51
|
Jiang H, Swacha P, Gekara NO. Nuclear AIM2-Like Receptors Drive Genotoxic Tissue Injury by Inhibiting DNA Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102534. [PMID: 34658166 PMCID: PMC8596118 DOI: 10.1002/advs.202102534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Radiation is an essential preparative procedure for bone marrow (BM) transplantation and cancer treatment. The therapeutic efficacy of radiation and associated toxicity varies from patient to patient, making it difficult to prescribe an optimal patient-specific irradiation dose. The molecular determinants of radiation response remain unclear. AIM2-like receptors (ALRs) are key players in innate immunity and determine the course of infections, inflammatory diseases, senescence, and cancer. Here it is reported that mice lacking ALRs are resistant to irradiation-induced BM injury. It is shown that nuclear ALRs are inhibitors of DNA repair, thereby accelerate genome destabilization, micronuclei generation, and cell death, and that this novel function is uncoupled from their role in innate immunity. Mechanistically, ALRs bind to and interfere with chromatin decompaction vital for DNA repair. The finding uncovers ALRs as targets for new interventions against genotoxic tissue injury and as possible biomarkers for predicting the outcome of radio/chemotherapy.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Patrycja Swacha
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Nelson O. Gekara
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| |
Collapse
|
52
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
53
|
Abstract
Mammalian genomes have distinct levels of spatial organization and structure that have been hypothesized to play important roles in transcription regulation. Although much has been learned about these architectural features with ensemble techniques, single-cell studies are showing a new universal trend: Genomes are stochastic and dynamic at every level of organization. Stochastic gene expression, on the other hand, has been studied for years. In this review, we probe whether there is a causative link between the two phenomena. We specifically discuss the functionality of chromatin state, topologically associating domains (TADs), and enhancer biology in light of their stochastic nature and their specific roles in stochastic gene expression. We highlight persistent fundamental questions in this area of research.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
54
|
Chaudhary N, Im JK, Nho SH, Kim H. Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques. Mol Cells 2021; 44:627-636. [PMID: 34588320 PMCID: PMC8490199 DOI: 10.14348/molcells.2021.2254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.
Collapse
Affiliation(s)
- Narendra Chaudhary
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Si-Hyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
55
|
Liu Y, Zhao N, Kanemaki MT, Yamamoto Y, Sadamura Y, Ito Y, Tokunaga M, Stasevich TJ, Kimura H. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells. Genes Cells 2021; 26:905-926. [PMID: 34465007 PMCID: PMC8893316 DOI: 10.1111/gtc.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
In eukaryotic nuclei, chromatin loops mediated through cohesin are critical structures that regulate gene expression and DNA replication. Here, we demonstrate a new method to see endogenous genomic loci using synthetic zinc-finger proteins harboring repeat epitope tags (ZF probes) for signal amplification via binding of tag-specific intracellular antibodies, or frankenbodies, fused with fluorescent proteins. We achieve this in two steps: First, we develop an anti-FLAG frankenbody that can bind FLAG-tagged proteins in diverse live-cell environments. The anti-FLAG frankenbody complements the anti-HA frankenbody, enabling two-color signal amplification from FLAG- and HA-tagged proteins. Second, we develop a pair of cell-permeable ZF probes that specifically bind two endogenous chromatin loci predicted to be involved in chromatin looping. By coupling our anti-FLAG and anti-HA frankenbodies with FLAG- and HA-tagged ZF probes, we simultaneously see the dynamics of the two loci in single living cells. This shows a close association between the two loci in the majority of cells, but the loci markedly separate from the triggered degradation of the cohesin subunit RAD21. Our ability to image two endogenous genomic loci simultaneously in single living cells provides a proof of principle that ZF probes coupled with frankenbodies are useful new tools for exploring genome dynamics in multiple colors.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Yotaro Yamamoto
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yoshifusa Sadamura
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
56
|
Abstract
The imaging of chromatin, genomic loci, RNAs, and proteins is very important to study their localization, interaction, and coordinated regulation. Recently, several clustered regularly interspaced short palindromic repeats (CRISPR) based imaging methods have been established. The refurbished tool kits utilizing deactivated Cas9 (dCas9) and dCas13 have been established to develop applications of CRISPR-Cas technology beyond genome editing. Here, we review recent advancements in CRISPR-based methods that enable efficient imaging and visualization of chromatin, genomic loci, RNAs, and proteins. RNA aptamers, Pumilio, SuperNova tagging system, molecular beacons, halotag, bimolecular fluorescence complementation, RNA-guided endonuclease in situ labeling, and oligonucleotide-based imaging methods utilizing fluorescent proteins, organic dyes, or quantum dots have been developed to achieve improved fluorescence and signal-to-noise ratio for the imaging of chromatin or genomic loci. RNA-guided RNA targeting CRISPR systems (CRISPR/dCas13) and gene knock-in strategies based on CRISPR/Cas9 mediated site-specific cleavage and DNA repair mechanisms have been employed for efficient RNA and protein imaging, respectively. A few CRISPR-Cas-based methods to investigate the coordinated regulation of DNA-protein, DNA-RNA, or RNA-protein interactions for understanding chromatin dynamics, transcription, and protein function are also available. Overall, the CRISPR-based methods offer a significant improvement in elucidating chromatin organization and dynamics, RNA visualization, and protein imaging. The current and future advancements in CRISPR-based imaging techniques can revolutionize genome biology research for various applications.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
57
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
58
|
Sato Y, Nakao M, Kimura H. Live-Cell Imaging Probes to Track Chromatin Modification Dynamics. Microscopy (Oxf) 2021; 70:415-422. [PMID: 34329472 PMCID: PMC8491620 DOI: 10.1093/jmicro/dfab030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal organization of chromatin is regulated at different levels in the nucleus. Epigenetic modifications such as DNA methylation and histone modifications are involved in chromatin regulation and play fundamental roles in genome function. While the one-dimensional epigenomic landscape in many cell types has been revealed by chromatin immunoprecipitation and sequencing, the dynamic changes of chromatin modifications and their relevance to chromatin organization and genome function remain elusive. Live-cell probes to visualize chromatin and its modifications have become powerful tools to monitor dynamic chromatin regulation. Bulk chromatin can be visualized by both small fluorescent dyes and fluorescent proteins, and specific endogenous genomic loci have been detected by adapting genome-editing tools. To track chromatin modifications in living cells, various types of probes have been developed. Protein domains that bind weakly to specific modifications, such as chromodomains for histone methylation, can be repeated to create a tighter binding probe that can then be tagged with a fluorescent protein. It has also been demonstrated that antigen-binding fragments and single-chain variable fragments from modification-specific antibodies can serve as binding probes without disturbing cell division, development and differentiation. These modification-binding modules are used in modification sensors based on fluorescence/Förster resonance energy transfer to measure the intramolecular conformational changes triggered by modifications. Other probes can be created using a bivalent binding system, such as fluorescence complementation or luciferase chemiluminescence. Live-cell chromatin modification imaging using these probes will address dynamic chromatin regulation and will be useful for assaying and screening effective epigenome drugs in cells and organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masaru Nakao
