51
|
Fuhrmann M, Delisle L, Petton B, Corporeau C, Pernet F. Metabolism of the Pacific oyster, Crassostrea gigas, is influenced by salinity and modulates survival to the Ostreid herpesvirus OsHV-1. Biol Open 2018; 7:bio028134. [PMID: 29463513 PMCID: PMC5861354 DOI: 10.1242/bio.028134] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is an osmoconforming bivalve exposed to wide salinity fluctuations. The physiological mechanisms used by oysters to cope with salinity stress are energy demanding and may impair other processes, such as defense against pathogens. This oyster species has been experiencing recurrent mortality events caused by the Ostreid herpesvirus 1 (OsHV-1). The objectives of this study were to investigate the effect of salinity (10, 15, 25 and 35‰) on energetic reserves, key enzyme activities and membrane fatty acids, and to identify the metabolic risk factors related to OsHV-1-induced mortality of oysters. Acclimation to low salinity led to increased water content, protein level, and energetic reserves (carbohydrates and triglycerides) of oysters. The latter was consistent with lower activity of hexokinase, the first enzyme involved in glycolysis, up-regulation of AMP-activated protein kinase, a major regulator of cellular energy metabolism, and lower activity of catalase, an antioxidant enzyme involved in management of reactive oxygen species. Acclimation to salinity also involved a major remodeling of membrane fatty acids. Particularly, 20:4n-6 decreased linearly with decreasing salinity, likely reflecting its mobilization for prostaglandin synthesis in oysters. The survival of oysters exposed to OsHV-1 varied from 43% to 96% according to salinity ( Fuhrmann et al., 2016). Risk analyses showed that activity of superoxide dismutase and levels of proteins, carbohydrates, and triglycerides were associated with a reduced risk of death. Therefore, animals with a higher antioxidant activity and a better physiological condition seemed less susceptible to OsHV-1.
Collapse
Affiliation(s)
- Marine Fuhrmann
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| | - Lizenn Delisle
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Presqu'île du vivier, 29840 Argenton, France
| | - Charlotte Corporeau
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
52
|
Balbi T, Cortese K, Ciacci C, Bellese G, Vezzulli L, Pruzzo C, Canesi L. Autophagic processes in Mytilus galloprovincialis hemocytes: Effects of Vibrio tapetis. FISH & SHELLFISH IMMUNOLOGY 2018; 73:66-74. [PMID: 29208501 DOI: 10.1016/j.fsi.2017.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Autophagy is a highly conserved and regulated catabolic process involved in maintaining cell homeostasis in response to different stressors. The autophagic machinery is also used as an innate immune mechanism against microbial infection. In invertebrates, that lack acquired immunity, autophagy may thus play a key role in the protection against potential pathogens. In aquatic molluscs, evidence has been provided for induction of autophagy by starvation and different environmental stressors; however, no information is available on autophagic pathways in the immune cells, the hemocytes. In this work, the autophagic processes were investigated in the hemocytes of the marine bivalve, the mussel Mytilus galloprovincialis. The effects of classical inducers/inhibitors of mammalian autophagy were first tested. Rapamycin induced a decrease in lysosomal membrane stability-LMS that was prevented by the autophagy inhibitor Wortmannin. Increased MDC fluorescence and expression of LC3-II were also observed. Moreover, responses to in vitro challenge with the bivalve pathogen Vibrio tapetis were evaluated. Mussel hemocytes were unable to activate the immune response towards V. tapetis; however, bacterial challenge induced a moderate decrease in LMS, corresponding to lysosomal activation but no cytotoxicity; the effect was prevented by Wortmannin. TEM observations showed that V. tapetis resulted in rapid formation of autophagosomes and autolysosomes. Accordingly, increased LC3-II expression, decreased levels of phosphorylated mTor and of p62 were observed. The results represent the first evidence for autophagic processes in bivalve hemocytes in response to bacterial challenge, and underline the protective role of autophagy towards potential pathogenic vibrios.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Katia Cortese
- Dept. of Experimental Medicine (DIMES), University of Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DISBM), University of Urbino, Italy
| | - Grazia Bellese
- Dept. of Experimental Medicine (DIMES), University of Genoa, Italy
| | - Luigi Vezzulli
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Carla Pruzzo
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy.
