51
|
Oggero S, Austin-Williams S, Norling LV. The Contrasting Role of Extracellular Vesicles in Vascular Inflammation and Tissue Repair. Front Pharmacol 2019; 10:1479. [PMID: 31920664 PMCID: PMC6928593 DOI: 10.3389/fphar.2019.01479] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are a heterogeneous family of vesicles, generated from different subcellular compartments and released into the extracellular space. Composed of a lipid bilayer encompassing both soluble cytosolic material and nuclear components, these organelles have been recently described as novel regulators of intercellular communication between adjacent and remote cells. Due to their diversified composition and biological content, they portray specific signatures of cellular activation and pathological processes, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Circulating vesicles, especially those released from platelets, leukocytes, and endothelial cells are found to play a critical role in activating several fundamental cells within the vasculature, including endothelial cells and vascular smooth muscle cells. Their intrinsic activity and immunomodulatory properties lends them to not only promote vascular inflammation, but also enhance tissue regeneration, vascular repair, and indeed resolution. In this review we aim to recapitulate the recent findings concerning the roles played by EVs that originate from different circulating cells, with particular reference to their action on the endothelium. We focus herein, on the interaction of platelet and leukocyte EVs with the endothelium. In addition, their potential biological function in promoting tissue resolution and vascular repair will also be discussed.
Collapse
Affiliation(s)
- Silvia Oggero
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Shani Austin-Williams
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Lucy Victoria Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation Queen Mary University of London, London, United Kingdom
| |
Collapse
|
52
|
Losi P, Barsotti MC, Foffa I, Buscemi M, De Almeida CV, Fabbri M, Gabbriellini S, Nocchi F, Ursino S, Urciuoli P, Mazzoni A, Soldani G. In vitro human cord blood platelet lysate characterisation with potential application in wound healing. Int Wound J 2019; 17:65-72. [PMID: 31665826 DOI: 10.1111/iwj.13233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/19/2023] Open
Abstract
Platelets contain abundant growth factors and cytokines that have a positive influence on the migration and proliferation of different cell types by modulating its physiopathological processes. As it is known that human umbilical cord blood platelet lysate (UCB-PL) contains a supraphysiological concentration of growth factors, in the present study, we investigated its effectiveness in wound-healing processes. Human UCB-PL was obtained by the freeze/thaw of platelet concentrate (1.1 × 109 platelets/L), and its effect was evaluated on human or mouse endothelial cells, monocytes, fibroblasts, and keratinocytes in different concentrations. Human UCB-PL was observed to have high levels of pro-angiogenic growth factor than peripheral blood platelet-rich plasma. Among the cell lines, different concentrations of human UCB-PL were necessary to influence their viability and proliferation. For L929 cells, 5% of total volume was necessary, while for human umbilical vein endothelial cell, it was 10%. Cell migration on monocytes was increased with respect to the positive control, and scratch closure on keratinocytes was increased with respect to serum-free medium with only 10% of human UCB-PL. We concluded that the human UCB-PL may be useful to produce a large amount of standard platelet concentrates sufficient for several clinical-scale expansions avoiding inter-individual variability, which can also be used as a functional tool for clinical regenerative application for wound healing.
Collapse
Affiliation(s)
- Paola Losi
- Laboratorio di Medicina Rigenerativa, Biomateriali e terapie avanzate, Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Maria C Barsotti
- Laboratorio di Medicina Rigenerativa, Biomateriali e terapie avanzate, Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Ilenia Foffa
- Laboratorio di Medicina Rigenerativa, Biomateriali e terapie avanzate, Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Marianna Buscemi
- Laboratorio di Medicina Rigenerativa, Biomateriali e terapie avanzate, Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Carolina V De Almeida
- Laboratorio di Medicina Rigenerativa, Biomateriali e terapie avanzate, Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Marco Fabbri
- Laboratorio di Immunogenetica, Medicina Trasfusionale e Biologia dei Trapianti, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Sabrina Gabbriellini
- Laboratorio di Immunogenetica, Medicina Trasfusionale e Biologia dei Trapianti, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Francesca Nocchi
- Laboratorio di Immunogenetica, Medicina Trasfusionale e Biologia dei Trapianti, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Silvia Ursino
- Laboratorio di Immunogenetica, Medicina Trasfusionale e Biologia dei Trapianti, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Patrizia Urciuoli
- Laboratorio di Immunogenetica, Medicina Trasfusionale e Biologia dei Trapianti, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Alessandro Mazzoni
- Medicina Trasfusionale e Biologia dei Trapianti, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Giorgio Soldani
- Laboratorio di Medicina Rigenerativa, Biomateriali e terapie avanzate, Institute of Clinical Physiology, National Research Council, Massa, Italy
| |
Collapse
|
53
|
Feng C, Chen Q, Fan M, Guo J, Liu Y, Ji T, Zhu J, Zhao X. Platelet-derived microparticles promote phagocytosis of oxidized low-density lipoprotein by macrophages, potentially enhancing foam cell formation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:477. [PMID: 31700913 DOI: 10.21037/atm.2019.08.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The interaction between platelets and macrophages plays an important role in the development and progression of atherosclerosis (AS). This study aimed to investigate the role of platelet microparticles (PMPs) in the development of foam cells. Methods PMPs are generated by activating platelets with thrombin and separated by ultracentrifugation. The macrophages were treated with PMPs, the phagocytosis of oxidized low-density lipoprotein (Ox-LDL) and formation of foam cells were evaluated by flow cytometry and confocal microscopy, respectively, and the inflammatory factors cytokines in the supernatant were detected by ELISA. Results PMPs significantly increase the phagocytosis of Ox-LDL and elevated foam cell formation of macrophages. IL-1β content in the supernatant of macrophages peaked around 2-4 h and declined to normal level after 6-8 h; IL-6 content peaked at 4 h and then decreased to normal level. TNF-α content peaked at 2-4 h. Conclusions The microparticles from activated platelets can increase the phagocytosis of Ox-LDL and the production of inflammatory cytokines by macrophages, which is related to the development of AS.
Collapse
Affiliation(s)
- Can Feng
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qi Chen
- Department of Cardiology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Min Fan
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jun Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yu Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Tao Ji
- Department of Neurosurgery, Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Jiaqi Zhu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
54
|
Gentile P, Garcovich S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019; 8:cells8050466. [PMID: 31100937 PMCID: PMC6562814 DOI: 10.3390/cells8050466] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation).
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
55
|
Gentile P, Scioli MG, Bielli A, De Angelis B, De Sio C, De Fazio D, Ceccarelli G, Trivisonno A, Orlandi A, Cervelli V, Garcovich S. Platelet-Rich Plasma and Micrografts Enriched with Autologous Human Follicle Mesenchymal Stem Cells Improve Hair Re-Growth in Androgenetic Alopecia. Biomolecular Pathway Analysis and Clinical Evaluation. Biomedicines 2019; 7:biomedicines7020027. [PMID: 30965624 PMCID: PMC6631937 DOI: 10.3390/biomedicines7020027] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Platelet rich plasma (PRP) and Micrografts containing human follicle mesenchymal stem cells (HF-MSCs) were tried as a potential treatment for androgenetic alopecia (AGA). However, little to no work has yet to be seen wherein the bio-molecular pathway of HF-MSCs or PRP treatments were analyzed. The aims of this work are to report the clinical effectiveness of HF-MSCs and platelet-rich plasma evaluating and reviewing the most updated information related to the bio-molecular pathway. Twenty-one patients were treated with HF-MSCs injections and 57 patients were treated with A-PRP. The Wnt pathway and Platelet derived-growth factors effects were analyzed. 23 weeks after the last treatment with mean hair thickness increments (29 ± 5.0%) over baseline values for the targeted area. 12 weeks after the last injection with A-PRP mean hair count and hair density (31 ± 2%) increases significantly over baseline values. The increment of Wnt signaling in Dermal Papilla Cells evidently is one of the principal factors that enhances hair growth. Signaling from mesenchymal stem cells and platelet derived growth factors positively influences hair growth through cellular proliferation to prolong the anagen phase (FGF-7), inducing cell growth (ERK activation), stimulating hair follicle development (β-catenin), and suppressing apoptotic cues (Bcl-2 release and Akt activation).