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
59
|
Itoh Y, Woods EJ, Minami K, Maeshima K, Collepardo-Guevara R. Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling? Curr Opin Struct Biol 2021; 71:123-135. [PMID: 34303931 DOI: 10.1016/j.sbi.2021.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
Chromatin in eukaryotic cells is a negatively charged long polymer consisting of DNA, histones, and various associated proteins. With its highly charged and heterogeneous nature, chromatin structure varies greatly depending on various factors (e.g. chemical modifications and protein enrichment) and the surrounding environment (e.g. cations): from a 10-nm fiber, a folded 30-nm fiber, to chromatin condensates/droplets. Recent advanced imaging has observed that chromatin exhibits a dynamic liquid-like behavior and undergoes structural variations within the cell. Current computational modeling has made it possible to reconstruct the liquid-like chromatin in the cell by dealing with a number of nucleosomes on multiscale levels and has become a powerful technique to inspect the molecular mechanisms giving rise to the observed behavior, which imaging methods cannot do on their own. Based on new findings from both imaging and modeling studies, we discuss the dynamic aspect of chromatin in living cells and its functional relevance.
Collapse
Affiliation(s)
- Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
60
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
61
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
62
|
VirB, a key transcriptional regulator of virulence plasmid genes in Shigella flexneri, forms DNA-binding site dependent foci in the bacterial cytoplasm. J Bacteriol 2021; 203:JB.00627-20. [PMID: 33722845 PMCID: PMC8117518 DOI: 10.1128/jb.00627-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
VirB is a key regulator of genes located on the large virulence plasmid (pINV) in the bacterial pathogen Shigella flexneri VirB is unusual; it is not related to other transcriptional regulators, instead, it belongs to a family of proteins that primarily function in plasmid and chromosome partitioning; exemplified by ParB. Despite this, VirB does not function to segregate DNA, but rather counters transcriptional silencing mediated by the nucleoid structuring protein, H-NS. Since ParB localizes subcellularly as discrete foci in the bacterial cytoplasm, we chose to investigate the subcellular localization of VirB to gain novel insight into how VirB functions as a transcriptional anti-silencer. To do this, a GFP-VirB fusion that retains the regulatory activity of VirB and yet, does not undergo significant protein degradation in S. flexneri, was used. Surprisingly, discrete fluorescent foci were observed in live wild-type S. flexneri cells and an isogenic virB mutant using fluorescence microscopy. In contrast, foci were rarely observed (<10%) in pINV-cured cells or in cells expressing a GFP-VirB fusion carrying amino acid substitutions in the VirB DNA binding domain. Finally, the 25 bp VirB-binding site was demonstrated to be sufficient and necessary for GFP-VirB focus formation using a set of small surrogate plasmids. Combined, these data demonstrate that the VirB:DNA interactions required for the transcriptional anti-silencing activity of VirB on pINV are a prerequisite for the subcellular localization of VirB in the bacterial cytoplasm. The significance of these findings, in light of the anti-silencing activity of VirB, is discussed.ImportanceThis study reveals the subcellular localization of VirB, a key transcriptional regulator of virulence genes found on the large virulence plasmid (pINV) in Shigella. Fluorescent signals generated by an active GFP-VirB fusion form 2, 3, or 4 discrete foci in the bacterial cytoplasm, predominantly at the quarter cell position. These signals are completely dependent upon VirB interacting with its DNA binding site found either on the virulence plasmid or an engineered surrogate. Our findings: 1) provide novel insight into VirB:pINV interactions, 2) suggest that VirB may have utility as a DNA marker, and 3) raise questions about how and why this anti-silencing protein that controls virulence gene expression on pINV of Shigella spp. forms discrete foci/hubs within the bacterial cytoplasm.
Collapse
|
63
|
Abstract
Genomic information is encoded on long strands of DNA, which are folded into chromatin and stored in a tiny nucleus. Nuclear chromatin is a negatively charged polymer composed of DNA, histones, and various nonhistone proteins. Because of its highly charged nature, chromatin structure varies greatly depending on the surrounding environment (e.g., cations, molecular crowding, etc.). New technologies to capture chromatin in living cells have been developed over the past 10 years. Our view on chromatin organization has drastically shifted from a regular and static one to a more variable and dynamic one. Chromatin forms numerous compact dynamic domains that act as functional units of the genome in higher eukaryotic cells and locally appear liquid-like. By changing DNA accessibility, these domains can govern various functions. Based on new evidences from versatile genomics and advanced imaging studies, we discuss the physical nature of chromatin in the crowded nuclear environment and how it is regulated.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
64
|
Messelink JJB, van Teeseling MCF, Janssen J, Thanbichler M, Broedersz CP. Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nat Commun 2021; 12:1963. [PMID: 33785756 PMCID: PMC8010069 DOI: 10.1038/s41467-021-22189-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/15/2021] [Indexed: 02/01/2023] Open
Abstract
The order and variability of bacterial chromosome organization, contained within the distribution of chromosome conformations, are unclear. Here, we develop a fully data-driven maximum entropy approach to extract single-cell 3D chromosome conformations from Hi-C experiments on the model organism Caulobacter crescentus. The predictive power of our model is validated by independent experiments. We find that on large genomic scales, organizational features are predominantly present along the long cell axis: chromosomal loci exhibit striking long-ranged two-point axial correlations, indicating emergent order. This organization is associated with large genomic clusters we term Super Domains (SuDs), whose existence we support with super-resolution microscopy. On smaller genomic scales, our model reveals chromosome extensions that correlate with transcriptional and loop extrusion activity. Finally, we quantify the information contained in chromosome organization that may guide cellular processes. Our approach can be extended to other species, providing a general strategy to resolve variability in single-cell chromosomal organization.