| |
Collapse
|
53
|
Lussignol M, Esclatine A. Herpesvirus and Autophagy: "All Right, Everybody Be Cool, This Is a Robbery!". Viruses 2017; 9:v9120372. [PMID: 29207540 PMCID: PMC5744147 DOI: 10.3390/v9120372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an essential vacuolar process of the cell, leading to lysosomal degradation and recycling of proteins and organelles, which is extremely important in maintaining homeostasis. Multiple roles have been now associated with autophagy, in particular a pro-survival role in nutrient starvation or in stressful environments, a role in life span extension, in development, or in innate and adaptive immunity. This cellular process can also take over microorganisms or viral proteins inside autophagosomes and degrade them directly in autolysosomes and is then called xenophagy and virophagy, respectively. Several Herpesviruses have developed strategies to escape this degradation, by expression of specific anti-autophagic proteins. However, we are increasingly discovering that Herpesviruses hijack autophagy, rather than just fight it. This beneficial effect is obvious since inhibition of autophagy will lead to decreased viral titers for human cytomegalovirus (HCMV), Epstein-Barr virus (EBV) or Varicella-Zoster virus (VZV), for example. Conversely, autophagy stimulation will improve viral multiplication. The autophagic machinery can be used in whole or in part, and can optimize viral propagation or persistence. Some viruses block maturation of autophagosomes to avoid the degradation step, then autophagosomal membranes are used to contribute to the envelopment and/or the egress of viral particles. On the other hand, VZV stimulates the whole process of autophagy to subvert it in order to use vesicles containing ATG (autophagy-related) proteins and resembling amphisomes for their transport in the cytoplasm. During latency, autophagy can also be activated by latent proteins encoded by different oncogenic Herpesviruses to promote cell survival and achieve long term viral persistence in vivo. Finally, reactivation of gammaherpesvirus Murid Herpesvirus 68 (MHV68) in mice appears to be positively modulated by autophagy, in order to control the level of inflammation. Therefore, Herpesviruses appear to behave more like thieves than fugitives.
Collapse
Affiliation(s)
- Marion Lussignol
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Audrey Esclatine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
54
|
Zhao JZ, Xu LM, Liu M, Zhang ZY, Yin JS, Liu HB, Lu TY. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:88-94. [PMID: 28760360 DOI: 10.1016/j.dci.2017.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Recent work demonstrated that autophagy plays an important role in pathogen invasion by activating innate and adaptive immunity. This study investigated the relationship between IHNV and autophagy in epithelioma papulosum cyprini cells. The electron microscopy results show that IHNV infection can induce typical autophagosomes which are representative structures of autophagy activation. The punctate accumulation of green fluorescence-tagged microtubule-associate protein 1 light chain 3 (LC3) and the protein conversion from LC3-I to LC3-II were respectively confirmed by confocal fluorescence microscopy and western blotting. Furthermore, the effects of autophagy on IHNV replication were also clarified by altering the autophagy pathway. The results showed that rapamycin induced autophagy can inhibit both intracellular viral replication and extracellular viral yields, while autophagy inhibitor produced the opposite results. These findings demonstrated that autophagy plays an antiviral role during IHNV infection.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Zhen-Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jia-Sheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hong-Bai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
55
|