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Sciences, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | - Maria G Scioli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | - Alessandra Bielli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | - Barbara De Angelis
- Department of Surgical Sciences, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | | | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy.
- Center for Health Technologies, University of Pavia, 27100 Pavia, Italy.
| | | | - Augusto Orlandi
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | - Valerio Cervelli
- Department of Surgical Sciences, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
56
|
Somasundaram SG, Muresanu C, Schield P, Makhmutovа A, Bovina EV, Fisenko VP, Hasanov NF, Aliev G. A Novel Non-invasive Effective Method for Potential Treatment of Degenerative Disc Disease: A Hypothesis. Cent Nerv Syst Agents Med Chem 2019; 19:8-14. [PMID: 30332977 DOI: 10.2174/1871524918666181017152053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
The pathophysiology of the intervertebral discs plays a significant role in the people's life quality. There is not adequate research done in the pathogenesis and treatment of intervertebral disc degeneration. Alternately, self-educated physiology offers a novel and noninvasive method to reverse the degenerated discs. In this single case study, report attempts have been made to highlight the effect of the self-educative physiology, on magnetic resonance imaging investigations, of progressive healing, on the degenerated intervertebral discs. Based on this novel method, an effort has been made to review literature on the degeneration of intervertebral discs and available mode of treatments and then to propose a hypothesis for the biochemical mechanisms of healing. The idea is that transforming growth factor-β1 from seminal plasma secretions may contribute to releasing the osteogenic protein- 1 which induces nucleus pulposus and annulus fibrosus cells in intervertebral discs for repairs. In addition, the patient's medical history is presented with background information.
Collapse
Affiliation(s)
- Siva G Somasundaram
- Departments of Biology & Health Education, Salem University, 223 West Main Street, Salem, WV 26426, United States
- NAFA LLC, 64 Carolina Ave, Salem, WV 26426, United States
| | - Cristian Muresanu
- Romanian Television, TVR Cluj, 160 Donath Street, Cluj-Napoca, CJ 400293, Romania
| | - Pamela Schield
- School of Education & Athletics, Salem University, Salem, WV 26426, United States
| | - Alfiya Makhmutovа
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Elena V Bovina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, Bld. 2, Moscow, 119991, Russian Federation
| | - Nusrat F Hasanov
- Neurology Division, Central Sharur District Hospital, Nakhichevan Autonomous Republic, Azerbaijan
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, Bld. 2, Moscow, 119991, Russian Federation
- "GALLY" International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, United States
- School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA 30097, United States
| |
Collapse
|
57
|
Park HJ, Kim JW. Role of Hydrogen Sulfide in the Survival of Fibroblasts and Fibroblast-mediated Contraction of Collagen Gel. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2019. [DOI: 10.3341/jkos.2019.60.10.975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hyeon Jin Park
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
58
|
Alser OH, Goutos I. The evidence behind the use of platelet-rich plasma (PRP) in scar management: a literature review. Scars Burn Heal 2018. [PMID: 30479843 DOI: 10.1177/2059513118808773]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Autologous platelet-based concentrates represent increasingly popular adjuncts to a variety of medical, surgical and aesthetic interventions. Their beneficial potential rests on the ability to deliver a high concentration of growth factors to the target tissues. There are currently no reports in the literature appraising the evidence behind the use of platelet-rich plasma (PRP) in scar management. Methods A detailed English literature review was conducted using PubMed Medline, Embase and Web of Science; the manuscripts were appraised and classified according to the Joanna Briggs Institute Levels of evidence. The results are presented in descending order of evidence separately for atrophic, keloid, surgical and traumatic scars. Discussion On the basis of level 1 evidence currently available, it appears that PRP can improve the quality of atrophic acne scars treated with ablative fractional CO2 laser and decrease the duration of laser-related side effects including oedema and erythema. Regarding surgical scars, the current data suggest that PRP may improve wound healing and early scar quality; furthermore, incorporation of PRP in fat-grafting procedures undertaken in conjunction with non-ablative, fractional laser can contribute to better wound healing as well as a significant improvement in texture, colour and contour in traumatic scar resurfacing. There are no high level studies at present to support the incorporation of autologous platelet-based concentrates in the management of keloid scars. Conclusion PRP is a promising adjunct in scar management practice. Further research with long-term follow-up is warranted to delineate the value of this modality in different subtypes of scars.
Collapse
Affiliation(s)
- Osaid H Alser
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Ioannis Goutos
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
59
|
Jones IA, Togashi R, Hatch GFR, Weber AE, Vangsness CT. Anabolic steroids and tendons: A review of their mechanical, structural, and biologic effects. J Orthop Res 2018; 36:2830-2841. [PMID: 30047601 DOI: 10.1002/jor.24116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023]
Abstract
One of the suspected deleterious effects of androgenic-anabolic steroids (AAS) is the increased risk for tendon rupture. However, investigations to date have produced inconsistent results and it is still unclear how AAS influence tendons. A systematic review of the literature was conducted to identify studies that have investigated the mechanical, structural, or biologic effects that AAS have on tendons. In total, 18 highly heterogeneous studies were identified. Small animal studies made up the vast majority of published research, and contradictory results were reported frequently. All of the included studies focused on the potential deleterious effects that AAS have on tendon, which is striking given the recent use of AAS in patients following tendon injury. Rather than providing strong evidence for or against the use of AAS, this review highlights the need for additional research. Future studies investigating the use of AAS as a possible treatment for tendon injury/pathology are supported by reports suggesting that AAS may counteract the irreparable structural/functional changes that occur in the musculotendinous unit following rotator cuff tears, as well as studies suggesting that the purported deleterious effects on tendon may be transient. Other possible areas for future research are discussed in the context of key findings that may have implications for the therapeutic application of AAS. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2830-2841, 2018.
Collapse
Affiliation(s)
- Ian A Jones
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - Ryan Togashi
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - George F Rick Hatch
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - Alexander E Weber
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - C Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| |
Collapse
|
60
|
Schneider M, Angele P, Järvinen TA, Docheva D. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv Drug Deliv Rev 2018; 129:352-375. [PMID: 29278683 DOI: 10.1016/j.addr.2017.12.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Due to the increasing age of our society and a rise in engagement of young people in extreme and/or competitive sports, both tendinopathies and tendon ruptures present a clinical and financial challenge. Tendon has limited natural healing capacity and often responds poorly to treatments, hence it requires prolonged rehabilitation in most cases. Till today, none of the therapeutic options has provided successful long-term solutions, meaning that repaired tendons do not recover their complete strength and functionality. Our understanding of tendon biology and healing increases only slowly and the development of new treatment options is insufficient. In this review, following discussion on tendon structure, healing and the clinical relevance of tendon injury, we aim to elucidate the role of stem cells in tendon healing and discuss new possibilities to enhance stem cell treatment of injured tendon. To date, studies mainly apply stem cells, often in combination with scaffolds or growth factors, to surgically created tendon defects. Deeper understanding of how stem cells and vasculature in the healing tendon react to growth factors, common drugs used to treat injured tendons and promising cellular boosters could help to develop new and more efficient ways to manage tendon injuries.
