51
|
Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell DJ. atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J Biol Chem 2003; 278:38617-27. [PMID: 12874276 DOI: 10.1074/jbc.m306367200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocon of the inner envelope membrane of chloroplasts (Tic) mediates the late events in the translocation of nucleus-encoded preproteins into chloroplasts. Tic110 is a major integral membrane component of active Tic complexes and has been proposed to function as a docking site for translocation-associated stromal factors and as a component of the protein-conducting channel. To investigate the various proposed functions of Tic110, we have investigated the structure, topology, and activities of a 97.5-kDa fragment of Arabidopsis Tic110 (atTic110) lacking only the amino-terminal transmembrane segments. The protein was expressed both in Escherichia coli and Arabidopsis as a stable, soluble protein with a high alpha-helical content. Binding studies demonstrate that a region of the atTic110-soluble domain selectively associates with chloroplast preproteins at the late stages of membrane translocation. These data support the hypothesis that the bulk of Tic110 extends into the chloroplast stroma and suggest that the domain forms a docking site for preproteins as they emerge from the Tic translocon.
Collapse
Affiliation(s)
- Takehito Inaba
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
52
|
DeLisa MP, Tullman D, Georgiou G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 2003; 100:6115-20. [PMID: 12721369 PMCID: PMC156335 DOI: 10.1073/pnas.0937838100] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To examine the relationship between folding and export competence by the twin-arginine translocation (Tat) pathway we analyzed the subcellular localization of fusions between a set of eight putative Tat leader peptides and alkaline phosphatase in isogenic Escherichia coli strains that either allow or disfavor the formation of protein disulfide bonds in the cytoplasm. We show that export by the Tat translocator is observed only in strains that enable oxidative protein folding in the cytoplasm. Further, we show that other disulfide-containing proteins, namely single-chain Fv and heterodimeric F(AB) antibody fragments, are export-competent only in strains having an oxidizing cytoplasm. Functional, heterodimeric F(AB) protein was exported from the cytoplasm by means of a Tat leader peptide fused to the heavy chain alone, indicating that the formation of a disulfide-bonded dimer preceeds export. These results demonstrate that in vivo only proteins that have attained the native conformation are exported by the Tat translocator, indicating that a folding quality-control mechanism is intrinsic to the export process. The ability to export proteins with disulfide bonds and the folding proofing feature of the Tat pathway are of interest for biotechnology applications.
Collapse
Affiliation(s)
- Matthew P DeLisa
- Department of Chemical Engineering, University of Texas, Austin 78712, USA
| | | | | |
Collapse
|
53
|
Jin R, Richter S, Zhong R, Lamppa GK. Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. PLANT MOLECULAR BIOLOGY 2003; 51:493-507. [PMID: 12650616 DOI: 10.1023/a:1022354124741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A bacterial thermostable cellulase, the endo-1,4-beta-D-glucanase E1 from Acidothermus cellulolyticus, was imported into chloroplasts, and an active enzyme was recovered both in vitro and in vivo. Precursor fusion proteins were synthesized with E1 or its catalytic domain, CD, fused to the transit peptide of ferredoxin or ribulose-bisphosphate carboxylase activase for stromal targeting. A spacer region of 1, 5 or 15 amino acids was included carboxy to the transit peptide. The efficiency of import and processing by the stromal processing peptidase depended on the nature of the transit peptide and the passenger protein, and increased with the length of the spacer between them. Besides finding E1 or CD in the stroma, protein was arrested in the envelope during import showing that structural features of E1 and CD, along with their proximity to the transit peptide, influence translocation. The cellulose binding domain and/or serine/proline/threoline-rich linker of E1 may impede efficient import. Significantly, most precursors for E1 and CD synthesized by in vitro translation possessed endoglucanse activity that was temperature-dependent, and required the residues AGGGY at the N-terminus of E1 and CD. Furthermore, activity was detected upon import into chloroplasts. Based on the in vitro analyses, five precursor fusion proteins were selected to determine if E1 and CD would be successfully targeted to chloroplasts in vivo. In transgenic tobacco plants, E1 and CD accumulated in both the stromal and membrane fractions and, importantly, chloroplast extracts showed endoglucanase activity.
Collapse
Affiliation(s)
- Rongguan Jin
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
54
|
Smith MD, Schnell DJ, Fitzpatrick L, Keegstra K. In vitro analysis of chloroplast protein import. CURRENT PROTOCOLS IN CELL BIOLOGY 2003; Chapter 11:Unit11.16. [PMID: 18228418 DOI: 10.1002/0471143030.cb1116s17] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes protocols for isolating chloroplasts from pea (Pisum sativum) and Arabidopsis thaliana for the study of nuclear-encoded plastid precursor proteins. Chloroplasts from both preparations are competent for the in vitro import of recombinant preproteins synthesized using in vitro translation systems derived from reticulocyte or wheat germ lysates. These assays can be used to test whether a particular protein is targeted to chloroplasts, for analyzing the suborganellar location of newly imported preproteins, or to study the mechanism of import itself.
Collapse
|
55
|
Abstract
Protein unfolding is an important step in several cellular processes, most interestingly protein degradation by ATP-dependent proteases and protein translocation across some membranes. Unfolding can be catalyzed when the unfoldases change the unfolding pathway of substrate proteins by pulling at their polypeptide chains. The resistance of a protein to unraveling during these processes is not determined by the protein's stability against global unfolding, as measured by temperature or solvent denaturation in vitro. Instead, resistance to unfolding is determined by the local structure that the unfoldase encounters first as it follows the substrate's polypeptide chain from the targeting signal. As unfolding is a necessary step in protein degradation and translocation, the susceptibility to unfolding of substrate proteins contributes to the specificity of these important cellular processes.
Collapse
Affiliation(s)
- Andreas Matouschek
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA.
| |
Collapse
|
56
|
Abstract
Protein import into chloroplasts is a highly regulated process. The activity of the major import receptors is regulated by protein phosphorylation, as well as by GTP binding and hydrolysis. Complete translocation into the organelle could depend on its redox status, as sensed by the Tic complex. A further possibility is that, upon phosphorylation, precursor proteins form a highly import-competent guidance complex in the cytosol. Hence, several levels of regulation seem to coexist.
Collapse
Affiliation(s)
- Jürgen Soll
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstrasse 67, D-80638, München, Germany.
| |
Collapse
|
57
|
Invernizzi C, Imhof J, Burkard G, Schmid K, Boschetti A. Effects of mutations at the two processing sites of the precursor for the small subunit of ribulose-bisphosphate carboxylase in Chlamydomonas reinhardtii. Biochem J 2002; 366:989-98. [PMID: 12049611 PMCID: PMC1222819 DOI: 10.1042/bj20020378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 05/29/2002] [Accepted: 06/05/2002] [Indexed: 11/17/2022]
Abstract
The role of the two processing sites in the precursor of the small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSS) of Chlamydomonas reinhardtii was studied by introducing mutations at the cleavage sites for the stromal processing peptidases SPP-1 and SPP-2, which hydrolyse wild-type pSS (20.6 kDa) to an intermediate-sized product iSS (18.3 kDa) and to the mature SS (16.3 kDa), respectively. The mutations introduced into cDNA resulted in exchange of (a) two amino acids flanking processing site 1, or (b) one or (c) both amino acids flanking processing site 2. Mutation (a) prevented pSS from being processed at site 1 but not from cleavage at site 2. Mutation (c) abolished the action of SPP-2 but not SPP-1. When pSS with mutation (c) was imported into isolated chloroplasts, iSS accumulated while SS formation was abolished. However, mature SS was produced even in the absence of iSS synthesis (mutation a). Import of pSS bearing mutation (b), which only partially inhibited processing at the SPP-2 site, slowed the rate of SS formation down whereas iSS and some slightly smaller derivatives accumulated. These experiments suggested that in Chlamydomonas processing of pSS can occur in two steps, whereby the first step is facultative. The same three mutations were studied in vivo after transformation of SS-deficient C. reinhardtii T60-3 with mutated genomic DNA. Growth and photosynthesis was as in control transformants, except for the slower-growing transformants (mutation c) where no mature SS was immuno-detected. However, pSS fragments with molecular masses between those of iSS and SS were present even in the ribulose-1,5-bisphosphate carboxylase/oxygenase holoenzyme.
