51
|
Synergy Between Low Dose Metronomic Chemotherapy and the pH-centered Approach Against Cancer. Int J Mol Sci 2019; 20:ijms20215438. [PMID: 31683667 PMCID: PMC6862380 DOI: 10.3390/ijms20215438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Low dose metronomic chemotherapy (MC) is becoming a mainstream treatment for cancer in veterinary medicine. Its mechanism of action is anti-angiogenesis by lowering vascular endothelial growth factor (VEGF) and increasing trombospondin-1 (TSP1). It has also been adopted as a compassionate treatment in very advanced human cancer. However, one of the main limitations of this therapy is its short-term effectiveness: 6 to 12 months, after which resistance develops. pH-centered cancer treatment (pHT) has been proposed as a complementary therapy in cancer, but it has not been adopted or tested as a mainstream protocol, in spite of existing evidence of its advantages and benefits. Many of the factors directly or indirectly involved in MC and anti-angiogenic treatment resistance are appropriately antagonized by pHT. This led to the testing of an association between these two treatments. Preliminary evidence indicates that the association of MC and pHT has the ability to reduce anti-angiogenic treatment limitations and develop synergistic anti-cancer effects. This review will describe each of these treatments and will analyze the fundamentals of their synergy.
Collapse
|
52
|
Nayagom B, Amara I, Habiballah M, Amrouche F, Beaune P, de Waziers I. Immunogenic cell death in a combined synergic gene- and immune-therapy against cancer. Oncoimmunology 2019; 8:e1667743. [PMID: 31741770 PMCID: PMC6844315 DOI: 10.1080/2162402x.2019.1667743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
It was previously demonstrated that engineered mesenchymal stem cells (MSCs) which express a high level of a very efficient modified gene CYP2B6* (CYP2B6TM-RED) acting as a suicide gene (MSC-2B6*) in combination with cyclophosphamide (CPA) constitute a powerful cell/gene therapy approach for solid tumors. In murine models, this combination led to tumor eradication and triggered a durable immune response against tumoral cells, which prevented recurrence and metastasis. The first goal, in this work, was to determine whether the mechanism of tumor cell death caused by CPA metabolites could explain the appearance of this anti-tumor immune response. In vitro, CPA metabolites produced by MSC-2B6* were able to induce immunogenic cell death (ICD) of tumor cells. Indeed, all ICD characteristic events were clearly identified: calreticulin translocation, LC3II expression and release of ATP and HMGB1. The second goal was to determine the respective roles of the direct cytotoxicity of CPA metabolites and the immune anti-tumor response due to ICD of tumor cells during tumor eradication. In vivo, the early inhibition of ICD (with anti-HMGB1 antibodies) or the depletion of CD8+T lymphocytes (with anti-CD8 antibodies) prevented tumor eradication by CPA metabolites and tumor regrowth occurred, despite CPA treatment. In conclusion, the full eradication of the tumors depends on the association of cytotoxic CPA metabolites triggering the ICD of tumor cells and an anti-tumor immune response. The absence of one or the other of these effects prevents the complete eradication of tumors.
Collapse
Affiliation(s)
- Benjamin Nayagom
- Centre de Recherches des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Ikrame Amara
- Centre de Recherches des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Meryem Habiballah
- Centre de Recherches des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Floriane Amrouche
- Centre de Recherches des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Philippe Beaune
- Centre de Recherches des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Isabelle de Waziers
- Centre de Recherches des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
53
|
Kareva I. Metabolism and Gut Microbiota in Cancer Immunoediting, CD8/Treg Ratios, Immune Cell Homeostasis, and Cancer (Immuno)Therapy: Concise Review. Stem Cells 2019; 37:1273-1280. [PMID: 31260163 DOI: 10.1002/stem.3051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
The concept of immunoediting, a process whereby the immune system eliminates immunogenic cancer cell clones, allowing the remaining cells to progress and form a tumor, has evolved with growing appreciation of the importance of cancer ecology on tumor progression. As cancer cells grow and modify their environment, they create spatial and nutrient constraints that may affect not only immune cell function but also differentiation, tipping the balance between cytotoxic and regulatory immunity to facilitate tumor growth. Here, we review how immunometabolism may contribute to cancer escape from the immune system, as well as highlight an emerging role of gut microbiota, its effects on the immune system and on response to immunotherapy. We conclude with a discussion of how these pieces can be integrated to devise better combination therapies and highlight the role of computational approaches as a potential tool to aid in combination therapy design. Stem Cells 2019;37:1273-1280.
