51
|
Liu JJ. Regulation of dynein-dynactin-driven vesicular transport. Traffic 2017; 18:336-347. [PMID: 28248450 DOI: 10.1111/tra.12475] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Most of the long-range intracellular movements of vesicles, organelles and other cargoes are driven by microtubule (MT)-based molecular motors. Cytoplasmic dynein, a multisubunit protein complex, with the aid of dynactin, drives transport of a wide variety of cargoes towards the minus end of MTs. In this article, I review our current understanding of the mechanisms underlying spatiotemporal regulation of dynein-dynactin-driven vesicular transport with a special emphasis on the many steps of directional movement along MT tracks. These include the recruitment of dynein to MT plus ends, the activation and processivity of dynein, and cargo recognition and release by the motor complex at the target membrane. Furthermore, I summarize the most recent findings about the fine control mechanisms for intracellular transport via the interaction between the dynein-dynactin motor complex and its vesicular cargoes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
Lu W, Gelfand VI. Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends Cell Biol 2017; 27:505-514. [PMID: 28284467 DOI: 10.1016/j.tcb.2017.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023]
Abstract
In addition to their well-known role in transporting cargoes in the cytoplasm, microtubule motors organize their own tracks - the microtubules. While this function is mostly studied in the context of cell division, it is essential for microtubule organization and generation of cell polarity in interphase cells. Kinesin-1, the most abundant microtubule motor, plays a role in the initial formation of neurites. This review describes the mechanism of kinesin-1-driven microtubule sliding and discusses its biological significance in neurons. Recent studies describing the interplay between kinesin-1 and cytoplasmic dynein in the translocation of microtubules are discussed. In addition, we evaluate recent work exploring the developmental regulation of microtubule sliding during axonal outgrowth and regeneration. Collectively, the discussed works suggest that sliding of interphase microtubules by motors is a novel force-generating mechanism that reorganizes the cytoskeleton and drives shape change and polarization.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 11-100, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 11-100, Chicago, IL 60611, USA.
| |
Collapse
|
53
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
54
|
Salogiannis J, Reck-Peterson SL. Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport. Trends Cell Biol 2016; 27:141-150. [PMID: 27665063 DOI: 10.1016/j.tcb.2016.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
The long-range movement of organelles, vesicles, and macromolecular complexes by microtubule-based transport is crucial for cell growth and survival. The canonical view of intracellular transport is that each cargo directly recruits molecular motors via cargo-specific adaptor molecules. Recently, a new paradigm called 'hitchhiking' has emerged: some cargos can achieve motility by interacting with other cargos that have already recruited molecular motors. In this way, cargos are co-transported together and their movements are directly coupled. Cargo hitchhiking was discovered in fungi. However, the observation that organelle dynamics are coupled in mammalian cells suggests that this paradigm may be evolutionarily conserved. We review here the data for hitchhiking and discuss the biological significance of this non-canonical mode of microtubule-based transport.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
55
|
|
56
|
Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. Proc Natl Acad Sci U S A 2016; 113:E4995-5004. [PMID: 27512034 DOI: 10.1073/pnas.1522424113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.
Collapse
|
57
|
Load-induced enhancement of Dynein force production by LIS1-NudE in vivo and in vitro. Nat Commun 2016; 7:12259. [PMID: 27489054 PMCID: PMC4976208 DOI: 10.1038/ncomms12259] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Most sub-cellular cargos are transported along microtubules by kinesin and dynein molecular motors, but how transport is regulated is not well understood. It is unknown whether local control is possible, for example, by changes in specific cargo-associated motor behaviour to react to impediments. Here we discover that microtubule-associated lipid droplets (LDs) in COS1 cells respond to an optical trap with a remarkable enhancement in sustained force production. This effect is observed only for microtubule minus-end-moving LDs. It is specifically blocked by RNAi for the cytoplasmic dynein regulators LIS1 and NudE/L (Nde1/Ndel1), but not for the dynactin p150Glued subunit. It can be completely replicated using cell-free preparations of purified LDs, where duration of LD force production is more than doubled. These results identify a novel, intrinsic, cargo-associated mechanism for dynein-mediated force adaptation, which should markedly improve the ability of motor-driven cargoes to overcome subcellular obstacles. Transport of large cargo through the cytoplasm can encounter physical impediments which should be overcome. Here the authors show that lipid droplets constrained by an optical trap respond with an increase in dynein-mediated force that is dependent on dynein regulators LIS1 and NudE/L, but not on p150glued.
Collapse
|
58
|
Tanaka Y, Niwa S, Dong M, Farkhondeh A, Wang L, Zhou R, Hirokawa N. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function. Neuron 2016; 90:1215-1229. [DOI: 10.1016/j.neuron.2016.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/12/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023]
|
59
|
White JA, Banerjee R, Gunawardena S. Axonal Transport and Neurodegeneration: How Marine Drugs Can Be Used for the Development of Therapeutics. Mar Drugs 2016; 14:E102. [PMID: 27213408 PMCID: PMC4882576 DOI: 10.3390/md14050102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022] Open
Abstract
Unlike virtually any other cells in the human body, neurons are tasked with the unique problem of transporting important factors from sites of synthesis at the cell bodies, across enormous distances, along narrow-caliber projections, to distally located nerve terminals in order to maintain cell viability. As a result, axonal transport is a highly regulated process whereby necessary cargoes of all types are packaged and shipped from one end of the neuron to the other. Interruptions in this finely tuned transport have been linked to many neurodegenerative disorders including Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) suggesting that this pathway is likely perturbed early in disease progression. Therefore, developing therapeutics targeted at modifying transport defects could potentially avert disease progression. In this review, we examine a variety of potential compounds identified from marine aquatic species that affect the axonal transport pathway. These compounds have been shown to function in microtubule (MT) assembly and maintenance, motor protein control, and in the regulation of protein degradation pathways, such as the autophagy-lysosome processes, which are defective in many degenerative diseases. Therefore, marine compounds have great potential in developing effective treatment strategies aimed at early defects which, over time, will restore transport and prevent cell death.