Collapse
Affiliation(s)
- Cédric Invernizzi
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, Switzerland
| | | | | | | | | |
Collapse
|
58
|
Abstract
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, UK.
| | | |
Collapse
|
59
|
Eckart K, Eichacker L, Sohrt K, Schleiff E, Heins L, Soll J. A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep 2002; 3:557-62. [PMID: 12034753 PMCID: PMC1084144 DOI: 10.1093/embo-reports/kvf110] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 03/20/2002] [Accepted: 04/04/2002] [Indexed: 11/12/2022] Open
Abstract
Chloroplasts import post-translationally most of their constituent polypeptides via two distinct translocon units located in the outer and inner envelope. The protein import channel of the translocon of the outer envelope of chloroplasts, Toc75, is the most abundant protein in that membrane. We identify a novel Toc75 homologous protein, atToc75-V, a prominent protein that is clearly localized in the chloroplastic outer envelope. Phylogenetic analysis indicates that Toc75-V is more closely related to its prokaryotic ancestors than to Toc75 from plants. The presence of a second translocation channel suggests that alternative, previously unrecognized import routes into chloroplasts might exist.
Collapse
Affiliation(s)
- Kerstin Eckart
- Department für Biologie I, Menzinger Strasse 67, Ludwig-Maximilians-Universität, D-80638 München, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Hiltbrunner A, Bauer J, Alvarez-Huerta M, Kessler F. Protein translocon at the Arabidopsis outer chloroplast membrane. Biochem Cell Biol 2002; 79:629-35. [PMID: 11716304 DOI: 10.1139/o01-145] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.
Collapse
Affiliation(s)
- A Hiltbrunner
- Institute of Plant Sciences, Plant Physiology and Biochemistry Group, ETH Zürich, Switzerland
| | | | | | | |
Collapse
|
61
|
Chen X, Smith MD, Fitzpatrick L, Schnell DJ. In vivo analysis of the role of atTic20 in protein import into chloroplasts. THE PLANT CELL 2002; 14:641-54. [PMID: 11910011 PMCID: PMC150586 DOI: 10.1105/tpc.010336] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Accepted: 11/12/2001] [Indexed: 05/20/2023]
Abstract
The import of nucleus-encoded preproteins into plastids requires the coordinated activities of membrane protein complexes that facilitate the translocation of polypeptides across the envelope double membrane. Tic20 was identified previously as a component of the import machinery of the inner envelope membrane by covalent cross-linking studies with trapped preprotein import intermediates. To investigate the role of Tic20 in preprotein import, we altered the expression of the Arabidopsis Tic20 ortholog (atTic20) by antisense expression. Several antisense lines exhibited pronounced chloroplast defects exemplified by pale leaves, reduced accumulation of plastid proteins, and significant growth defects. The severity of the phenotypes correlated directly with the reduction in levels of atTic20 expression. In vitro import studies with plastids isolated from control and antisense plants indicated that the antisense plastids are defective specifically in protein translocation across the inner envelope membrane. These data suggest that Tic20 functions as a component of the protein-conducting channel at the inner envelope membrane.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
62
|
Abstract
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.
Collapse
Affiliation(s)
- P Jarvis
- Department of Biology, University of Leicester, UK.
| | | |
Collapse
|
63
|
Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2001; 98:12826-31. [PMID: 11606728 PMCID: PMC60138 DOI: 10.1073/pnas.221252798] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetrapyrroles such as chlorophylls and bacteriochlorophylls play a fundamental role in the energy absorption and transduction activities of photosynthetic organisms. Because of these molecules, however, photosynthetic organisms are also prone to photooxidative damage. They had to evolve highly efficient strategies to control tetrapyrrole biosynthesis and to prevent the accumulation of free intermediates that potentially are extremely destructive when illuminated. In higher plants, the metabolic flow of tetrapyrrole biosynthesis is regulated at the step of delta-aminolevulinic acid synthesis. This regulation previously has been attributed to feedback control of Glu tRNA reductase, the first enzyme committed to tetrapyrrole biosynthesis, by heme. With the recent discovery of chlorophyll intermediates acting as signals that control both nuclear gene activities and tetrapyrrole biosynthesis, it seems likely that heme is not the only regulator of this pathway. A genetic approach was used to identify additional factors involved in the control of tetrapyrrole biosynthesis. In Arabidopsis thaliana, we have found a negative regulator of tetrapyrrole biosynthesis, FLU, which operates independently of heme and seems to selectively affect only the Mg(2+) branch of tetrapyrrole biosynthesis. The identity of this protein was established by map-based cloning and sequencing the FLU gene. FLU is a nuclear-encoded plastid protein that, after import and processing, becomes tightly associated with plastid membranes. It is unrelated to any of the enzymes known to be involved in tetrapyrrole biosynthesis. Its predicted features suggest that FLU mediates its regulatory effect through interaction with enzymes involved in chlorophyll synthesis.
Collapse
Affiliation(s)
- R Meskauskiene
- Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
64
|
Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:201-8. [PMID: 11722763 DOI: 10.1046/j.1365-313x.2001.01150.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid.
Collapse
Affiliation(s)
- C A Helliwell
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
65
|
Hirohashi T, Hase T, Nakai M. Maize non-photosynthetic ferredoxin precursor is mis-sorted to the intermembrane space of chloroplasts in the presence of light. PLANT PHYSIOLOGY 2001; 125:2154-63. [PMID: 11299394 PMCID: PMC88870 DOI: 10.1104/pp.125.4.2154] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Revised: 11/08/2000] [Accepted: 01/12/2001] [Indexed: 05/20/2023]
Abstract
Preprotein translocation across the outer and inner envelope membranes of chloroplasts is an energy-dependent process requiring ATP hydrolysis. Several precursor proteins analyzed so far have been found to be imported into isolated chloroplasts equally well in the dark in the presence of ATP as in the light where ATP is supplied by photophosphorylation in the chloroplasts themselves. We demonstrate here that precursors of two maize (Zea mays L. cv Golden Cross Bantam) ferredoxin isoproteins, pFdI and pFdIII, show distinct characteristics of import into maize chloroplasts. pFdI, a photosynthetic ferredoxin precursor, was efficiently imported into the stroma of isolated maize chloroplasts both in the light and in the dark. In contrast pFdIII, a non-photosynthetic ferredoxin precursor, was mostly mis-sorted to the intermembrane space of chloroplastic envelopes as an unprocessed precursor form in the light but was efficiently imported into the stroma and processed to its mature form in the dark. The mis-sorted pFdIII, which accumulated in the intermembrane space in the light, could not undergo subsequent import into the stroma in the dark, even in the presence of ATP. However, when the mis-sorted pFdIII was recovered and used for a separate import reaction, pFdIII was capable of import into the chloroplasts in the dark. pFNRII, a ferredoxin-NADP+ reductase isoprotein precursor, showed import characteristics similar to those of pFdIII. Moreover, pFdIII exhibited similar import characteristics with chloroplasts isolated from wheat (Pennisetum americanum) and pea (Pisum sativum cv Alaska). These findings suggest that the translocation of precursor proteins across the envelope membranes of chloroplasts may involve substrate-dependent light-regulated mechanisms.