Collapse
|
61
|
Evaluation of topical Dexmedetomidine administration in postlaminectomy epidural fibrosis rat model. Int J Surg 2018; 53:80-85. [PMID: 29555523 DOI: 10.1016/j.ijsu.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
Abstract
Epidural fibrosis is a challenging topic in spinal surgery. Numerous clinical and experimental studies have been focused on this issue to clarify problems faced in spinal procedures for the patient as well as the surgeon and find out new methodologies. Dense cytokines and growth factors which are released from inflammatory cells have been suggested to play a major role in the inception and progression of fibrosis. One of the most investigated and important actor in epidural fibrosis is assumed to be the transforming growth factor-1β (TGF-1β) formation. Studies showed that Dexmedetomidine (DEX) downregulates TGF-β pathway with its anti-inflammatory and antioxidant effects. From this point of view, for the first time in the literature we try to observe if there will be an effect of topical DEX administration over epidural fibrosis in a rat model. We hypothesized that DEX might have preventive effects on epidural fibrosis via anti-inflammatory and antioxidant effects. Twenty-four adult male Wistar albino rats were randomly assigned to three groups (Topical DEX, Spongostan, Laminectomy). A total laminectomy was performed at the L3-L5 level and then the ligamentum flavum and epidural fat tissue were cleared away from the surgical site. Histopathological assessment was performed postoperatively after 4 weeks. Our study revealed that topical DEX administration may have effects on reducing epidural fibrosis. Topical DEX administration may be helpful in preventing epidural fibrosis after laminectomy in rats through multiple anti-inflammatory and antioxidant mechanisms as well as through TGF -1β pathway.
Collapse
|
62
|
Walsh TG, Poole AW. Do platelets promote cardiac recovery after myocardial infarction: roles beyond occlusive ischemic damage. Am J Physiol Heart Circ Physiol 2018; 314:H1043-H1048. [PMID: 29547023 PMCID: PMC6008147 DOI: 10.1152/ajpheart.00134.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our understanding of platelet function has traditionally focused on their roles in physiological hemostasis and pathological thrombosis, with the latter being causative of vessel occlusion and subsequent ischemic damage to various tissues. In particular, numerous in vivo studies have implicated causative roles for platelets in the pathogenesis of ischemia-reperfusion (I/R) injury to the myocardium. However, platelets clearly have more complex pathophysiological roles, particularly as a result of the heterogeneous nature of biologically active cargo secreted from their granules or contained within released microparticles or exosomes. While some of these released mediators amplify platelet activation and thrombosis through autocrine or paracrine amplification pathways, they can also regulate diverse cellular functions within the localized microenvironment and recruit progenitor cells to the damage site to facilitate repair processes. Notably, there is evidence to support cardioprotective roles for platelet mediators during I/R injury. As such, it is becoming more widely appreciated that platelets fulfill a host of physiological and pathological roles beyond our basic understanding. Therefore, the purpose of this perspective is to consider whether platelets, through their released mediators, can assume a paradoxically beneficial role to promote cardiac recovery after I/R injury.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
63
|
Adler M, Mayo A, Zhou X, Franklin RA, Jacox JB, Medzhitov R, Alon U. Endocytosis as a stabilizing mechanism for tissue homeostasis. Proc Natl Acad Sci U S A 2018; 115:E1926-E1935. [PMID: 29429964 PMCID: PMC5828590 DOI: 10.1073/pnas.1714377115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells in tissues communicate by secreted growth factors (GF) and other signals. An important function of cell circuits is tissue homeostasis: maintaining proper balance between the amounts of different cell types. Homeostasis requires negative feedback on the GFs, to avoid a runaway situation in which cells stimulate each other and grow without control. Feedback can be obtained in at least two ways: endocytosis in which a cell removes its cognate GF by internalization and cross-inhibition in which a GF down-regulates the production of another GF. Here we ask whether there are design principles for cell circuits to achieve tissue homeostasis. We develop an analytically solvable framework for circuits with multiple cell types and find that feedback by endocytosis is far more robust to parameter variation and has faster responses than cross-inhibition. Endocytosis, which is found ubiquitously across tissues, can even provide homeostasis to three and four communicating cell types. These design principles form a conceptual basis for how tissues maintain a healthy balance of cell types and how balance may be disrupted in diseases such as degeneration and fibrosis.
Collapse
Affiliation(s)
- Miri Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Xu Zhou
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruth A Franklin
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Jeremy B Jacox
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510;
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
64
|
Alser OH, Goutos I. The evidence behind the use of platelet-rich plasma (PRP) in scar management: a literature review. Scars Burn Heal 2018; 4:2059513118808773. [PMID: 30479843 PMCID: PMC6243404 DOI: 10.1177/2059513118808773] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Autologous platelet-based concentrates represent increasingly popular adjuncts to a variety of medical, surgical and aesthetic interventions. Their beneficial potential rests on the ability to deliver a high concentration of growth factors to the target tissues. There are currently no reports in the literature appraising the evidence behind the use of platelet-rich plasma (PRP) in scar management. METHODS A detailed English literature review was conducted using PubMed Medline, Embase and Web of Science; the manuscripts were appraised and classified according to the Joanna Briggs Institute Levels of evidence. The results are presented in descending order of evidence separately for atrophic, keloid, surgical and traumatic scars. DISCUSSION On the basis of level 1 evidence currently available, it appears that PRP can improve the quality of atrophic acne scars treated with ablative fractional CO2 laser and decrease the duration of laser-related side effects including oedema and erythema. Regarding surgical scars, the current data suggest that PRP may improve wound healing and early scar quality; furthermore, incorporation of PRP in fat-grafting procedures undertaken in conjunction with non-ablative, fractional laser can contribute to better wound healing as well as a significant improvement in texture, colour and contour in traumatic scar resurfacing. There are no high level studies at present to support the incorporation of autologous platelet-based concentrates in the management of keloid scars. CONCLUSION PRP is a promising adjunct in scar management practice. Further research with long-term follow-up is warranted to delineate the value of this modality in different subtypes of scars.
Collapse
Affiliation(s)
- Osaid H Alser
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Ioannis Goutos
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
65
|
Cole JP, Cole MA, Insalaco C, Cervelli V, Gentile P. Alopecia and platelet-derived therapies. Stem Cell Investig 2017; 4:88. [PMID: 29270414 DOI: 10.21037/sci.2017.11.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Background Platelet rich plasma (PRP) injections have emerged as a promising regenerative therapy for androgenetic alopecia (AGA). To date, injections of both autologous native and activated PRP have been administered to hair loss patients, and positive results have been observed. However, little to no work has yet to be seen wherein PRP treatments are combined with hair restoration surgeries. Furthermore, the PRP activation protocol in the hair restoration setting employs compounds with potentially deleterious side effects, namely thrombin or calcium gluconate. Therefore, the objectives of this work are to evaluate the effectiveness of platelet and platelet-derived products as augmented graft therapies in hair restoration surgeries and to compare the follicular regeneration rate of follicles transplanted in the presence of platelet lysate (PL) versus activated PRP (AA-PRP). Methods PL was administered to the frontal scalp of three male AGA patients. Three treatment zones measuring 4 cm-2 were mapped in the midline scalp region of each patient and equal number of follicular grafts were placed in each box along with PL, AA-PRP, or normal saline. The transplanted follicular grafts of a fourth patient were placed solely with PL. Hair checks in which the surface area of hair coverage was quantified were performed at follow-up appointments ranging from 3.5 to 7 months post-surgery. In these appointments, the number of follicular units with hairs measuring 50 mm or more were counted to determine the percentage of graft hair regeneration. Growth factor (GF) concentrations [vascular endothelial growth factor (VEGF), transforming growth factor beta 1 (TGF-β1), PDGF-BB, IGF-1] in PL and AA-PRP were also measured for an independent subject set. Results Follicular regeneration in transplanted grafts was found to be superior for those placed with PL rather than AA-PRP or saline at all follow-up dates. Specifically, at 3.5 months post-op, 89%±9%, 74%±7%, and 57%±10% of follicular units had regenerated hair in the PL, AA-PRP, and saline treatment zones, respectively. At 4 months post-op, 99%, 75%, and 71% of follicle regeneration had occurred in the PL, AA-PRP, and saline treatment areas, respectively. Impressively, when PL was injected alone, the patient experienced a 50% increase in follicular unit density and a 122% increase in hair density 7 months post-injection. When GF concentrations were measured, PL generated from a 30-min sonication of PRP was found to have significantly higher levels of VEGF, PDGF-BB, and TGF-β1 than AA-PRP. Conclusions PRP remains a promising hair loss therapy and should be evaluated further for use not only as an independent therapeutic tool, but also as a treatment to augment surgical procedures. PL in particular affords an effective and efficacious therapeutic product given that the lysate may be obtained by mechanical rather than chemical means. Ultrasonic waves provide sufficient energy to rupture platelet cell walls, and centrifugation may be used to separate the lysate from cell fragments prior to delivery.