Collapse
Affiliation(s)
- Joris J B Messelink
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Prokaryotic Cell Biology Group, Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Jacqueline Janssen
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
65
|
García Fernández F, Lemos B, Khalil Y, Batrin R, Haber JE, Fabre E. Modified chromosome structure caused by phosphomimetic H2A modulates the DNA damage response by increasing chromatin mobility in yeast. J Cell Sci 2021; 134:jcs.258500. [PMID: 33622771 DOI: 10.1242/jcs.258500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
In budding yeast and mammals, double-strand breaks (DSBs) trigger global chromatin mobility together with rapid phosphorylation of histone H2A over an extensive region of the chromatin. To assess the role of H2A phosphorylation in this response to DNA damage, we have constructed strains where H2A has been mutated to the phosphomimetic H2A-S129E. We show that mimicking H2A phosphorylation leads to an increase in global chromatin mobility in the absence of DNA damage. The intrinsic chromatin mobility of H2A-S129E is not due to downstream checkpoint activation, histone degradation or kinetochore anchoring. Rather, the increased intrachromosomal distances observed in the H2A-S129E mutant are consistent with chromatin structural changes. Strikingly, in this context the Rad9-dependent checkpoint becomes dispensable. Moreover, increased chromatin dynamics in the H2A-S129E mutant correlates with improved DSB repair by non-homologous end joining and a sharp decrease in interchromosomal translocation rate. We propose that changes in chromosomal conformation due to H2A phosphorylation are sufficient to modulate the DNA damage response and maintain genome integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Brenda Lemos
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yasmine Khalil
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Renaud Batrin
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuelle Fabre
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| |
Collapse
|
66
|
Zhang M, Yang C, Tasan I, Zhao H. Expanding the Potential of Mammalian Genome Engineering via Targeted DNA Integration. ACS Synth Biol 2021; 10:429-446. [PMID: 33596056 DOI: 10.1021/acssynbio.0c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inserting custom designed DNA sequences into the mammalian genome plays an essential role in synthetic biology. In particular, the ability to introduce foreign DNA in a site-specific manner offers numerous advantages over random DNA integration. In this review, we focus on two mechanistically distinct systems that have been widely adopted for targeted DNA insertion in mammalian cells, the CRISPR/Cas9 system and site-specific recombinases. The CRISPR/Cas9 system has revolutionized the genome engineering field thanks to its high programmability and ease of use. However, due to its dependence on linearized DNA donor and endogenous cellular pathways to repair the induced double-strand break, CRISPR/Cas9-mediated DNA insertion still faces limitations such as small insert size, and undesired editing outcomes via error-prone repair pathways. In contrast, site-specific recombinases, in particular the Serine integrases, demonstrate large-cargo capability and no dependence on cellular repair pathways for DNA integration. Here we first describe recent advances in improving the overall efficacy of CRISPR/Cas9-based methods for DNA insertion. Moreover, we highlight the advantages of site-specific recombinases over CRISPR/Cas9 in the context of targeted DNA integration, with a special focus on the recent development of programmable recombinases. We conclude by discussing the importance of protein engineering to further expand the current toolkit for targeted DNA insertion in mammalian cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
67
|
Abstract
Cancers and developmental disorders are associated with alterations in the 3D genome architecture in space and time (the fourth dimension). Mammalian 3D genome organization is complex and dynamic and plays an essential role in regulating gene expression and cellular function. To study the causal relationship between genome function and its spatio-temporal organization in the nucleus, new technologies for engineering and manipulating the 3D organization of the genome have been developed. In particular, CRISPR-Cas technologies allow programmable manipulation at specific genomic loci, enabling unparalleled opportunities in this emerging field of 3D genome engineering. We review advances in mammalian 3D genome engineering with a focus on recent manipulative technologies using CRISPR-Cas and related technologies.
Collapse
|
68
|
Joseph F, Lee SJ, Bryant EE, Rothstein R. Measuring Chromosome Pairing During Homologous Recombination in Yeast. Methods Mol Biol 2021; 2153:253-265. [PMID: 32840785 DOI: 10.1007/978-1-0716-0644-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The precise organization of the genome inside the cell nucleus is vital to many cell functions including gene expression, cell division, and DNA repair. Here we describe a method to measure pairing of DNA loci during homologous recombination (HR) at a site-specific double-strand break (DSB) in Saccharomyces cerevisiae. This method utilizes a chromosome tagging system in diploid yeast cells to visualize both the DNA at the break site and the homologous DNA that serves as a repair template. DNA repair products are confirmed in parallel by genomic blot. This visualization method provides insight into the physical contact that occurs between homologous loci during HR and correlates physical interaction with the timing of DNA repair.