Collapse
Affiliation(s)
- Joseph A White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
60
|
Kevenaar JT, Bianchi S, van Spronsen M, Olieric N, Lipka J, Frias CP, Mikhaylova M, Harterink M, Keijzer N, Wulf PS, Hilbert M, Kapitein LC, de Graaff E, Ahkmanova A, Steinmetz MO, Hoogenraad CC. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Curr Biol 2016; 26:849-61. [PMID: 26948876 DOI: 10.1016/j.cub.2016.01.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 11/24/2022]
Abstract
Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.
Collapse
Affiliation(s)
- Josta T Kevenaar
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Sarah Bianchi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Myrrhe van Spronsen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Joanna Lipka
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; International Institute of Molecular and Cell Biology, 02-1009 Warsaw, Poland
| | - Cátia P Frias
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Marina Mikhaylova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Nanda Keijzer
- Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Phebe S Wulf
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Manuel Hilbert
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Esther de Graaff
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Anna Ahkmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands.
| |
Collapse
|
61
|
Yagensky O, Kalantary Dehaghi T, Chua JJE. The Roles of Microtubule-Based Transport at Presynaptic Nerve Terminals. Front Synaptic Neurosci 2016; 8:3. [PMID: 26903856 PMCID: PMC4748046 DOI: 10.3389/fnsyn.2016.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/19/2023] Open
Abstract
Targeted intracellular movement of presynaptic proteins plays important roles during synapse formation and, later, in the homeostatic maintenance of mature synapses. Movement of these proteins, often as vesicular packages, is mediated by motor complexes travelling along intracellular cytoskeletal networks. Presynaptic protein transport by kinesin motors in particular plays important roles during synaptogenesis to bring newly synthesized proteins to establish nascent synaptic sites. Conversely, movement of proteins away from presynaptic sites by Dynein motors enables synapse-nuclear signaling and allows for synaptic renewal through degradation of unwanted or damaged proteins. Remarkably, recent data has indicated that synaptic and protein trafficking machineries can modulate each other's functions. Here, we survey the mechanisms involved in moving presynaptic components to and away from synapses and how this process supports presynaptic function.
Collapse
Affiliation(s)
- Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry Göttingen, Germany
| | - Tahere Kalantary Dehaghi
- Research Group Protein Trafficking in Synaptic Development and Function, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry Göttingen, Germany
| | - John Jia En Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Department of Neurobiology, Max-Planck-Institute for Biophysical ChemistryGöttingen, Germany; Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSingapore; Neurobiology/Ageing Programme, National University of Singapore, SingaporeSingapore
| |
Collapse
|
62
|
McLaughlin RT, Diehl MR, Kolomeisky AB. Collective dynamics of processive cytoskeletal motors. SOFT MATTER 2016; 12:14-21. [PMID: 26444155 PMCID: PMC4684438 DOI: 10.1039/c5sm01609f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed.
Collapse
Affiliation(s)
- R Tyler McLaughlin
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Michael R Diehl
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Anatoly B Kolomeisky
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Chemistry, Houston, TX 77005, USA.
| |
Collapse
|
63
|
Jolly AL, Luan CH, Dusel BE, Dunne SF, Winding M, Dixit VJ, Robins C, Saluk JL, Logan DJ, Carpenter AE, Sharma M, Dean D, Cohen AR, Gelfand VI. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. Cell Rep 2016; 14:611-620. [PMID: 26774481 DOI: 10.1016/j.celrep.2015.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/21/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Long-distance intracellular transport of organelles, mRNA, and proteins ("cargo") occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.
Collapse
Affiliation(s)
- Amber L Jolly
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA; Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Brendon E Dusel
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Sara F Dunne
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Michael Winding
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Vishrut J Dixit
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Chloe Robins
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Jennifer L Saluk
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - David J Logan
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Manu Sharma
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Deborah Dean
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Andrew R Cohen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
64
|
Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells. Dev Cell 2016; 34:656-68. [PMID: 26418295 DOI: 10.1016/j.devcel.2015.08.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/04/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023]
Abstract
For glucose-stimulated insulin secretion (GSIS), insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice.
Collapse
|
65
|
Yi J, Khobrekar NV, Dantas TJ, Zhou J, Vallee RB. Imaging of motor-dependent transport in neuronal and nonneuronal cells at high spatial and temporal resolution. Methods Cell Biol 2016; 131:453-65. [DOI: 10.1016/bs.mcb.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Vasil'yeva NA, Murzina GB, Pivovarov AS. Habituation-Like Decrease of Acetylcholine-Induced Inward Current in Helix Command Neurons: Role of Microtubule Motor Proteins. Cell Mol Neurobiol 2015; 35:703-12. [PMID: 25687906 DOI: 10.1007/s10571-015-0165-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
The role of kinesin and dynein microtubule-associated molecular motors in the cellular mechanism of depression of acetylcholine-induced inward chloride current (ACh-current) was examined in command neurons of land snails (Helix lucorum) in response to repeated applications of ACh to neuronal soma. This pharmacological stimulation imitated the protocol of tactile stimulation evoking behavioural habituation of the defensive reaction. In this system, a dynein inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, 50 µM) decreased the ACh-current depression rate. Kinesin Eg5 inhibitors (Eg5 inhibitor III, 10 µM and Eg5 inhibitor V, trans-24, 15 µM) reduced the degree of current depression, and Eg5 inhibitor V also reduced the initial rate of depression. The results of electrophysiological experiments in combination with mathematical modelling provided evidence of the participation of dyneins and kinesin Eg5 proteins in the radial transport of acetylcholine receptors in command neurons of H. lucorum in the cellular analogue of habituation. Furthermore, these results suggest that the reciprocal interaction between dynein and kinesin proteins located on the same vesicle can lead to reverse their usual direction of transport (dyneins-in exocytosis and kinesin Eg5-in endocytosis).
