51
|
Liu Z, Rui T, Lin Z, Xie S, Zhou B, Fu M, Mai L, Zhu C, Wu G, Wang Y. Tumor-Associated Macrophages Promote Metastasis of Oral Squamous Cell Carcinoma via CCL13 Regulated by Stress Granule. Cancers (Basel) 2022; 14:5081. [PMID: 36291863 PMCID: PMC9657876 DOI: 10.3390/cancers14205081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/03/2023] Open
Abstract
M2 tumor-associated macrophages (TAMs) have been a well-established promoter of oral squamous cell carcinoma (OSCC) progression. However, the mechanisms of M2 TAMs promoting OSCC metastasis have not been elucidated clearly. This study illustrated the regulatory mechanisms in which M2 TAMs enhance OSCC malignancy in a novel point of view. In this study, mass spectrometry was utilized to analyze the proteins expression profile of M2 type monocyte-derived macrophages (MDMs-M2), whose results revealed the high expression of G3BP1 in M2 macrophages. RNA sequencing analyzed the genome-wide changes upon G3BP1 knockdown in MDMs-M2 and identified that CCL13 was the most significantly downregulated inflammatory cytokines in MDMs-M2. Co-immunoprecipitation and qualitative mass spectrometry were used to identify the proteins that directly interacted with endogenous G3BP1 in MDMs-M2. Elevated stress granule (SG) formation in stressed M2 TAMs enhanced the expression of CCL13, which promoted OSCC metastasis both in vitro and in vivo. For mechanisms, we demonstrated SG formation improved DDX3Y/hnRNPF-mediated CCL13 mRNA stability, thus enhancing CCL13 expression and promoting OSCC metastasis. Collectively, our findings demonstrated for the first time the roles of CCL13 in improving OSCC metastasis and illustrated the molecular mechanisms of CCL13 expression regulated by SG, indicating that the SG-CCL13 axis can be the potential targets for TAM-navigated tumor therapy.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Tao Rui
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Shule Xie
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Bin Zhou
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Min Fu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Lianxi Mai
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Chuandong Zhu
- Department of Oral and Maxillofacial Surgery, Affiliate Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, 31 Huangsha Avenue, Guangzhou 510000, China
| | - Guotao Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Youyuan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| |
Collapse
|
52
|
Pei L, Zhu Q, Zhuang X, Ruan H, Zhao Z, Qin H, Lin Q. Identification of leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel prognostic factor for urothelial carcinoma. Transl Oncol 2022; 23:101474. [PMID: 35816851 PMCID: PMC9287365 DOI: 10.1016/j.tranon.2022.101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is one of the most common cancers worldwide. The biological heterogeneity of UCs causes considerable difficulties in predicting treatment outcomes and usually leads to clinical mismanagement. The identification of more sensitive and efficient predictive biomarkers is important in the diagnosis and classification of UCs. Herein, we report leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel predictive factor and potential therapeutic target for UCs. METHODS Using whole-slide image analysis in our cohort of 107 UC samples, we performed immunohistochemistry to evaluate the prognostic value of LRRC59 expression in UCs. In vitro experiments using RNAi were conducted to explore the role of LRRC59 in promoting UC cell proliferation and migration. RESULTS A significant correlation between LRRC59 and unfavorable prognosis of UCs in our cohort was demonstrated. Subsequent clinical analysis also revealed that elevated expression levels of LRRC59 were significantly associated with higher pathological grades and advanced stages of UC. Subsequently, knockdown of LRRC59 in UM-UC-3 and T24 cells using small interfering RNA significantly inhibited cell proliferation and migration, resulting in cell cycle arrest at the G1 phase. Conversely, the overexpression of LRRC59 in UC cells enhanced cell proliferation and migration. An integrated bioinformatics analysis revealed a significant functional network of LRRC59 involving protein misfolding, ER stress, and ubiquitination. Finally, in vitro experiments demonstrated that LRRC59 modulates ER stress signaling. CONCLUSIONS LRRC59 expression was significantly correlated with UC prognosis. LRRC59 might not only serve as a novel prognostic biomarker for risk stratification of patients with UC but also exhibit as a potential therapeutic target in UC that warrants further investigation.
Collapse
Affiliation(s)
- Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qingfeng Zhu
- Department of Urology, Lishui Municipal Central Hospital, Lishui, China
| | - Xiaoping Zhuang
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou 325027, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qiongqiong Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou 325027, China.
| |
Collapse
|
53
|
Fonteneau G, Redding A, Hoag-Lee H, Sim ES, Heinrich S, Gaida MM, Grabocka E. Stress Granules Determine the Development of Obesity-Associated Pancreatic Cancer. Cancer Discov 2022; 12:1984-2005. [PMID: 35674408 PMCID: PMC9357213 DOI: 10.1158/2159-8290.cd-21-1672] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a global epidemic and a major predisposing factor for cancer. Increasing evidence shows that obesity-associated stress is a key driver of cancer risk and progression. Previous work has identified the phase-separation organelles, stress granules (SG), as mutant KRAS-dependent mediators of stress adaptation. However, the dependence of tumorigenesis on these organelles is unknown. Here, we establish a causal link between SGs and pancreatic ductal adenocarcinoma (PDAC). Importantly, we uncover that dependence on SGs is drastically heightened in obesity-associated PDAC. Furthermore, we identify a previously unknown regulator and component of SGs, namely, the serine/arginine protein kinase 2 (SRPK2), as a specific determinant of SG formation in obesity-associated PDAC. We show that SRPK2-mediated SG formation in obesity-associated PDAC is driven by hyperactivation of the IGF1/PI3K/mTOR/S6K1 pathway and that S6K1 inhibition selectively attenuates SGs and impairs obesity-associated PDAC development. SIGNIFICANCE : We show that stress adaptation via the phase-separation organelles SGs mediates PDAC development. Moreover, preexisting stress conditions such as obesity are a driving force behind tumor SG dependence, and enhanced SG levels are key determinants and a chemopreventive target for obesity-associated PDAC. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Guillaume Fonteneau
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alexandra Redding
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hannah Hoag-Lee
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Edward S. Sim
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Current Address: University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefan Heinrich
- Department of Surgery, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany
| | - Elda Grabocka
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
54
|
Yu H, Chen Q, Pan Y. A bibliometric and emerging trend analysis on stress granules from 2011 to 2020: A systematic review and bibliometrics analysis. Medicine (Baltimore) 2022; 101:e29200. [PMID: 35866775 PMCID: PMC9302325 DOI: 10.1097/md.0000000000029200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Stress granules (SGs) are the dense granules formed in the cytoplasm of eukaryotic cells in response to stress stimuli, such as endoplasmic reticulum stress, heat shock, hypoxia, and arsenate exposure. Although SGs have been attracting a lot of research attention, there is still a lack of systematic analysis of SGs in the literature. METHODS By analyzing the literature published in the Web of Science database using the R software, we extracted all the information related to SGs from the literature and cited references. The following information was included: publications per year, overall citations, top 10 countries, top 10 authors, co-author collaborations, top 10 institutions, critical areas, and top 10 cited research articles. RESULTS A total of 4052 articles related to SGs were selected and screened. These documents have been cited a total of 110,553 times, with an H-index of 126 and an average of 27.28 citations per article. The authors of the literature included in this study were from 89 different countries/regions. The United States and China had the highest number of publications and ranking institutions. CONCLUSIONS This article presents essential insights on the characteristics and influence of SGs, demonstrating their indispensable role in immune regulation and other fields.