Collapse
Affiliation(s)
- John P Cole
- Cole Hair Transplant Group, Alpharetta, Georgia, USA
| | - Megan A Cole
- Cole Hair Transplant Group, Alpharetta, Georgia, USA
| | - Chiara Insalaco
- Plastic and Reconstructive Surgery Department, University of Rome Tor Vergata, Rome, Italy.,Institute of Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery Department, University of Rome Tor Vergata, Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery Department, University of Rome Tor Vergata, Rome, Italy.,Plastic and Reconstructive Surgery Department, Catholic University, Tiranna, Albania
| |
Collapse
|
66
|
Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 2017; 60:44-65. [PMID: 28807717 PMCID: PMC5600870 DOI: 10.1016/j.preteyeres.2017.08.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Wound healing is one of the most complex biological processes to occur in life. Repair of tissue following injury involves dynamic interactions between multiple cell types, growth factors, inflammatory mediators and components of the extracellular matrix (ECM). Aberrant and uncontrolled wound healing leads to a non-functional mass of fibrotic tissue. In the eye, fibrotic disease disrupts the normally transparent ocular tissues resulting in irreversible loss of vision. A common feature in fibrotic eye disease is the transdifferentiation of cells into myofibroblasts that can occur through a process known as epithelial-mesenchymal transition (EMT). Myofibroblasts rapidly produce excessive amounts of ECM and exert tractional forces across the ECM, resulting in the distortion of tissue architecture. Transforming growth factor-beta (TGFβ) plays a major role in myofibroblast transdifferentiation and has been implicated in numerous fibrotic eye diseases including corneal opacification, pterygium, anterior subcapsular cataract, posterior capsular opacification, proliferative vitreoretinopathy, fibrovascular membrane formation associated with proliferative diabetic retinopathy, submacular fibrosis, glaucoma and orbital fibrosis. This review serves to introduce the pathological functions of the myofibroblast in fibrotic eye disease. We also highlight recent developments in elucidating the multiple signaling pathways involved in fibrogenesis that may be exploited in the development of novel anti-fibrotic therapies to reduce ocular morbidity due to scarring.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
67
|
Kizilay Z, Kahraman Cetin N. Effect of Methyl Palmitate on the Formation of Epidural Fibrosis in an Experimental Epidural Fibrosis Model. J INVEST SURG 2017; 31:469-474. [DOI: 10.1080/08941939.2017.1356403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahir Kizilay
- Department of Neurosurgery, Adnan Menderes University Medicine Faculty, Aydin, Turkey
| | | |
Collapse
|
68
|
Choi JY, Sim JH, Yeo ISL. Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae. J Periodontal Implant Sci 2017; 47:182-192. [PMID: 28680714 PMCID: PMC5494313 DOI: 10.5051/jpis.2017.47.3.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022] Open
Abstract
Purpose Contact and distance osteogenesis occur around all endosseous dental implants. However, the mechanisms underlying these processes have not been fully elucidated. We hypothesized that these processes occur independently of each other. To test this, we used titanium (Ti) tubes to physically separate contact and distance osteogenesis, thus allowing contact osteogenesis to be measured in the absence of possible triggers from distance osteogenesis. Methods Sandblasted and acid-etched (SLA) and modified SLA (modSLA) implants were used. Both types had been sandblasted with large grit and then etched with acid. The modSLA implants then underwent additional treatment to increase hydrophilicity. The implants were implanted into rabbit tibiae, and half were implanted within Ti tubes. The bone-to-implant contact (BIC) ratio was calculated for each implant. Immunohistochemical analyses of bone morphogenetic protein (BMP)-2 expression and new bone formation (Masson trichrome stain) were performed. Results The implants outside of Ti tubes were associated with good bone formation along the implant surface. Implantation within a Ti tube significantly reduced the BIC ratio (P<0.001). Compared with the modSLA implants, the SLA implants were associated with significantly higher BIC ratios, regardless of the presence or absence of Ti tubes (P=0.043). In the absence of Ti tubes, the bone adjacent to the implant had areas of new bone formation that expressed BMP-2 at high levels. Conclusions This study disproved the null hypothesis and suggested that contact osteogenesis is initiated by signals from the old bone that undergoes distance osteogenesis after drilling. This signal may be BMP-2.
Collapse
Affiliation(s)
- Jung-Yoo Choi
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Jae-Hyuk Sim
- Department of Prosthodontics, Seoul National University School of Dentistry, Seoul, Korea
| | - In-Sung Luke Yeo
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea.,Department of Prosthodontics, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
69
|
Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost 2017; 117:1296-1316. [PMID: 28569921 DOI: 10.1160/th16-12-0943] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research.
Collapse
Affiliation(s)
| | - Chantal M Boulanger
- Victoria Ridger, PhD, Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK, E-mail: , or, Chantal M. Boulanger, PhD, INSERM UMR-S 970, Paris Cardiovascular Research Center - PARCC, 56 rue Leblanc, 75015 Paris, France, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of Extracellular Matrix Production by Adipose Tissue-Derived Stem Cells for Development of Wound Healing Therapies. Int J Mol Sci 2017; 18:ijms18061167. [PMID: 28561757 PMCID: PMC5485991 DOI: 10.3390/ijms18061167] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023] Open
Abstract
The synthesis and deposition of extracellular matrix (ECM) plays an important role in the healing of acute and chronic wounds. Consequently, the use of ECM as treatment for chronic wounds has been of special interest—both in terms of inducing ECM production by resident cells and applying ex vivo produced ECM. For these purposes, using adipose tissue-derived stem cells (ASCs) could be of use. ASCs are recognized to promote wound healing of otherwise chronic wounds, possibly through the reduction of inflammation, induction of angiogenesis, and promotion of fibroblast and keratinocyte growth. However, little is known regarding the importance of ASC-produced ECM for wound healing. In this review, we describe the importance of ECM for wound healing, and how ECM production by ASCs may be exploited in developing new therapies for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Kathrine Hyldig
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Simone Riis
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Trine Fink
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
71
|
Cancedda R, Bollini S, Descalzi F, Mastrogiacomo M, Tasso R. Learning from Mother Nature: Innovative Tools to Boost Endogenous Repair of Critical or Difficult-to-Heal Large Tissue Defects. Front Bioeng Biotechnol 2017; 5:28. [PMID: 28503549 PMCID: PMC5408079 DOI: 10.3389/fbioe.2017.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
For repair of chronic or difficult-to-heal tissue lesions and defects, major constraints exist to a broad application of cell therapy and tissue engineering approaches, i.e., transplantation of “ex vivo” expanded autologous stem/progenitor cells, alone or associated with carrier biomaterials. To enable a large number of patients to benefit, new strategies should be considered. One of the main goals of contemporary regenerative medicine is to develop new regenerative therapies, inspired from Mother Nature. In all injured tissues, when platelets are activated by tissue contact, their released factors promote innate immune cell migration to the wound site. Platelet-derived factors and factors secreted by migrating immune cells create an inflammatory microenvironment, in turn, causing the activation of angiogenesis and vasculogenesis processes. Eventually, repair or regeneration of the injured tissue occurs via paracrine signals activating, mobilizing or recruiting to the wound site cells with healing potential, such as stem cells, progenitors, or undifferentiated cells derived from the reprogramming of tissue differentiated cells. This review, largely based on our studies, discusses the identification of new tools, inspired by cellular and molecular mechanisms overseeing physiological tissue healing, that could reactivate dormant endogenous regeneration mechanisms lost during evolution and ontogenesis.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Biorigen Srl, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Sveva Bollini
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Roberta Tasso
- IRCCS AOU San Martino-IST National Institute of Cancer Research, Genova, Italy
| |
Collapse
|
72
|
Ayatollahi A, Hosseini H, Gholami J, Mirminachi B, Firooz F, Firooz A. Platelet rich plasma for treatment of non-scarring hair loss: systematic review of literature. J DERMATOL TREAT 2017; 28:574-581. [PMID: 28271918 DOI: 10.1080/09546634.2017.1303571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although there are many studies showing the role of platelet rich plasma (PRP) in bone grafts, teeth osteosynthesis, and wound healing, there have been little peer reviewed studies about the safety and efficacy of PRP application in the treatment of hair loss. MATERIALS AND METHODS In this systematic review, we searched Ovid Medline, Scopus and Web of Knowledge till November 2015 for human studies evaluating the efficacy of PRP for the treatment of non-cicatricial alopecia. RESULTS Among 704 articles retrieved in first search, 18 articles matched our inclusion criteria, 14 for androgenic alopecia and four for alopecia areata. They included two case reports, eight case series, six controlled clinical trials and only two randomized controlled trials. CONCLUSIONS Most of the available evidence has shown low quality and controversial results about the efficacy of PRP in treating non-cicatricial alopecias, including androgenetic alopecia and alopecia areata. Further randomized controlled studies with more sample size and standard protocols regarding the number and interval of treatment sessions, number of platelets, method of activation, etc., are required to investigate the efficacy and safety of PRP in treating hair loss.