Huang B, Zhang L, Du Y, Xu F, Li L, Zhang G. Characterization of the Mollusc RIG-I/MAVS Pathway Reveals an Archaic Antiviral Signalling Framework in Invertebrates. Sci Rep 2017; 7:8217. [PMID: 28811654 PMCID: PMC5557890 DOI: 10.1038/s41598-017-08566-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the mitochondrial antiviral signalling protein (MAVS)-dependent RIG-I-like receptor (RLR) signalling pathway in the cytosol plays an indispensable role in the antiviral immunity of the host, surprising little is known in invertebrates. Here we characterized the major members of RLR pathway and investigated their signal transduction a Molluscs. We show that genes involved in RLR pathway were significantly induced during virus challenge, including CgRIG-I-1, CgMAVS, CgTRAF6 (TNF receptor-associated factor 6), and CgIRFs (interferon regulatory factors. Similar to human RIG-I, oyster RIG-I-1 could bind poly(I:C) directly in vitro and interact with oyster MAVS via its caspase activation and recruitment domains. We also show that transmembrane domain-dependent self-association of CgMAVS may be crucial for its signalling and that CgMAVS can recruit the downstream signalling molecule, TRAF6, which can subsequently activate NF-κB signal pathway. Moreover, oyster IRFs appeared to function downstream of CgMAVS and were able to activate the interferon β promoter and interferon stimulated response elements in mammalian cells. These results establish invertebrate MAVS-dependent RLR signalling for the first time and would be helpful for deciphering the antiviral mechanisms of invertebrates and understanding the development of the vertebrate RLR network.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yishuai Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
56
|
Rosani U, Venier P. Oyster RNA-seq Data Support the Development of Malacoherpesviridae Genomics. Front Microbiol 2017; 8:1515. [PMID: 28848525 PMCID: PMC5552708 DOI: 10.3389/fmicb.2017.01515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
The family of double-stranded DNA (dsDNA) Malacoherpesviridae includes viruses able to infect marine mollusks and detrimental for worldwide aquaculture production. Due to fast-occurring mortality and a lack of permissive cell lines, the available data on the few known Malacoherpesviridae provide only partial support for the study of molecular virus features, life cycle, and evolutionary history. Following thorough data mining of bivalve and gastropod RNA-seq experiments, we used more than five million Malacoherpesviridae reads to improve the annotation of viral genomes and to characterize viral InDels, nucleotide stretches, and SNPs. Both genome and protein domain analyses confirmed the evolutionary diversification and gene uniqueness of known Malacoherpesviridae. However, the presence of Malacoherpesviridae-like sequences integrated within genomes of phylogenetically distant invertebrates indicates broad diffusion of these viruses and indicates the need for confirmatory investigations. The manifest co-occurrence of OsHV-1 genotype variants in single RNA-seq samples of Crassostrea gigas provide further support for the Malacoherpesviridae diversification. In addition to simple sequence motifs inter-punctuating viral ORFs, recombination-inducing sequences were found to be enriched in the OsHV-1 and AbHV1-AUS genomes. Finally, the highly correlated expression of most viral ORFs in multiple oyster samples is consistent with the burst of viral proteins during the lytic phase.
Collapse
Affiliation(s)
| | - Paola Venier
- Department of Biology, University of PaduaPadua, Italy
| |
Collapse
|
57
|
Mathai BJ, Meijer AH, Simonsen A. Studying Autophagy in Zebrafish. Cells 2017; 6:E21. [PMID: 28698482 PMCID: PMC5617967 DOI: 10.3390/cells6030021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process which allows lysosomal degradation of complex cytoplasmic components into basic biomolecules that are recycled for further cellular use. Autophagy is critical for cellular homeostasis and for degradation of misfolded proteins and damaged organelles as well as intracellular pathogens. The role of autophagy in protection against age-related diseases and a plethora of other diseases is now coming to light; assisted by several divergent eukaryotic model systems ranging from yeast to mice. We here give an overview of different methods used to analyse autophagy in zebrafish-a relatively new model for studying autophagy-and briefly discuss what has been done so far and possible future directions.