Collapse
Affiliation(s)
- Haiyang Yu
- Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qinhao Chen
- Wannan Medical College, Wuhu, Anhui Province, China
| | - Yueyin Pan
- Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
- *Correspondence: Yueyin Pan, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China (e-mail: )
| |
Collapse
|
55
|
Lsm7 phase-separated condensates trigger stress granule formation. Nat Commun 2022; 13:3701. [PMID: 35764627 PMCID: PMC9240020 DOI: 10.1038/s41467-022-31282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
Collapse
|
56
|
Schwed-Gross A, Hamiel H, Faber GP, Angel M, Ben-Yishay R, Benichou JIC, Ishay-Ronen D, Shav-Tal Y. Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics leading to cell death. J Cell Sci 2022; 135:276097. [PMID: 35713120 PMCID: PMC9450892 DOI: 10.1242/jcs.259629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) can assemble in cancer cells upon chemotoxic stress. Glucocorticoids function during stress responses and are administered with chemotherapies. The roles of glucocorticoids in SG assembly and disassembly pathways are unknown. We examined whether combining glucocorticoids such as cortisone with chemotherapies from the vinca alkaloid family, which dismantle the microtubule network, affects SG assembly and disassembly pathways and influences cell viability in cancer cells and human-derived organoids. Cortisone augmented SG formation when combined with vinorelbine (VRB). Live-cell imaging showed that cortisone increased SG assembly rates but reduced SG clearance rates after stress, by increasing protein residence times within the SGs. Mechanistically, VRB and cortisone signaled through the integrated stress response mediated by eIF2α (also known as EIF2S1), yet induced different kinases, with cortisone activating the GCN2 kinase (also known as EIF2AK4). Cortisone increased VRB-induced cell death and reduced the population of cells trapped in mitotic catastrophe. These effects were mediated by the core SG proteins G3BP1 and G3BP2. In conclusion, glucocorticoids induce SG assembly and cell death when administered with chemotherapies, suggesting that combining glucocorticoids with chemotherapies can enhance cancer cell chemosensitivity. Summary: Combining cortisone with the chemotherapy vinorelbine enhances the assembly of stress granules that are less likely to be cleared from the cells, augmenting vinorelbine-induced cell death.
Collapse
Affiliation(s)
- Avital Schwed-Gross
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hila Hamiel
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gabriel P Faber
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mor Angel
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rakefet Ben-Yishay
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
57
|
Youn YH, Hou S, Wu CC, Kawauchi D, Orr BA, Robinson GW, Finkelstein D, Taketo MM, Gilbertson RJ, Roussel MF, Han YG. Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev 2022; 36:737-751. [PMID: 35798383 PMCID: PMC9296008 DOI: 10.1101/gad.349596.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
Abstract
The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding β-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.
Collapse
Affiliation(s)
- Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Shirui Hou
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Chang-Chih Wu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Makoto M Taketo
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Richard J Gilbertson
- Department of Oncology, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, England
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
58
|
Russell LG, Davis LAK, Hunter JE, Perkins ND, Kenneth NS. Increased migration and motility in XIAP-null cells mediated by the C-RAF protein kinase. Sci Rep 2022; 12:7943. [PMID: 35562367 PMCID: PMC9106734 DOI: 10.1038/s41598-022-11438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
The product encoded by the X-linked inhibitor of apoptosis (XIAP) gene is a multi-functional protein which not only controls caspase-dependent cell death, but also participates in inflammatory signalling, copper homeostasis, response to hypoxia and control of cell migration. Deregulation of XIAP, either by elevated expression or inherited genetic deletion, is associated with several human disease states. Reconciling XIAP-dependent signalling pathways with its role in disease progression is essential to understand how XIAP promotes the progression of human pathologies. In this study we have created a panel of genetically modified XIAP-null cell lines using TALENs and CRISPR/Cas9 to investigate the functional outcome of XIAP deletion. Surprisingly, in our genetically modified cells XIAP deletion had no effect on programmed cell death, but instead the primary phenotype we observed was a profound increase in cell migration rates. Furthermore, we found that XIAP-dependent suppression of cell migration was dependent on XIAPdependent control of C-RAF levels, a protein kinase which controls cell signalling pathways that regulate the cytoskeleton. These results suggest that XIAP is not necessary for control of the apoptotic signalling cascade, however it does have a critical role in controlling cell migration and motility that cannot be compensated for in XIAP-knockout cells.
Collapse
Affiliation(s)
- Lauren G Russell
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lydia A K Davis
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jill E Hunter
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Niall S Kenneth
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
59
|
Ge Y, Jin J, Li J, Ye M, Jin X. The roles of G3BP1 in human diseases (review). Gene X 2022; 821:146294. [PMID: 35176431 DOI: 10.1016/j.gene.2022.146294] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022] Open
Abstract
Ras-GTPase-activating protein binding protein 1 (G3BP1) is a multifunctional binding protein involved in a variety of biological functions, including cell proliferation, metastasis, apoptosis, differentiation and RNA metabolism. It has been revealed that G3BP1, as an antiviral factor, can interact with viral proteins and regulate the assembly of stress granules (SGs), which can inhibit viral replication. Furthermore, several viruses have the ability to hijack G3BP1 as a cofactor, recruiting translation initiation factors to promote viral proliferation. However, many functions of G3BP1 are associated with other diseases. In various cancers, G3BP1 is a cancer-promoting factor, which can promote the proliferation, invasion and metastasis of cancer cells. Moreover, compared with normal tissues, G3BP1 expression is higher in tumor tissues, indicating that it can be used as an indicator for cancer diagnosis. In this review, the structure of G3BP1 and the regulation of G3BP1 in multiple dimensions are described. In addition, the effects and potential mechanisms of G3BP1 on various carcinomas, viral infections, nervous system diseases and cardiovascular diseases are elucidated, which may provide a direction for clinical applications of G3BP1 in the future.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jiabei Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
60
|
Igelmann S, Lessard F, Ferbeyre G. Liquid-Liquid Phase Separation in Cancer Signaling, Metabolism and Anticancer Therapy. Cancers (Basel) 2022; 14:cancers14071830. [PMID: 35406602 PMCID: PMC8997759 DOI: 10.3390/cancers14071830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023] Open
Abstract
The cancer state is thought to be maintained by genetic and epigenetic changes that drive a cancer-promoting gene expression program. However, recent results show that cellular states can be also stably maintained by the reorganization of cell structure leading to the formation of biological condensates via the process of liquid-liquid phase separation. Here, we review the data showing cancer-specific biological condensates initiated by mutant oncoproteins, RNA-binding proteins, or lincRNAs that regulate oncogenic gene expression programs and cancer metabolism. Effective anticancer drugs may specifically partition into oncogenic biological condensates (OBC).
