 2023; 31:36-41. [PMID: 36469360 DOI: 10.1097/crd.0000000000000427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wild-type TTR amyloidosis (wtATTR) represents a disease difficult to diagnose with poor prognosis. Increased clinical suspicion is key, allowing for timely diagnosis. Until recently, only off-label therapies were available but recent introduction of disease specific therapy has shown potential to alter the natural history of the disease. Tafamidis, the only currently approved drug for the therapy of wtATTR, provided significantly better survival and quality of life. However, not all subgroups of patients derived equal benefit. This, along with the increased cost of treatment raised question on whether treatment should be invariably administered through the wtATTR population. This review aims to summarize current evidence on the natural history and staging systems for wtATTR, as well as available treatment options. Special consideration is given to the selection process of patients who would be expected to gain maximum benefit from tafamidis treatment, based on an ethical and cost-effective point of view.
Collapse
Affiliation(s)
- Thomas Zegkos
- From the 1st Cardiology Department, Center of Cardiomyopathies and Inherited Cardiac Diseases, AHEPA University Hospital, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
96
|
Chandrasekhar G, Rajasekaran R. Theoretical investigations of TTR derived aggregation-prone peptides’ potential to biochemically attenuate the amyloidogenic propensities of V30 M TTR amyloid fibrils. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
97
|
Taylor MS, Sidiqi H, Hare J, Kwok F, Choi B, Lee D, Baumwol J, Carroll AS, Vucic S, Neely P, Korczyk D, Thomas L, Mollee P, Stewart GJ, Gibbs SDJ. Current approaches to the diagnosis and management of amyloidosis. Intern Med J 2022; 52:2046-2067. [PMID: 36478370 DOI: 10.1111/imj.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
Amyloidosis is a collection of diseases caused by the misfolding of proteins that aggregate into insoluble amyloid fibrils and deposit in tissues. While these fibrils may aggregate to form insignificant localised deposits, they can also accumulate in multiple organs to the extent that amyloidosis can be an immediately life-threatening disease, requiring urgent treatment. Recent advances in diagnostic techniques and therapies are dramatically changing the disease landscape and patient prognosis. Delays in diagnosis and treatment remain the greatest challenge, necessitating physician awareness of the common clinical presentations that suggest amyloidosis. The most common types are transthyretin (ATTR) amyloidosis followed by immunoglobulin light-chain (AL) amyloidosis. While systemic AL amyloidosis was previously considered a death sentence with no effective therapies, significant improvement in patient survival has occurred over the past 2 decades, driven by greater understanding of the disease process, risk-adapted adoption of myeloma therapies such as proteosome inhibitors (bortezomib) and monoclonal antibodies (daratumumab) and improved supportive care. ATTR amyloidosis is an underdiagnosed cause of heart failure. Technetium scintigraphy has made noninvasive diagnosis much easier, and ATTR is now recognised as the most common type of amyloidosis because of the increased identification of age-related ATTR. There are emerging ATTR treatments that slow disease progression, decrease patient hospitalisations and improve patient quality of life and survival. This review aims to update physicians on recent developments in amyloidosis diagnosis and management and to provide a diagnostic and treatment framework to improve the management of patients with all forms of amyloidosis.