Collapse
Affiliation(s)
- Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| |
Collapse
|
58
|
McLeod C, Polo D, Le Saux JC, Le Guyader FS. Depuration and Relaying: A Review on Potential Removal of Norovirus from Oysters. Compr Rev Food Sci Food Saf 2017; 16:692-706. [DOI: 10.1111/1541-4337.12271] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine McLeod
- Seafood Safety Assessment Ltd.; Hillcrest Isle of Skye IV44 8RG Scotland
| | - David Polo
- Ifremer, Laboratoire de Microbiologie; LSEM/SG2M; 44300 Nantes France
| | | | | |
Collapse
|
59
|
Martenot C, Gervais O, Chollet B, Houssin M, Renault T. Haemocytes collected from experimentally infected Pacific oysters, Crassostrea gigas: Detection of ostreid herpesvirus 1 DNA, RNA, and proteins in relation with inhibition of apoptosis. PLoS One 2017; 12:e0177448. [PMID: 28542284 PMCID: PMC5436676 DOI: 10.1371/journal.pone.0177448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
Recent transcriptomic approaches focused on anti-viral immunity in molluscs lead to the assumption that the innate immune system, such as apoptosis, plays a crucial role against ostreid herpesvirus type 1 (OsHV-1), infecting Pacific cupped oyster, Crassostrea gigas. Apoptosis constitutes a major mechanism of anti-viral response by limiting viral spread and eliminating infected cells. In this way, an OsHV-1 challenge was performed and oysters were monitored at three times post injection to investigate viral infection and host response: 2h (early after viral injection in the adductor muscle), 24h (intermediate time), and 48h (just before first oyster mortality record). Virus infection, associated with high cumulative mortality rates (74% and 100%), was demonstrated in haemocytes by combining several detection techniques such as real-time PCR, real-time RT PCR, immunofluorescence assay, and transmission electron microscopy examination. High viral DNA amounts ranged from 5.46×104 to 3.68×105 DNA copies ng-1 of total DNA, were detected in dead oysters and an increase of viral transcripts was observed from 2, 24, and 48hpi for the five targeted OsHV-1 genes encoding three putative membrane proteins (ORFs 25, 41, and 72), a putative dUTPase (ORF 75), and a putative apoptosis inhibitor (ORF 87). Apoptosis was studied at molecular and cellular levels with an early marker (phosphatidyl-serine externalisation measured by flow cytometry and epifluorescence microscopy) and a later parameter (DNA fragmentation by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay (TUNEL)). The down-regulation of genes encoding proteins involved in the activation of the apoptotic pathway (TNF and caspase 3) and the up-regulation of genes encoding anti-apoptotic proteins (IAP-2, and Bcl-2) suggested an important anti-apoptosis phenomenon in haemocytes from OsHV-1 infected oysters at 24 and 48hpi. Additionally, more phosphatidyl-serines were externalized and more cells with DNA fragmentation were observed in haemocytes collected from artificial seawater injected oysters than in haemocytes collected from OsHV-1 infected oysters at 24 and 48hpi, suggesting an inhibition of the apoptotic process in presence of the virus. In conclusion, this study is the first to focus on C. gigas haemocytes, cells involved in the host immune defense, during an OsHV-1 challenge in controlled conditions by combining various and original approaches to investigate apoptosis at molecular and cellular levels.
Collapse
Affiliation(s)
- Claire Martenot
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
- * E-mail:
| | - Ophélie Gervais
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Bruno Chollet
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | | | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, Nantes, France
| |
Collapse
|
60
|
Xu L, Liu J, Chen Y, Yun L, Chen S, Zhou K, Lai B, Song L, Yang H, Liang H, Tang H. Inhibition of autophagy enhances Hydroquinone-induced TK6 cell death. Toxicol In Vitro 2017; 41:123-132. [PMID: 28263894 DOI: 10.1016/j.tiv.2017.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Hydroquinone (HQ), one of the metabolic products of benzene, is a carcinogen. It can induce apoptosis in lymphoma cells. However, whether HQ can induce autophagy and what roles autophagy plays in TK6 cells exposured to HQ remains unclear. In this study, we found that HQ could induce autophagy through techniques of qRT-PCR, Western blot, immunofluorescent assay of LC3 and transmission electron microscope. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) significantly enhanced HQ-induced cell apoptosis, suggesting that autophagy may be a survival mechanism. Our study also showed that HQ activated PARP-1. Moreover, knockdown of PARP-1 strongly exhibited decreased autophagy related genes expression. In contrast, the absence of SIRT1 increased that. Altogether, our data provided evidence that HQ induced autophagy in TK6 cells and autophagy protected TK6 from HQ attack-induced injury in vitro, and the autophagy was partially mediated via activation of the PARP-1-SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Longmei Xu
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Jiaxian Liu
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Yuting Chen
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Lin Yun
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Shaoyun Chen
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Kairu Zhou
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Bei Lai
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Li Song
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Hui Yang
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Hairong Liang
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China.