Collapse
Affiliation(s)
- T Hirohashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | | | | |
Collapse
|
66
|
Subramanian C, Ivey R, Bruce BD. Cytometric analysis of an epitope-tagged transit peptide bound to the chloroplast translocation apparatus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:349-363. [PMID: 11208026 DOI: 10.1046/j.1365-313x.2001.00960.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplast transit peptides are necessary and sufficient for the targeting and translocation of precursor proteins across the chloroplast envelope. However, the mechanism by which transit peptides engage the translocation apparatus has not been investigated. To analyse this interaction, we have developed a novel epitope-tagged transit peptide derived from the precursor of the small subunit of pea Rubisco. The recombinant transit peptide, His-S-SStp, contains a removable dual-epitope tag, His-S, at its N-terminus that permits both rapid purification via immobilized metal affinity chromatography and detection by blotting, flow cytometry and laser-scanning confocal microscopy. Unlike other chimeric precursors, which place the passenger protein C-terminal to the transit peptide, His-S-SStp bound to the translocation apparatus yet did not translocate across the chloroplast envelope. This early translocation intermediate allowed non-radioactive detection using fluorescent and chemiluminescent reporters. The physiological relevance of this interaction was confirmed by protein import competitions, sensitivity to pre- and post-import thermolysin treatment, photochemical cross-linking and organelle fractionation. The interaction was specific for the transit peptide since His-S alone did not engage the chloroplast translocation apparatus. Quantitation of the bound transit peptide was determined by flow cytometry, showing saturation of binding yet only slight ATP-dependence. The addition of GTP showed inhibition of the binding of His-S-SStp to the chloroplasts indicating an involvement of GTP in the formation of this early translocation intermediate. In addition, direct visualization of His-S-SStp and Toc75 by confocal microscopy revealed a patch-like labeling, suggesting a co-ordinate localization to discrete regions on the chloroplast envelope. These findings represent the first direct visualization of a transit peptide interacting with the chloroplast translocation apparatus. Furthermore, identification of a chloroplast-binding intermediate may provide a novel tool to dissect interactions between a transit peptide and the chloroplast translocation apparatus.
Collapse
Affiliation(s)
- C Subramanian
- The Graduate Group in Plant Physiology and Genetics, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
67
|
Row PE, Gray JC. Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11181712 DOI: 10.1093/jexbot/52.354.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.
Collapse
Affiliation(s)
- P E Row
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
68
|
Liu YY, Kaderbhai N, Kaderbhai MA. A mammalian cytochrome fused to a chloroplast transit peptide is a functional haemoprotein and is imported into isolated chloroplasts. Biochem J 2000; 351 Pt 2:377-84. [PMID: 11023823 PMCID: PMC1221373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major chloroplast stromal protein that is cytosolically synthesized as a precursor with an N-terminal extension, known as the transit sequence or transit peptide (Tp). The Tp is essential for the post-translational uptake of the precursor by the chloroplast. The Tp is thought to influence the conformation of the precursor protein and to facilitate polypeptide translocation across the chloroplast envelope barrier via a Tp-selective translocon. To address these issues we have devised a novel strategy to generate substrate amounts of a chloroplast targeting sequence as a fusion with the chromogenic globular domain of cytochrome b(5) (Cyt). The chimaeric protein is an ideal probe for investigating the conformation of a preprotein and events surrounding protein import into isolated chloroplasts. The Cyt of liver endoplasmic reticulum was fused at its N-terminus with the Tp of the small subunit of Rubisco of Pisum sativum (pea). To enhance its production by clearance from the cytoplasm of Escherichia coli, the chimaera was engineered by further N-terminal linkage of a prokaryotic secretory signal. Expression of this tripartite fusion resulted in mg quantities of the signal sequence-processed Tp-Cyt protein, which was eventually targeted to the membranes. The chromogenic nature of the chimaera and its localization to the bacterial membrane facilitated the biochemical isolation of the precursor in a soluble and functional form. The purified preprotein displayed spectral and enzymic properties that were indistinguishable from the native parental Cyt, implying an absence of observable influence of the Tp on the conformation of the haemoprotein. The chimaeric precursor was imported into the stroma of the isolated chloroplasts in a dose-dependent manner. Import was also strongly dependent upon exogenously supplied ATP. The stromally imported chimaeric precursor protein was processed to a size characteristic of Cyt.
Collapse
Affiliation(s)
- Y Y Liu
- Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Ceredigion SY23 3DD, UK
| | | | | |
Collapse
|
69
|
Abstract
Plastids originated from an endosymbiotic event between an early eukaryotic host cell and an ancestor of today's cyanobacteria. During the events by which the engulfed endosymbiont was transformed into a permanent organelle, many genes were transferred from the plastidal genome to the nucleus of the host cell. Proteins encoded by these genes are synthesised in the cytosol and subsequently translocated into the plastid. Therefore they contain an N-terminal cleavable transit sequence that is necessary for translocation. The sequence is plastid-specific, thus preventing mistargeting into other organelles. Receptors embedded into the outer envelope of the plastid recognise the transit sequences, and precursor proteins are translocated into the chloroplast by a proteinaceous import machinery located in both the outer and inner envelopes. Inside the stroma the transit sequences are cleaved off and the proteins are further routed to their final locations within the plastid.
Collapse
Affiliation(s)
- U C Vothknecht
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Germany
| | | |
Collapse
|
70
|
Reinbothe S, Mache R, Reinbothe C. A second, substrate-dependent site of protein import into chloroplasts. Proc Natl Acad Sci U S A 2000; 97:9795-800. [PMID: 10920193 PMCID: PMC16944 DOI: 10.1073/pnas.160242597] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplasts must import a large number of proteins from the cytosol. It generally is assumed that this import proceeds for all stromal and thylakoid proteins in an identical manner and is caused by the operation of two distinctive protein import machineries in the outer and inner plastid envelope, which form the general import site. Here we show that there is a second site of protein translocation into chloroplasts of barley, tobacco, Arabidopsis thaliana, and five other tested monocotyledonous and dicotyledonous plant species. This import site is specific for the cytosolic precursor of the NADPH:protochlorophyllide (Pchlide) oxidoreductase A, pPORA. It couples Pchlide synthesis to pPORA import and thereby reduces the actual level of free Pchlide, which, because of its photodynamic properties, would be destructive to the plastids. Consequently, photoprotection is conferred onto the plant.
Collapse
Affiliation(s)
- S Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Grenoble, France
| | | | | |
Collapse
|
71
|
Harrison CJ, Mould RM, Leech MJ, Johnson SA, Turner L, Schreck SL, Baird KM, Jack PL, Rawsthorne S, Hedley CL, Wang TL. The rug3 locus of pea encodes plastidial phosphoglucomutase. PLANT PHYSIOLOGY 2000; 122:1187-92. [PMID: 10759514 PMCID: PMC58953 DOI: 10.1104/pp.122.4.1187] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/1999] [Accepted: 11/30/1999] [Indexed: 05/18/2023]
Abstract
Two cDNA clones were isolated from pea (Pisum sativum L.) and their deduced amino acid sequences shown to have significant homology to phosphoglucomutases from eukaryotic and prokaryotic sources. The longer cDNA contained a putative transit-peptide-encoding sequence, supporting the hypothesis that the isolated clones represent the cytosolic and plastidial isoforms of phosphoglucomutase in pea. Plastid protein import assays confirmed that the putative plastidial isoform was targeted to the plastid stroma where it was proteolytically processed. Expression, co-segregation, linkage, and molecular analyses have confirmed that the rug3 locus of pea encodes plastidial phosphoglucomutase. Mutations at this locus result in a near-starchless phenotype of the plant.