Collapse
Affiliation(s)
- Mark S. Taylor
- Westmead Amyloidosis Service Westmead Hospital New South Wales Sydney Australia
- Department of Immunology Liverpool Hospital New South Wales Sydney Australia
- Department of Clinical Immunology Prince of Wales Hospital New South Wales Sydney Australia
- Prince of Wales Clinical School UNSW Sydney New South Wales Sydney Australia
| | - Hasib Sidiqi
- Fiona Stanley Amyloidosis Clinic Western Australia Perth Australia
| | - James Hare
- Cardiology Unit Alfred Health Victoria Melbourne Australia
- Victorian and Tasmanian Amyloidosis Service Victoria Melbourne Australia
| | - Fiona Kwok
- Westmead Amyloidosis Service Westmead Hospital New South Wales Sydney Australia
- Westmead Clinical School University of Sydney New South Wales Sydney Australia
| | - Bo Choi
- Cardiology Unit Alfred Health Victoria Melbourne Australia
- Victorian and Tasmanian Amyloidosis Service Victoria Melbourne Australia
| | - Darren Lee
- Victorian and Tasmanian Amyloidosis Service Victoria Melbourne Australia
- Department of Renal Medicine Eastern Health Victoria Melbourne Australia
- Eastern Health Clinical School Monash University Victoria Melbourne Australia
| | - Jay Baumwol
- Fiona Stanley Amyloidosis Clinic Western Australia Perth Australia
| | - Antonia S. Carroll
- Westmead Amyloidosis Service Westmead Hospital New South Wales Sydney Australia
- Westmead Clinical School University of Sydney New South Wales Sydney Australia
- Department of Neurology St Vincent's Hospital New South Wales Darlinghurst Australia
| | - Steve Vucic
- Department of Neurology Concord Repatriation General Hospital New South Wales Sydney Australia
| | - Pat Neely
- Princess Alexandra Hospital Amyloidosis Centre Queensland Brisbane Australia
| | - Dariusz Korczyk
- Princess Alexandra Hospital Amyloidosis Centre Queensland Brisbane Australia
| | - Liza Thomas
- Westmead Amyloidosis Service Westmead Hospital New South Wales Sydney Australia
- Westmead Clinical School University of Sydney New South Wales Sydney Australia
| | - Peter Mollee
- Princess Alexandra Hospital Amyloidosis Centre Queensland Brisbane Australia
- School of Medicine University of Queensland Queensland Brisbane Australia
| | - Graeme J. Stewart
- Westmead Clinical School University of Sydney New South Wales Sydney Australia
| | - Simon D. J. Gibbs
- Victorian and Tasmanian Amyloidosis Service Victoria Melbourne Australia
- Eastern Health Clinical School Monash University Victoria Melbourne Australia
- Haematology Unit Eastern Health Victoria Melbourne Australia
| |
Collapse
|
98
|
Cyrille-Superville N. Analysis of lumbar spine stenosis for identification of amyloid. J Am Geriatr Soc 2022; 70:3356-3358. [PMID: 36370426 DOI: 10.1111/jgs.18092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Nicole Cyrille-Superville
- Sanger Heart and Vascular Institute Advanced Heart Failure and Transplant Cardiology, Atrium Health - Wake Forest Baptist, Charlotte, North Carolina, USA
| |
Collapse
|
99
|
Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, Sekijima Y, Westermark P. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2022; 29:213-219. [PMID: 36420821 DOI: 10.1080/13506129.2022.2147636] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Nomenclature Committee of the International Society of Amyloidosis met at the XVIII International Symposium on Amyloidosis in September and virtually in October 2022 with discussions resulting in this upgraded nomenclature recommendation. The nomenclature principles remain unchanged but there is an ongoing discussion regarding the importance and varying nature of intracellular protein aggregates, particularly those associated with neurodegenerative diseases. Six novel proteins were added to the list of human amyloid fibril proteins. Of these, three are polypeptide hormones and two currently utilised peptide drugs, making the number of known iatrogenic amyloid forms four, all appearing as subcutaneous nodules at the injection site. The sixth novel amyloid fibril protein is the transmembrane 106B protein, forming intracellular amyloid fibrils in disorders associated with frontotemporal dementia. The number of known human amyloid fibril proteins is now 42.
Collapse
Affiliation(s)
- Joel N Buxbaum
- The Scripps Research Institute, Department of Molecular Medicine, Protego Biopharma San Diego, La Jolla, CA, USA
| | | | - David S Eisenberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Giampaolo Merlini
- Amyloid Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Maria J M Saraiva
- Institute of Molecular and Cellular Biology, University of Porto, Molecular Neurobiology, Porto, Portugal
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
100
|
Matsushita H, Fukunari A, Sameshima G, Okada M, Inoue F, Ueda M, Ando Y. Suppression of amyloid fibril formation by UV irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|