Collapse
Affiliation(s)
- Irina Kareva
- Translational Medicine, EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| |
Collapse
|
54
|
Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305:130-154. [DOI: 10.1016/j.jconrel.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
55
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|
56
|
Wu J, Waxman DJ. Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy. Cancer Lett 2019; 419:210-221. [PMID: 29414305 DOI: 10.1016/j.canlet.2018.01.050] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Conventional cytotoxic cancer chemotherapy is often immunosuppressive and associated with drug resistance and tumor regrowth after a short period of tumor shrinkage or growth stasis. However, certain cytotoxic cancer chemotherapeutic drugs, including doxorubicin, mitoxantrone, and cyclophosphamide, can kill tumor cells by an immunogenic cell death pathway, which activates robust innate and adaptive anti-tumor immune responses and has the potential to greatly increase the efficacy of chemotherapy. Here, we review studies on chemotherapeutic drug-induced immunogenic cell death, focusing on how the choice of a conventional cytotoxic agent and its dose and schedule impact anti-tumor immune responses. We propose a strategy for effective immunogenic chemotherapy that employs a modified metronomic schedule for drug delivery, which we term medium-dose intermittent chemotherapy (MEDIC). Striking responses have been seen in preclinical cancer models using MEDIC, where an immunogenic cancer chemotherapeutic agent is administered intermittently and at an intermediate dose, designed to impart strong and repeated cytotoxic damage to tumors, and on a schedule compatible with activation of a sustained anti-tumor immune response, thereby maximizing anti-cancer activity. We also discuss strategies for combination chemo-immunotherapy, and we outline approaches to identify new immunogenic chemotherapeutic agents for drug development.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Biology, Division of Cell and Molecular Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
57
|
Emam SE, Ando H, Abu Lila AS, Kobayashi S, Shimizu T, Okuhira K, Ishima Y, Ishida T. Doxorubicin Expands in Vivo Secretion of Circulating Exosome in Mice. Biol Pharm Bull 2018; 41:1078-1083. [PMID: 29962402 DOI: 10.1248/bpb.b18-00202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of tumor immunity is a known factor in the antitumor activity of many chemotherapeutic agents. Exosomes are extracellular nanometric vesicles that are released by almost all types of cells, which includes cancer cells. These vesicles play a crucial role in tumor immunity. Many in vitro studies have reproduced the aggressive secretion of exosomes following treatment with conventional anticancer drugs. Nevertheless, how chemotherapeutic agents including nanomedicines such as Doxil® affect the in vivo secretion of exosomes is yet to be elucidated. In this study, the effect of intravenous injection of either free doxorubicin (DXR) or liposomal DXR formulation (Doxil®) on exosome secretion was evaluated in BALB/c mice. Exosomes were isolated from serum by using an ExoQuick™ kit. Free DXR treatment markedly increased serum exosome levels in a post-injection time-dependent manner, while Doxil® treatment did not. Exosomal size distribution and marker protein expressions (CD9, CD63, and TSG101) were studied. The physical/biological characteristics of treatment-induced exosomes were comparable to those of control mice. Interestingly, splenectomy significantly suppressed the copious exosomal secretions induced by free DXR. Collectively, our results indicate that conventional anticancer agents induce the secretion of circulating exosomes, presumably via stimulating immune cells of the spleen. As far as we know, this study represents the first report indicating that conventional chemotherapeutics may induce exosome secretion which might, in turn, contribute partly to the antitumor effect of chemotherapeutic agents.
Collapse
Affiliation(s)
- Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Amr Selim Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University.,Department of Pharmaceutics, College of Pharmacy, Hail University
| | - Shinya Kobayashi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Keiichiro Okuhira
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
58
|
High-grade glioma associated immunosuppression does not prevent immune responses induced by therapeutic vaccines in combination with T reg depletion. Cancer Immunol Immunother 2018; 67:1545-1558. [PMID: 30054667 PMCID: PMC6182405 DOI: 10.1007/s00262-018-2214-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
Abstract
High-grade gliomas (HGG) exert systemic immunosuppression, which is of particular importance as immunotherapeutic strategies such as therapeutic vaccines are increasingly used to treat HGGs. In a first cohort of 61 HGG patients we evaluated a panel of 30 hematological and 34 plasma biomarkers. Then, we investigated in a second cohort of 11 relapsed HGG patients receiving immunomodulation with metronomic cyclophosphamide upfront to a DC-based vaccine whether immune abnormalities persisted and whether they hampered induction of IFNγ+ T-cell responses. HGG patients from the first cohort showed increased numbers of leukocytes, neutrophils and MDSCs and in parallel reduced numbers of CD4+/CD8+ T-cells, plasmacytoid and conventional DC2s. MDSCs and T-cell alterations were more profound in WHO IV° glioma patients. Moreover, levels of MDSCs and epidermal growth factor were negatively associated with survival. Serum levels of IL-2, IL-4, IL-5 and IL-10 were altered in HGG patients, however, without any impact on clinical outcome. In the immunotherapy cohort, 6-month overall survival was 100%. Metronomic cyclophosphamide led to > 40% reduction of regulatory T cells (Treg). In parallel to Treg-depletion, MDSCs and DC subsets became indistinguishable from healthy controls, whereas T-lymphopenia persisted. Despite low T-cells, IFNγ-responses could be induced in 9/10 analyzed cases. Importantly, frequency of CD8+VLA-4+ T-cells with CNS-homing properties, but not of CD4+ VLA-4+ T-cells, increased during vaccination. Our study identifies several features of systemic immunosuppression in HGGs. Metronomic cyclophosphamide in combination with an active immunization alleviates the latter and the combined treatment allows induction of a high rate of anti-glioma immune responses.
Collapse
|
59
|
Hughes E, Scurr M, Campbell E, Jones E, Godkin A, Gallimore A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology 2018; 154:62-68. [PMID: 29460448 PMCID: PMC5904691 DOI: 10.1111/imm.12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The power of T cells for cancer treatment has been demonstrated by the success of co-inhibitory receptor blockade and adoptive T-cell immunotherapies. These treatments are highly successful for certain cancers, but are often personalized, expensive and associated with harmful side effects. Other T-cell-modulating drugs may provide additional means of improving immune responses to tumours without these disadvantages. Conventional chemotherapeutic drugs are traditionally used to target cancers directly; however, it is clear that some also have significant immune-modulating effects that can be harnessed to target tumours. Cyclophosphamide is one such drug; used at lower doses than in mainstream chemotherapy, it can perturb immune homeostasis, tipping the balance towards generation of anti-tumour T-cell responses and control of cancer growth. This review discusses its growing reputation as an immune-modulator whose multiple effects synergize with the microbiota to tip the balance towards tumour immunity offering widespread benefits as a safe, and relatively inexpensive component of cancer immunotherapy.