Collapse
Affiliation(s)
- C J Harrison
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Liu YY, Akhtar MK, Ourmozdi EP, Kaderbhai N, Kaderbhai MA. A chloroplast envelope-transfer sequence functions as an export signal in Escherichia coli. FEBS Lett 2000; 469:61-6. [PMID: 10708757 DOI: 10.1016/s0014-5793(00)01228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The small subunit precursor of pea ribulose-1,5-bisphosphate carboxylase/oxygenase engineered with prokaryotic elements was expressed in Escherichia coli. This resulted in a dependable level of synthesis of the precursor protein in E. coli. The bacterially synthesised plant precursor protein was translocated from the cytoplasm and targeted to the outer membrane of the envelope zone. During the translocation step, a significant proportion of the precursor was processed to a soluble, mature SSU and found localised in the periplasm. The determined amino acid sequence of the isolated precursor showed that it had a deletion of an arginine residue at position -15 in the transit peptide. Expression of this transit peptide-appended mammalian cytochrome b(5) in E. coli displayed a targeting profile of the chromogenic chimera that was similar to that observed with the plant precursor protein.
Collapse
Affiliation(s)
- Y Y Liu
- Institute of Biological Sciences, The University of Wales, Aberystwyth, UK
| | | | | | | | | |
Collapse
|
73
|
Kosemund K, Geiger I, Paulsen H. Insertion of light-harvesting chlorophyll a/b protein into the thylakoid topographical studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1138-45. [PMID: 10672023 DOI: 10.1046/j.1432-1327.2000.01110.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid.
Collapse
Affiliation(s)
- K Kosemund
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität Mainz, Germany
| | | | | |
Collapse
|
74
|
Rüfenacht A, Boschetti A. Chloroplasts of the green alga Chlamydomonas reinhardtii possess at least four distinct stromal processing proteases. PHOTOSYNTHESIS RESEARCH 2000; 63:249-58. [PMID: 16228435 DOI: 10.1023/a:1006472325830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The majority of the proteins in the chloroplast are encoded in the nucleus and synthesised in the cytoplasm as precursors with N-terminal extensions. These targeting sequences guide the precursor proteins into the chloroplast where they are immediately cleaved off by a stromal processing protease (SPP). It is commonly assumed that in higher plant chloroplasts one general SPP processes almost all imported precursor proteins. In the green alga Chlamydomonas, however, there exist several different SPPs which process the various Chlamydomonas precursor proteins. The seven precursor proteins investigated here, which were all correctly imported into isolated chloroplasts, could be divided into two groups: Four precursor proteins were cleaved correctly when processed in vitro with an extract of stromal proteins. Four different SPPs were found in Chlamydomonas chloroplasts to be responsible for the processing of this class of precursors and these four activities were separated chromatographically, characterised and further distinguished by their sensitivity to different inhibitors. The three precursors of the second group were degraded completely by unidentified enzyme(s) present in the stromal extract. Degradation of these precursors was dependent on their conformational integrity as well as on the redox state in the stroma.
Collapse
Affiliation(s)
- A Rüfenacht
- Pharmaceutical Institute, University of Basel, Totengässlein 3, 4051, Basel, Switzerland
| | | |
Collapse
|
75
|
Stahl T, Glockmann C, Soll J, Heins L. Tic40, a new "old" subunit of the chloroplast protein import translocon. J Biol Chem 1999; 274:37467-72. [PMID: 10601321 DOI: 10.1074/jbc.274.52.37467] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein import translocon at the inner envelope of chloroplasts (Tic complex) is a heteroligomeric multisubunit complex. Here, we describe Tic40 from pea as a new component of this complex. Tic40 from pea is a homologue of a protein described earlier from Brassica napus as Cim/Com44 or the Toc36 subunit of the translocon at the outer envelope of chloroplasts, respectively (Wu, C., Seibert, F. S., and Ko, K. (1994) J. Biol. Chem. 269, 32264-32271; Ko, K., Budd, D., Wu, C., Seibert, F., Kourtz, L., and Ko, Z. W. (1995) J. Biol. Chem. 270, 28601-28608; Pang, P., Meathrel, K., and Ko, K. (1997) J. Biol. Chem. 272, 25623-25627). Tic40 can be covalently connected to Tic110 by the formation of a disulfide bridge under oxidizing conditions, indicating its close physical proximity to an established translocon component. The Tic40 protein is synthesized in the cytosol as a precursor with an N-terminal cleavable chloroplast targeting signal and imported into the organelle via the general import pathway. Immunoblotting and immunogold-labeling studies exclusively confine Tic40 to the chloroplastic inner envelope, in which it is anchored by a single putative transmembrane span.
Collapse
Affiliation(s)
- T Stahl
- Botanisches Institut, Universität Kiel, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
76
|
Lao NT, Schoneveld O, Mould RM, Hibberd JM, Gray JC, Kavanagh TA. An Arabidopsis gene encoding a chloroplast-targeted beta-amylase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:519-527. [PMID: 10652124 DOI: 10.1046/j.1365-313x.1999.00625.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
beta-Amylase is one of the most abundant starch degrading activities found in leaves and other plant organs. Despite its abundance, most if not all of this activity has been reported to be extrachloroplastic and for this reason, it has been assumed that beta-amylases are not involved in the metabolism of chloroplast-localized transitory leaf starch. However, we have identified a novel beta-amylase gene, designated ct-Bmy, which is located on chromosome IV of Arabidopsis thaliana. Ct-Bmy encodes a precursor protein which contains a typical N-terminal chloroplast import signal and is highly similar at the amino acid level to extrachloroplastic beta-amylases of higher plants. Expression of the ct-Bmy cDNA in E. coli confirmed that the encoded protein possesses beta-amylase activity. CT-BMY protein, synthesized in vitro, was efficiently imported by isolated pea chloroplasts and shown to be located in the stroma. In addition, fusions between the predicted CT-BMY transit peptide and jellyfish green fluorescent protein (GFP) or the entire CT-BMY protein and GFP showed accumulation in vivo in chloroplasts of Arabidopsis. Expression of the GUS gene fused to ct-Bmy promoter sequences was investigated in transgenic tobacco plants. GUS activity was most strongly expressed in the palisade cell layer in the leaf blade and in chlorenchyma cells associated with the vascular strands in petioles and stems. Histochemical staining of whole seedlings showed that GUS activity was largely confined to the cotyledons during the first 2 weeks of growth and appeared in the first true leaves at approximately 4 weeks.