Collapse
Affiliation(s)
- Fraulin Joseph
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - So Jung Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Eric Edward Bryant
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
69
|
Cairo G, MacKenzie AM, Lacefield S. Differential requirement for Bub1 and Bub3 in regulation of meiotic versus mitotic chromosome segregation. J Cell Biol 2020; 219:133770. [PMID: 32328625 PMCID: PMC7147105 DOI: 10.1083/jcb.201909136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Accurate chromosome segregation depends on the proper attachment of kinetochores to spindle microtubules before anaphase onset. The Ipl1/Aurora B kinase corrects improper attachments by phosphorylating kinetochore components and so releasing aberrant kinetochore–microtubule interactions. The localization of Ipl1 to kinetochores in budding yeast depends upon multiple pathways, including the Bub1–Bub3 pathway. We show here that in meiosis, Bub3 is crucial for correction of attachment errors. Depletion of Bub3 results in reduced levels of kinetochore-localized Ipl1 and concomitant massive chromosome missegregation caused by incorrect chromosome–spindle attachments. Depletion of Bub3 also results in shorter metaphase I and metaphase II due to premature localization of protein phosphatase 1 (PP1) to kinetochores, which antagonizes Ipl1-mediated phosphorylation. We propose a new role for the Bub1–Bub3 pathway in maintaining the balance between kinetochore localization of Ipl1 and PP1, a balance that is essential for accurate meiotic chromosome segregation and timely anaphase onset.
Collapse
Affiliation(s)
- Gisela Cairo
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
70
|
Sánchez-Romero MA, Mérida-Floriano Á, Casadesús J. Copy Number Heterogeneity in the Virulence Plasmid of Salmonella enterica. Front Microbiol 2020; 11:599931. [PMID: 33343541 PMCID: PMC7746676 DOI: 10.3389/fmicb.2020.599931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Quantitative PCR analysis shows that the virulence plasmid of Salmonella enterica serovar Typhimurium (pSLT) is a low-copy-number plasmid, with 1–2 copies per chromosome. However, fluorescence microscopy observation of pSLT labeled with a lacO fluorescent tag reveals cell-to-cell differences in the number of foci, which ranges from 1 to 8. As each focus must correspond to ≥1 plasmid copy, the number of foci can be expected to indicate the minimal number of pSLT copies per cell. A correlation is found between the number of foci and the bacterial cell volume. In contrast, heterogeneity in the number of foci appears to be independent of the cell volume and may have stochastic origin. As a consequence of copy number heterogeneity, expression of a pSLT-bone reporter gene shows high levels of cell-to-cell variation, especially in actively dividing cultures. These observations support the notion that low-copy-number plasmids can be a source of gene expression noise in bacterial populations.
Collapse
Affiliation(s)
| | | | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
71
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
72
|
Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol 2020; 21:278. [PMID: 33203432 PMCID: PMC7670612 DOI: 10.1186/s13059-020-02185-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic genome is hierarchically structured yet highly dynamic. Regulating transcription in this environment demands a high level of coordination to permit many proteins to interact with chromatin fiber at appropriate sites in a timely manner. We describe how recent advances in quantitative imaging techniques overcome caveats of sequencing-based methods (Hi-C and related) by enabling direct visualization of transcription factors and chromatin at high resolution, from single genes to the whole nucleus. We discuss the contribution of fluorescence imaging to deciphering the principles underlying this coordination within the crowded nuclear space in living cells and discuss challenges ahead.
Collapse
Affiliation(s)
- Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Current Address: Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
73
|
Haas J, Bloesel D, Bacher S, Kracht M, Schmitz ML. Chromatin Targeting of HIPK2 Leads to Acetylation-Dependent Chromatin Decondensation. Front Cell Dev Biol 2020; 8:852. [PMID: 32984337 PMCID: PMC7490299 DOI: 10.3389/fcell.2020.00852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
The protein kinase homeodomain-interacting protein kinase 2 (HIPK2) plays an important role in development and in the response to external cues. The kinase associates with an exceptionally large number of different transcription factors and chromatin regulatory proteins to direct distinct gene expression programs. In order to investigate the function of HIPK2 for chromatin compaction, HIPK2 was fused to the DNA-binding domains of Gal4 or LacI, thus allowing its specific targeting to binding sites for these transcription factors that were integrated in specific chromosome loci. Tethering of HIPK2 resulted in strong decompaction of euchromatic and heterochromatic areas. HIPK2-mediated heterochromatin decondensation started already 4 h after its chromatin association and required the functionality of its SUMO-interacting motif. This process was paralleled by disappearance of the repressive H3K27me3 chromatin mark, recruitment of the acetyltransferases CBP and p300 and increased histone acetylation at H3K18 and H4K5. HIPK2-mediated chromatin decompaction was strongly inhibited in the presence of a CBP/p300 inhibitor and completely blocked by the BET inhibitor JQ1, consistent with a causative role of acetylations for this process. Chromatin tethering of HIPK2 had only a minor effect on basal transcription, while it strongly boosted estrogen-triggered gene expression by acting as a transcriptional cofactor.
Collapse
Affiliation(s)
- Jana Haas
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Daniel Bloesel
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Susanne Bacher
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Michael Kracht
- Member of the German Center for Lung Research, Giessen, Germany.,Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
74
|
Chaudhary N, Nho SH, Cho H, Gantumur N, Ra JS, Myung K, Kim H. Background-suppressed live visualization of genomic loci with an improved CRISPR system based on a split fluorophore. Genome Res 2020; 30:1306-1316. [PMID: 32887690 PMCID: PMC7545142 DOI: 10.1101/gr.260018.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
The higher-order structural organization and dynamics of the chromosomes play a central role in gene regulation. To explore this structure–function relationship, it is necessary to directly visualize genomic elements in living cells. Genome imaging based on the CRISPR system is a powerful approach but has limited applicability due to background signals and nonspecific aggregation of fluorophores within nuclei. To address this issue, we developed a novel visualization scheme combining tripartite fluorescent proteins with the SunTag system and demonstrated that it strongly suppressed background fluorescence and amplified locus-specific signals, allowing long-term tracking of genomic loci. We integrated the multicomponent CRISPR system into stable cell lines to allow quantitative and reliable analysis of dynamic behaviors of genomic loci. Due to the greatly elevated signal-to-background ratio, target loci with only small numbers of sequence repeats could be successfully tracked, even under a conventional fluorescence microscope. This feature enables the application of CRISPR-based imaging to loci throughout the genome and opens up new possibilities for the study of nuclear processes in living cells.