Collapse
Affiliation(s)
- Ellyn Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
- Present address:
Faculty of Medicine Nursing and Health SciencesSchool of Biomedical SciencesMonash UniversityMelbourneAustralia
| | - Martin Scurr
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Campbell
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Andrew Godkin
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Awen Gallimore
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
60
|
Orecchioni S, Talarico G, Labanca V, Calleri A, Mancuso P, Bertolini F. Vinorelbine, cyclophosphamide and 5-FU effects on the circulating and intratumoural landscape of immune cells improve anti-PD-L1 efficacy in preclinical models of breast cancer and lymphoma. Br J Cancer 2018; 118:1329-1336. [PMID: 29695766 PMCID: PMC5959935 DOI: 10.1038/s41416-018-0076-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Anti-PD-1 and anti-PD-L1 checkpoint inhibitors (CIs) are clinically active in many types of cancer. However, only a minority of patients achieve a complete and/or long-lasting clinical response. We studied the effects of different doses of three widely used, orally active chemotherapeutics (vinorelbine, cyclophosphamide and 5-FU) over local and metastatic tumour growth, and the landscape of circulating and tumour-infiltrating immune cells involved in CI activity. Methods Immunocompetent Balb/c mice were used to generate models of breast cancer (BC) and B-cell lymphoma. Vinorelbine, cyclophosphamide and 5-FU (alone or in combination with CIs), were given at low-dose metronomic, medium, or maximum tolerable dosages. Results Cyclophosphamide increased circulating myeloid derived suppressor cells (MDSC). Vinorelbine, cyclophosphamide and 5-FU reduced circulating APCs. Vinorelbine and cyclophosphamide (at medium/high doses) reduced circulating Tregs. Cyclophosphamide (at low doses) and 5-FU (at medium doses) slightly increased circulating Tregs. Cyclophosphamide was the most potent drug in reducing circulating CD3+CD8+ and CD3+CD4+ T cells. Vinorelbine, cyclophosphamide and 5-FU reduced the number of circulating B cells, with cyclophosphamide showing the most potent effect. Vinorelbine reduced circulating NKs, whereas cyclophosphamide and 5-FU, at low doses, increased circulating NKs. In spite of reduced circulating T, B and NK effector cells, preclinical synergy was observed between chemotherapeutics and anti-PD-L1. Most-effective combinatorial regimens where associated with neoplastic lesions enriched in B cells, and, in BC-bearing mice (but not in mice with lymphoma) also in NK cells. Conclusions Vinorelbine, cyclophosphamide and 5-FU have significant preclinical effects on circulating and tumour-infiltrating immune cells and can be used to obtain synergy with anti-PD-L1.
Collapse
Affiliation(s)
- Stefania Orecchioni
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Valentina Labanca
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Angelica Calleri
- Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Patrizia Mancuso
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy.
| |
Collapse
|
61
|
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience 2018; 12:824. [PMID: 29743944 PMCID: PMC5931815 DOI: 10.3332/ecancer.2018.824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil and vardenafil, are widely-used in the treatment of erectile dysfunction and pulmonary arterial hypertension. They are also well-known as examples of successful drug repurposing in that they were initially developed for angina and only later developed for erectile dysfunction. However, these drugs may also be effective cancer treatments. A range of evidentiary sources are assessed in this paper and the case made that there is pre-clinical and clinical evidence that these drugs may offer clinical benefit in a range of cancers. In particular, evidence is presented that these drugs have potent immunomodulatory activity that warrants clinical study in combination with check-point inhibition.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium
| | - Vikas P Sukhatme
- GlobalCures Inc., Newton, MA 02459, USA.,Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
62
|
Kuczynski EA, Krueger J, Chow A, Xu P, Man S, Sundaravadanam Y, Miller JK, Krzyzanowski PM, Kerbel RS. Impact of Chemical-Induced Mutational Load Increase on Immune Checkpoint Therapy in Poorly Responsive Murine Tumors. Mol Cancer Ther 2018; 17:869-882. [PMID: 29483207 DOI: 10.1158/1535-7163.mct-17-1091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/04/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
A recurring historic finding in cancer drug development is encouraging antitumor effects observed in tumor-bearing mice that fail to translate into the clinic. An intriguing exception to this pattern is immune checkpoint therapy, as the sustained tumor regressions observed in subsets of cancer patients are rare in mice. Reasoning that this may be due in part to relatively low mutational loads of mouse tumors, we mutagenized transplantable mouse tumor cell lines EMT-6/P, B16F1, RENCA, CT26, and MC38 in vitro with methylnitro-nitrosoguanidine (MNNG) or ethylmethane sulfonate (EMS) and tested their responsiveness to PD-L1 blockade. Exome sequencing confirmed an increase in somatic mutations by mutagen treatment, an effect mimicked in EMT-6 variants chronically exposed in vivo to cisplatin or cyclophosphamide. Certain mutagenized variants of B16F1, EMT-6/P, CT26, and MC38 (but not RENCA) were more immunogenic than their parents, yet anti-PD-L1 sensitization developed only in some EMT-6/P and B16F1 variants. Treatment response patterns corresponded with changes in immune cell infiltration and especially increases in CD8+ T cells. Chronically cisplatin-exposed EMT-6 variants were also more responsive to anti-PD-L1 therapy. Although tumor PD-L1 expression was upregulated in in vivo chemotherapy-exposed variants, PD-L1 expression levels were not consistently associated with anti-PD-L1 treatment activity across mutagenized or chemotherapy-exposed variants. In summary, mutagenized and more immunogenic mouse tumors were not universally sensitized to PD-L1 blockade. Chemically mutagenized variants may be useful to evaluate the impact of immunologically "hot" or "cold" tumors with a high mutational load, to which certain chemotherapy agents may contribute, on immunotherapy outcomes. Mol Cancer Ther; 17(4); 869-82. ©2018 AACR.