| |
Collapse
|
61
|
Meier JL, Grose C. Variable Effects of Autophagy Induction by Trehalose on Herpesviruses Depending on Conditions of Infection. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:25-33. [PMID: 28356891 PMCID: PMC5369042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trehalose is a non-reducing sugar formed from two glucose units. Trehalose induces abundant autophagy in cultured cells and also reduces the rate of aggregation of the huntingtin protein in the animal model of Huntington disease, a chronic neurological disease in humans. The mechanism of this effect on autophagy is now known to be caused by starvation secondary to inhibition of a family of glucose transporters known as the solute carrier 2 or the glucose transporter family. Variable effects of trehalose treatment have been observed during infections with two herpesviruses-human cytomegalovirus and varicella-zoster virus. The reasons for differing results have now been delineated. These differences are caused by two variables in conditions of infection: timing of addition of trehalose and type of inoculum (cell-free virus vs. infected cells). When monolayers pretreated with trehalose were inoculated with cell-free virus, there was a decline in virus spread by as much as 93 percent when compared with untreated monolayers. However, when monolayers were inoculated with infected cells rather than cell-free virus, there was no decline in virus spread. These results demonstrated that the effect of trehalose was limited to monolayers that were starved when inoculated with cell-free virus. In contrast, sufficient virus was already present in infected cell inocula so as to minimize any inhibitory effect of a starved monolayer. These results also showed that trehalose did not specifically inhibit a herpesvirus; rather, addition of trehalose to cell culture media altered the intracellular environment.
Collapse
Affiliation(s)
- Jeffery L. Meier
- Virology laboratories, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Charles Grose
- Department of Pediatrics, University of Iowa, Iowa City, IA
| |
Collapse
|
62
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
63
|
Li C, Fu X, Lin Q, Liu L, Liang H, Huang Z, Li N. Autophagy promoted infectious kidney and spleen necrosis virus replication and decreased infectious virus yields in CPB cell line. FISH & SHELLFISH IMMUNOLOGY 2017; 60:25-32. [PMID: 27856327 DOI: 10.1016/j.fsi.2016.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Autophagy plays important functions in viral replication and pathogenesis. In this study, we investigated the role of autophagy in the replication of infectious kidney and spleen necrosis virus (ISKNV), an agent that has caused devastating losses in Chinese perch (Siniperca chuatsi) industry. We found that ISKNV infection triggered the complete autophagic process, as demonstrated by microtubule-associated protein 1 light chain 3B II (LC3B-II) conversion, an increased accumulation of punctate GFP-LC3-expressing cells, a higher number of autophagosome-double-membrane vesicles in the cytoplasm, and increased levels of autophagic flux in CPB cells. Then, we investigated the role of autophagy in the process of ISKNV replication. Results showed that inducing autophagy by rapamycin promoted ISKNV replication and proteins synthesis but decreased extracellular virus yields. While, blocking autophagosome-lysosome fusion by chloroquine (CQ) promoted infectious virus yields in culture supernatant. These results offer insight into the complex interactions between ISKNV and host cell, providing new insights into viral pathogenesis and antiviral treatment strategies.