Collapse
Affiliation(s)
- Natal'ya A Vasil'yeva
- Department of Higher Nervous Activity, Faculty of Biology, Moscow Lomonosov State University, Leninskie Gory dom 1, Stroenie 12, Moscow, 119991, Russia
| | | | | |
Collapse
|
67
|
Schönherr R, Klinge M, Rudolph JM, Fita K, Rehders D, Lübber F, Schneegans S, Majoul IV, Duszenko M, Betzel C, Brandariz-Nuñez A, Martinez-Costas J, Duden R, Redecke L. Real-time investigation of dynamic protein crystallization in living cells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041712. [PMID: 26798811 PMCID: PMC4711630 DOI: 10.1063/1.4921591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 05/21/2023]
Abstract
X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus μNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitro.
Collapse
Affiliation(s)
- R Schönherr
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - M Klinge
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - K Fita
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - D Rehders
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | | | - I V Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - M Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen , Hoppe-Seyler-Straβe 4, 72076 Tübingen, Germany
| | - C Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg , c/o DESY, Notkestr. 85, 22603 Hamburg, Germany
| | - A Brandariz-Nuñez
- Department of Biochemistry and Molecular Biology, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), University Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - J Martinez-Costas
- Department of Biochemistry and Molecular Biology, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), University Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - R Duden
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - L Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
68
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
69
|
Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA, Schulte B, Diaz-Griffero F, Walsh D, Naghavi MH. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun 2015; 6:6660. [PMID: 25818806 PMCID: PMC4380233 DOI: 10.1038/ncomms7660] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. Although a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bi-directional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement towards the nucleus.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Geoffrey Bennett
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | - Bianca Schulte
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
70
|
Lu W, Lakonishok M, Gelfand VI. Kinesin-1-powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons. Mol Biol Cell 2015; 26:1296-307. [PMID: 25657321 PMCID: PMC4454177 DOI: 10.1091/mbc.e14-10-1423] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule sliding drives initial axon regeneration in Drosophila neurons. Axotomy leads to fast calcium influx and subsequent microtubule reorganization. Kinesin-1 heavy chain drives the sliding of antiparallel microtubules to power axonal regrowth, and the JNK pathway promotes axonal regeneration by enhancing microtubule sliding. Understanding the mechanism underlying axon regeneration is of great practical importance for developing therapeutic treatment for traumatic brain and spinal cord injuries. Dramatic cytoskeleton reorganization occurs at the injury site, and microtubules have been implicated in the regeneration process. Previously we demonstrated that microtubule sliding by conventional kinesin (kinesin-1) is required for initiation of neurite outgrowth in Drosophila embryonic neurons and that sliding is developmentally down-regulated when neurite outgrowth is completed. Here we report that mechanical axotomy of Drosophila neurons in culture triggers axonal regeneration and regrowth. Regenerating neurons contain actively sliding microtubules; this sliding, like sliding during initial neurite outgrowth, is driven by kinesin-1 and is required for axonal regeneration. The injury induces a fast spike of calcium, depolymerization of microtubules near the injury site, and subsequent formation of local new microtubule arrays with mixed polarity. These events are required for reactivation of microtubule sliding at the initial stages of regeneration. Furthermore, the c-Jun N-terminal kinase pathway promotes regeneration by enhancing microtubule sliding in injured mature neurons.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
71
|
Rajapakshe AR, Podyma-Inoue KA, Terasawa K, Hasegawa K, Namba T, Kumei Y, Yanagishita M, Hara-Yokoyama M. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells. Exp Cell Res 2015; 331:211-222. [PMID: 25246127 DOI: 10.1016/j.yexcr.2014.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
Abstract
The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed.
Collapse
Affiliation(s)
- Anupama R Rajapakshe
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katarzyna A Podyma-Inoue
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kazue Terasawa
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katsuya Hasegawa
- JAXA/Institute of Space and Astronautical Sciences, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara 252-5210, Kanagawa, Japan
| | - Toshimitsu Namba
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yasuhiro Kumei
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masaki Yanagishita
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Miki Hara-Yokoyama
- Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
72
|
Sainath R, Gallo G. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Dev Neurobiol 2014; 75:757-77. [PMID: 25404503 DOI: 10.1002/dneu.22246] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/11/2022]
Abstract
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.