Collapse
Affiliation(s)
| | - Janna Krueger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | | | | | | | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
63
|
Pellegatta S, Eoli M, Cuccarini V, Anghileri E, Pollo B, Pessina S, Frigerio S, Servida M, Cuppini L, Antozzi C, Cuzzubbo S, Corbetta C, Paterra R, Acerbi F, Ferroli P, DiMeco F, Fariselli L, Parati EA, Bruzzone MG, Finocchiaro G. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8 + T cell activation in the presence of adjuvant temozolomide. Oncoimmunology 2018; 7:e1412901. [PMID: 29632727 PMCID: PMC5889286 DOI: 10.1080/2162402x.2017.1412901] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 01/23/2023] Open
Abstract
In a two-stage phase II study, 24 patients with first diagnosis of glioblastoma (GBM) were treated with dendritic cell (DC) immunotherapy associated to standard radiochemotherapy with temozolomide (TMZ) followed by adjuvant TMZ. Three intradermal injections of mature DC loaded with autologous GBM lysate were administered before adjuvant TMZ, while 4 injections were performed during adjuvant TMZ. According to a two-stage Simon design, to proceed to the second stage progression-free survival (PFS) 12 months after surgery was expected in at least 8 cases enrolled in the first stage. Evidence of immune response and interaction with chemotherapy were investigated. After a median follow up of 17.4 months, 9 patients reached PFS12. In these patients (responders, 37.5%), DC vaccination induced a significant, persistent activation of NK cells, whose increased response was significantly associated with prolonged survival. CD8+ T cells underwent rapid expansion and priming but, after the first administration of adjuvant TMZ, failed to generate a memory status. Resistance to TMZ was associated with robust expression of the multidrug resistance protein ABCC3 in NK but not CD8+ T cells. The negative effect of TMZ on the formation of T cell-associated antitumor memory deserves consideration in future clinical trials including immunotherapy.
Collapse
Affiliation(s)
- Serena Pellegatta
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Cuccarini
- Unit of Neuro-Radiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Anghileri
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Pessina
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Frigerio
- Cell Therapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maura Servida
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lucia Cuppini
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Unit of Neuro-Immunology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Cuzzubbo
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Corbetta
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Unit of Neurosurgery 2, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Unit of Neurosurgery 2, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco DiMeco
- Unit of Neurosurgery 1, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Fariselli
- Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eugenio A Parati
- Cell Therapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Unit of Neuro-Radiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
64
|
Kareva I. A Combination of Immune Checkpoint Inhibition with Metronomic Chemotherapy as a Way of Targeting Therapy-Resistant Cancer Cells. Int J Mol Sci 2017; 18:E2134. [PMID: 29027915 PMCID: PMC5666816 DOI: 10.3390/ijms18102134] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022] Open
Abstract
Therapeutic resistance remains a major obstacle in treating many cancers, particularly in advanced stages. It is likely that cytotoxic lymphocytes (CTLs) have the potential to eliminate therapy-resistant cancer cells. However, their effectiveness may be limited either by the immunosuppressive tumor microenvironment, or by immune cell death induced by cytotoxic treatments. High-frequency low-dose (also known as metronomic) chemotherapy can help improve the activity of CTLs by providing sufficient stimulation for cytotoxic immune cells without excessive depletion. Additionally, therapy-induced removal of tumor cells that compete for shared nutrients may also facilitate tumor infiltration by CTLs, further improving prognosis. Metronomic chemotherapy can also decrease the number of immunosuppressive cells in the tumor microenvironment, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Immune checkpoint inhibition can further augment anti-tumor immune responses by maintaining T cells in an activated state. Combining immune checkpoint inhibition with metronomic administration of chemotherapeutic drugs may create a synergistic effect that augments anti-tumor immune responses and clears metabolic competition. This would allow immune-mediated elimination of therapy-resistant cancer cells, an effect that may be unattainable by using either therapeutic modality alone.
Collapse
Affiliation(s)
- Irina Kareva
- Mathematical and Computational Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA.
- EMD Serono Research and Development Institute, Merck KGaA, Billerica, MA 02370, USA.