Collapse
Affiliation(s)
- Azin Ayatollahi
- a Center for Research and Training in Skin diseases and Leprosy, Tehran University of Medical Science , Tehran , Iran
| | - Hamed Hosseini
- b Clinical Trial Center, Tehran University of Medical Science , Tehran , Iran
| | - Jaleh Gholami
- c Iranian National Center for Addiction Studies, Tehran University of Medical Science , Tehran , Iran
| | - Babak Mirminachi
- a Center for Research and Training in Skin diseases and Leprosy, Tehran University of Medical Science , Tehran , Iran
| | - FaridHossein Firooz
- a Center for Research and Training in Skin diseases and Leprosy, Tehran University of Medical Science , Tehran , Iran
| | - Alireza Firooz
- a Center for Research and Training in Skin diseases and Leprosy, Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
73
|
Pang C, Ibrahim A, Bulstrode NW, Ferretti P. An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J 2017; 14:450-459. [PMID: 28261962 DOI: 10.1111/iwj.12735] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
The global burden of disease associated with wounds is an increasingly significant public health concern. Current treatments are often expensive, time-consuming and limited in their efficacy in chronic wounds. The challenge of overcoming current barriers associated with wound care requires innovative management techniques. Regenerative medicine is an emerging field of research that focuses on the repair, replacement or regeneration of cells, tissues or organs to restore impaired function. This article provides an overview of the pathophysiology of wound healing and reviews the latest evidence on the application of the principal components of regenerative medicine (growth factors, stem cell transplantation, biomaterials and tissue engineering) as therapeutic targets. Improved knowledge and understanding of the pathophysiology of wound healing has pointed to new therapeutic targets. Regenerative medicine has the potential to underpin the design of specific target therapies in acute and chronic wound healing. This personalised approach could eventually reduce the burden of disease associated with wound healing. Further evidence is required in the form of large animal studies and clinical trials to assess long-term efficacy and safety of these new treatments.
Collapse
Affiliation(s)
- Calver Pang
- Department of Surgery Surgical Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amel Ibrahim
- Stem Cells and Regenerative Medicine Section, UCL GOS Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital for Children, London, UK
| | - Neil W Bulstrode
- Stem Cells and Regenerative Medicine Section, UCL GOS Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital for Children, London, UK
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL GOS Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
74
|
Gentile P, Cole JP, Cole MA, Garcovich S, Bielli A, Scioli MG, Orlandi A, Insalaco C, Cervelli V. Evaluation of Not-Activated and Activated PRP in Hair Loss Treatment: Role of Growth Factor and Cytokine Concentrations Obtained by Different Collection Systems. Int J Mol Sci 2017; 18:ijms18020408. [PMID: 28216604 PMCID: PMC5343942 DOI: 10.3390/ijms18020408] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Platelet rich plasma (PRP) was tested as a potential therapy for androgenetic alopecia (AGA) through two different clinical protocols in which one population (18 participants) received half-head treatment with autologous non-activated PRP (A-PRP) produced by CPunT Preparation System (Biomed Device, Modena, Italy) and the other half-head with placebo, and a second separated population in which all participants (n = 6, 3 participants per group) received treatment with calcium-activated PRP (AA-PRP) produced from one of two different PRP collection devices (Regen Blood Cell Therapy or Arthrex Angel System). For the A-PRP study, three treatments were administered over 30-day intervals. Trichoscan analysis of patients, three months post-treatment, showed a clinical improvement in the number of hairs in the target area (36 ± 3 hairs) and in total hair density (65 ± 5 hair cm2), whereas negligible improvements in hair count (1.1 ± 1.4 hairs) and density (1.9 ± 10.2 hair cm2) were seen in the region of the scalp that received placebo. Microscopic evaluation conducted two weeks after treatment showed also an increase in epidermal thickness, Ki67+ keratinocytes, and in the number of follicles. The AA-PRP treatment groups received a singular set of injections, and six months after the treatments were administered, notable differences in clinical outcomes were obtained from the two PRP collection devices (+90 ± 6 hair cm2 versus −73 ± 30 hair cm2 hair densities, Regen versus Arthrex). Growth factor concentrations in AA-PRP prepared from the two collection devices did not differ significantly upon calcium activation.
Collapse
Affiliation(s)
- Pietro Gentile
- Plastic and Reconstructive Surgery Department, University of Rome Tor Vergata, Via Courmayeur, No. 102, 00135 Rome, Italy.
- Plastic and Reconstructive Surgery Department, Catholic University, 1005 Tiranna, Albania.
| | - John P Cole
- Cole Hair Transplant Group, Alpharetta, 30004 GA, USA.
| | - Megan A Cole
- Cole Hair Transplant Group, Alpharetta, 30004 GA, USA.
| | - Simone Garcovich
- Institute of Dermatology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Alessandra Bielli
- Institute of Anatomic Pathology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | - Augusto Orlandi
- Institute of Anatomic Pathology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Chiara Insalaco
- Plastic and Reconstructive Surgery Department, University of Rome Tor Vergata, Via Courmayeur, No. 102, 00135 Rome, Italy.
- Cole Hair Transplant Group, Alpharetta, 30004 GA, USA.
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery Department, University of Rome Tor Vergata, Via Courmayeur, No. 102, 00135 Rome, Italy.
| |
Collapse
|
75
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
76
|
Brochhausen C, Schmitt VH, Mamilos A, Schmitt C, Planck CNE, Rajab TK, Hierlemann H, Kirkpatrick CJ. Expression of CD68 positive macrophages in the use of different barrier materials to prevent peritoneal adhesions-an animal study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:15. [PMID: 27995493 PMCID: PMC5167770 DOI: 10.1007/s10856-016-5821-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
In preventing postoperative adhesion formation the optimal barrier material has still not been found. It is therefore imperative to assess the biocompatibility of potential barrier devices. Macrophages play a decisive role in the regulation of wound healing, tissue regeneration and foreign body reaction. Since the number of CD68-positive macrophages represents an important parameter within biomaterial testing, in the present study it was analysed whether a correlation exists between the total number of CD68-positive macrophages and the extent of fibrosis or inflammation in peritoneal adhesion prevention using biomaterials. After standardized peritoneal wounding, Wistar rats were treated with five adhesion barriers or remained untreated as a control. After 14 days, animals were sacrificed and the treated areas were evaluated histomorphologically and immunohistologically. A heterogeneous pattern of macrophage count in relation to fibrosis or inflammation was found. While some groups described a moderate macrophage infiltration without fibrosis, others showed similar numbers of macrophages, but accompanied by moderate fibrosis. Moreover, a minimal number of macrophages was associated with minimal fibrosis. Mild inflammation was seen both with minimal and moderate macrophage infiltration. Altogether, no correlation could be established between the tissue response and the count of CD68-positive macrophages. With a view to macrophage heterogeneity further studies are required to determine the different macrophage subpopulations and clarify the role of these in the tissue responses to barrier materials.