Collapse
Affiliation(s)
- Narendra Chaudhary
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Si-Hyeong Nho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hayoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Narangerel Gantumur
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
75
|
Miné-Hattab J, Chiolo I. Complex Chromatin Motions for DNA Repair. Front Genet 2020; 11:800. [PMID: 33061931 PMCID: PMC7481375 DOI: 10.3389/fgene.2020.00800] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
A number of studies across different model systems revealed that chromatin undergoes significant changes in dynamics in response to DNA damage. These include local motion changes at damage sites, increased nuclear exploration of both damaged and undamaged loci, and directed motions to new nuclear locations associated with certain repair pathways. These studies also revealed the need for new analytical methods to identify directed motions in a context of mixed trajectories, and the importance of investigating nuclear dynamics over different time scales to identify diffusion regimes. Here we provide an overview of the current understanding of this field, including imaging and analytical methods developed to investigate nuclear dynamics in different contexts. These dynamics are essential for genome integrity. Identifying the molecular mechanisms responsible for these movements is key to understanding how their misregulation contributes to cancer and other genome instability disorders.
Collapse
Affiliation(s)
- Judith Miné-Hattab
- UMR 3664, CNRS, Institut Curie, PSL Research University, Paris, France
- UMR 3664, CNRS, Institut Curie, Sorbonne Université, Paris, France
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
76
|
Khosravi S, Schindele P, Gladilin E, Dunemann F, Rutten T, Puchta H, Houben A. Application of Aptamers Improves CRISPR-Based Live Imaging of Plant Telomeres. FRONTIERS IN PLANT SCIENCE 2020; 11:1254. [PMID: 32973827 PMCID: PMC7468473 DOI: 10.3389/fpls.2020.01254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/30/2020] [Indexed: 06/01/2023]
Abstract
Development of live imaging techniques for providing information how chromatin is organized in living cells is pivotal to decipher the regulation of biological processes. Here, we demonstrate the improvement of a live imaging technique based on CRISPR/Cas9. In this approach, the sgRNA scaffold is fused to RNA aptamers including MS2 and PP7. When the dead Cas9 (dCas9) is co-expressed with chimeric sgRNA, the fluorescent coat protein-tagged for MS2 and PP7 aptamers (tdMCP-FP and tdPCP-FP) are recruited to the targeted sequence. Compared to previous work with dCas9:GFP, we show that the quality of telomere labeling was improved in transiently transformed Nicotiana benthamiana using aptamer-based CRISPR-imaging constructs. Labeling is influenced by the copy number of aptamers and less by the promoter types. The same constructs were not applicable for labeling of repeats in stably transformed plants and roots. The constant interaction of the RNP complex with its target DNA might interfere with cellular processes.
Collapse
Affiliation(s)
- Solmaz Khosravi
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Evgeny Gladilin
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Frank Dunemann
- Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institut (JKI), Quedlinburg, Germany
| | - Twan Rutten
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas Houben
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
77
|
Kim J, Venkata NC, Hernandez Gonzalez GA, Khanna N, Belmont AS. Gene expression amplification by nuclear speckle association. J Cell Biol 2020; 219:jcb.201904046. [PMID: 31757787 PMCID: PMC7039209 DOI: 10.1083/jcb.201904046] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/31/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
Many active genes reproducibly position near nuclear speckles, but the functional significance of this positioning is unknown. Here we show that HSPA1B BAC transgenes and endogenous Hsp70 genes turn on 2-4 min after heat shock (HS), irrespective of their distance to speckles. However, both total HSPA1B mRNA counts and nascent transcript levels measured adjacent to the transgene are approximately twofold higher for speckle-associated alleles 15 min after HS. Nascent transcript level fold-increases for speckle-associated alleles are 12-56-fold and 3-7-fold higher 1-2 h after HS for HSPA1B transgenes and endogenous genes, respectively. Severalfold higher nascent transcript levels for several Hsp70 flanking genes also correlate with speckle association at 37°C. Live-cell imaging reveals that HSPA1B nascent transcript levels increase/decrease with speckle association/disassociation. Initial investigation reveals that increased nascent transcript levels accompanying speckle association correlate with reduced exosome RNA degradation and larger Ser2p CTD-modified RNA polymerase II foci. Our results demonstrate stochastic gene expression dependent on positioning relative to a liquid-droplet nuclear compartment through "gene expression amplification."
Collapse
Affiliation(s)
- Jiah Kim
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Neha Chivukula Venkata
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - Nimish Khanna
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Andrew S Belmont
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
78
|
Lawrimore CJ, Lawrimore J, He Y, Chavez S, Bloom K. Polymer perspective of genome mobilization. Mutat Res 2020; 821:111706. [PMID: 32516654 DOI: 10.1016/j.mrfmmm.2020.111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Chromosome motion is an intrinsic feature of all DNA-based metabolic processes and is a particularly well-documented response to both DNA damage and repair. By using both biological and polymer physics approaches, many of the contributing factors of chromatin motility have been elucidated. These include the intrinsic properties of chromatin, such as stiffness, as well as the loop modulators condensin and cohesin. Various biological factors such as external tethering to nuclear domains, ATP-dependent processes, and nucleofilaments further impact chromatin motion. DNA damaging agents that induce double-stranded breaks also cause increased chromatin motion that is modulated by recruitment of repair and checkpoint proteins. Approaches that integrate biological experimentation in conjunction with models from polymer physics provide mechanistic insights into the role of chromatin dynamics in biological function. In this review we discuss the polymer models and the effects of both DNA damage and repair on chromatin motion as well as mechanisms that may underlie these effects.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Josh Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Yunyan He
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Sergio Chavez
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Kerry Bloom
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States.
| |
Collapse
|
79
|
Abstract
Until recently, our understanding of chromosome organization in higher eukaryotic cells has been based on analyses of large-scale, low-resolution changes in chromosomes structure. More recently, CRISPR-Cas9 technologies have allowed us to "zoom in" and visualize specific chromosome regions in live cells so that we can begin to examine in detail the dynamics of chromosome organization in individual cells. In this review, we discuss traditional methods of chromosome locus visualization and look at how CRISPR-Cas9 gene-targeting methodologies have helped improve their application. We also describe recent developments of the CRISPR-Cas9 technology that enable visualization of specific chromosome regions without the requirement for complex genetic manipulation.