Collapse
Affiliation(s)
- Chen Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhibin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
64
|
Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways. J Virol 2016; 90:8673-85. [PMID: 27440906 PMCID: PMC5021422 DOI: 10.1128/jvi.00915-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) is an extremely cell-associated herpesvirus with limited egress of viral particles. The induction of autophagy in VZV-infected monolayers is easily detectable; inhibition of autophagy leads to decreased VZV glycoprotein biosynthesis and diminished viral titers. To explain how autophagic flux could exert a proviral effect on the VZV infectious cycle, we postulated that the VZV exocytosis pathway following secondary envelopment may converge with the autophagy pathway. This hypothesis depended on known similarities between VZV gE and autophagy-related (Atg) Atg9/Atg16L1 trafficking pathways. Investigations were carried out with highly purified fractions of VZV virions. When the virion fraction was tested for the presence of autophagy and endosomal proteins, microtubule-associated protein 1 light chain (MAP1LC3B) and Ras-like GTPase 11 (Rab11) were detected. By two-dimensional (2D) and 3D imaging after immunolabeling, both proteins also colocalized with VZV gE in a proportion of cytoplasmic vesicles. When purified VZV virions were enumerated after immunoelectron microscopy, gold beads were detected on viruses following incubation with antibodies to VZV gE (∼100%), Rab11 (50%), and LC3B (30%). Examination of numerous electron micrographs demonstrated that enveloped virions were housed in single-membraned vesicles; viral particles were not observed in autophagosomes. Taken together, our data suggested that some viral particles after secondary envelopment accumulated in a heterogeneous population of single-membraned vesicular compartments, which were decorated with components from both the endocytic pathway (Rab11) and the autophagy pathway (LC3B). The latter cytoplasmic viral vesicles resembled an amphisome. IMPORTANCE VZV infection leads to increased autophagic flux, while inhibition of autophagy leads to a marked reduction in virus spread. In this investigation of the proviral role of autophagy, we found evidence for an intersection of viral exocytosis and autophagy pathways. Specifically, both LC3-II and Rab11 proteins copurified with some infectious VZV particles. The results suggested that a subpopulation of VZV particles were carried to the cell surface in single-walled vesicles with attributes of an amphisome, an organelle formed from the fusion of an endosome and an autophagosome. Our results also addressed the interpretation of autophagy/xenophagy results with mutated herpes simplex virus lacking its ICP34.5 neurovirulence gene (HSVΔ34.5). The VZV genome lacks an ICP34.5 ortholog, yet we found no evidence of VZV particles housed in a double-membraned autophagosome. In other words, xenophagy, a degradative process documented after infection with HSVΔ34.5, was not observed in VZV-infected cells.
Collapse
|
65
|
Wang Y, Chen N, Hegazy AM, Liu X, Wu Z, Liu X, Zhao L, Qin Q, Lan J, Lin L. Autophagy induced by snakehead fish vesiculovirus inhibited its replication in SSN-1 cell line. FISH & SHELLFISH IMMUNOLOGY 2016; 55:415-422. [PMID: 27311436 DOI: 10.1016/j.fsi.2016.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Autophagy plays an important role in host protection against pathogen infection through activating innate and adaptive immunity. In the present study, we observed that the infection of snakehead fish vesiculovirus (SHVV) could induce apparent autophagy in striped snakehead fish cell line (SSN-1), including clear double-membrane vesicles, fluorescent punctate pattern of microtubule-associated protein 1 light chain 3B (SSN-LC3B) and the conversion of SSN-LC3B-Ⅰ to SSN-LC3B-Ⅱ. Furthermore, we verified that autophagy inhibited the replication of SHVV by assessing mRNA and protein level of nucleoprotein as well as virus titer in the supernatant. These results will shed a new light on the prevention of the infection of SHVV.
Collapse
Affiliation(s)
- Yao Wang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, 13621, Egypt
| | - Xiaodan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijuan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
66
|
In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas. J Invertebr Pathol 2016; 136:124-35. [PMID: 27066775 DOI: 10.1016/j.jip.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level.