Collapse
Affiliation(s)
| | - Volker H Schmitt
- Cardiology I, Centre for Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Andreas Mamilos
- REPAIR-lab, Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), Mainz, Germany
| | - Constanze N E Planck
- Department of Gynaecology and Obstetrics, University of Tuebingen, Tuebingen, Germany
- German Centre of Biomaterials and Artificial Organs e.V. Denkendorf, Denkendorf, Germany
| | - Taufiek K Rajab
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Helmut Hierlemann
- German Centre of Biomaterials and Artificial Organs e.V. Denkendorf, Denkendorf, Germany
- Institute of Textile Technology and Process Engineering, Denkendorf, Germany
| | - C James Kirkpatrick
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
77
|
|
78
|
Sadati KS, Corrado AC, Alexander RW. Platelet-Rich Plasma (PRP) Utilized to Promote Greater Graft Volume Retention in Autologous Fat Grafting. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/074880680602300407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Autologous fat theoretically provides one of the most ideal mediums for soft-tissue augmentation and reconstruction, although its clinical applications have been marked with skepticism because of its documented unreliable survival. Over the years, numerous unsuccessful efforts have set forth to elucidate modifications in the application process of autologous fat grafts to allow the medium greater clinical predictability. This study aims to investigate the effects of platelet-rich plasma (PRP) on autologous fat grafts when used in conjunction with each other in soft tissue augmentation and reconstruction. Study Design: Retrospective review, over a 30-month period, of consecutive patients with results greater than 6 months in duration. Methods: This study is based on clinical experiences representing 2033 grafts in 448 consecutive patients using PRP additives and in the previous 132 patients who had syringe harvest without use of PRP. All PRP isolates were harvested via the Smart Prep system. Harvest and augmentation techniques are discussed and representative results are presented. Results: Results were based on clinical observations and patient satisfaction. Of the 580 patients in the experimental group, essentially all showed greater graft volume retention over extended time intervals compared with control subjects (nongraft areas). Patients in the PRP-added experimental group displayed less postoperative ecchymosis and edema, which also led to greater patient satisfaction in this group. Conclusion: Adding PRP to autologous fat aids in graft volume retention and survival when used clinically for soft-tissue augmentation and reconstruction.
Collapse
|
79
|
Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Ther 2016; 24:31-39. [PMID: 27824330 PMCID: PMC5269540 DOI: 10.1038/gt.2016.73] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/13/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
Recombinant human platelet-derived growth factor-BB (rhPDGF-BB) promotes soft tissue and bone healing, and is Food and Drug Administration-approved for treatment of diabetic ulcers and periodontal defects. The short half-life of topical rhPDGF-BB protein application necessitates bolus, high-dose delivery. Gene therapy enables sustained local growth factor production. A novel gene activated matrix delivering polyplexes of polyethylenimine (PEI)-plasmid DNA encoding PDGF was evaluated for promotion of periodontal wound repair in vivo. PEI-pPDGF-B polyplexes were tested in human periodontal ligament fibroblasts and human gingival fibroblasts for cell viability and transfection efficiency. Collagen scaffolds containing PEI-pPDGF-B polyplexes at two doses, rhPDGF-BB, PEI vector or collagen alone were randomly delivered to experimentally induced tooth-supporting periodontal defects in a rodent model. Mandibulae were collected at 21 days for histologic observation and histomorphometry. PEI-pPDGF-B polyplexes were biocompatible to cells tested and enzyme-linked immunosorbent assay confirmed the functionality of transfection. Significantly greater osteogenesis was observed for collagen alone and rhPDGF-BB versus the PEI-containing groups. Defects treated with sustained PDGF gene delivery demonstrated delayed healing coupled with sustained inflammatory cell infiltrates lateral to the osseous defects. Continuous PDGF-BB production by nonviral gene therapy could have delayed bone healing. This nonviral gene delivery system in this model appeared to prolong inflammatory response, slowing alveolar bone regeneration in vivo.
Collapse
|
80
|
Younesi M, Donmez BO, Islam A, Akkus O. Heparinized collagen sutures for sustained delivery of PDGF-BB: Delivery profile and effects on tendon-derived cells In-Vitro. Acta Biomater 2016; 41:100-9. [PMID: 27240725 DOI: 10.1016/j.actbio.2016.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/30/2023]
Abstract
UNLABELLED Suturing is the standard of repair for lacerated flexor tendons. Past studies focused on delivering growth factors to the repair site by incorporating growth factors to nylon sutures which are commonly used in the repair procedure. However, conjugation of growth factors to nylon or other synthetic sutures is not straightforward. Collagen holds promise as a suture material by way of providing chemical sites for conjugation of growth factors. On the other hand, collagen also needs to be reconstituted as a mechanically robust thread that can be sutured. In this study, we reconstituted collagen solutions as suturable collagen threads by using linear electrochemical compaction. Prolonged release of PDGF-BB (Platelet derived growth factor-BB) was achieved by covalent bonding of heparin to the collagen sutures. Tensile mechanical tests of collagen sutures before and after chemical modification indicated that the strength of sutures following chemical conjugation stages was not compromised. Strength of lacerated tendons sutured with epitendinous collagen sutures (11.2±0.7N) converged to that of the standard nylon suture (14.9±2.9N). Heparin conjugation of collagen sutures didn't affect viability and proliferation of tendon-derived cells and prolonged the PDGF-BB release up to 15days. Proliferation of cells seeded on PDGF-BB incorporated collagen sutures was about 50% greater than those seeded on plain collagen sutures. Collagen that is released to the media by the cells increased by 120% under the effects of PDGF-BB and collagen production by cells was detectable by histology as of day 21. Addition of PDGF-BB to collagen sutures resulted in a moderate decline in the expression of the tendon-associated markers scleraxis, collagen I, tenomodulin, and COMP; however, expression levels were still greater than the cells seeded on collagen gel. The data indicate that the effects of PDGF-BB on tendon-derived cells mainly occur through increased cell proliferation and that longer term studies are needed to confirm whether this proliferation is outweighs the moderate reduction in the expression of tendon-associated genes. STATEMENT OF SIGNIFICANCE A mechanically robust pure collagen suture was fabricated via linear electrocompaction and conjugated with heparin for prolonged delivery of PDFG-BB. Sustained delivery of the PDGF-BB improved the proliferation of tendon derived cells substantially at the expense of a moderate downregulation of tenogenic markers. The collagen threads were functionally applicable as epitendinous sutures when applied to chicken flexor tendons in vitro. Overall, electrocompacted collagen sutures holds potential to improve repair outcome in flexor tendon surgeries by improving cellularity and collagen production through delivery of the PDGF-BB. The bioinductive suture concept can be applied to deliver other growth factors for a wide-array of applications.
Collapse
Affiliation(s)
- Mousa Younesi
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Baris Ozgur Donmez
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Anowarul Islam
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
81
|
Oflazoglu U, Varol U, Alacacioglu A, Salman T, Demir N, Semiz HS, Karaoglu A, Oztop I. Case report of a renal cell carcinoma patient with acute pancreatitis under both sunitinib and axitinib treatment. JOURNAL OF ONCOLOGICAL SCIENCES 2016. [DOI: 10.1016/j.jons.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
82
|
Gupta AK, Carviel JL. Meta-analysis of efficacy of platelet-rich plasma therapy for androgenetic alopecia. J DERMATOL TREAT 2016; 28:55-58. [DOI: 10.1080/09546634.2016.1179712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. K. Gupta
- Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada
- Mediprobe Research Inc, London, Ontario, Canada
| | | |
Collapse
|
83
|
Schlunck G, Meyer-ter-Vehn T, Klink T, Grehn F. Conjunctival fibrosis following filtering glaucoma surgery. Exp Eye Res 2016; 142:76-82. [PMID: 26675404 DOI: 10.1016/j.exer.2015.03.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/28/2022]
Abstract
Despite advances in surgical technique and postoperative care, fibrosis remains the major impediment to a marked reduction of intraocular pressure without the need of additional medication (complete success) following filtering glaucoma surgery. Several aspects specific to filtering surgery may contribute to enhanced fibrosis. Changes in conjunctival tissue structure and composition due to preceding treatments as well as alterations in interstitial fluid flow and content due to aqueous humor efflux may act as important drivers of fibrosis. In light of these pathophysiological considerations, current and possible future strategies to control fibrosis following filtering glaucoma surgery are discussed.