Collapse
Affiliation(s)
- John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee , Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee , Dundee, UK
| |
Collapse
|
80
|
Shaban HA, Seeber A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res 2020; 48:3423-3434. [PMID: 32123910 PMCID: PMC7144944 DOI: 10.1093/nar/gkaa135] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
The spatio-temporal organization of chromatin in the eukaryotic cell nucleus is of vital importance for transcription, DNA replication and genome maintenance. Each of these activities is tightly regulated in both time and space. While we have a good understanding of chromatin organization in space, for example in fixed snapshots as a result of techniques like FISH and Hi-C, little is known about chromatin dynamics in living cells. The rapid development of flexible genomic loci imaging approaches can address fundamental questions on chromatin dynamics in a range of model organisms. Moreover, it is now possible to visualize not only single genomic loci but the whole genome simultaneously. These advances have opened many doors leading to insight into several nuclear processes including transcription and DNA repair. In this review, we discuss new chromatin imaging methods and how they have been applied to study transcription.
Collapse
Affiliation(s)
- Haitham A Shaban
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Andrew Seeber
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
81
|
Maeshima K, Tamura S, Hansen JC, Itoh Y. Fluid-like chromatin: Toward understanding the real chromatin organization present in the cell. Curr Opin Cell Biol 2020; 64:77-89. [PMID: 32283330 DOI: 10.1016/j.ceb.2020.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 12/23/2022]
Abstract
Eukaryotic chromatin is a negatively charged polymer consisting of genomic DNA, histones, and various nonhistone proteins. Because of its highly charged character, the structure of chromatin varies greatly depending on the surrounding environment (i.e. cations etc.): from an extended 10-nm fiber, to a folded 30-nm fiber, to chromatin condensates/liquid-droplets. Over the last ten years, newly developed technologies have drastically shifted our view on chromatin from a static regular structure to a more irregular and dynamic one, locally like a fluid. Since no single imaging (or genomics) method can tell us everything and beautiful images (or models) can fool our minds, comprehensive analyses based on many technical approaches are important to capture actual chromatin organization inside the cell. Here we critically discuss our current view on chromatin and methodology used to support the view.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
82
|
Sato H, Das S, Singer RH, Vera M. Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annu Rev Biochem 2020; 89:159-187. [PMID: 32176523 DOI: 10.1146/annurev-biochem-011520-104955] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , ,
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , ,
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , , .,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Maria Vera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , , .,Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada;
| |
Collapse
|
83
|
Saik NO, Park N, Ptak C, Adames N, Aitchison JD, Wozniak RW. Recruitment of an Activated Gene to the Yeast Nuclear Pore Complex Requires Sumoylation. Front Genet 2020; 11:174. [PMID: 32211027 PMCID: PMC7067905 DOI: 10.3389/fgene.2020.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
In addition to their role in regulating transport across the nuclear envelope, increasing evidence suggests nuclear pore complexes (NPCs) function in regulating gene expression. For example, the induction of certain genes (e.g., yeast INO1) is accompanied by their movement from the nuclear interior to NPCs. As sumoylation has been linked to the regulation of chromatin spatial organization and transcriptional activity, we investigated the role of sumoylation in the expression and NPC recruitment of the INO1 gene. We observed that induction of INO1 is accompanied by both increased and decreased sumoylation of proteins associated with specific regions along the INO1 locus. Furthermore, we show that the E3 ligase Siz2/Nfi1 is required for targeting the INO1 locus to the NPC where it interacts with the SUMO isopeptidase Ulp1. Our data suggest that this interaction is required for both the association of INO1 with the NPC and for its normal expression. These results imply that sumoylation is a key regulator of INO1 targeting to the NPC, and a cycle of sumoylation and NPC-associated desumoylation events contribute to the regulation of INO1 expression.
Collapse
Affiliation(s)
- Natasha O Saik
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Nogi Park
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Neil Adames
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.,New Culture, San Francisco, CA, United States
| | - John D Aitchison
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
84
|
Oobatake Y, Shimizu N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 2020; 59:133-143. [PMID: 31569279 DOI: 10.1002/gcc.22810] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation. Amplified genes often reside on extrachromosomal double minutes (DMs). Low-dose hydroxyurea induces DM aggregation in the nucleus which, in turn, generates micronuclei composed of DMs. Low-dose hydroxyurea also induces random double-strand breakage throughout the nucleus. In the present study, we found that double-strand breakage in DMs is sufficient for induction of DM aggregation. Here, we used CRISPR/Cas9 to introduce specific breakages in both natural and artificially tagged DMs of human colorectal carcinoma COLO 320DM cells. Aggregation occurred in the S phase but not in the G1 phase within 4 hours after breakage, which suggested the possible involvement of homologous recombination in the aggregation of numerous DMs. Simultaneous detection of DMs and the phosphorylated histone H2AX revealed that the aggregation persisted after breakage repair. Thus, the aggregate generated cytoplasmic micronuclei at the next interphase. Our data also suggested that micronuclear entrapment eliminated the DMs or morphologically transformed them into giant DMs or homogeneously staining regions (HSRs). In this study, we obtained a model explaining the consequences of DMs after double-strand breakage in cancer cells. Because double-strand breakage is frequently involved in cancer therapy, the model suggests how it affects gene amplification.
Collapse
Affiliation(s)
- Yoshihiro Oobatake
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
85
|
McCord RP, Kaplan N, Giorgetti L. Chromosome Conformation Capture and Beyond: Toward an Integrative View of Chromosome Structure and Function. Mol Cell 2020; 77:688-708. [PMID: 32001106 PMCID: PMC7134573 DOI: 10.1016/j.molcel.2019.12.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapidly developing technologies have recently fueled an exciting era of discovery in the field of chromosome structure and nuclear organization. In addition to chromosome conformation capture (3C) methods, new alternative techniques have emerged to study genome architecture and biological processes in the nucleus, often in single or living cells. This sets an unprecedented stage for exploring the mechanisms that link chromosome structure and biological function. Here we review popular as well as emerging approaches to study chromosome organization, focusing on the contribution of complementary methodologies to our understanding of structures revealed by 3C methods and their biological implications, and discuss the next technical and conceptual frontiers.