Collapse
Affiliation(s)
- N T Lao
- Department of Genetics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
77
|
Mukherjee S, Bhattacharyya SN, Adhya S. Stepwise transfer of tRNA through the double membrane of Leishmania mitochondria. J Biol Chem 1999; 274:31249-55. [PMID: 10531321 DOI: 10.1074/jbc.274.44.31249] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Import of tRNA into Leishmania mitochondria involves transfer through a double membrane barrier. To examine whether specific sorting mechanisms for individual tRNAs direct them to different mitochondrial compartments, the distribution of tRNA transcripts, internalized in vitro, was examined by suborganellar fractionation. Significant amounts of tRNA(Tyr) were localized in the matrix and on the outer face of the inner mitochondrial membrane. With time, the matrix:membrane ratio increased. Translocation through the inner membrane apparently required the presence of a specific signal in the D arm of tRNA(Tyr), and tRNA(Gln)(CUG), lacking this sequence, was excluded. Hydrolysis of ATP was necessary at both the outer and inner membranes. However, the protonophores carbonylcyanide m-chlorophenylhydrazone and nigericin, the K(+) ionophore valinomycin, and the F(1)F(0) ATPase inhibitor oligomycin had only marginal effects on uptake through the outer membrane but severely inhibited inner membrane translocation, indicating the unusual requirement of both the electrical and chemical components of the electromotive force generated across the inner membrane. The results are consistent with a mechanism involving stepwise transfer of tRNA through distinct outer and inner membrane channels.
Collapse
Affiliation(s)
- S Mukherjee
- Genetic Engineering Laboratory, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Rd., Calcutta 700032, India
| | | | | |
Collapse
|
78
|
Richter S, Lamppa GK. Stromal processing peptidase binds transit peptides and initiates their ATP-dependent turnover in chloroplasts. J Cell Biol 1999; 147:33-44. [PMID: 10508853 PMCID: PMC2164977 DOI: 10.1083/jcb.147.1.33] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A stromal processing peptidase (SPP) cleaves a broad range of precursors targeted to the chloroplast, yielding proteins for numerous biosynthetic pathways in different compartments. SPP contains a signature zinc-binding motif, His-X-X-Glu-His, that places it in a metallopeptidase family which includes the mitochondrial processing peptidase. Here, we have investigated the mechanism of cleavage by SPP, a late, yet key event in the import pathway. Recombinant SPP removed the transit peptide from a variety of precursors in a single endoproteolytic step. Whereas the mature protein was immediately released, the transit peptide remained bound to SPP. SPP converted the transit peptide to a subfragment form that it no longer recognized. We conclude that SPP contains a specific binding site for the transit peptide and additional proteolysis by SPP triggers its release. A stable interaction between SPP and an intact transit peptide was directly demonstrated using a newly developed binding assay. Unlike recombinant SPP, a chloroplast extract rapidly degraded both the transit peptide and subfragment. A new degradative activity, distinguishable from SPP, was identified that is ATP- and metal-dependent. Our results indicate a regulated sequence of events as SPP functions during precursor import, and demonstrate a previously unrecognized ATP-requirement for transit peptide turnover.
Collapse
Affiliation(s)
- Stefan Richter
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Gayle K. Lamppa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
79
|
Kouranov A, Wang H, Schnell DJ. Tic22 is targeted to the intermembrane space of chloroplasts by a novel pathway. J Biol Chem 1999; 274:25181-6. [PMID: 10455201 DOI: 10.1074/jbc.274.35.25181] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tic22 previously was identified as a component of the general import machinery that functions in the import of nuclear-encoded proteins into the chloroplast. Tic22 is peripherally associated with the outer face of the inner chloroplast envelope membrane, making it the first known resident of the intermembrane space of the envelope. We have investigated the import of Tic22 into isolated chloroplasts to define the requirements for targeting of proteins to the intermembrane space. Tic22 is nuclear-endoded and synthesized as a preprotein with a 50-amino acid N-terminal presequence. The analysis of deletion mutants and chimerical proteins indicates that the precursor of Tic22 (preTic22) presequence is necessary and sufficient for targeting to the intermembrane space. Import of preTic22 was stimulated by ATP and required the presence of protease-sensitive components on the chloroplast surface. PreTic22 import was not competed by an excess of an authentic stromal preprotein, indicating that targeting to the intermembrane space does not involve the general import pathway utilized by stromal preproteins. On the basis of these observations, we conclude that preTic22 is targeted to the intermembrane space of chloroplasts by a novel import pathway that is distinct from known pathways that target proteins to other chloroplast subcompartments.
Collapse
Affiliation(s)
- A Kouranov
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
80
|
Abstract
Chloroplasts have evolved an elaborate system of membrane and soluble subcompartments to organize and regulate photosynthesis and essential aspects of amino acid and lipid metabolism. The biogenesis and maintenance of organellar architecture rely on protein subunits encoded by both nuclear and plastid genomes. Import of nuclear-encoded proteins is mediated by interactions between the intrinsic N-terminal transit sequence of the nuclear-encoded preprotein and a common import machinery at the chloroplast envelope. Recent investigations have shown that there are two unique membrane-bound translocation systems, in the outer and inner envelope membranes, which physically associate during import to transport preproteins from the cytoplasm to the internal stromal compartment. This review discusses current understanding of these translocation systems and models for the way in which they might function.
Collapse
Affiliation(s)
- X Chen
- Dept of Biological Sciences, Rutgers, The State University of New Jersey, 101 Warren Street, Newark, NJ 07102, USA
| | | |
Collapse
|
81
|
Sulli C, Fang Z, Muchhal U, Schwartzbach SD. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 1999; 274:457-63. [PMID: 9867865 DOI: 10.1074/jbc.274.1.457] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Euglena chloroplast protein precursors are transported as integral membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus prior to chloroplast localization. All Euglena chloroplast protein precursors have functionally similar bipartite presequences composed of an N-terminal signal peptide domain and a stromal targeting domain containing a hydrophobic region approximately 60 amino acids from the predicted signal peptidase cleavage site. Asparagine-linked glycosylation reporters and presequence deletion constructs of the precursor to the Euglena light-harvesting chlorophyll a/b-binding protein of photosystem II (pLHCPII) were used to identify presequence regions translocated into the ER lumen and stop transfer membrane anchor domains. An asparagine-linked glycosylation site present at amino acid 148 of pLHCPII near the N terminus of mature LHCPII was not glycosylated in vitro by canine microsomes while an asparagine-linked glycosylation site inserted at amino acid 40 was. The asparagine at amino acid 148 was glycosylated upon deletion of amino acids 46-146, which contain the stromal targeting domain, indicating that the hydrophobic region within this domain functions as a stop transfer membrane anchor sequence. Protease protection assays indicated that for all constructs, mature LHCPII was not translocated across the microsomal membrane. Taken together with the structural similarity of all Euglena presequences, these results demonstrate that chloroplast precursors are anchored within ER and Golgi transport vesicles by the stromal targeting domain hydrophobic region oriented with the presequence N terminus formed by signal peptidase cleavage in the vesicle lumen and the mature protein in the cytoplasm.
Collapse
Affiliation(s)
- C Sulli
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
82
|
Hynds PJ, Robinson D, Robinson C. The sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J Biol Chem 1998; 273:34868-74. [PMID: 9857014 DOI: 10.1074/jbc.273.52.34868] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A subset of lumen proteins is transported across the thylakoid membrane by a Sec-independent translocase that recognizes a twin-arginine motif in the targeting signal. A related system operates in bacteria, apparently for the export of redox cofactor-containing proteins. In this report we describe a key feature of this system, the ability to transport folded proteins. The thylakoidal system is able to transport dihydrofolate reductase (DHFR) when an appropriate signal is attached, and the transport efficiency is almost undiminished by the binding of folate analogs such as methotrexate that cause the protein to fold very tightly. The system is moreover able to transport DHFR into the lumen with methotrexate bound in the active site, demonstrating that the DeltapH-driven transport of large, native structures is possible by this pathway. However, correct folding is not a prerequisite for transport. Truncated, malfolded DHFR can be translocated by this system, as can physiological substrates that are severely malfolded by the incorporation of amino acid analogs.