Collapse
Affiliation(s)
- Rajiv Sainath
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
73
|
Tanenbaum ME, Akhmanova A, Medema R. Bi-directional transport of the nucleus by dynein and kinesin-1. Commun Integr Biol 2014. [DOI: 10.4161/cib.13780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
74
|
Starr DA. Watching nuclei move: Insights into how kinesin-1 and dynein function together. BIOARCHITECTURE 2014; 1:9-13. [PMID: 21866255 DOI: 10.4161/bioa.1.1.14629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/21/2010] [Indexed: 12/29/2022]
Abstract
Moving nuclei to specific intracellular locations is central to many cell and developmental processes. However, the molecular mechanisms of nuclear migration are poorly understood. We took advantage of the ability to film nuclear migration events in Caenorhabditis elegans embryos to gain insights into the mechanisms of nuclear migration. Mutations in unc-83 blocked the initiation of nuclear migration. UNC-83 recruits kinesin-1 and dynein to the nuclear envelope. Live imaging of mutants showed that kinein-1 provides the major force to move nuclei. Dynein is responsible to move nuclei backwards or to mediate nuclear rolling to by pass cellular roadblocks that impede efficient migration. Live imaging was also used to analyze the microtubule network, which is highly polarized and dynamic. This detailed mechanism of nuclear migration may be applicable to nuclear migration in other systems and for the movement of other large cellular cargo.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology; University of California, Davis; Davis, CA USA
| |
Collapse
|
75
|
Encalada SE, Goldstein LSB. Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu Rev Biophys 2014; 43:141-69. [PMID: 24702007 DOI: 10.1146/annurev-biophys-051013-022746] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axonal transport is indispensable for the distribution of vesicles, organelles, messenger RNAs (mRNAs), and signaling molecules along the axon. This process is mediated by kinesins and dyneins, molecular motors that bind to cargoes and translocate on microtubule tracks. Tight modulation of motor protein activity is necessary, but little is known about the molecules and mechanisms that regulate transport. Moreover, evidence suggests that transport impairments contribute to the initiation or progression of neurodegenerative diseases, or both, but the mechanisms by which motor activity is affected in disease are unclear. In this review, we discuss some of the physical and biophysical properties that influence motor regulation in healthy neurons. We further discuss the evidence for the role of transport in neurodegeneration, highlighting two pathways that may contribute to transport impairment-dependent disease: genetic mutations or variation, and protein aggregation. Understanding how and when transport parameters change in disease will help delineate molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Sandra E Encalada
- Department of Molecular and Experimental Medicine, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
76
|
Abstract
Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models--microtubule tethering, mechanical activation and steric disinhibition--are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.
Collapse
|
77
|
Scherer J, Yi J, Vallee RB. PKA-dependent dynein switching from lysosomes to adenovirus: a novel form of host-virus competition. ACTA ACUST UNITED AC 2014; 205:163-77. [PMID: 24778311 PMCID: PMC4003248 DOI: 10.1083/jcb.201307116] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PKA-mediated phosphorylation of a specific residue in the dynein light intermediate chain 1 releases the motor protein from lysosomes and late endosomes while activating its recruitment to adenovirus capsids. Cytoplasmic dynein is responsible for transport of several viruses to the nucleus. Adenovirus recruits dynein directly. Transport depends on virus-induced activation of protein kinase A (PKA) and other cellular protein kinases, whose roles in infection are poorly understood. We find that PKA phosphorylates cytoplasmic dynein at a novel site in light intermediate chain 1 (LIC1) that is essential for dynein binding to the hexon capsid subunit and for virus motility. Surprisingly, the same LIC1 modification induces a slow, but specific, dispersal of lysosomes (lyso)/late endosomes (LEs) that is mediated by inhibition of a newly identified LIC1 interaction with the RILP (Rab7-interacting lysosomal protein). These results identify an organelle-specific dynein regulatory modification that adenovirus uses for its own transport. PKA-mediated LIC1 phosphorylation causes only partial lyso/LE dispersal, suggesting a role for additional, parallel mechanisms for dynein recruitment to lyso/LEs. This arrangement provides a novel means to fine tune transport of these organelles in response to infection as well as to developmental and physiological cues.
Collapse
Affiliation(s)
- Julian Scherer
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
78
|
Blasier KR, Humsi MK, Ha J, Ross MW, Smiley WR, Inamdar NA, Mitchell DJ, Lo KWH, Pfister KK. Live cell imaging reveals differential modifications to cytoplasmic dynein properties by phospho- and dephosphomimic mutations of the intermediate chain 2C S84. J Neurosci Res 2014; 92:1143-54. [PMID: 24798412 DOI: 10.1002/jnr.23388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/28/2023]
Abstract
Cytoplasmic dynein is a multisubunit motor protein responsible for intracellular cargo transport toward microtubule minus ends. There are multiple isoforms of the dynein intermediate chain (DYNC1I, IC), which is encoded by two genes. One way to regulate cytoplasmic dynein is by IC phosphorylation. The IC-2C isoform is expressed in all cells, and the functional significance of phosphorylation on IC-2C serine 84 was investigated by using live cell imaging of fluorescent protein-tagged IC-2C wild type (WT) and phospho- and dephosphomimic mutant isoforms in axonal transport model systems. Both mutations modulated dynein functional properties. The dephosphomimic mutant IC-2C S84A had greater colocalization with mitochondria than the IC-2C WT or the phosphomimic mutant IC-2C S84D. The dephosphomimic mutant IC-2C S84A was also more likely to be motile than the phosphomimic mutant IC-2C S84D or the IC-2C WT. In contrast, the phosphomimic mutant IC-2C S84D mutant was more likely to move in the retrograde direction than was the IC-2C S84A mutant. The phosphomimic IC-2C S84D was also as likely as the IC-2C WT to colocalize with mitochondria. Both the S84D phospho- and the S84A dephosphomimic mutants were found to be capable of microtubule minus-end-directed (retrograde) movement in axons. They were also observed to be passively transported in the anterograde direction. These data suggest that the IC-2C S84 has a role in modulating dynein properties.