Collapse
Affiliation(s)
- Günther Schlunck
- Eye Center, Freiburg University Medical Center, Freiburg, Germany.
| | | | - Thomas Klink
- Dept. of Ophthalmology, Würzburg University Hospital, Würzburg, Germany
| | - Franz Grehn
- Dept. of Ophthalmology, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
84
|
Arora S, Doda V, Kotwal U, Dogra M. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time. Transfus Apher Sci 2016; 54:103-10. [DOI: 10.1016/j.transci.2016.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 11/26/2022]
|
85
|
Chitosan: A Potential Therapeutic Dressing Material for Wound Healing. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2016. [DOI: 10.1007/978-81-322-2511-9_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
86
|
Ram M, Singh V, Kumawat S, Kant V, Tandan SK, Kumar D. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats. Int Immunopharmacol 2015; 30:137-149. [PMID: 26679676 DOI: 10.1016/j.intimp.2015.11.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients.
Collapse
Affiliation(s)
- Mahendra Ram
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122 (U.P.), India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122 (U.P.), India
| | - Sanjay Kumawat
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122 (U.P.), India
| | - Vinay Kant
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122 (U.P.), India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122 (U.P.), India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122 (U.P.), India.
| |
Collapse
|
87
|
Bakacak M, Bostanci MS, İnanc F, Yaylali A, Serin S, Attar R, Yildirim G, Yildirim OK. Protective Effect of Platelet Rich Plasma on Experimental Ischemia/Reperfusion Injury in Rat Ovary. Gynecol Obstet Invest 2015; 81:225-31. [PMID: 26496072 DOI: 10.1159/000440617] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Ovarian torsion is a common cause of local ischemic damage, reduced follicular activity and infertility. Platelet-rich plasma (PRP) contains growth factors with demonstrated cytoprotective properties; so we evaluated PRP efficacy in a rat ischemia/reperfusion (I/R) model. METHODS Sixty adult female Sprague-Dawley albino rats were randomly assigned to 6 groups of 8 animals each: Sham, Ischemia, I/R, Sham + PRP, I + PRP and I/R + PRP; and the remaining 12 used to prepare PRP. Ischemia groups were subjected to bilateral adnexal torsion for 3 h, while I/R and I/R + PRP groups received subsequent detorsion for 3 h. Intraperitoneal PRP was administered 30 min prior to ischemia (Ischemia + PRP) or reperfusion (I/R + PRP). RESULTS Total oxidant status (TOS), oxidative stress index (OSI) and total ovarian histopathological scores were higher in Ischemia and I/R groups than in the Sham group (p < 0.05). PRP decreased mean TOS, OSI and histopathological scores in I + PRP and I/R + PRP groups compared to the corresponding Ischemia and I/R groups (p < 0.001). There was a strong correlation between total histopathological score and OSI (r = 0.877, p < 0.001). Peritoneal vascular endothelial growth factor was significantly higher in PRP-treated groups than corresponding untreated groups (p < 0.05). CONCLUSION PRP is effective for the prevention of ischemia and reperfusion damage in rat ovary.
Collapse
Affiliation(s)
- Murat Bakacak
- Department of Obstetrics and Gynecology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Sonker A, Dubey A, Bhatnagar A, Chaudhary R. Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft. Asian J Transfus Sci 2015; 9:155-8. [PMID: 26420935 PMCID: PMC4562136 DOI: 10.4103/0973-6247.162712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background and objectives: Platelets are a source of numerous growth factors which facilitate repair and healing. Thus platelet rich plasma has been increasingly used as a treatment modality in the field of reconstructive surgeries for wound healing. This preliminary study was carried out to explore whether platelet growth factors from platelet rich plasma could be used for enhancement of split thickness skin graft survival. Materials and Methods: Twenty patients (13 males and 7 females) requiring split thickness skin graft for various clinical reasons were enrolled in the study. Platelet rich plasma was collected by apheresis and frozen at −80° C. It was thawed at room temperature immediately before its intended application. PRP was applied only on one half of the wound, while another half served as control. Patient was followed for 6 weeks. The effect was assessed at first dressing in terms of graft uptake and subsequently as time taken for complete healing. Results: There was 100% uptake of the graft in the area where platelet rich plasma was applied. In the control area, there was complete graft loss in 4 cases, partial loss in 7 cases and complete uptake in 9 cases. Conclusion: This study demonstrated promising results on application of PRP to split thickness skin grafts. Further randomized studies with greater sample size may be undertaken to establish platelet rich plasma as a validated treatment modality.
Collapse
Affiliation(s)
- Atul Sonker
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anju Dubey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ankur Bhatnagar
- Department of Plastic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajendra Chaudhary
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
89
|
Jackson BJ. Small-Diameter Implant Treatment Plan Revision: Management of Complications. J ORAL IMPLANTOL 2015; 42:295-8. [PMID: 26390370 DOI: 10.1563/aaid-joi-d-15-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
90
|
Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. Int J Cell Biol 2015; 2015:834893. [PMID: 26448760 PMCID: PMC4581578 DOI: 10.1155/2015/834893] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM) production that leads to a dense and functionally abnormal connective tissue compartment (dermis). In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes), the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed.
Collapse
|
91
|
A morphoelastic model for dermal wound closure. Biomech Model Mechanobiol 2015; 15:663-81. [DOI: 10.1007/s10237-015-0716-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/01/2015] [Indexed: 02/08/2023]
|
92
|
Maria-Angeliki G, Alexandros-Efstratios K, Dimitris R, Konstantinos K. Platelet-rich Plasma as a Potential Treatment for Noncicatricial Alopecias. Int J Trichology 2015; 7:54-63. [PMID: 26180449 PMCID: PMC4502475 DOI: 10.4103/0974-7753.160098] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Androgenetic alopecia (AGA) and alopecia areata (AA) are common hair loss disorders affecting both men and women. Despite available therapeutic options, search for new, more effective treatment is constant. Platelet-rich plasma (PRP) could be effective in promoting hair growth: (1) To present PRP and its mechanism of action in promoting hair growth and (2) to evaluate its preparation methods and its therapeutic potential in noncicatrial alopecias in a systematic review. An international bibliography search, through five databases, was conducted to find articles regarding PRP's action on hair loss. Growth factors in platelets’ granules of PRP bind in the bulge area of hair follicle, promoting hair growth. In our systematic review, 14 articles matched our criteria, including 12 articles for AGA and two for AA. PRP is a potential useful therapeutic tool for alopecias, without major adverse effects. Nevertheless, due to the small number of conducted trials, further studies are required to investigate its efficacy.