| |
Collapse
|
65
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
66
|
Zingoni A, Fionda C, Borrelli C, Cippitelli M, Santoni A, Soriani A. Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Front Immunol 2017; 8:1194. [PMID: 28993779 PMCID: PMC5622151 DOI: 10.3389/fimmu.2017.01194] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. An equilibrium between immune control and tumor growth is maintained as long as cancer cells evade immunosurveillance. Therapies designed to kill cancer cells and to simultaneously sustain host antitumor immunity are an appealing strategy to control tumor growth. Several chemotherapeutic agents, depending on which drugs and doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastrophe, senescence, and autophagy). However, it is becoming increasingly clear that they can trigger additional stress responses. Indeed, relevant immunostimulating effects of different therapeutic programs include also the activation of pathways able to promote their recognition by immune effector cells. Among stress-inducible immunostimulating proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as well as of death receptors on tumor cells, play a critical role in their detection and elimination by innate immune effectors, including NK cells. Here, we will review recent advances in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector functions. In particular, we will address how these cytotoxic lymphocytes sense and respond to different types of drug-induced stresses contributing to anticancer activity.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristiana Borrelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Neuromed I.R.C.C.S. - Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
67
|
Ferrer-Font L, Arias-Ramos N, Lope-Piedrafita S, Julià-Sapé M, Pumarola M, Arús C, Candiota AP. Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. NMR IN BIOMEDICINE 2017; 30:e3748. [PMID: 28570014 DOI: 10.1002/nbm.3748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) causes poor survival in patients even when applying aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment, but resistance always ensues. In previous years, efforts have focused on new therapeutic regimens with conventional drugs to activate immune responses that may enhance tumor regression and prevent regrowth, for example the "metronomic" approaches. In metronomic scheduling studies, cyclophosphamide (CPA) in GL261 GBM growing subcutaneously in C57BL/6 mice was shown not only to activate antitumor CD8+ T-cell response, but also to induce long-term specific T-cell tumor memory. Accordingly, we have evaluated whether metronomic CPA or TMZ administration could increase survival in orthotopic GL261 in C57BL/6 mice, an immunocompetent model. Longitudinal in vivo studies with CPA (140 mg/kg) or TMZ (range 140-240 mg/kg) metronomic administration (every 6 days) were performed in tumor-bearing mice. Tumor evolution was monitored at 7 T with MRI (T2 -weighted, diffusion-weighted imaging) and MRSI-based nosological images of response to therapy. Obtained results demonstrated that both treatments resulted in increased survival (38.6 ± 21.0 days, n = 30) compared with control (19.4 ± 2.4 days, n = 18). Best results were obtained with 140 mg/kg TMZ (treated, 44.9 ± 29.0 days, n = 12, versus control, 19.3 ± 2.3 days, n = 12), achieving a longer survival rate than previous group work using three cycles of TMZ therapy at 60 mg/kg (33.9 ± 11.7 days, n = 38). Additional interesting findings were, first, clear edema appearance during chemotherapeutic treatment, second, the ability to apply the semi-supervised source analysis previously developed in our group for non-invasive TMZ therapy response monitoring to detect CPA-induced response, and third, the necropsy findings in mice cured from GBM after high TMZ cumulative dosage (980-1400 mg/kg), which demonstrated lymphoma incidence. In summary, every 6 day administration schedule of TMZ or CPA improves survival in orthotopic GL261 GBM with respect to controls or non-metronomic therapy, in partial agreement with previous work on subcutaneous GL261.
Collapse
Affiliation(s)
- Laura Ferrer-Font
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Nuria Arias-Ramos
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Silvia Lope-Piedrafita
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Servei de Ressonància Magnètica Nuclear, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Margarida Julià-Sapé
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Martí Pumarola
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Edifici V, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carles Arús
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
68
|
Stern PL. Is immunity in cancer the key to improving clinical outcome?: Report on the International Symposium on Immunotherapy, The Royal Society, London, UK, 12-13 May 2017. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:55-68. [PMID: 28794878 DOI: 10.1177/2051013617720659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter L Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Paterson Building, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
69
|
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 2017; 6:e1363139. [PMID: 29147628 DOI: 10.1080/2162402x.2017.1363139] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with the overall aim of enhancing the proliferation, persistence and functionality of infused cells, as well as to ensure their evolution in an immunological permissive local and systemic microenvironment. In addition, isolated lymphocytes can be genetically engineered to endow them with the ability to target a specific tumor-associated antigen (TAA), to increase their lifespan, and/or to reduce their potential toxicity. The infusion of chimeric antigen receptor (CAR)-expressing cytotoxic T lymphocytes redirected against CD19 has shown promising clinical efficacy in patients with B-cell malignancies. Accordingly, the US Food and Drug Administration (FDA) has recently granted 'breakthrough therapy' designation to a CAR-based T-cell therapy (CTL019) for patients with B-cell malignancies. Considerable efforts are now being devoted to the development of efficient ACT-based immunotherapies for non-hematological neoplasms. In this Trial Watch, we summarize recent clinical advances on the use of ACT for oncological indications.
Collapse
Affiliation(s)
- Carole Fournier
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - François Martin
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
70
|
Benson Z, Manjili SH, Habibi M, Guruli G, Toor AA, Payne KK, Manjili MH. Conditioning neoadjuvant therapies for improved immunotherapy of cancer. Biochem Pharmacol 2017; 145:12-17. [PMID: 28803721 DOI: 10.1016/j.bcp.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Recent advances in the treatment of melanoma and non-small cell lung cancer (NSCLC) by combining conventional therapies with anti-PD1/PD-L1 immunotherapies, have renewed interests in immunotherapy of cancer. The emerging concept of conventional cancer therapies combined with immunotherapy differs from the classical concept in that it is not simply taking advantage of their additive anti-tumor effects, but it is to use certain therapeutic regimens to condition the tumor microenvironment for optimal response to immunotherapy. To this end, low dose immunogenic chemotherapies, epigenetic modulators and inhibitors of cell cycle progression are potential candidates for rendering tumors highly responsive to immunotherapy. Next generation immunotherapeutics are therefore predicted to be highly effective against cancer, when they are used following appropriate immune modulatory compounds or targeted delivery of tumor cell cycle inhibitors using nanotechnology.
Collapse
Affiliation(s)
- Zachary Benson
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, USA
| | - Saeed H Manjili
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, USA
| | - Mehran Habibi
- Department of Surgery, The Johns Hopkins School of Medicine, USA
| | - Georgi Guruli
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, USA; Massey Cancer Center, USA
| | - Amir A Toor
- Massey Cancer Center, USA; Bone Marrow Transplant Program, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, USA
| | - Kyle K Payne
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Masoud H Manjili
- Massey Cancer Center, USA; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, USA.
| |
Collapse
|
71
|
Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites 2017; 7:metabo7020020. [PMID: 28524099 PMCID: PMC5487991 DOI: 10.3390/metabo7020020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected.