Collapse
Affiliation(s)
- Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
86
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
87
|
Babokhov M, Hibino K, Itoh Y, Maeshima K. Local Chromatin Motion and Transcription. J Mol Biol 2020; 432:694-700. [DOI: 10.1016/j.jmb.2019.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
|
88
|
Brickner DG, Randise-Hinchliff C, Lebrun Corbin M, Liang JM, Kim S, Sump B, D'Urso A, Kim SH, Satomura A, Schmit H, Coukos R, Hwang S, Watson R, Brickner JH. The Role of Transcription Factors and Nuclear Pore Proteins in Controlling the Spatial Organization of the Yeast Genome. Dev Cell 2020; 49:936-947.e4. [PMID: 31211995 DOI: 10.1016/j.devcel.2019.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Loss of nuclear pore complex (NPC) proteins, transcription factors (TFs), histone modification enzymes, Mediator, and factors involved in mRNA export disrupts the physical interaction of chromosomal sites with NPCs. Conditional inactivation and ectopic tethering experiments support a direct role for the TFs Gcn4 and Nup2 in mediating interaction with the NPC but suggest an indirect role for factors involved in mRNA export or transcription. A conserved "positioning domain" within Gcn4 controls interaction with the NPC and inter-chromosomal clustering and promotes transcription of target genes. Such a function may be quite common; a comprehensive screen reveals that tethering of most yeast TFs is sufficient to promote targeting to the NPC. While some TFs require Nup100, others do not, suggesting two distinct targeting mechanisms. These results highlight an important and underappreciated function of TFs in controlling the spatial organization of the yeast genome through interaction with the NPC.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | | | - Marine Lebrun Corbin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Julie Ming Liang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Stephanie Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Bethany Sump
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Seo Hyun Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Atsushi Satomura
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Heidi Schmit
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Subin Hwang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Raven Watson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
89
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
90
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
91
|
Pereman I, Melamed-Bessudo C, Dahan-Meir T, Herz E, Elbaum M, Levy AA. Single Molecule Imaging of T-DNA Intermediates Following Agrobacterium tumefaciens Infection in Nicotiana benthamiana. Int J Mol Sci 2019; 20:ijms20246209. [PMID: 31835367 PMCID: PMC6940882 DOI: 10.3390/ijms20246209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Plant transformation mediated by Agrobacterium tumefaciens is a well-studied phenomenon in which a bacterial DNA fragment (T-DNA), is transferred to the host plant cell, as a single strand, via type IV secretion system and has the potential to reach the nucleus and to be integrated into its genome. While Agrobacterium-mediated transformation has been widely used for laboratory-research and in breeding, the time-course of its journey from the bacterium to the nucleus, the conversion from single- to double-strand intermediates and several aspects of the integration in the genome remain obscure. In this study, we sought to follow T-DNA infection directly using single-molecule live imaging. To this end, we applied the LacO-LacI imaging system in Nicotiana benthamiana, which enabled us to identify double-stranded T-DNA (dsT-DNA) molecules as fluorescent foci. Using confocal microscopy, we detected progressive accumulation of dsT-DNA foci in the nucleus, starting 23 h after transfection and reaching an average of 5.4 and 8 foci per nucleus at 48 and 72 h post-infection, respectively. A time-course diffusion analysis of the T-DNA foci has demonstrated their spatial confinement.
Collapse
Affiliation(s)
- Idan Pereman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
- Migal, Galilee Research Institute, Kiryat Shmona 11016, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Herz
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| |
Collapse
|
92
|
Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 2019; 28:7-17. [PMID: 31792795 DOI: 10.1007/s10577-019-09622-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Collapse
|
93
|
Du M, Kodner S, Bai L. Enhancement of LacI binding in vivo. Nucleic Acids Res 2019; 47:9609-9618. [PMID: 31396617 PMCID: PMC6765135 DOI: 10.1093/nar/gkz698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) bind to specific sequences in DNA to regulate transcription. Despite extensive measurements of TFs’ dissociation constant (Kd) in vitro, their apparent Kdin vivo are usually unknown. LacI, a bacterial TF, is often used to artificially recruit proteins onto eukaryotic genomes. As LacI binds tightly to its recognition site (LacO) in vitro with a Kd about 10 picomolar (pM), it is often assumed that LacI also has high affinity to LacO in vivo. In this work, we measured LacI binding in living yeast cells using a fluorescent repressor operator system and found an apparent Kd of ∼0.6 μM, four orders of magnitude higher than that in vitro. By genetically altering (i) GFP-LacI structure, (ii) GFP-LacI stability, (iii) chromosome accessibility and (iv) LacO sequence, we reduced the apparent Kd to <10 nM. It turns out that the GFP tagging location and the fusion protein stability have a large effect on LacI binding, but surprisingly, chromosome accessibility only plays a mild role. These findings contribute to our quantitative understanding of the features that affect the apparent Kd of TF in cells. They also provide guidance for future design of more specific chromosomal recruitment through high-affinity TFs.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seth Kodner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
94
|
Tasan I, Sustackova G, Zhang L, Kim J, Sivaguru M, HamediRad M, Wang Y, Genova J, Ma J, Belmont AS, Zhao H. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. Nucleic Acids Res 2019; 46:e100. [PMID: 29912475 PMCID: PMC6158506 DOI: 10.1093/nar/gky501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Nuclear organization has an important role in determining genome function; however, it is not clear how spatiotemporal organization of the genome relates to functionality. To elucidate this relationship, a method for tracking any locus of interest is desirable. Recently clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or transcription activator-like effectors were adapted for imaging endogenous loci; however, they are mostly limited to visualization of repetitive regions. Here, we report an efficient and scalable method named SHACKTeR (Short Homology and CRISPR/Cas9-mediated Knock-in of a TetO Repeat) for live cell imaging of specific chromosomal regions without the need for a pre-existing repetitive sequence. SHACKTeR requires only two modifications to the genome: CRISPR/Cas9-mediated knock-in of an optimized TetO repeat and its visualization by TetR-EGFP expression. Our simplified knock-in protocol, utilizing short homology arms integrated by polymerase chain reaction, was successful at labeling 10 different loci in HCT116 cells. We also showed the feasibility of knock-in into lamina-associated, heterochromatin regions, demonstrating that these regions prefer non-homologous end joining for knock-in. Using SHACKTeR, we were able to observe DNA replication at a specific locus by long-term live cell imaging. We anticipate the general applicability and scalability of our method will enhance causative analyses between gene function and compartmentalization in a high-throughput manner.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gabriela Sustackova
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiah Kim
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mohammad HamediRad
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Justin Genova
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
95
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
96
|
Yildirim A, Feig M. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization. Nucleic Acids Res 2019. [PMID: 29529244 PMCID: PMC5934669 DOI: 10.1093/nar/gky141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-resolution three-dimensional models of Caulobacter crescentus nucleoid structures were generated via a multi-scale modeling protocol. Models were built as a plectonemically supercoiled circular DNA and by incorporating chromosome conformation capture based data to generate an ensemble of base pair resolution models consistent with the experimental data. Significant structural variability was found with different degrees of bending and twisting but with overall similar topologies and shapes that are consistent with C. crescentus cell dimensions. The models allowed a direct mapping of the genomic sequence onto the three-dimensional nucleoid structures. Distinct spatial distributions were found for several genomic elements such as AT-rich sequence elements where nucleoid associated proteins (NAPs) are likely to bind, promoter sites, and some genes with common cellular functions. These findings shed light on the correlation between the spatial organization of the genome and biological functions.