Collapse
Affiliation(s)
- P J Hynds
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
83
|
Kouranov A, Chen X, Fuks B, Schnell DJ. Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 1998; 143:991-1002. [PMID: 9817756 PMCID: PMC2132967 DOI: 10.1083/jcb.143.4.991] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1998] [Revised: 09/28/1998] [Indexed: 11/25/2022] Open
Abstract
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677-1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.
Collapse
Affiliation(s)
- A Kouranov
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|
84
|
Soll J, Tien R. Protein translocation into and across the chloroplastic envelope membranes. PLANT MOLECULAR BIOLOGY 1998. [PMID: 9738967 DOI: 10.1023/a:1006034020192] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Post-translational protein import into chloroplasts follows a common route characterised by the need for nucleoside-triphosphates at various steps and two distinct protein import machineries at the outer and inner envelope membrane, respectively. Several subunits of these complexes have been elucidated. In contrast, protein translocation into the chloroplastic outer envelope uses distinct and various but poorly characterised insertion pathways. A topological framework for single-membrane spanning proteins of the chloroplastic outer envelope is presented.
Collapse
Affiliation(s)
- J Soll
- Botanisches Institut, Universität Kiel, Germany.
| | | |
Collapse
|
85
|
Abstract
▪ Abstract The assembly of the photosynthetic apparatus at the thylakoid begins with the targeting of proteins from their site of synthesis in the cytoplasm or stroma to the thylakoid membrane. Plastid-encoded proteins are targeted directly to the thylakoid during or after synthesis on plastid ribosomes. Nuclear-encoded proteins undergo a two-step targeting process requiring posttranslational import into the organelle from the cytoplasm and subsequent targeting to the thylakoid membrane. Recent investigations have revealed a single general import machinery at the envelope that mediates the direct transport of preproteins from the cytoplasm to the stroma. In contrast, at least four distinct pathways exist for the targeting of proteins to the thylakoid membrane. At least two of these systems are homologous to translocation systems that operate in bacteria and at the endoplasmic reticulum, indicating that elements of the targeting mechanisms have been conserved from the original prokaryotic endosymbiont.
Collapse
Affiliation(s)
- Danny J. Schnell
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102; e-mail:
| |
Collapse
|
86
|
May T, Soll J. Positive charges determine the topology and functionality of the transmembrane domain in the chloroplastic outer envelope protein Toc34. J Cell Biol 1998; 141:895-904. [PMID: 9585409 PMCID: PMC2132774 DOI: 10.1083/jcb.141.4.895] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Revised: 03/02/1998] [Indexed: 02/07/2023] Open
Abstract
The chloroplastic outer envelope protein Toc34 is inserted into the membrane by a COOH-terminal membrane anchor domain in the orientation Ncyto-Cin. The insertion is independent of ATP and a cleavable transit sequence. The cytosolic domain of Toc34 does not influence the insertion process and can be replaced by a different hydrophilic reporter peptide. Inversion of the COOH-terminal, 45-residue segment, including the membrane anchor domain (Toc34Cinv), resulted in an inverted topology of the protein, i.e., Nin-Ccyto. A mutual exchange of the charged amino acid residues NH2- and COOH-proximal of the hydrophobic alpha-helix indicates that a double-positive charge at the cytosolic side of the transmembrane alpha-helix is the sole determinant for its topology. When the inverted COOH-terminal segment was fused to the chloroplastic precursor of the ribulose-1,5-bisphosphate carboxylase small subunit (pS34Cinv), it engaged the transit sequence-dependent import pathway. The inverted peptide domain of Toc34 functions as a stop transfer signal and is released out of the outer envelope protein translocation machinery into the lipid phase. Simultaneously, the NH2-terminal part of the hybrid precursor remained engaged in the inner envelope protein translocon, which could be reversed by the removal of ATP, demonstrating that only an energy-dependent force but no further ionic interactions kept the precursor in the import machinery.
Collapse
Affiliation(s)
- T May
- Botanisches Institut, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Germany
| | | |
Collapse
|
87
|
Kouranov A, Schnell DJ. Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts. J Cell Biol 1997; 139:1677-85. [PMID: 9412463 PMCID: PMC2132644 DOI: 10.1083/jcb.139.7.1677] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Revised: 10/14/1997] [Indexed: 02/05/2023] Open
Abstract
We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.
Collapse
Affiliation(s)
- A Kouranov
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
88
|
Caliebe A, Grimm R, Kaiser G, Lübeck J, Soll J, Heins L. The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and a mononuclear iron-binding protein. EMBO J 1997; 16:7342-50. [PMID: 9405363 PMCID: PMC1170334 DOI: 10.1093/emboj/16.24.7342] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transport of precursor proteins across the chloroplastic envelope membranes requires the interaction of protein translocons localized in both the outer and inner envelope membranes. Analysis by blue native gel electrophoresis revealed that the translocon of the inner envelope membranes consisted of at least six proteins with molecular weights of 36, 45, 52, 60, 100 and 110 kDa, respectively. Tic110 and ClpC, identified as components of the protein import apparatus of the inner envelope membrane, were prominent constituents of this complex. The amino acid sequence of the 52 kDa protein, deduced from the cDNA, contains a predicted Rieske-type iron-sulfur cluster and a mononuclear iron-binding site. Diethylpyrocarbonate, a Rieske-type protein-modifying reagent, inhibits the translocation of precursor protein across the inner envelope membrane, whereas binding of the precursor to the outer envelope membrane is still possible. In another independent experimental approach, the 52 kDa protein could be co-purified with a trapped precursor protein in association with the chloroplast protein translocon subunits Toc86, Toc75, Toc34 and Tic110. Together, these results strongly suggest that the 52 kDa protein, named Tic55 due to its calculated molecular weight, is a member of the chloroplastic inner envelope protein translocon.
Collapse
Affiliation(s)
- A Caliebe
- Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Lawrence SD, Kindle KL. Alterations in the Chlamydomonas plastocyanin transit peptide have distinct effects on in vitro import and in vivo protein accumulation. J Biol Chem 1997; 272:20357-63. [PMID: 9252340 DOI: 10.1074/jbc.272.33.20357] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleus-encoded chloroplast proteins that reside in the thylakoid lumen are synthesized as precursors with bipartite transit peptides that contain information for uptake and intra-chloroplast localization. We have begun to apply the superb molecular and genetic attributes of Chlamydomonas to study chloroplast protein import by creating a series of deletions in the transit peptide of plastocyanin and determining their effects on translocation into isolated Chlamydomonas chloroplasts. Most N-terminal mutations dramatically inhibited in vitro import, whereas replacement with a transit peptide from the gamma-subunit of chloroplast ATPase restored uptake. Thus, the N-terminal region has stroma-targeting function. Deletions within the C-terminal portion of the transit peptide resulted in the appearance of import intermediates, suggesting that this region is required for lumen translocation and processing. Thus, despite its short length and predicted structural differences, the Chlamydomonas plastocyanin transit peptide has functional domains similar to those of vascular plants. Similar mutations have been analyzed in vivo by transforming altered genes into a mutant defective at the plastocyanin locus (K. L. Kindle, manuscript in preparation). Most mutations affected in vitro import more severely than plastocyanin accumulation in vivo. One exception was a deletion that removed residues 2-8, which nearly eliminated in vivo accumulation but had a modest effect in vitro. We suggest that this mutant precursor may not compete successfully with other proteins for the translocation pathway in vivo. Apparently, in vivo and in vitro analyses reveal different aspects of chloroplast protein biogenesis.