Collapse
|
72
|
Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for GL261 Glioblastoma Therapy in Immunocompetent Mice. Pharmaceuticals (Basel) 2017; 10:ph10010024. [PMID: 28208677 PMCID: PMC5374428 DOI: 10.3390/ph10010024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human GBM. Accordingly, targeting CK2 in GBM may benefit patients. Our goal has been to evaluate whether CK2 inhibitors (iCK2s) could increase survival in an immunocompetent preclinical GBM model. Cultured GL261 cells were treated with different iCK2s including CX-4945, and target effects evaluated in vitro. CX-4945 was found to decrease CK2 activity and Akt(S129) phosphorylation in GL261 cells. Longitudinal in vivo studies with CX-4945 alone or in combination with TMZ were performed in tumour-bearing mice. Increase in survival (p < 0.05) was found with combined CX-4945 and TMZ metronomic treatment (54.7 ± 11.9 days, n = 6) when compared to individual metronomic treatments (CX-4945: 24.5 ± 2.0 and TMZ: 38.7 ± 2.7, n = 6) and controls (22.5 ± 1.2, n = 6). Despite this, CX-4945 did not improve mice outcome when administered on every/alternate days, either alone or in combination with 3-cycle TMZ. The highest survival rate was obtained with the metronomic combined TMZ+CX-4945 every 6 days, pointing to the participation of the immune system or other ancillary mechanism in therapy response.
Collapse
|
73
|
Hegde PS, Karanikas V, Evers S. The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition. Clin Cancer Res 2016; 22:1865-74. [PMID: 27084740 DOI: 10.1158/1078-0432.ccr-15-1507] [Citation(s) in RCA: 678] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Clinical trials with immune checkpoint inhibitors have provided important insights into the mode of action of anticancer immune therapies and potential mechanisms of immune escape. Development of the next wave of rational clinical combination strategies will require a deep understanding of the mechanisms by which combination partners influence the battle between the immune system's capabilities to fight cancer and the immune-suppressive processes that promote tumor growth. This review focuses on our current understanding of tumor and circulating pharmacodynamic correlates of immune modulation and elaborates on lessons learned from human translational research with checkpoint inhibitors. Actionable tumor markers of immune activation including CD8(+)T cells, PD-L1 IHC as a pharmacodynamic marker of T-cell function, T-cell clonality, and challenges with conduct of trials that ask scientific questions from serial biopsies are addressed. Proposals for clinical trial design, as well as future applications of peripheral pharmacodynamic endpoints as potential surrogates of early clinical activity, are discussed. On the basis of emerging mechanisms of response and immune escape, we propose the concept of the tumor immunity continuum as a framework for developing rational combination strategies.
Collapse
Affiliation(s)
- Priti S Hegde
- Oncology Biomarker Development, Genentech, South San Francisco, California.
| | - Vaios Karanikas
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center, Zurich, Switzerland
| | - Stefan Evers
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center, Zurich, Switzerland
| |
Collapse
|
74
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
75
|
Pantziarka P, Hutchinson L, André N, Benzekry S, Bertolini F, Bhattacharjee A, Chiplunkar S, Duda DG, Gota V, Gupta S, Joshi A, Kannan S, Kerbel R, Kieran M, Palazzo A, Parikh A, Pasquier E, Patil V, Prabhash K, Shaked Y, Sholler GS, Sterba J, Waxman DJ, Banavali S. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai. Ecancermedicalscience 2016; 10:689. [PMID: 27994645 PMCID: PMC5130328 DOI: 10.3332/ecancer.2016.689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
The 5th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6th – 8th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | - Nicolas André
- Service d'hématologie et Oncologie Pédiatrique, Centre Hospitalo-Universitaire Timone Enfants, AP-HM, Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | - Sébastien Benzekry
- Inria team MONC and Institut de Mathématiques de Bordeaux, Talence, France
| | | | | | | | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Vikram Gota
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Sudeep Gupta
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | - Sadhana Kannan
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Robert Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Mark Kieran
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonella Palazzo
- Division of Medical Senology, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Eddy Pasquier
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | | | | | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital and RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shripad Banavali
- Tata Memorial Hospital, Mumbai, India; Metronomics Global Health Initiative, Marseille, France
| |
Collapse
|
76
|
Galluzzi L, Zitvogel L, Kroemer G. Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. Cancer Immunol Res 2016; 4:895-902. [DOI: 10.1158/2326-6066.cir-16-0197] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Metronomic cyclophosphamide activation of anti-tumor immunity: tumor model, mouse host, and drug schedule dependence of gene responses and their upstream regulators. BMC Cancer 2016; 16:623. [PMID: 27515027 PMCID: PMC4982114 DOI: 10.1186/s12885-016-2597-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Background Cyclophosphamide (CPA) can activate immunogenic tumor cell death, which induces immune-based tumor ablation and long-term anti-tumor immunity in a syngeneic C57BL/6 (B6) mouse GL261 glioma model when CPA is given on a 6-day repeating metronomic schedule (CPA/6d). In contrast, we find that two other syngeneic B6 mouse tumors, LLC lung carcinoma and B16F10 melanoma, do not exhibit these drug-induced immune responses despite their intrinsic sensitivity to CPA cytotoxicity. Methods To elucidate underlying mechanisms, we investigated gene expression and molecular pathway changes associated with the disparate immune responsiveness of these tumors to CPA/6d treatment. Results Global transcriptome analysis indicated substantial elevation of basal GL261 immune infiltration and strong CPA/6d activation of GL261 immune stimulatory pathways and their upstream regulators, but without preferential depletion of negative immune regulators compared to LLC and B16F10 tumors. In LLC tumors, where CPA/6d treatment is shown to be anti-angiogenic, CPA/6d suppressed VEGFA target genes and down regulated cell adhesion and leukocyte transendothelial migration genes. In GL261 tumors implanted in adaptive immune-deficient scid mice, where CPA/6d-induced GL261 regression is incomplete and late tumor growth rebound can occur, T cell receptor signaling and certain cytokine-cytokine receptor responses seen in B6 mice were deficient. Extending the CPA treatment interval from 6 to 9 days (CPA/9d) − which results in a strong but transient natural killer cell response followed by early tumor growth rebound − induced fewer cytokines and increased expression of drug metabolism genes. Conclusions These findings elucidate molecular response pathways activated by intermittent metronomic CPA treatment and identify deficiencies that characterize immune-unresponsive tumor models and drug schedules. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2597-2) contains supplementary material, which is available to authorized users.