Collapse
Affiliation(s)
- Asli Yildirim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
97
|
Maeshima K, Ide S, Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol 2019; 58:95-104. [DOI: 10.1016/j.ceb.2019.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
|
98
|
Alexander JM, Guan J, Li B, Maliskova L, Song M, Shen Y, Huang B, Lomvardas S, Weiner OD. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 2019; 8:e41769. [PMID: 31124784 PMCID: PMC6534382 DOI: 10.7554/elife.41769] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Enhancers are important regulatory elements that can control gene activity across vast genetic distances. However, the underlying nature of this regulation remains obscured because it has been difficult to observe in living cells. Here, we visualize the spatial organization and transcriptional output of the key pluripotency regulator Sox2 and its essential enhancer Sox2 Control Region (SCR) in living embryonic stem cells (ESCs). We find that Sox2 and SCR show no evidence of enhanced spatial proximity and that spatial dynamics of this pair is limited over tens of minutes. Sox2 transcription occurs in short, intermittent bursts in ESCs and, intriguingly, we find this activity demonstrates no association with enhancer proximity, suggesting that direct enhancer-promoter contacts do not drive contemporaneous Sox2 transcription. Our study establishes a framework for interrogation of enhancer function in living cells and supports an unexpected mechanism for enhancer control of Sox2 expression that uncouples transcription from enhancer proximity.
Collapse
Affiliation(s)
- Jeffrey M Alexander
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
| | - Juan Guan
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Bingkun Li
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Lenka Maliskova
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Michael Song
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoUnited States
| | - Yin Shen
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoUnited States
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Bo Huang
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
- Mortimer B Zuckerman Mind Brain and Behavior InstituteColumbia UniversityNew York CityUnited States
| | - Orion D Weiner
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
99
|
Yamamoto TG, Ding DQ, Nagahama Y, Chikashige Y, Haraguchi T, Hiraoka Y. Histone H2A insufficiency causes chromosomal segregation defects due to anaphase chromosome bridge formation at rDNA repeats in fission yeast. Sci Rep 2019; 9:7159. [PMID: 31073221 PMCID: PMC6509349 DOI: 10.1038/s41598-019-43633-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/28/2019] [Indexed: 11/16/2022] Open
Abstract
The nucleosome, composed of DNA and a histone core, is the basic structural unit of chromatin. The fission yeast Schizosaccharomyces pombe has two genes of histone H2A, hta1+ and hta2+; these genes encode two protein species of histone H2A (H2Aα and H2Aβ, respectively), which differ in three amino acid residues, and only hta2+ is upregulated during meiosis. However, it is unknown whether S. pombe H2Aα and H2Aβ have functional differences. Therefore, in this study, we examined the possible functional differences between H2Aα and H2Aβ during meiosis in S. pombe. We found that deletion of hta2+, but not hta1+, causes defects in chromosome segregation and spore formation during meiosis. Meiotic defects in hta2+ deletion cells were rescued by expressing additional copies of hta1+ or by expressing hta1+ from the hta2 promoter. This indicated that the defects were caused by insufficient amounts of histone H2A, and not by the amino acid residue differences between H2Aα and H2Aβ. Microscopic observation attributed the chromosome segregation defects to anaphase bridge formation in a chromosomal region at the repeats of ribosomal RNA genes (rDNA repeats). These results suggest that histone H2A insufficiency affects the chromatin structures of rDNA repeats, leading to chromosome missegregation in S. pombe.
Collapse
Affiliation(s)
- Takaharu G Yamamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuki Nagahama
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
100
|
Dynamic chromatin organization in the cell. Essays Biochem 2019; 63:133-145. [PMID: 30967477 DOI: 10.1042/ebc20180054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The organization and regulation of genomic DNA as nuclear chromatin is necessary for proper DNA function inside living eukaryotic cells. While this has been extensively explored, no true consensus is currently reached regarding the exact mechanism of chromatin organization. The traditional view has assumed that the DNA is packaged into a hierarchy of structures inside the nucleus based on the regular 30-nm chromatin fiber. This is currently being challenged by the fluid-like model of the chromatin which views the chromatin as a dynamic structure based on the irregular 10-nm fiber. In this review, we focus on the recent progress in chromatin structure elucidation highlighting the paradigm shift in chromatin folding mechanism from the classical textbook perspective of the regularly folded chromatin to the more dynamic fluid-like perspective.
Collapse
|