Collapse
Affiliation(s)
- S D Lawrence
- Plant Science Center, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
90
|
Schülke N, Sepuri NB, Pain D. In vivo zippering of inner and outer mitochondrial membranes by a stable translocation intermediate. Proc Natl Acad Sci U S A 1997; 94:7314-9. [PMID: 9207088 PMCID: PMC23818 DOI: 10.1073/pnas.94.14.7314] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It was previously assumed that the import of cytoplasmically synthesized precursor proteins into mitochondria occurs through a single structure spanning both outer and inner membranes at contact sites. Based on recent findings, however, the two membranes appear to contain independent translocation elements that reversibly cooperate during protein import. This feature makes it difficult to generate a means of isolating a fully integrated and functional translocation complex. To study these independent translocases in vitro and in vivo, we have constructed a chimeric protein consisting of an N-terminal authentic mitochondrial precursor (delta1-pyrroline-5-carboxylate dehydrogenase) linked, through glutathione S-transferase, to IgG binding domains derived from staphylococcal protein A. This construct becomes trapped en route to the matrix, spanning both outer and inner membranes in such a way that the entire signal-less delta1-pyrroline-5-carboxylate dehydrogenase moiety reaches the matrix, while only the folded protein A domain remains outside. During in vivo import of this precursor, outer and inner membranes of yeast mitochondria become progressively "zippered" together, forming long stretches of close contact. Using this novel intermediate, the outer and inner mitochondrial membrane channels, which normally interact only transiently, can be tightly joined (both in vitro and in vivo), forming a stable association. This suggests a method for isolating the functional translocation complex as a single entity.
Collapse
Affiliation(s)
- N Schülke
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | |
Collapse
|
91
|
Fuks B, Schnell DJ. Mechanism of Protein Transport across the Chloroplast Envelope. PLANT PHYSIOLOGY 1997; 114:405-410. [PMID: 12223715 PMCID: PMC158319 DOI: 10.1104/pp.114.2.405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- B. Fuks
- Department of Biological Sciences, Rutgers, The State University of New Jersey, 101 Warren Street, Newark, New Jersey 07102
| | | |
Collapse
|
92
|
Clark SA, Theg SM. A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol Biol Cell 1997; 8:923-34. [PMID: 9168475 PMCID: PMC276138 DOI: 10.1091/mbc.8.5.923] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many thylakoid lumenal proteins are nuclear encoded, cytosolically synthesized, and reach their functional location after posttranslational targeting across two chloroplast envelope membranes and the thylakoid membrane via proteinaceous transport systems. To study whether these transmembrane transport machineries can translocate folded structures, we overexpressed the 17-kDa subunit of the oxygen-evolving complex of photosystem II (prOE17) that had been modified to contain a unique C-terminal cysteine. This allowed us to chemically link a terminal 6.5-kDa bovine pancreatic trypsin inhibitor (BPTI) moiety to prOE17 to create the chimeric protein prOE17-BPTI. Redox reagents and an irreversible sulfhydryl-specific cross-linker, bis-maleimidohexane, were used to manipulate the structure of BPTI. Import of prOE17-BPTI into isolated chloroplasts and thylakoids demonstrates that the small tightly folded BPTI domain is carried across both the chloroplast envelopes and the delta pH-dependent transmembrane transporter of the thylakoid membrane when linked to the correctly targeted OE17 precursor. Transport proceeded even when the BPTI moiety was internally cross-linked into a protease-resistant form. These data indicate that unfolding is not a ubiquitous requirement for protein translocation and that at least some domains of targeted proteins can maintain a nonlinear structure during their translocation into and within chloroplasts.
Collapse
Affiliation(s)
- S A Clark
- Division of Biological Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
93
|
Froehlich JE, Keegstra K. Identification of a translocation intermediate occupying functional protein import sites in the chloroplastic envelope membrane. J Biol Chem 1997; 272:8077-82. [PMID: 9065482 DOI: 10.1074/jbc.272.12.8077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We used complexes of avidin and biotinylated precursors to generate translocation intermediates that occupy functional transport sites and thereby block the transport of other precursor proteins into pea chloroplasts. Cysteine residues of purified precursor to the small subunit of rubisco (prSS) were modified with the biotinylation reagent biotin-1-biotinamido-4-[-4'-(maleimidomethyl)-cyclohexane-ca rboxamido ]butane. Chemically biotinylated prSS was readily imported into chloroplasts. The addition of avidin, however, resulted in the formation of an avidin-biotinylated precursor complex that could not be imported into chloroplasts even when precursors had already engaged the transport apparatus before avidin was added. On fractionation, the avidin-biotinylated precursor complex associated with envelope membranes. Titration of transport sites with avidin-biotinylated precursor complexes revealed that saturation was reached at 2,000 molecules/chloroplast. Even with less than saturating levels of complexes, a sufficient number of translocation sites could be occupied with avidin-precursor complexes so that the import rate of freshly added radiolabeled prSS was reduced by 35%. From these observations we conclude that the trapped intermediates were blocking functional translocation sites. These biotinylated translocation intermediates should be useful in future efforts to purify and characterize the chloroplastic protein import machinery.
Collapse
Affiliation(s)
- J E Froehlich
- Michigan State University-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48823-1312, USA.
| | | |
Collapse
|
94
|
Akita M, Nielsen E, Keegstra K. Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol 1997; 136:983-94. [PMID: 9060464 PMCID: PMC2132478 DOI: 10.1083/jcb.136.5.983] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1996] [Revised: 01/09/1997] [Indexed: 02/03/2023] Open
Abstract
Transport of cytoplasmically synthesized proteins into chloroplasts uses an import machinery present in the envelope membranes. To identify the components of this machinery and to begin to examine how these components interact during transport, chemical cross-linking was performed on intact chloroplasts containing precursor proteins trapped at a particular stage of transport by ATP limitation. Large cross-linked complexes were observed using three different reversible homobifunctional cross-linkers. Three outer envelope membrane proteins (OEP86, OEP75, and OEP34) and one inner envelope membrane protein (IEP110), previously reported to be involved in protein import, were identified as components of these complexes. In addition to these membrane proteins, a stromal member of the hsp100 family, ClpC, was also present in the complexes. We propose that ClpC functions as a molecular chaperone, cooperating with other components to accomplish the transport of precursor proteins into chloroplasts. We also propose that each envelope membrane contains distinct translocation complexes and that a portion of these interact to form contact sites even in the absence of precursor proteins.
Collapse
Affiliation(s)
- M Akita
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312, USA
| | | | | |
Collapse
|
95
|
Chen D, Schnell DJ. Insertion of the 34-kDa chloroplast protein import component, IAP34, into the chloroplast outer membrane is dependent on its intrinsic GTP-binding capacity. J Biol Chem 1997; 272:6614-20. [PMID: 9045691 DOI: 10.1074/jbc.272.10.6614] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
IAP34 is a 34-kDa component of the outer membrane complex that mediates the initial stages of protein import into chloroplasts (Seedorf, M., Waegemann, K., and Soll, J. (1995) Plant J. 7, 401-411; Kessler, F., Blobel, G., Patel, H. A., and Schnell, D. J. (1994) Science 266, 1035-1039). We have investigated the targeting and insertion of IAP34 at the outer envelope membrane. The analyses of IAP34 deletion mutants and hybrid proteins (consisting of regions of IAP34 fused to the soluble IgG-binding domain of staphylococcal protein A) suggest that the transmembrane domain and C-terminal tail of IAP34 contain information essential but not sufficient for targeting to the outer membrane. Treatment of chloroplasts with exogenous proteases does not affect IAP34 insertion, indicating that targeting does not require surface-exposed receptors at the envelope. GTP or GDP is required for maximal integration of IAP34 into the outer membrane. The GTP/GDP requirement is attributed to the intrinsic GTP binding activity of IAP34 because GTP/GDP binding-deficient mutants are defective in outer membrane insertion. On the basis of these observations, we propose that IAP34 is targeted to the chloroplast by a C-terminal signal and efficiently integrated into the outer membrane by conformation-induced insertion upon GTP/GDP binding.