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada;
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC G1R 2J6, Canada;
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada;
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: ; Tel.: +1-514-343-7571
| |
Collapse
|
61
|
Zhou Y, Li XH, Xue WL, Jin S, Li MY, Zhang CC, Yu B, Zhu L, Liang K, Chen Y, Tao BB, Zhu YZ, Wang MJ, Zhu YC. YB-1 Recruits Drosha to Promote Splicing of pri-miR-192 to Mediate the Proangiogenic Effects of H 2S. Antioxid Redox Signal 2022; 36:760-783. [PMID: 35044231 DOI: 10.1089/ars.2021.0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: The genes targeted by miRNAs have been well studied. However, little is known about the feedback mechanisms to control the biosynthesis of miRNAs that are essential for the miRNA feedback networks in the cells. In this present study, we aimed at examining how hydrogen sulfide (H2S) promotes angiogenesis by regulating miR-192 biosynthesis. Results: H2S promoted in vitro angiogenesis and angiogenesis in Matrigel plugs embedded in mice by upregulating miR-192. Knockdown of the H2S-generating enzyme cystathionine γ-lyase (CSE) suppressed in vitro angiogenesis, and this suppression was rescued by exogenous H2S donor NaHS. Plakophilin 4 (PKP4) served as a target gene of miR-192. H2S up-regulated miR-192 via the VEGFR2/Akt pathway to promote the splicing of primary miR-192 (pri-miR-192), and it resulted in an increase in both the precursor- and mature forms of miR-192. H2S translocated YB-1 into the nuclei to recruit Drosha to bind with pri-miR-192 and promoted its splicing. NaHS treatment promoted angiogenesis in the hindlimb ischemia mouse model and the skin-wound-healing model in diabetic mice, with upregulated miR-192 and downregulated PKP4 on NaHS treatment. In human atherosclerotic plaques, miR-192 levels were positively correlated with the plasma H2S concentrations. Innovation and Conclusion: Our data reveal a role of YB-1 in recruiting Drosha to splice pri-miR-192 to mediate the proangiogenic effect of H2S. CSE/H2S/YB-1/Drosha/miR-192 is a potential therapeutic target pathway for treating diseases, including organ ischemia and diabetic complications. Antioxid. Redox Signal. 36, 760-783. The Clinical Trial Registration number is 2016-224.
Collapse
Affiliation(s)
- Yu Zhou
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xing-Hui Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Cao Yang NO.2 High School, Shanghai, China
| | - Wen-Long Xue
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Sheng Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Cai-Cai Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hainan Medical College, Haikou, China
| | - Bo Yu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
62
|
YB1 associates with oncogenetic roles and poor prognosis in nasopharyngeal carcinoma. Sci Rep 2022; 12:3699. [PMID: 35260638 PMCID: PMC8904596 DOI: 10.1038/s41598-022-07636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor arising from the nasopharynx epithelium with ethnic and geographical distribution preference. Y-box binding protein-1 (YB1) is the highly expressed DNA/RNA-binding protein with cold shock domain, and enhanced YB1 expression was proved to be associated with many kinds of malignant tumors. There is no systematic study about the regulation of YB1 and cell proliferation, migration, invasion and stress granules (SGs) in NPC, and the relationship between YB1 expression and clinical characteristics and prognosis of NPC patients. We analyzed the mRNA expression of YBX1 in head and neck squamous carcinoma (HNSC) and NPC in databases, investigated the functions of YB1 in cell proliferation, migration and invasion and SGs formation of NPC cells, and detected expression of YB1 protein in a large scale of NPC samples and analyzed their association with clinicopathological features and prognostic significance of NPC patients. YBX1 mRNA was significantly high expression in HNSC and NPC by bioinformatic analysis, and higher expression of YBX1 mRNA indicated poorer prognosis of HNSC patients. Clinically, the expression of YB1 in NPC tissues was significantly higher than these in the control nasopharyngeal epithelial tissues. We further found that the expression of YB1 had an evidently positive relation with advanced clinical stages of patients with NPC. The overall survival rates (OS) were significantly lower for NPC patients with positive expression of YB1. Multivariate analysis confirmed that positive expression of YB1 was the independent poorer prognostic factor for patients with NPC. Moreover, compared with the immortalized nasopharyngeal epithelial cell line (NP69), the basal level of YB1 in NPC cell lines was significantly higher. Knocking down YB1 may inhibit Akt/mTOR pathway in NPC cells. Knocking down YB1 by small interfering RNAs can reduce the ability of proliferation, migration, invasion and SGs formation of NPC cells. The expression of YB1 in NPC cell lines or patients with NPC was significantly higher. The high expression of YB1 protein may act as one valuable independent biomarker to predict poor prognosis for patients with NPC. Knocking down YB1 may release the malignant phenotype of NPC cells.
Collapse
|
63
|
Nolan LS, Chen J, Gonçalves AC, Bullen A, Towers ER, Steel KP, Dawson SJ, Gale JE. Targeted deletion of the RNA-binding protein Caprin1 leads to progressive hearing loss and impairs recovery from noise exposure in mice. Sci Rep 2022; 12:2444. [PMID: 35165318 PMCID: PMC8844073 DOI: 10.1038/s41598-022-05657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cell cycle associated protein 1 (Caprin1) is an RNA-binding protein that can regulate the cellular post-transcriptional response to stress. It is a component of both stress granules and neuronal RNA granules and is implicated in neurodegenerative disease, synaptic plasticity and long-term memory formation. Our previous work suggested that Caprin1 also plays a role in the response of the cochlea to stress. Here, targeted inner ear-deletion of Caprin1 in mice leads to an early onset, progressive hearing loss. Auditory brainstem responses from Caprin1-deficient mice show reduced thresholds, with a significant reduction in wave-I amplitudes compared to wildtype. Whilst hair cell structure and numbers were normal, the inner hair cell-spiral ganglion neuron (IHC-SGN) synapse revealed abnormally large post-synaptic GluA2 receptor puncta, a defect consistent with the observed wave-I reduction. Unlike wildtype mice, mild-noise-induced hearing threshold shifts in Caprin1-deficient mice did not recover. Oxidative stress triggered TIA-1/HuR-positive stress granule formation in ex-vivo cochlear explants from Caprin1-deficient mice, showing that stress granules could still be induced. Taken together, these findings suggest that Caprin1 plays a key role in maintenance of auditory function, where it regulates the normal status of the IHC-SGN synapse.