Collapse
Affiliation(s)
- Kiev R Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Garrett CA, Barri M, Kuta A, Soura V, Deng W, Fisher EMC, Schiavo G, Hafezparast M. DYNC1H1 mutation alters transport kinetics and ERK1/2-cFos signalling in a mouse model of distal spinal muscular atrophy. ACTA ACUST UNITED AC 2014; 137:1883-93. [PMID: 24755273 DOI: 10.1093/brain/awu097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the gene encoding the heavy chain subunit (DYNC1H1) of cytoplasmic dynein cause spinal muscular atrophy with lower extremity predominance, Charcot-Marie-Tooth disease and intellectual disability. We used the legs at odd angles (Loa) (DYNC1H1(F580Y)) mouse model for spinal muscular atrophy with lower extremity predominance and a combination of live-cell imaging and biochemical assays to show that the velocity of dynein-dependent microtubule minus-end (towards the nucleus) movement of EGF and BDNF induced signalling endosomes is significantly reduced in Loa embryonic fibroblasts and motor neurons. At the same time, the number of the plus-end (towards the cell periphery) moving endosomes is increased in the mutant cells. As a result, the extracellular signal-regulated kinases (ERK) 1/2 activation and c-Fos expression are altered in both mutant cell types, but the motor neurons exhibit a strikingly abnormal ERK1/2 and c-Fos response to serum-starvation induced stress. These data highlight the cell-type specific ERK1/2 response as a possible contributory factor in the neuropathological nature of Dync1h1 mutations, despite generic aberrant kinetics in both cell types, providing an explanation for how mutations in the ubiquitously expressed DYNC1H1 cause neuron-specific disease.
Collapse
Affiliation(s)
- Caroline A Garrett
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Muruj Barri
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anna Kuta
- 2 Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Violetta Soura
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Wenhan Deng
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Elizabeth M C Fisher
- 2 Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Giampietro Schiavo
- 3 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Majid Hafezparast
- 1 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
80
|
Soundararajan HC, Bullock SL. The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. eLife 2014; 3:e01596. [PMID: 24737859 PMCID: PMC3985186 DOI: 10.7554/elife.01596] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many cellular constituents travel along microtubules in association with multiple copies of motor proteins. How the activity of these motors is regulated during cargo sorting is poorly understood. In this study, we address this issue using a novel in vitro assay for the motility of localising Drosophila mRNAs bound to native dynein-dynactin complexes. High precision tracking reveals that individual RNPs within a population undergo either diffusive, or highly processive, minus end-directed movements along microtubules. RNA localisation signals stimulate the processive movements, with regulation of dynein-dynactin’s activity rather than its total copy number per RNP, responsible for this effect. Our data support a novel mechanism for multi-motor translocation based on the regulation of dynein processivity by discrete cargo-associated features. Studying the in vitro responses of RNPs to microtubule-associated proteins (MAPs) and microtubule ends provides insights into how an RNA population could navigate the cytoskeletal network and become anchored at its destination in cells. DOI:http://dx.doi.org/10.7554/eLife.01596.001 For a cell to do its job, the different components inside it need to be moved to different locations. This is achieved by an elaborate cellular transport system. To move a component to where it needs to be, motor proteins bind to it, often with the assistance of other ‘accessory’ proteins. This cargo-motor complex then moves along a network of tracks within the cell. Viruses also exploit this transport system in order to be trafficked to specific parts of the cell during their life cycles. Many cargos are moved along microtubule tracks. Multiple microtubule motor proteins often attach to the same cargo, but it is unclear how they work together during transport. Previous studies have attempted to address this issue by attaching motor proteins to artificial cargoes, such as synthetic beads. However, these experiments did not include some of the accessory proteins that are thought to play a role during transport within the living cell. Soundararajan and Bullock have now examined how complexes containing multiple motors bound to accessory proteins move molecules of messenger RNA to specific sites within cells. By visualising fruit fly mRNA moving along microtubules attached to a glass surface, the transport process can be studied in detail. It appears that the complexes travel using one of two methods: they either diffuse along the microtubules, which they can do in either direction, or they power themselves along the microtubules, which they can only do in one direction. Although previous experiments with artificial cargos suggested that the number of motors in the complex determines the likelihood of one-way traffic, it appears that one or more accessory proteins are actually in control during mRNA transport. Soundararajan and Bullock also documented how the mRNA-motor complexes react to roadblocks and dead-ends on the microtubule highway. Rather than letting go of the microtubule upon such an encounter, the complexes can reverse back down the track. This behaviour may help them to find a new route to their destination. DOI:http://dx.doi.org/10.7554/eLife.01596.002
Collapse
|
81
|
Granger E, McNee G, Allan V, Woodman P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 2014; 31:20-9. [PMID: 24727350 PMCID: PMC4071412 DOI: 10.1016/j.semcdb.2014.04.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022]
Abstract
The endocytic pathway is essential for processes that define how cells interact with their environment, including receptor signalling, cell adhesion and migration, pathogen entry, membrane protein turnover and nutrient uptake. The spatial organisation of endocytic trafficking requires motor proteins that tether membranes or transport them along the actin and microtubule cytoskeletons. Microtubules, actin filaments and motor proteins also provide force to deform and assist in the scission of membranes, thereby facilitating endosomal sorting and the generation of transport intermediates.
Collapse
Affiliation(s)
- Elizabeth Granger
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Gavin McNee
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Allan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Philip Woodman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
82
|
Brown AK, Hunt SD, Stephens DJ. Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport. Biol Open 2014; 3:307-13. [PMID: 24705013 PMCID: PMC4021352 DOI: 10.1242/bio.20147633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently demonstrated that dynein and kinesin motors drive multiple aspects of endosomal function in mammalian cells. These functions include driving motility, maintaining morphology (notably through providing longitudinal tension to support vesicle fission), and driving cargo sorting. Microtubule motors drive bidirectional motility during traffic between the endoplasmic reticulum (ER) and Golgi. Here, we have examined the role of microtubule motors in transport carrier motility, morphology, and domain organization during ER-to-Golgi transport. We show that, consistent with our findings for endosomal dynamics, microtubule motor function during ER-to-Golgi transport of secretory cargo is required for motility, morphology, and cargo sorting within vesicular tubular carriers en route to the Golgi. Our data are consistent with previous findings that defined roles for dynein-1, kinesin-1 (KIF5B) and kinesin-2 in this trafficking step. Our high resolution tracking data identify some intriguing aspects. Depletion of kinesin-1 reduces the number of motile structures seen, which is in line with other findings relating to the role of kinesin-1 in ER export. However, those transport carriers that were produced had a much greater run length suggesting that this motor can act as a brake on anterograde motility. Kinesin-2 depletion did not significantly reduce the number of motile transport carriers but did cause a similar increase in run length. These data suggest that kinesins act as negative regulators of ER-to-Golgi transport. Depletion of dynein not only reduced the number of motile carriers formed but also caused tubulation of carriers similar to that seen for sorting nexin-coated early endosomes. Our data indicated that the previously observed anterograde–retrograde polarity of transport carriers in transit to the Golgi from the ER is maintained by microtubule motor function.