Collapse
|
67
|
Qi H, Yi Y, Weng S, Zou W, He J, Dong C. Differential autophagic effects triggered by five different vertebrate iridoviruses in a common, highly permissive mandarinfish fry (MFF-1) cell model. FISH & SHELLFISH IMMUNOLOGY 2016; 49:407-419. [PMID: 26748344 DOI: 10.1016/j.fsi.2015.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Autophagy of five vertebrate iridoviruses, including one megalocytivirus (infectious spleen and kidney necrosis virus, ISKNV) and four ranaviruses (Chinese giant salamander iridovirus, CGSIV; Tiger frog virus, TFV; Grouper iridovirus, GIV; and Largemouth bass virus, LMBV) were investigated in a common, highly permissive mandarinfish fry (MFF-1) cell model. The results showed marked autophagosome formation in GIV- and LMBV-infected cells but not in ISKNV-, CGSIV- and TFV-infected MFF-1 cells. Strong evidence for the autophagosomes was provided by transmission electron microscopy, the detection of mandarinfish microtubule-associated protein 1 light chain 3B (mLC3)-based fluorescent dot formation and mLC3-I/mLC3-II conversion was provided by Western blotting. Pharmacological tests indicated that autophagy plays an antiviral role during GIV or LMBV infection. Collectively, our data are the first to show that antiviral autophagic effects can be triggered by GIV and LMBV but not by ISKNV, TFV and CGSIV in a common susceptible cell model. These results suggest that differential host-virus interaction strategies may be utilized against different vertebrate iridoviruses; they also indicate the potential effectiveness of an antiviral treatment that modulates autophagy to control iridoviral infections, such as GIV and LMBV.
Collapse
Affiliation(s)
- Hemei Qi
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yang Yi
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoping Weng
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weibing Zou
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Bairong Aquatic Breeding Products Co., Ltd, Xiaan, Danzhao Town, Nanhai District, Foshan 528000, PR China.
| |
Collapse
|
68
|
Li Y, Zeng X, Wang S, Fan J, Wang Z, Song P, Mei X, Ju D. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase. Tumour Biol 2015; 37:6627-35. [DOI: 10.1007/s13277-015-4253-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
|
69
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
70
|
Green TJ, Raftos D, Speck P, Montagnani C. Antiviral immunity in marine molluscs. J Gen Virol 2015; 96:2471-2482. [DOI: 10.1099/jgv.0.000244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Timothy J. Green
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Caroline Montagnani
- IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| |
Collapse
|
71
|
Drouaz N, Schaeffer J, Farkas T, Le Pendu J, Le Guyader FS. Tulane Virus as a Potential Surrogate To Mimic Norovirus Behavior in Oysters. Appl Environ Microbiol 2015; 81:5249-56. [PMID: 26025893 PMCID: PMC4495214 DOI: 10.1128/aem.01067-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
Oyster contamination by noroviruses is an important health and economic problem. The present study aimed to compare the behaviors of Norwalk virus (the prototype genogroup I norovirus) and two culturable viruses: Tulane virus and mengovirus. After bioaccumulation, tissue distributions were quite similar for Norwalk virus and Tulane virus, with the majority of viral particles detected in digestive tissues, while mengovirus was detected in large amounts in the gills and mantle as well as in digestive tissues. The levels of persistence of all three viruses over 8 days were comparable, but clear differences were observed over longer periods, with Norwalk and Tulane viruses displaying rather similar half-lives, unlike mengovirus, which was cleared more rapidly. These results indicate that Tulane virus may be a good surrogate for studying norovirus behavior in oysters, and they confirm the prolonged persistence of Norwalk virus in oyster tissues.
Collapse
Affiliation(s)
- Najoua Drouaz
- IFREMER, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Julien Schaeffer
- IFREMER, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Tibor Farkas
- Laboratory of Specialized Clinical Studies, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacques Le Pendu
- INSERM, U892, CNRS, UMR6299, Université de Nantes, Nantes, France
| | | |
Collapse
|