Collapse
Affiliation(s)
- Lisa S Nolan
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | | - Anwen Bullen
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Emily R Towers
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
64
|
Wang J, Gan Y, Cao J, Dong X, Ouyang W. Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med 2022; 49:44. [PMID: 35137915 PMCID: PMC8846937 DOI: 10.3892/ijmm.2022.5099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Under unfavorable environmental conditions, eukaryotic cells may form stress granules (SGs) in the cytosol to protect against injury and promote cell survival. The initiation, mRNA and protein composition, distribution and degradation of SGs are subject to multiple intracellular post-translational modifications and signaling pathways to cope with stress damage. Despite accumulated comprehensive knowledge of their composition and dynamics, the function of SGs remains poorly understood. When the stress persists, aberrant and/or persistent intracellular SGs and aggregation of SGs-related proteins may lead to various diseases. In the present article, the research progress regarding the generation, modification and function of SGs was reviewed. The regulatory effects and influencing factors of SGs in the development of tumors, cardiovascular diseases, viral infections and neurodegenerative diseases were also summarized, which may provide novel insight for preventing and treating SG-related diseases.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yixia Gan
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jian Cao
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xuefen Dong
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Wei Ouyang
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| |
Collapse
|
65
|
Gu X, Zhuang A, Yu J, Chai P, Jia R, Ruan J. Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene 2022; 41:1527-1535. [PMID: 35132182 DOI: 10.1038/s41388-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Cells coordinate numerous biochemical reactions in space and time, depending on the subdivision of the intracellular space into functional compartments. Compelling evidence has demonstrated that phase separation induces the formation of membrane-less compartments to partition intracellular substances in a strictly regulated manner and participates in various biological processes. Based on the strong association of cancer with the dysregulation of intracellular physiological processes and the occurrence of phase separation in cancer-associated condensates, phase separation undoubtedly plays a significant role in tumorigenesis. In this review, we summarize the drivers and functions of phase separation, elaborate on the roles of phase separation in tumor pathogenesis and evolution, and propose substantial research and therapeutic prospects for phase separation in cancer.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| |
Collapse
|
66
|
Redding A, Aplin AE, Grabocka E. RAS-mediated tumor stress adaptation and the targeting opportunities it presents. Dis Model Mech 2022; 15:dmm049280. [PMID: 35147163 PMCID: PMC8844456 DOI: 10.1242/dmm.049280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular stress is known to function in synergistic cooperation with oncogenic mutations during tumorigenesis to drive cancer progression. Oncogenic RAS is a strong inducer of a variety of pro-tumorigenic cellular stresses, and also enhances the ability of cells to tolerate these stresses through multiple mechanisms. Many of these oncogenic, RAS-driven, stress-adaptive mechanisms have also been implicated in tolerance and resistance to chemotherapy and to therapies that target the RAS pathway. Understanding how oncogenic RAS shapes cellular stress adaptation and how this functions in drug resistance is of vital importance for identifying new therapeutic targets and therapeutic combinations to treat RAS-driven cancers.
Collapse
Affiliation(s)
| | | | - Elda Grabocka
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
67
|
Hamon L, Budkina K, Pastré D. YB-1 Structure/Function Relationship in the Packaging of mRNPs and Consequences for Translation Regulation and Stress Granule Assembly in Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S20-S93. [PMID: 35501984 DOI: 10.1134/s0006297922140036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
From their synthesis in the nucleus to their degradation in the cytoplasm, all mRNAs have the same objective, which is to translate the DNA-stored genetic information into functional proteins at the proper time and location. To this end, many proteins are generally associated with mRNAs as soon as transcription takes place in the nucleus to organize spatiotemporal regulation of the gene expression in cells. Here we reviewed how YB-1 (YBX1 gene), one of the major mRNA-binding proteins in the cytoplasm, packaged mRNAs into either compact or extended linear nucleoprotein mRNPs. Interestingly the structural plasticity of mRNPs coordinated by YB-1 could provide means for the contextual regulation of mRNA translation. Posttranslational modification of YB-1, notably in the long unstructured YB-1 C-terminal domain (CTD), and/or the protein partners of YB-1 may play a key role in activation/inactivation of mRNPs in the cells notably in response to cellular stress.
Collapse
Affiliation(s)
- Loïc Hamon
- SABNP, UnivEvry, INSERM U1204, Université Paris-Saclay, Evry, 91025, France.
| | - Karina Budkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - David Pastré
- SABNP, UnivEvry, INSERM U1204, Université Paris-Saclay, Evry, 91025, France.
| |
Collapse
|
68
|
De novo and cell line models of human mammary cell transformation reveal an essential role for Yb-1 in multiple stages of human breast cancer. Cell Death Differ 2022; 29:54-64. [PMID: 34294889 PMCID: PMC8738742 DOI: 10.1038/s41418-021-00836-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer heterogeneity has made it challenging to identify mechanisms critical to the initial stages of their genesis in vivo. Here, we sought to interrogate the role of YB-1 in newly arising human breast cancers as well as in established cell lines. In a first series of experiments, we found that short-hairpin RNA-mediated knockdown of YB-1 in MDA-MB-231 cells blocked both their local tumour-forming and lung-colonising activity in immunodeficient mice. Conversely, upregulated expression of YB-1 enhanced the poor in vivo tumorigenicity of T47D cells. We then found that YB-1 knockdown also inhibits the initial generation in mice of invasive ductal carcinomas and ductal carcinomas in situ from freshly isolated human mammary cells transduced, respectively, with KRASG12D or myristoylated-AKT1. Interestingly, increased expression of HIF1α and G3BP1, two YB-1 translational targets and elements of a stress-adaptive programme, mirrored the levels of YB-1 in both transformed primary and established MDA-MB-231 breast cancer cells.