Collapse
Affiliation(s)
- D Chen
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | |
Collapse
|
96
|
Nielsen E, Akita M, Davila-Aponte J, Keegstra K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J 1997; 16:935-46. [PMID: 9118955 PMCID: PMC1169694 DOI: 10.1093/emboj/16.5.935] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytoplasmically synthesized precursors interact with translocation components in both the outer and inner envelope membranes during transport into chloroplasts. Using co-immunoprecipitation techniques, with antibodies specific to known translocation components, we identified stable interactions between precursor proteins and their associated membrane translocation components in detergent-solubilized chloroplastic membrane fractions. Antibodies specific to the outer envelope translocation components OEP75 and OEP34, the inner envelope translocation component IEP110 and the stromal Hsp100, ClpC, specifically co-immunoprecipitated precursor proteins under limiting ATP conditions, a stage we have called docking. A portion of these same translocation components was co-immunoprecipitated as a complex, and could also be detected by co-sedimentation through a sucrose density gradient. ClpC was observed only in complexes with those precursors utilizing the general import apparatus, and its interaction with precursor-containing translocation complexes was destabilized by ATP. Finally, ClpC was co-immunoprecipitated with a portion of the translocation components of both outer and inner envelope membranes, even in the absence of added precursors. We discuss possible roles for stromal Hsp100 in protein import and mechanisms of precursor binding in chloroplasts.
Collapse
Affiliation(s)
- E Nielsen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
97
|
Kouranov A, Schnell DJ. Protein translocation at the envelope and thylakoid membranes of chloroplasts. J Biol Chem 1996; 271:31009-12. [PMID: 8940090 DOI: 10.1074/jbc.271.49.31009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- A Kouranov
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | |
Collapse
|
98
|
Rothen R, Thiess M, Schumann P, Boschetti A. Import inhibition of poly(His) containing chloroplast precursor proteins by Ni2+ ions. FEBS Lett 1996; 396:135-8. [PMID: 8914974 DOI: 10.1016/0014-5793(96)01085-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase (pSS) and a modified pSS containing a C-terminal hexahistidyl tail (pSS(His)6) were imported into isolated Chlamydomonas chloroplasts with comparable efficiency. In the presence of Ni2+ ions the import of pSS(His)6 was inhibited and the precursor bound to the envelope remained protease sensitive, while import of pSS was not affected. Addition of an excess of L-histidine suppressed the inhibition demonstrating that the hexahistidyl-Ni2+ complex was responsible for import inhibition. Inhibition could be observed between about 0.5 and 10 mM Ni2+, depending on the total protein content in the assay. Import incompetent Ni2+-precursor complexes can be used to study early events in chloroplast protein import.
Collapse
Affiliation(s)
- R Rothen
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | | | |
Collapse
|
99
|
Abstract
Most chloroplast proteins are nuclear encoded, synthesized as larger precursor proteins in the cytosol, posttranslationally imported into the organelle, and routed to one of six different compartments. Import across the outer and inner envelope membranes into the stroma is the major means for entry of proteins destined for the stroma, the thylakoid membrane, and the thylakoid lumen. Recent investigations have identified several unique protein components of the envelope translocation machinery. These include two GTP-binding proteins that appear to participate in the early events of import and probably regulate precursor recognition and advancement into the translocon. Localization of imported precursor proteins to the thylakoid membrane and thylakoid lumen is accomplished by four distinct mechanisms; two are homologous to bacterial and endoplasmic reticulum protein transport systems, one appears unique, and the last may be a spontaneous mechanism. Thus chloroplast protein targeting is a unique and surprisingly complex process. The presence of GTP-binding proteins in the envelope translocation machinery indicates a different precursor recognition process than is present in mitochondria. Mechanisms for thylakoid protein localization are in part derived from the prokaryotic endosymbiont, but are more unusual and diverse than expected.
Collapse
Affiliation(s)
- K Cline
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
100
|
Abstract
The last few years has seen enormous progress in understanding of protein targeting and translocation across biological membranes. Many of the key molecules involved have been identified, isolated, and the corresponding genes cloned, opening up the way for detailed analysis of the structure and function of these molecular machines. It has become clear that the protein translocation machinery of the endoplasmic reticulum is very closely related to that of bacteria, and probably represents an ancient solution to the problem of how to get a protein across a membrane. One of the thylakoid translocation systems looks as if it will also be very similar, and probably represents a pathway inherited from the ancestral endosymbiont. It is interesting that, so far, there is a perfect correlation between thylakoid proteins which are present in photosynthetic prokaryotes and those which use the sec pathway in chloroplasts; conversely, OE16 and 23 which use the delta pH pathway are not found in cyanobacteria. To date, no Sec-related proteins have been found in mitochondria, although these organelles also arose as a result of endosymbiotic events. However, virtually nothing is known about the insertion of mitochondrially encoded proteins into the inner membrane. Is the inner membrane machinery which translocates cytoplasmically synthesized proteins capable of operating in reverse to export proteins from the matrix, or is there a separate system? Alternatively, do membrane proteins encoded by mitochondrial DNA insert independently of accessory proteins? Unlike nuclear-encoded proteins, proteins encoded by mtDNA are not faced with a choice of membrane and, in principle, could simply partition into the inner membrane. The ancestors of mitochondria almost certainly had a Sec system; has this been lost along with many of the proteins once encoded in the endosymbiont genome, or is there still such a system waiting to be discovered? The answer to this question may also shed light on the controversy concerning the sorting of the inter-membrane space proteins cytochrome c1 and cytochrome b2, as the conservative-sorting hypothesis would predict re-export of matrix intermediates via an ancestral (possibly Sec-type) pathway. Whereas the ER and bacterial systems clearly share homologous proteins, the protein import machineries of mitochondria and chloroplasts appear to be analogous rather than homologous. In both cases, import occurs through contact sites and there are separate translocation complexes in each membrane, however, with the exception of some of the chaperone molecules, the individual protein components do not appear to be related. Their similarities may be a case of convergent rather than divergent evolution, and may reflect what appear to be common requirements for translocation, namely unfolding, a receptor, a pore complex and refolding. There are also important differences. Translocation across the mitochondrial inner membrane is absolutely dependent upon delta psi, but no GTP requirement has been identified. In chloroplasts the reverse is the case. The roles of delta psi and GTP, respectively, remain uncertain, but it is tempting to speculate that they may play a role in regulating the import process, perhaps by controlling the assembly of a functional translocation complex. In the case of peroxisomes, much still remains to be learned. Many genes involved in peroxisome biogenesis have been identified but, in most cases, the biochemical function remains to be elucidated. In this respect, understanding of peroxisome biogenesis is at a similar stage to that of the ER 10 years ago. The coming together of genetic and biochemical approaches, as with the other organelles, should provide many of the answers.
Collapse
Affiliation(s)
- A Baker
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|