Collapse
|
78
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
79
|
Banys-Paluchowski M, Schütz F, Ruckhäberle E, Krawczyk N, Fehm T. Metronomic Chemotherapy for Metastatic Breast Cancer - a Systematic Review of the Literature. Geburtshilfe Frauenheilkd 2016; 76:525-534. [PMID: 27239061 DOI: 10.1055/s-0042-105871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Conventional chemotherapy is generally administered in high doses followed by a treatment-free period to give the body needful time to recover. This "maximum tolerated dose" approach results in high response rates. However, long periods between therapy cycles can lead to development of resistance mechanisms and consequently disease progression. One of the most interesting alternative strategies is metronomic chemotherapy. This concept relies on the continuous administration of chemotherapy at low doses and aims at targeting endothelial cells in the tumor bed as well. Recently, metronomic chemotherapy has been incorporated into the recommendations issued by the German AGO expert panel (www.ago-online.de). A systematic review of PubMed/Medline, ClinicalTrials.gov, the European Clinical Trials Database (EudraCT) and the Cochrane Database was conducted. In the present review, we discuss the current evidence on metronomic chemotherapy in metastatic breast cancer.
Collapse
Affiliation(s)
| | - F Schütz
- Department of Gynecology and Obstetrics, Heidelberg University Hospital, University of Heidelberg, Heidelberg
| | - E Ruckhäberle
- Department of Gynecology and Obstetrics, Heinrich-Heine University Düsseldorf, Düsseldorf
| | - N Krawczyk
- Department of Gynecology and Obstetrics, Heinrich-Heine University Düsseldorf, Düsseldorf
| | - T Fehm
- Department of Gynecology and Obstetrics, Heinrich-Heine University Düsseldorf, Düsseldorf
| |
Collapse
|
80
|
Bocci G, Kerbel RS. Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nat Rev Clin Oncol 2016; 13:659-673. [DOI: 10.1038/nrclinonc.2016.64] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
81
|
Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW, Askoxylakis V, Taylor JW, Lu-Emerson C, Batista A, Kirkpatrick ND, Jung K, Snuderl M, Muzikansky A, Stubenrauch KG, Krieter O, Wakimoto H, Xu L, Munn LL, Duda DG, Fukumura D, Batchelor TT, Jain RK. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 2016; 113:4476-81. [PMID: 27044098 PMCID: PMC4843473 DOI: 10.1073/pnas.1525360113] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibition of the vascular endothelial growth factor (VEGF) pathway has failed to improve overall survival of patients with glioblastoma (GBM). We previously showed that angiopoietin-2 (Ang-2) overexpression compromised the benefit from anti-VEGF therapy in a preclinical GBM model. Here we investigated whether dual Ang-2/VEGF inhibition could overcome resistance to anti-VEGF treatment. We treated mice bearing orthotopic syngeneic (Gl261) GBMs or human (MGG8) GBM xenografts with antibodies inhibiting VEGF (B20), or Ang-2/VEGF (CrossMab, A2V). We examined the effects of treatment on the tumor vasculature, immune cell populations, tumor growth, and survival in both the Gl261 and MGG8 tumor models. We found that in the Gl261 model, which displays a highly abnormal tumor vasculature, A2V decreased vessel density, delayed tumor growth, and prolonged survival compared with B20. In the MGG8 model, which displays a low degree of vessel abnormality, A2V induced no significant changes in the tumor vasculature but still prolonged survival. In both the Gl261 and MGG8 models A2V reprogrammed protumor M2 macrophages toward the antitumor M1 phenotype. Our findings indicate that A2V may prolong survival in mice with GBM by reprogramming the tumor immune microenvironment and delaying tumor growth.
Collapse
Affiliation(s)
- Jonas Kloepper
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lars Riedemann
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Giorgio Seano
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Katharina Susek
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Veronica Yu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Nisha Dalvie
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Robin L Amelung
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Jonathan W Song
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Vasileios Askoxylakis
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jennie W Taylor
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Christine Lu-Emerson
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ana Batista
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Nathaniel D Kirkpatrick
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Keehoon Jung
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Matija Snuderl
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Kay G Stubenrauch
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Oliver Krieter
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
| |
Collapse
|
82
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015; 28:690-714. [PMID: 26678337 DOI: 10.1016/j.ccell.2015.10.012] [Citation(s) in RCA: 1171] [Impact Index Per Article: 117.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Aitziber Buqué
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; INSERM, U1015, 94805 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France.
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
83
|
Jordan M, Waxman DJ. CpG-1826 immunotherapy potentiates chemotherapeutic and anti-tumor immune responses to metronomic cyclophosphamide in a preclinical glioma model. Cancer Lett 2015; 373:88-96. [PMID: 26655275 DOI: 10.1016/j.canlet.2015.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 02/08/2023]
Abstract
Cyclophosphamide administered on an intermittent metronomic schedule induces strong immune-dependent regression in several glioma models. Here we investigate whether this immunogenic chemotherapy can be potentiated by combination with the immune stimulatory TLR9 agonist CpG-1826. CpG-1826 treatment of GL261 gliomas implanted in immune competent mice induced tumor growth delay associated with increased tumor recruitment of macrophages and B cells. Anti-tumor responses varied between individuals, with CpG-1826 inducing robust tumor growth delay in ~50% of treated mice. Both high and low CpG-1826-responsive mice showed striking improvements when CpG-1826 was combined with cyclophosphamide treatment. Tumor-associated macrophages, B cells, dendritic cells, and cytotoxic T cells were increased, T regulatory cells were not induced, and long-term GL261 glioma regression with immune memory was achieved when CpG-1826 was combined with either single cyclophosphamide dosing (90 mg/kg) or metronomic cyclophosphamide treatment (two cycles at 45 mg/kg, spaced 12-days apart). B16F10 melanoma, a low immunogenic tumor model, also showed enhanced immune and anti-tumor responses to cyclophosphamide/CpG-1826 chemoimmunotherapy, but unlike GL261 tumors, did not regress. TLR9-based immunotherapy can thus be effectively combined with immunogenic cyclophosphamide treatment to enhance immune-based anti-tumor responses, even in poorly immunogenic cancer models.