Collapse
|
69
|
Asadi MR, Moslehian MS, Sabaie H, Poornabi M, Ghasemi E, Hassani M, Hussen BM, Taheri M, Rezazadeh M. Stress Granules in the Anti-Cancer Medications Mechanism of Action: A Systematic Scoping Review. Front Oncol 2021; 11:797549. [PMID: 35004322 PMCID: PMC8739770 DOI: 10.3389/fonc.2021.797549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Stress granule (SG) formation is a well-known cellular mechanism for minimizing stress-related damage and increasing cell survival. In addition to playing a critical role in the stress response, SGs have emerged as critical mediators in human health. It seems logical that SGs play a key role in cancer cell formation, development, and metastasis. Recent studies have shown that many SG components contribute to the anti-cancer medications' responses through tumor-associated signaling pathways and other mechanisms. SG proteins are known for their involvement in the translation process, control of mRNA stability, and capacity to function in both the cytoplasm and nucleus. The current systematic review aimed to include all research on the impact of SGs on the mechanism of action of anti-cancer medications and was conducted using a six-stage methodological framework and the PRISMA guideline. Prior to October 2021, a systematic search of seven databases for eligible articles was performed. Following the review of the publications, the collected data were subjected to quantitative and qualitative analysis. Notably, Bortezomib, Sorafenib, Oxaliplatin, 5-fluorouracil, Cisplatin, and Doxorubicin accounted for the majority of the medications examined in the studies. Overall, this systematic scoping review attempts to demonstrate and give a complete overview of the function of SGs in the mechanism of action of anti-cancer medications by evaluating all research.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziye Poornabi
- Student Research Committee, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Elham Ghasemi
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
70
|
Somasekharan SP, Saxena N, Zhang F, Beraldi E, Huang J, Gentle C, Fazli L, Thi M, Sorensen P, Gleave M. Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Res 2021; 50:1069-1091. [PMID: 34939643 PMCID: PMC8789049 DOI: 10.1093/nar/gkab1247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid–liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Neetu Saxena
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Fan Zhang
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Eliana Beraldi
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Jia Ni Huang
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Christina Gentle
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Marisa Thi
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| | - Poul H Sorensen
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, British Columbia, Canada and Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada
| |
Collapse
|
71
|
Suzuki HI, Onimaru K. Biomolecular condensates in cancer biology. Cancer Sci 2021; 113:382-391. [PMID: 34865286 PMCID: PMC8819300 DOI: 10.1111/cas.15232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the characteristics of cancer cells is essential for the development of improved diagnosis and therapeutics. From a gene regulation perspective, the super‐enhancer concept has been introduced to systematically understand the molecular mechanisms underlying the identities of various cell types and has been extended to the analysis of cancer cells and cancer genome alterations. In addition, several characteristic features of super‐enhancers have led to the recognition of the link between gene regulation and biomolecular condensates, which is often mediated by liquid‐liquid phase separation. Several lines of evidence have suggested molecular and biophysical principles and their alterations in cancer cells, which are particularly associated with gene regulation and cell signaling (“ transcriptional” and “signaling” condensates). These findings collectively suggest that the modification of biomolecular condensates represents an important mechanism by which cancer cells acquire various cancer hallmark traits and establish functional innovation for cancer initiation and progression. The condensate model also provides the molecular basis of the vulnerability of cancer cells to transcriptional perturbation and further suggests the possibility of therapeutic targeting of condensates. This review summarizes recent findings regarding the relationships between super‐enhancers and biomolecular condensate models, multiple scenarios of condensate alterations in cancers, and the potential of the condensate model for therapeutic development.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Koh Onimaru
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| |
Collapse
|
72
|
Park SW, Yu KL, Bae JH, Kim GN, Kim HI, You JC. Investigation of the effect of Staufen1 overexpression on the HIV-1 virus production. BMB Rep 2021. [PMID: 34353428 PMCID: PMC8633522 DOI: 10.5483/bmbrep.2021.54.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated how Staufen1 influences the HIV-1 production. The overexpression of Staufen1 increased virus production without any negative affect on the viral infectivity. This increase was not caused by transcriptional activation; but by influencing post-transcriptional steps. Using multiple Gag protein derivatives, we confirmed that the zinc-finger domains of the HIV-1 nucleocapsid (NC) are important for its interaction with Staufen1. We also found that Staufen1 colocalized in stress granules with the mature form of the HIV-1 NC protein.
Collapse
Affiliation(s)
- Seong-won Park
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Jun-Hyun Bae
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| |
Collapse
|
73
|
Mukhopadhyay C, Yang C, Xu L, Liu D, Wang Y, Huang D, Deonarine LD, Cyrta J, Davicioni E, Sboner A, Robinson BD, Chinnaiyan AM, Rubin MA, Barbieri CE, Zhou P. G3BP1 inhibits Cul3 SPOP to amplify AR signaling and promote prostate cancer. Nat Commun 2021; 12:6662. [PMID: 34795264 PMCID: PMC8602290 DOI: 10.1038/s41467-021-27024-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
SPOP, an E3 ubiquitin ligase, acts as a prostate-specific tumor suppressor with several key substrates mediating oncogenic function. However, the mechanisms underlying SPOP regulation are largely unknown. Here, we have identified G3BP1 as an interactor of SPOP and functions as a competitive inhibitor of Cul3SPOP, suggesting a distinctive mode of Cul3SPOP inactivation in prostate cancer (PCa). Transcriptomic analysis and functional studies reveal a G3BP1-SPOP ubiquitin signaling axis that promotes PCa progression through activating AR signaling. Moreover, AR directly upregulates G3BP1 transcription to further amplify G3BP1-SPOP signaling in a feed-forward manner. Our study supports a fundamental role of G3BP1 in disabling the tumor suppressive Cul3SPOP, thus defining a PCa cohort independent of SPOP mutation. Therefore, there are significantly more PCa that are defective for SPOP ubiquitin ligase than previously appreciated, and these G3BP1high PCa are more susceptible to AR-targeted therapy.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Chenyi Yang
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Limei Xu
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yu Wang
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Dennis Huang
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lesa Dayal Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
- Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
74
|
Somasekharan SP, Gleave M. SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets. FEBS Lett 2021; 595:2872-2896. [PMID: 34780058 PMCID: PMC8652540 DOI: 10.1002/1873-3468.14229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The current work investigated SARS‐CoV‐2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC‐based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress‐stimulated NCAP to undergo liquid–liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS‐CoV‐2 NCAP.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
75
|
Liu XM, Ma L, Schekman R. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. eLife 2021; 10:71982. [PMID: 34766549 PMCID: PMC8612733 DOI: 10.7554/elife.71982] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes may mediate cell-to-cell communication by transporting various proteins and nucleic acids to neighboring cells. Some protein and RNA cargoes are significantly enriched in exosomes. How cells efficiently and selectively sort them into exosomes remains incompletely explored. Previously, we reported that YBX1 is required in sorting of miR-223 into exosomes. Here, we show that YBX1 undergoes liquid-liquid phase separation (LLPS) in vitro and in cells. YBX1 condensates selectively recruit miR-223 in vitro and into exosomes secreted by cultured cells. Point mutations that inhibit YBX1 phase separation impair the incorporation of YBX1 protein into biomolecular condensates formed in cells, and perturb miR-233 sorting into exosomes. We propose that phase separation-mediated local enrichment of cytosolic RNA-binding proteins and their cognate RNAs enables their targeting and packaging by vesicles that bud into multivesicular bodies. This provides a possible mechanism for efficient and selective engulfment of cytosolic proteins and RNAs into intraluminal vesicles which are then secreted as exosomes from cells.