Collapse
Affiliation(s)
- Anna K Brown
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Sylvie D Hunt
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
83
|
Blehm BH, Selvin PR. Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact. Chem Rev 2014; 114:3335-52. [PMID: 24666199 PMCID: PMC4049635 DOI: 10.1021/cr4005555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin H. Blehm
- Physics Department and Center for Physics of the Living Cell, University of Illinois at Urbana- Champaign, 1110 West Green Street, Urbana, IL 61802
| | - Paul R. Selvin
- Physics Department and Center for Physics of the Living Cell, University of Illinois at Urbana- Champaign, 1110 West Green Street, Urbana, IL 61802
| |
Collapse
|
84
|
Robert A, Herrmann H, Davidson MW, Gelfand VI. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. FASEB J 2014; 28:2879-90. [PMID: 24652946 DOI: 10.1096/fj.14-250019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥ 5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.-Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany; and
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
85
|
Anderson EN, White JA, Gunawardena S. Axonal transport and neurodegenerative disease: vesicle-motor complex formation and their regulation. Degener Neurol Neuromuscul Dis 2014; 4:29-47. [PMID: 32669899 PMCID: PMC7337264 DOI: 10.2147/dnnd.s57502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
The process of axonal transport serves to move components over very long distances on microtubule tracks in order to maintain neuronal viability. Molecular motors - kinesin and dynein - are essential for the movement of neuronal cargoes along these tracks; defects in this pathway have been implicated in the initiation or progression of some neurodegenerative diseases, suggesting that this process may be a key contributor in neuronal dysfunction. Recent work has led to the identification of some of the motor-cargo complexes, adaptor proteins, and their regulatory elements in the context of disease proteins. In this review, we focus on the assembly of the amyloid precursor protein, huntingtin, mitochondria, and the RNA-motor complexes and discuss how these may be regulated during long-distance transport in the context of neurodegenerative disease. As knowledge of these motor-cargo complexes and their involvement in axonal transport expands, insight into how defects in this pathway contribute to the development of neurodegenerative diseases becomes evident. Therefore, a better understanding of how this pathway normally functions has important implications for early diagnosis and treatment of diseases before the onset of disease pathology or behavior.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph A White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
86
|
Mukhopadhyay A, Quiroz JA, Wolkoff AW. Rab1a regulates sorting of early endocytic vesicles. Am J Physiol Gastrointest Liver Physiol 2014; 306:G412-24. [PMID: 24407591 PMCID: PMC3949023 DOI: 10.1152/ajpgi.00118.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered.
Collapse
Affiliation(s)
- Aparna Mukhopadhyay
- 1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York; ,2Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Jose A. Quiroz
- 4Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Allan W. Wolkoff
- 1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York; ,2Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; ,3Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York; and
| |
Collapse
|
87
|
Kinesin-5 seems to step to its own unique tune, but really it's a cover. Biophys J 2013; 104:1846-8. [PMID: 23663827 DOI: 10.1016/j.bpj.2013.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/22/2022] Open
|
88
|
Lu W, Del Castillo U, Gelfand VI. Organelle transport in cultured Drosophila cells: S2 cell line and primary neurons. J Vis Exp 2013:e50838. [PMID: 24300413 DOI: 10.3791/50838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University
| | | | | |
Collapse
|
89
|
Kolomeisky AB. Motor proteins and molecular motors: how to operate machines at the nanoscale. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:463101. [PMID: 24100357 PMCID: PMC3858839 DOI: 10.1088/0953-8984/25/46/463101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors.
Collapse
Affiliation(s)
- Anatoly B. Kolomeisky
- Rice University, Department of Chemistry, 6100 Main Street, Houston, TX 77005-1892, USA
| |
Collapse
|
90
|
Serpinskaya AS, Tuphile K, Rabinow L, Gelfand VI. Protein kinase Darkener of apricot and its substrate EF1γ regulate organelle transport along microtubules. J Cell Sci 2013; 127:33-9. [PMID: 24163433 DOI: 10.1242/jcs.123885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulation of organelle transport along microtubules is important for proper distribution of membrane organelles and protein complexes in the cytoplasm. RNAi-mediated knockdown in cultured Drosophila S2 cells demonstrates that two microtubule-binding proteins, a unique isoform of Darkener of apricot (DOA) protein kinase, and its substrate, translational elongation factor EF1γ, negatively regulate transport of several classes of membrane organelles along microtubules. Inhibition of transport by EF1γ requires its phosphorylation by DOA on serine 294. Together, our results indicate a new role for two proteins that have not previously been implicated in regulation of the cytoskeleton. These results further suggest that the biological role of some of the proteins binding to the microtubule track is to regulate cargo transport along these tracks.