Collapse
Affiliation(s)
- Marie Jordan
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
84
|
Madondo MT, Quinn M, Plebanski M. Low dose cyclophosphamide: Mechanisms of T cell modulation. Cancer Treat Rev 2015; 42:3-9. [PMID: 26620820 DOI: 10.1016/j.ctrv.2015.11.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 02/01/2023]
Abstract
Cyclophosphamide is considered one of the most successful chemotherapy drugs and is listed on the World Health Organisations List of Essential Medicines. Since its initial synthesis in 1958, it has been widely used to treat a range of cancers but its use has been declining due to the advent of platinum based and other chemotherapy agents. However, cyclophosphamide is still used either as a single agent or as adjuvant therapy to treat lymphomas, and breast and ovarian cancers at much lower doses. The efficacy of low dose cyclophosphamide is primarily due to its ability to promote anti-tumour immunity, by selectively depleting regulatory T cells and enhancing effector T cell function. Compared to effecter T cells, regulatory T cells have metabolic adaptations that make them more susceptible to cyclophosphamide-mediated cytotoxicity. In this review, we highlight the potential for improving the efficacy of low dose cyclophosphamide by combining insights on the mechanisms of cyclophosphamide-mediated cytotoxicity, and how these cytotoxic effects of cyclophosphamide influence T cell function, thereby contributing to anti-tumour immunity.
Collapse
Affiliation(s)
- Mutsa Tatenda Madondo
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Michael Quinn
- Womens Cancer Research Centre, Royal Women's Hospital, Melbourne, Australia
| | - Magdalena Plebanski
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Melbourne, Australia.
| |
Collapse
|
85
|
Cazzaniga ME, Camerini A, Addeo R, Nolè F, Munzone E, Collovà E, Del Conte A, Mencoboni M, Papaldo P, Pasini F, Saracchini S, Bocci G. Metronomic oral vinorelbine in advanced breast cancer and non-small-cell lung cancer: current status and future development. Future Oncol 2015; 12:373-87. [PMID: 26584409 DOI: 10.2217/fon.15.306] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metronomic chemotherapy (mCT), a frequent administration of low-dose chemotherapy, allows prolonged treatment duration and minimizes the toxicity of standard-dose chemotherapy. mCT has multiple actions against cancer cells including inhibition of angiogenesis and modulation of the immune system. A number of studies lend support to the clinical efficacy of mCT in advanced breast cancer and non-small-cell lung cancer. However, further evidence is necessary to describe the optimal use of mCT and to identify suitable patients. Oral vinorelbine has emerged as a promising metronomic treatment in patients with metastatic breast cancer and non-small-cell lung cancer and is the only orally available microtubule-targeting agent. This paper reviews current evidence on metronomic oral vinorelbine, discusses its management and defines a suitable patient profile on the basis of a workshop of Italian experts.
Collapse
Affiliation(s)
- Marina E Cazzaniga
- Department of Oncology, AO San Gerardo, via Pergolesi 33, 20052 Monza (MB), Italy
| | - Andrea Camerini
- Department of Medical Oncology, Versilia Hospital & Istituto Toscano Tumori, 55041 Lido di Camaiore (LU), Italy
| | - Raffaele Addeo
- Oncology Unit, San Giovanni di Dio Hospital, 80027 Frattamaggiore (NA), Italy
| | - Franco Nolè
- Division of Urogenital & Head & Neck Cancer, European Institute of Oncology, 20141 Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, 20141 Milan, Italy
| | - Elena Collovà
- Oncology Unit, AO Ospedale Civile di Legnano, Legnano, 20025 Legnano (MI), Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Azienda per l'Assistenza Sanitaria No. 5 - Friuli Occidentale, Presidio Ospedaliero di Pordenone, 33170 Pordenone, Italy
| | - Manlio Mencoboni
- Oncology Unit, Villa Scassi Hospital, ASL3-Genovese, 16149 Genoa, Italy
| | - Paola Papaldo
- Department of Medical Oncology, Istituto Nazionale Tumori Regina Elena, 00144 Rome, Italy
| | - Felice Pasini
- Department of Medical Oncology, Rovigo Hospital, ULSS18, 45100 Rovigo, Italy
| | - Silvana Saracchini
- Department of Medical Oncology, Azienda per l'Assistenza Sanitaria No. 5 - Friuli Occidentale, Presidio Ospedaliero di Pordenone, 33170 Pordenone, Italy
| | - Guido Bocci
- Department of Clinical & Experimental Medicine, Division of Pharmacology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
86
|
Doloff JC, Waxman DJ. Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts. BMC Cancer 2015; 15:375. [PMID: 25952672 PMCID: PMC4523019 DOI: 10.1186/s12885-015-1358-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. Methods Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. Results Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. Conclusions Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA-induced, immune-based regression. These factors may include useful biomarkers that facilitate discovery of clinically effective immunogenic metronomic drugs and treatment schedules, and the selection of patients most likely to be responsive to immunogenic drug scheduling. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Doloff
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| |
Collapse
|