Collapse
Affiliation(s)
- Xiao-Man Liu
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Liang Ma
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
76
|
Cadena Sandoval M, Heberle AM, Rehbein U, Barile C, Ramos Pittol JM, Thedieck K. mTORC1 Crosstalk With Stress Granules in Aging and Age-Related Diseases. FRONTIERS IN AGING 2021; 2:761333. [PMID: 35822040 PMCID: PMC9261333 DOI: 10.3389/fragi.2021.761333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a master regulator of metabolism and aging. A complex signaling network converges on mTORC1 and integrates growth factor, nutrient and stress signals. Aging is a dynamic process characterized by declining cellular survival, renewal, and fertility. Stressors elicited by aging hallmarks such as mitochondrial malfunction, loss of proteostasis, genomic instability and telomere shortening impinge on mTORC1 thereby contributing to age-related processes. Stress granules (SGs) constitute a cytoplasmic non-membranous compartment formed by RNA-protein aggregates, which control RNA metabolism, signaling, and survival under stress. Increasing evidence reveals complex crosstalk between the mTORC1 network and SGs. In this review, we cover stressors elicited by aging hallmarks that impinge on mTORC1 and SGs. We discuss their interplay, and we highlight possible links in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander Martin Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrike Rehbein
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Cecilia Barile
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - José Miguel Ramos Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Kathrin Thedieck, , ,
| |
Collapse
|
77
|
Budkina K, El Hage K, Clément MJ, Desforges B, Bouhss A, Joshi V, Maucuer A, Hamon L, Ovchinnikov LP, Lyabin DN, Pastré D. YB-1 unwinds mRNA secondary structures in vitro and negatively regulates stress granule assembly in HeLa cells. Nucleic Acids Res 2021; 49:10061-10081. [PMID: 34469566 PMCID: PMC8464072 DOI: 10.1093/nar/gkab748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/16/2023] Open
Abstract
In the absence of the scanning ribosomes that unwind mRNA coding sequences and 5'UTRs, mRNAs are likely to form secondary structures and intermolecular bridges. Intermolecular base pairing of non polysomal mRNAs is involved in stress granule (SG) assembly when the pool of mRNAs freed from ribosomes increases during cellular stress. Here, we unravel the structural mechanisms by which a major partner of dormant mRNAs, YB-1 (YBX1), unwinds mRNA secondary structures without ATP consumption by using its conserved cold-shock domain to destabilize RNA stem/loops and its unstructured C-terminal domain to secure RNA unwinding. At endogenous levels, YB-1 facilitates SG disassembly during arsenite stress recovery. In addition, overexpression of wild-type YB-1 and to a lesser extent unwinding-defective mutants inhibit SG assembly in HeLa cells. Through its mRNA-unwinding activity, YB-1 may thus inhibit SG assembly in cancer cells and package dormant mRNA in an unfolded state, thus preparing mRNAs for translation initiation.
Collapse
Affiliation(s)
- Karina Budkina
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.,Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - Krystel El Hage
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | | | - Ahmed Bouhss
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Lev P Ovchinnikov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - Dmitry N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| |
Collapse
|
78
|
Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 2021; 9:745394. [PMID: 34604242 PMCID: PMC8485071 DOI: 10.3389/fcell.2021.745394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The assembly of stress granules (SGs) is a well-known cellular strategy for reducing stress-related damage and promoting cell survival. SGs have become important players in human health, in addition to their fundamental role in the stress response. The critical role of SGs in cancer cells in formation, progression, and metastasis makes sense. Recent researchers have found that several SG components play a role in tumorigenesis and cancer metastasis via tumor-associated signaling pathways and other mechanisms. Gene-ontology analysis revealed the role of these protein components in the structure of SGs. Involvement in the translation process, regulation of mRNA stability, and action in both the cytoplasm and nucleus are among the main features of SG proteins. The present scoping review aimed to consider all studies on the effect of SGs on cancer formation, proliferation, and metastasis and performed based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted before July 2021. Publications were screened, and quantitative and qualitative analysis was performed on the extracted data. Go analysis was performed on seventy-one SGs protein components. Remarkably G3BP1, TIA1, TIAR, and YB1 have the largest share among the proteins considered in the studies. Altogether, this scoping review tries to demonstrate and provide a comprehensive summary of the role of SGs in the formation, progression, and metastasis of cancer by reviewing all studies.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
79
|
Li H, Lin PH, Gupta P, Li X, Zhao SL, Zhou X, Li Z, Wei S, Xu L, Han R, Lu J, Tan T, Yang DH, Chen ZS, Pawlik TM, Merritt RE, Ma J. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer 2021; 20:118. [PMID: 34521423 PMCID: PMC8439062 DOI: 10.1186/s12943-021-01418-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). Methods Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. Results We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. Conclusion Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01418-3.
Collapse
Affiliation(s)
- Haichang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| | - Pei-Hui Lin
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xiangguang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Serena Li Zhao
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Zhongguang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Shengcai Wei
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Li Xu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Renzhi Han
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Jing Lu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Robert E Merritt
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
80
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
81
|
Chatterjee D, Chakrabarti O. Role of stress granules in modulating senescence and promoting cancer progression: Special emphasis on glioma. Int J Cancer 2021; 150:551-561. [PMID: 34460104 DOI: 10.1002/ijc.33787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
82
|
SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer. J Proteomics 2021; 247:104334. [PMID: 34298187 DOI: 10.1016/j.jprot.2021.104334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 01/06/2023]
Abstract
Withaferin A (WA) is a steroidal lactone extracted from Withania somnifera, commonly known as Ashwagandha. WA has several therapeutic benefits. The current study aims to identify proteins that are potentially regulated by WA in prostate cancer (PCA) cells. We used a SILAC-based proteomic approach to analyze the expression of proteins in response to WA treatment at 4 h and 24 h time points in three PCA cell lines: 22Rv1, DU-145, and LNCaP. Ontology analysis suggested that prolonged treatment with WA upregulated the expression of proteins involved in stress-response pathways. Treatment with WA increased oxidative stress, reduced global mRNA translation, and elevated the expression of cytoprotective stress granule (SG) protein G3BP1. WA treatment also enhanced the formation of SGs. The elevated expression of G3BP1 and the formation of SGs might constitute a mechanism of cytoprotection in PCA cells. Knockdown of G3BP1 blocked SG formation and enhanced the efficacy of WA to reduce PCA cell survival. SIGNIFICANCE: Withaferin A, a steroidal lactone, extracted from Withania somnifera is a promising anti-cancer drug. Using a SILAC-based quantitative proteomic approach, we identified proteins changed by WA-treatment at 4 h and 24 h in three prostate cancer (PCA) cell lines. WA-treatment induced the expression of proteins involved in apoptosis and reduced the expression of proteins involved in cell growth at 4 h. WA-treatment for 24 h enhanced the expression of proteins involved in stress response pathways. WA-treated cells exhibited increased oxidative stress, reduced mRNA translation and enhanced SG formation. PCA is characterized by higher metabolic rate and increased oxidative stress. PCA with a higher stress tolerance can effectively adapt to anti-cancer treatment stress, leading to drug resistance and cellular protection. Enhancing the level of oxidative stress along with inhibition of corresponding cytoprotective stress response pathways is a feasible option to prevent PCA from getting adapted to treatment stress. WA-treatment induced oxidative stress, in combination with blocking SGs by G3BP1 targeting, offers a therapeutic strategy to reduce PCA cell survival.