Collapse
Affiliation(s)
- Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 616011, USA
| | | | | | | |
Collapse
|
91
|
Gumy LF, Katrukha EA, Kapitein LC, Hoogenraad CC. New insights into mRNA trafficking in axons. Dev Neurobiol 2013; 74:233-44. [PMID: 23959656 DOI: 10.1002/dneu.22121] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growth, maintenance and regeneration after injury. Although most mRNAs found in axons are abundant transcripts and not restricted to the axonal compartment, they are sequestered into transport ribonucleoprotein particles and their axonal localization is likely the result of specific targeting rather than passive diffusion. It has been reported that long-distance mRNA transport requires microtubule-dependent motors, but the molecular mechanisms underlying the sorting and trafficking of mRNAs into axons have remained elusive. This review places particular emphasis on motor-dependent transport of mRNAs and presents a mathematical model that describes how microtubule-dependent motors can achieve targeted trafficking in axons. A future challenge will be to systematically explore how the numerous axonal mRNAs and RNA-binding proteins regulate different aspects of specific axonal mRNA trafficking during development and after regeneration.
Collapse
Affiliation(s)
- Laura F Gumy
- Division of Cell Biology, University of Utrecht, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
92
|
Dietrich D, Seiler F, Essmann F, Dodt G. Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3013-3024. [PMID: 23954441 DOI: 10.1016/j.bbamcr.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.
Collapse
Affiliation(s)
- Denise Dietrich
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Florian Seiler
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Frank Essmann
- Interfaculty Institute of Biochemistry, Molecular Medicine, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Gabriele Dodt
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany.
| |
Collapse
|
93
|
Teamwork in microtubule motors. Trends Cell Biol 2013; 23:575-82. [PMID: 23877011 DOI: 10.1016/j.tcb.2013.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/10/2023]
Abstract
Diverse cellular processes are driven by the collective force from multiple motor proteins. Disease-causing mutations cause aberrant function of motors, but the impact is observed at a cellular level and beyond, therefore necessitating an understanding of cell mechanics at the level of motor molecules. One way to do this is by measuring the force generated by ensembles of motors in vivo at single-motor resolution. This has been possible for microtubule motor teams that transport intracellular organelles, revealing unexpected differences between collective and single-molecule function. Here we review how the biophysical properties of single motors, and differences therein, may translate into collective motor function during organelle transport and perhaps in other processes outside transport.
Collapse
|
94
|
Ramser EM, Gan KJ, Decker H, Fan EY, Suzuki MM, Ferreira ST, Silverman MA. Amyloid-β oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons. Mol Biol Cell 2013; 24:2494-505. [PMID: 23783030 PMCID: PMC3744947 DOI: 10.1091/mbc.e12-12-0858] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The role of tau in axonal transport disruption during early-stage Alzheimer disease is controversial. The amyloid-β oligomers markedly impair BDNF transport in primary wild-type and tau-knockout neurons. This occurs by nonexcitotoxic activation of calcineurin, and inhibition of calcineurin rescues transport defects independent of tau. Disruption of fast axonal transport (FAT) is an early pathological event in Alzheimer's disease (AD). Soluble amyloid-β oligomers (AβOs), increasingly recognized as proximal neurotoxins in AD, impair organelle transport in cultured neurons and transgenic mouse models. AβOs also stimulate hyperphosphorylation of the axonal microtubule-associated protein, tau. However, the role of tau in FAT disruption is controversial. Here we show that AβOs reduce vesicular transport of brain-derived neurotrophic factor (BDNF) in hippocampal neurons from both wild-type and tau-knockout mice, indicating that tau is not required for transport disruption. FAT inhibition is not accompanied by microtubule destabilization or neuronal death. Significantly, inhibition of calcineurin (CaN), a calcium-dependent phosphatase implicated in AD pathogenesis, rescues BDNF transport. Moreover, inhibition of protein phosphatase 1 and glycogen synthase kinase 3β, downstream targets of CaN, prevents BDNF transport defects induced by AβOs. We further show that AβOs induce CaN activation through nonexcitotoxic calcium signaling. Results implicate CaN in FAT regulation and demonstrate that tau is not required for AβO-induced BDNF transport disruption.
Collapse
Affiliation(s)
- Elisa M Ramser
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | | | | | | |
Collapse
|
95
|
Franker MAM, Hoogenraad CC. Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci 2013; 126:2319-29. [PMID: 23729742 DOI: 10.1242/jcs.115030] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubule-based transport is essential for neuronal function because of the large distances that must be traveled by various building blocks and cellular materials. Recent studies in various model systems have unraveled several regulatory mechanisms and traffic rules that control the specificity, directionality and delivery of neuronal cargos. Local microtubule cues, opposing motor activity and cargo-adaptors that regulate motor activity control microtubule-based transport in neurons. Impairment of intracellular transport is detrimental to neurons and has emerged as a common factor in several neurological disorders. Genetic approaches have revealed strong links between intracellular transport processes and the pathogenesis of neurological diseases in both the central and peripheral nervous system. This Commentary highlights recent advances in these areas and discusses the transport defects that are associated with the development of neurological diseases.