Collapse
Affiliation(s)
- Gkini Maria-Angeliki
- Department of Dermatology and Venereology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Rigopoulos Dimitris
- Department of Dermatology and Venereology, Attikon Hospital, Medical School, University of Athens, Athens, Greece
| | - Kouskoukis Konstantinos
- Department of Dermatology and Venereology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
93
|
Batra H, Antony VB. Pleural mesothelial cells in pleural and lung diseases. J Thorac Dis 2015; 7:964-80. [PMID: 26150910 DOI: 10.3978/j.issn.2072-1439.2015.02.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
During development, the mesoderm maintains a complex relationship with the developing endoderm giving rise to the mature lung. Pleural mesothelial cells (PMCs) derived from the mesoderm play a key role during the development of the lung. The pleural mesothelium differentiates to give rise to the endothelium and smooth muscle cells via epithelial-to-mesenchymal transition (EMT). An aberrant recapitulation of such developmental pathways can play an important role in the pathogenesis of disease processes such as idiopathic pulmonary fibrosis (IPF). The PMC is the central component of the immune responses of the pleura. When exposed to noxious stimuli, it demonstrates innate immune responses such as Toll-like receptor (TLR) recognition of pathogen associated molecular patterns as well as causes the release of several cytokines to activate adaptive immune responses. Development of pleural effusions occurs due to an imbalance in the dynamic interaction between junctional proteins, n-cadherin and β-catenin, and phosphorylation of adherens junctions between PMCs, which is caused in part by vascular endothelial growth factor (VEGF) released by PMCs. PMCs play an important role in defense mechanisms against bacterial and mycobacterial pleural infections, and in pathogenesis of malignant pleural effusion, asbestos related pleural disease and malignant pleural mesothelioma. PMCs also play a key role in the resolution of inflammation, which can occur with or without fibrosis. Fibrosis occurs as a result of disordered fibrin turnover and due to the effects of cytokines such as transforming growth factor-β, platelet-derived growth factor (PDGF), and basic fibroblast growth factor; which are released by PMCs. Recent studies have demonstrated a role for PMCs in the pathogenesis of IPF suggesting their potential as a cellular biomarker of disease activity and as a possible therapeutic target. Pleural-based therapies targeting PMCs for treatment of IPF and other lung diseases need further exploration.
Collapse
Affiliation(s)
- Hitesh Batra
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
94
|
Tseng YT, Ho PS, Wang CF, Liang CS. Valproic Acid–Induced Thrombocytopenia May Cause Wound Nonhealing in Individuals With Schizophrenia. PSYCHOSOMATICS 2015; 56:410-3. [DOI: 10.1016/j.psym.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
|
95
|
Ram M, Singh V, Kumawat S, Kumar D, Lingaraju MC, Uttam Singh T, Rahal A, Kumar Tandan S, Kumar D. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol 2015; 764:9-21. [PMID: 26101070 DOI: 10.1016/j.ejphar.2015.06.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/24/2022]
Abstract
Deferoxamine has shown cutaneous wound healing potential by increased neovascularization. We hypothesized that topically applied deferoxamine facilitates wound healing in diabetic rats by modulating important cytokines and growth factors that take part in healing processes in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin and wound was created under pentobarbitone anesthesia. The diabetic rats were divided into two groups, of which one (control) was treated with ointment base and other with deferoxamine ointment (0.1%). Wound closure measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor 1-alpha (SDF-1α), transforming growth factor beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) mRNA and proteins were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histological changes were assessed by H&E staining. The per cent wound closure was significantly higher from day 7 onwards in deferoxamine-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and their protein levels were significantly higher on days 3, 7 and 14 in deferoxamine-treated rats. The mRNA expression and protein levels of TNF-α, MMP-9 and IL-1β were progressively and markedly reduced in deferoxamine-treated rats. The collagen deposition and formation of blood vessels were greater in deferoxamine-treated rats. It is suggested that topical application of deferoxamine ointment might be useful in cutaneous wound healing in diabetic patients.
Collapse
Affiliation(s)
- Mahendra Ram
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Sanjay Kumawat
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Anu Rahal
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India.
| |
Collapse
|
96
|
Lee JH, Nam J, Kim HJ, Yoo JJ. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh. Biomed Mater 2015; 10:025002. [DOI: 10.1088/1748-6041/10/2/025002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
97
|
Gürer B, Kahveci R, Gökçe EC, Ozevren H, Turkoglu E, Gökçe A. Evaluation of topical application and systemic administration of rosuvastatin in preventing epidural fibrosis in rats. Spine J 2015; 15:522-9. [PMID: 25452015 DOI: 10.1016/j.spinee.2014.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 09/23/2014] [Accepted: 10/19/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Epidural fibrosis is a major challenge in spine surgery, with some patients having recurrent symptoms secondary to excessive formation of scar tissue resulting in neurologic compression. One of the most important factors initiating the epidural fibrosis is assumed to be the transforming growth factor-1β (TGF-1β). Rosuvastatin (ROS) has shown to demonstrate preventive effects over fibrosis via inhibiting the TGF-1β. PURPOSE We hypothesized that ROS might have preventive effects over epidural fibrosis through the inhibition of TGF-1β pathways. STUDY DESIGN Experimental animal study. METHODS Forty-eight adult male Wistar Albino rats were equally and randomly divided into four groups (laminectomy, spongostan, topical ROS, and systemic ROS). Laminectomy was performed at the L3 level in all rats. Four weeks later, the extent of epidural fibrosis was assessed both macroscopically and histopathologically. RESULTS Our data revealed that topical application and systemic administration of ROS both were effective in reducing epidural fibrosis formation. Furthermore, the systemic administration of ROS yielded better results than topical application. CONCLUSIONS Both topical application and systemic administration of ROS show meaningful preventive effects over epidural fibrosis through multiple mechanisms. The results of our study provide the first experimental evidence of the preventive effects of ROS over epidural fibrosis.
Collapse
Affiliation(s)
- Bora Gürer
- Department of Neurosurgery, Ministry of Health, Fatih Sultan Mehmet Education and Research Hospital, 34752, Ataşehir, Istanbul, Turkey.
| | - Ramazan Kahveci
- Department of Neurosurgery, Ministry of Health, Kirikkale Yüksek Ihtisas Hospital, Baglarbasi mh. Lokman Hekim cd., Kirikkale, Turkey
| | - Emre Cemal Gökçe
- Department of Neurosurgery, Faculty of Medicine, Turgut Ozal University, Ayvali mh., Gazze cd., No:7 Etlik, Kecioren, Ankara, Turkey
| | - Huseyin Ozevren
- Department of Neurosurgery, Ministry of Health, Kirikkale Yüksek Ihtisas Hospital, Baglarbasi mh. Lokman Hekim cd., Kirikkale, Turkey
| | - Erhan Turkoglu
- Department of Neurosurgery, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Irfan Bastug cd., Diskapi, Ankara, Turkey
| | - Aysun Gökçe
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Irfan Bastug cd., Diskapi, Ankara, Turkey
| |
Collapse
|
98
|
Muthukumar T, Anbarasu K, Prakash D, Sastry TP. Effect of growth factors and pro-inflammatory cytokines by the collagen biocomposite dressing material containing Macrotyloma uniflorum plant extract—In vivo wound healing. Colloids Surf B Biointerfaces 2014; 121:178-88. [DOI: 10.1016/j.colsurfb.2014.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
|
99
|
Barker JC, Barker AD, Bills J, Huang J, Wight-Carter M, Delgado I, Noble DL, Huang LJ, Porteus MH, Davis KE. Genome Editing of Mouse Fibroblasts by Homologous Recombination for Sustained Secretion of PDGF-B and Augmentation of Wound Healing. Plast Reconstr Surg 2014; 134:389e-401e. [DOI: 10.1097/prs.0000000000000427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
100
|
Shah P, Keppler L, Rutkowski J. A review of platelet derived growth factor playing pivotal role in bone regeneration. J ORAL IMPLANTOL 2014; 40:330-40. [PMID: 24914921 DOI: 10.1563/aaid-joi-d-11-00173] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article is focused on the literature review and study of recent advances in the field of bone grafting, which involves platelet-derived growth factor (PDGF) as one of the facilitating factors in bone regeneration. This article includes a description of the mechanism of PDGF for use in surgeries where bone grafting is required, which promotes future application of PDGF for faster bone regeneration or inhibition of bone growth if required as in osteosarcoma. The important specific activities of PDGF include mitogenesis (increase in the cell populations of healing cells), angiogenesis (endothelial mitoses into functioning capillaries), and macrophage activation (debridement of the wound site and a second phase source of growth factors for continued repair and bone regeneration). Thus PDGF can be utilized in wound with bone defect to conceal the wound with repair of bony defect.
Collapse
Affiliation(s)
- Prasun Shah
- 1 Maimonides Medical Center, Brooklyn, New York
| | | | | |
Collapse
|