Collapse
|
83
|
Li S, Xiong Q, Chen M, Wang B, Yang X, Yang M, Wang Q, Cui Z, Ge F. Long noncoding RNA HOTAIR interacts with Y-Box Protein-1 (YBX1) to regulate cell proliferation. Life Sci Alliance 2021; 4:4/9/e202101139. [PMID: 34266873 PMCID: PMC8321693 DOI: 10.26508/lsa.202101139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The authors determined that HOTAIR specifically bind to YBX1 and promote its nuclear translocation, and then regulating cell proliferation by stimulating the PI3K/Akt and ERK/RSK signaling pathways. HOTAIR is a long noncoding RNA (lncRNA) which serves as an important factor regulating diverse processes linked with cancer development. Here, we used comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) to explore the HOTAIR-protein interactome. We were able to identify 348 proteins interacting with HOTAIR, allowing us to establish a heavily interconnected HOTAIR-protein interaction network. We further developed a novel near-infrared fluorescent protein (iRFP)-trimolecular fluorescence complementation (TriFC) system to assess the interaction between HOTAIR and its interacting proteins. Then, we determined that HOTAIR specifically binds to YBX1, promotes YBX1 nuclear translocation, and stimulates the PI3K/Akt and ERK/RSK signaling pathways. We further demonstrated that HOTAIR exerts its effects on cell proliferation, at least in part, through the regulation of two YBX1 downstream targets phosphoenolpyruvate carboxykinase 2 (PCK2) and platelet derived growth factor receptor β. Our findings revealed a novel mechanism, whereby an lncRNA is able to regulate cell proliferation via altering intracellular protein localization. Moreover, the imaging tools developed herein have excellent potential for future in vivo imaging of lncRNA–protein interaction.
Collapse
Affiliation(s)
- Siting Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China .,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
84
|
Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, Yin R, Wang Q, Zhang T, Wang P, Hu J, Cheng Y, Gao Z, Wang J, Chang J, Cui M, Gao K, Chai J, Liu W, Guo C, Li S, Liu L, Zhou F, Chen J, Zhang H. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood 2021; 138:71-85. [PMID: 33763698 PMCID: PMC8667054 DOI: 10.1182/blood.2020009676] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins (RBPs) are critical regulators of transcription and translation that are often dysregulated in cancer. Although RBPs are increasingly recognized as being important for normal hematopoiesis and for hematologic malignancies as oncogenes or tumor suppressors, RBPs that are essential for the maintenance and survival of leukemia remain elusive. Here we show that YBX1 is specifically required for maintaining myeloid leukemia cell survival in an N6-methyladenosine (m6A)-dependent manner. We found that expression of YBX1 is significantly upregulated in myeloid leukemia cells, and deletion of YBX1 dramatically induces apoptosis and promotes differentiation coupled with reduced proliferation and impaired leukemic capacity of primary human and mouse acute myeloid leukemia cells in vitro and in vivo. Loss of YBX1 has no obvious effect on normal hematopoiesis. Mechanistically, YBX1 interacts with insulin-like growth factor 2 messenger RNA (mRNA)-binding proteins (IGF2BPs) and stabilizes m6A-tagged RNA. Moreover, YBX1 deficiency dysregulates the expression of apoptosis-related genes and promotes mRNA decay of MYC and BCL2 in an m6A-dependent manner, which contributes to the defective survival that results from deletion of YBX1. Thus, our findings have uncovered a selective and critical role of YBX1 in maintaining myeloid leukemia survival, which might provide a rationale for the therapeutic targeting of YBX1 in myeloid leukemia.
Collapse
Affiliation(s)
- Mengdie Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xueqin Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Guoqiang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yashu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yicun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Rong Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tong Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Peipei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jin Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ying Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhuying Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Jiwei Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Manman Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Kexin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jihua Chai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Chengli Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
85
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
86
|
Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular Condensates and Their Links to Cancer Progression. Trends Biochem Sci 2021; 46:535-549. [PMID: 33579564 DOI: 10.1016/j.tibs.2021.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Collapse
Affiliation(s)
- Danfeng Cai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
87
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
88
|
Lavalée M, Curdy N, Laurent C, Fournié JJ, Franchini DM. Cancer cell adaptability: turning ribonucleoprotein granules into targets. Trends Cancer 2021; 7:902-915. [PMID: 34144941 DOI: 10.1016/j.trecan.2021.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Stress granules (SGs) and processing bodies (P-bodies) are membraneless cytoplasmic condensates of ribonucleoproteins (RNPs). They both regulate RNA fate under physiological and pathological conditions, and are thereby involved in the regulation and maintenance of cellular integrity. During tumorigenesis, cancer cells use these granules to thrive, to adapt to the harsh conditions of the tumor microenvironment (TME), and to protect themselves from anticancer treatments. This ability to provide multiple outcomes not only makes RNP granules promising targets for cancer therapy but also emphasizes the need for more knowledge about the biology of these granules to achieve clinical use. In this review we focus on the role of RNP granules in cancer, and on how their composition and regulation might be used to elaborate therapeutic strategies.
Collapse
Affiliation(s)
- Margot Lavalée
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Nicolas Curdy
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Département de Pathologie, Centre Hospitalier Universitaire (CHU) de Toulouse, 31059 Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1037, Centre National de la Recherche Scientifique (CNRS) UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France.
| |
Collapse
|
89
|
Alluri RK, Li Z, McCrae KR. Stress Granule-Mediated Oxidized RNA Decay in P-Body: Hypothetical Role of ADAR1, Tudor-SN, and STAU1. Front Mol Biosci 2021; 8:672988. [PMID: 34150849 PMCID: PMC8211916 DOI: 10.3389/fmolb.2021.672988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.
Collapse
Affiliation(s)
- Ravi Kumar Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Zhongwei Li
- Biomedical Science Department, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
90
|
Wiedner HJ, Giudice J. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021; 28:465-473. [PMID: 34099940 PMCID: PMC8787349 DOI: 10.1038/s41594-021-00601-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.
Collapse
Affiliation(s)
- Hannah J Wiedner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
91
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
92
|
Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021; 157:944-962. [PMID: 33349931 PMCID: PMC8248322 DOI: 10.1111/jnc.15280] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Alicia Dubinski
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Christine Vande Velde
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| |
Collapse
|
93
|
Bearss JJ, Padi SKR, Singh N, Cardo‐Vila M, Song JH, Mouneimne G, Fernandes N, Li Y, Harter MR, Gard JMC, Cress AE, Peti W, Nelson ADL, Buchan JR, Kraft AS, Okumura K. EDC3 phosphorylation regulates growth and invasion through controlling P-body formation and dynamics. EMBO Rep 2021; 22:e50835. [PMID: 33586867 PMCID: PMC8025014 DOI: 10.15252/embr.202050835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/20/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P-bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P-body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P-body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P-bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer-relevant functions and suggest that modulation of P-body activity may represent a new paradigm for cancer treatment.