Collapse
Affiliation(s)
- Mariella A M Franker
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
96
|
Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr Biol 2013; 23:1018-23. [PMID: 23707427 DOI: 10.1016/j.cub.2013.04.050] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/28/2013] [Accepted: 04/18/2013] [Indexed: 11/18/2022]
Abstract
Remarkably, forces within a neuron can extend its axon to a target that could be meters away. The two main cytoskeleton components in neurons are microtubules, which are mostly bundled along the axon shaft, and actin filaments, which are highly enriched in a structure at the axon distal tip, the growth cone. Neurite extension has been thought to be driven by a combination of two forces: pushing via microtubule assembly, and/or pulling by an actin-driven mechanism in the growth cone. Here we show that a novel mechanism, sliding of microtubules against each other by the microtubule motor kinesin-1, provides the mechanical forces necessary for initial neurite extension in Drosophila neurons. Neither actin filaments in the growth cone nor tubulin polymerization is required for initial outgrowth. Microtubule sliding in neurons is developmentally regulated and is suppressed during neuronal maturation. As kinesin-1 is highly evolutionarily conserved from Drosophila to humans, it is likely that kinesin-1-powered microtubule sliding plays an important role in neurite extension in many types of neurons across species.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
97
|
Myosin-V Opposes Microtubule-Based Cargo Transport and Drives Directional Motility on Cortical Actin. Curr Biol 2013; 23:828-34. [DOI: 10.1016/j.cub.2013.03.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 11/15/2022]
|
98
|
Gagnon JA, Kreiling JA, Powrie EA, Wood TR, Mowry KL. Directional transport is mediated by a Dynein-dependent step in an RNA localization pathway. PLoS Biol 2013; 11:e1001551. [PMID: 23637574 PMCID: PMC3640089 DOI: 10.1371/journal.pbio.1001551] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
In vivo imaging of subcellular RNA localization in Xenopus oocytes reveals domains of transport directionality mediated by distinct molecular motors, with dynein providing a directional cue for polarized transport. Cytoplasmic RNA localization is a key biological strategy for establishing polarity in a variety of organisms and cell types. However, the mechanisms that control directionality during asymmetric RNA transport are not yet clear. To gain insight into this crucial process, we have analyzed the molecular machinery directing polarized transport of RNA to the vegetal cortex in Xenopus oocytes. Using a novel approach to measure directionality of mRNA transport in live oocytes, we observe discrete domains of unidirectional and bidirectional transport that are required for vegetal RNA transport. While kinesin-1 appears to promote bidirectional transport along a microtubule array with mixed polarity, dynein acts first to direct unidirectional transport of RNA towards the vegetal cortex. Thus, vegetal RNA transport occurs through a multistep pathway with a dynein-dependent directional cue. This provides a new framework for understanding the mechanistic basis of cell and developmental polarity. Like traffic on highways, molecular cargos are transported within cells on tracks that are collectively referred to as cytoskeletal networks. RNA molecules are one such cargo, and in many species, the localization of RNAs in egg cells or oocytes is essential for establishing the first asymmetries that are necessary for proper embryo development. RNAs can be actively transported by molecular motors that move cargos along the cytoskeletal tracks, but how such motors are capable of directing cargos to specific destinations within the cell is not yet known. Here we show that two motors, dynein and kinesin—known to carry out transport in opposite directions—are both directly involved in RNA localization in frog oocytes. To understand how these motors can promote directional cargo transport, we developed a system to monitor RNA transport in live oocytes. We find that the motor acting first in the pathway, dynein, is responsible for unidirectional transport. Bidirectional transport, mediated by kinesin, occurs subsequently on cytoskeletal tracks of opposing polarity near the RNA's final destination. Our results suggest a new model for directional transport comprising an initial directional cue that dominates over a later nondirectional step, acting to refine the ultimate cargo distribution.
Collapse
Affiliation(s)
- James A. Gagnon
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Erin A. Powrie
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Timothy R. Wood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
99
|
Shao CY, Zhu J, Xie YJ, Wang Z, Wang YN, Wang Y, Su LD, Zhou L, Zhou TH, Shen Y. Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 2013; 14:785-97. [PMID: 23551859 DOI: 10.1111/tra.12070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 11/27/2022]
Abstract
Neurons critically depend on the long-distance transport of mitochondria. Motor proteins kinesin and dynein control anterograde and retrograde mitochondrial transport, respectively in axons. The regulatory molecules that link them to mitochondria need to be better characterized. Nuclear distribution (Nud) family proteins LIS1, Ndel1 and NudCL are critical components of cytoplasmic dynein complex. Roles of these Nud proteins in neuronal mitochondrial transport are unknown. Here we report distinct functions of LIS1, Ndel1 and NudCL on axonal mitochondrial transport in cultured hippocampal neurons. We found that LIS1 interacted with kinsein family protein KIF5b. Depletion of LIS1 enormously suppressed mitochondrial motility in both anterograde and retrograde directions. Inhibition of either Ndel1 or NudCL only partially reduced retrograde mitochondrial motility. However, knocking down both Ndel1 and NudCL almost blocked retrograde mitochondrial transport, suggesting these proteins may work together to regulate retrograde mitochondrial transport through linking dynein-LIS1 complex. Taken together, our results uncover novel roles of LIS1, Ndel1 and NudCL in the transport of mitochondria in axons.
Collapse
Affiliation(s)
- Chong-Yu Shao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Hunt SD, Townley AK, Danson CM, Cullen PJ, Stephens DJ. Microtubule motors mediate endosomal sorting by maintaining functional domain organization. J Cell Sci 2013; 126:2493-501. [PMID: 23549789 PMCID: PMC3679488 DOI: 10.1242/jcs.122317] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many microtubule motors have been shown to couple to endosomal membranes. These motors include dynein in addition to many different kinesin family members. Sorting nexins (SNXs) are central to the organization and function of endosomes. These proteins can actively shape endosomal membranes and couple directly or indirectly to the minus-end microtubule motor dynein. Motor proteins acting on endosomes drive their motility, dictate their morphology and affect cargo segregation. We have used well-characterized members of the SNX family to elucidate motor coupling using high-resolution light microscopy coupled with depletion of specific microtubule motors. Endosomal domains labelled with SNX1, SNX4 and SNX8 couple to discrete combinations of dynein and kinesin motors. These specific combinations govern the structure and motility of each SNX-coated membrane in addition to the segregation of distinct functional endosomal subdomains. Taken together, our data show that these key features of endosome dynamics are governed by the same set of opposing microtubule motors. Thus, microtubule motors help to define the mosaic layout of endosomes that underpins cargo sorting.
Collapse
Affiliation(s)
- Sylvie D Hunt
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|