Collapse
Affiliation(s)
| | - Sathish KR Padi
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
| | - Neha Singh
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Marina Cardo‐Vila
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of ArizonaTucsonAZUSA
| | - Jin H Song
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Nikita Fernandes
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Yang Li
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Matthew R Harter
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Jaime MC Gard
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Anne E Cress
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Wolfgang Peti
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | | | - J Ross Buchan
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Andrew S Kraft
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of MedicineUniversity of ArizonaTucsonAZUSA
| | - Koichi Okumura
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of PhysiologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
94
|
Prognostic value of aberrantly expressed methylation genes in human hepatocellular carcinoma. Biosci Rep 2021; 40:226463. [PMID: 32955083 PMCID: PMC7536330 DOI: 10.1042/bsr20192593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives: To identify the prognostic value of aberrantly methylated differentially expressed genes (DEGs) in hepatocellular carcinoma (HCC) and to explore the underlying mechanisms of tumorigenesis. Methods: Gene expression profiles (GSE65372 and GSE37988) were analyzed using GEO2R to obtain aberrantly methylated DEGs. Functional enrichment analysis of screened genes was performed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Cytoscape software was used to analyze the PPI network and to select hub genes. Transcriptional and proteinic expression data of hub genes were obtained through UALCAN and the Human Protein Reference Database. Finally, we analyzed the prognostic value of hub genes with the Kaplan–Meier Plotter and MethSurv database. Results: In total, 24 up-hypomethylated oncogenes and 37 down-hypermethylated tumor suppressor genes (TSGs) were identified, and 8 hub genes, including 4 up-hypomethylated oncogenes (CDC5L, MERTK, RHOA and YBX1) and 4 down-hypermethylated TSGs (BCR, DFFA, SCUBE2 and TP63), were selected by PPI. Higher expression of methylated CDC5L-cg05671347, MERTK-cg08279316, RHOA-cg05657651 and YBX1-cg16306148, and lower expression of methylated BCR-cg25410636, DFFA-cg20696875, SCUBE2-cg19000089 and TP63-cg06520450, were associated with better overall survival (OS) in HCC patients. Multivariate analysis also showed they were independent prognostic factors for OS of HCC patients. Conclusions: In summary, different expression of methylated genes above mentioned were associated with better prognosis in HCC patients. Altering the methylation status of these genes may be a therapeutic target for HCC, but it should be further evaluated in clinical studies.
Collapse
|
95
|
Saxena N, Beraldi E, Fazli L, Somasekharan SP, Adomat H, Zhang F, Molokwu C, Gleave A, Nappi L, Nguyen K, Brar P, Nikesitch N, Wang Y, Collins C, Sorensen PH, Gleave M. Androgen receptor (AR) antagonism triggers acute succinate-mediated adaptive responses to reactivate AR signaling. EMBO Mol Med 2021; 13:e13427. [PMID: 33709547 PMCID: PMC8103094 DOI: 10.15252/emmm.202013427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Treatment-induced adaptive pathways converge to support androgen receptor (AR) reactivation and emergence of castration-resistant prostate cancer (PCa) after AR pathway inhibition (ARPI). We set out to explore poorly defined acute adaptive responses that orchestrate shifts in energy metabolism after ARPI and identified rapid changes in succinate dehydrogenase (SDH), a TCA cycle enzyme with well-known tumor suppressor activity. We show that AR directly regulates transcription of its catalytic subunits (SDHA, SDHB) via androgen response elements (AREs). ARPI acutely suppresses SDH activity, leading to accumulation of the oncometabolite, succinate. Succinate triggers calcium ions release from intracellular stores, which in turn phospho-activates the AR-cochaperone, Hsp27 via p-CaMKK2/p-AMPK/p-p38 axis to enhance AR protein stabilization and activity. Activation of this pathway was seen in tissue microarray analysis on prostatectomy tissues and patient-derived xenografts. This adaptive response is blocked by co-targeting AR with Hsp27 under both in vitro and in vivo studies, sensitizing PCa cells to ARPI treatments.
Collapse
Affiliation(s)
- Neetu Saxena
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Fan Zhang
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Anna Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lucia Nappi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Pavn Brar
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
96
|
Wang H, Li B, Yan K, Wu Y, Wen Y, Liu Y, Fan P, Ma Q. Protein and Signaling Pathway Responses to rhIL-6 Intervention Before Lobaplatin Treatment in Osteosarcoma Cells. Front Oncol 2021; 11:602712. [PMID: 33791202 PMCID: PMC8006349 DOI: 10.3389/fonc.2021.602712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/16/2021] [Indexed: 01/28/2023] Open
Abstract
Lobaplatin is a third-generation platinum-based antineoplastic agent and is widely used for osteosarcoma treatment before and after tumor removal. However, treatment failure often results from lobaplatin drug resistance. In our study, we found that SaOS-2 and SOSP-9607 osteosarcoma cells became less sensitive to lobaplatin after treatment with exogenous interleukin (IL)-6. Quantitative proteomic analysis was performed to elucidate the underlying mechanism in SaOS-2 osteosarcoma cells. Cells were divided into a control group (CG), a lobaplatin treatment group (LG), a recombinant human IL-6 (rhIL-6), and a lobaplatin treatment group (rhILG). We performed three biological replicates in each group to compare the differential protein expression between groups using a tandem mass tag (TMT) labeling technology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1,313 proteins with significant differential expression was identified and quantified. The general characteristics of the significantly enriched proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-protein interaction (PPI) analysis was conducted using IntAct and STRING. In total, 31 proteins were further verified by parallel reaction monitoring (PRM), among which ras GTPase-activating protein-binding protein 1 (G3BP1), fragile X mental retardation syndrome-related protein 1 (hFXR1p), and far upstream element-binding protein 1 (FUBP1) were significantly differentially expressed. Immunohistochemistry results showed that these three proteins are highly expressed in specimens from platinum-resistant osteosarcoma patients, while the proteins are negatively or weakly expressed in specimens from platinum-sensitive osteosarcoma patients. The immunofluorescence staining results were in accord with the immunohistochemistry staining results. siRNA knockdown of FUBP1 showed a strikingly decreased IC50 value for lobaplatin in FUBP1-silenced cells, which verified the role of FUBP1 in the drug susceptibility of osteosarcoma and the potential therapeutic value for increasing the sensitivity to lobaplatin. This is the first proteomic study on a rhIL-6 intervention before lobaplatin treatment in osteosarcoma cells.
Collapse
Affiliation(s)
- Huan Wang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Li
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Kang Yan
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yonghong Wu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunyan Liu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Fan
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, Wenzhou, China
| | - Qiong Ma
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
97
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
98
|
Mechanism and effect of stress granule formation in cancer and its potential roles in breast cancer therapy. Genes Dis 2021; 9:659-667. [PMID: 35782985 PMCID: PMC9243343 DOI: 10.1016/j.gendis.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Stress granules are non-membranous cytoplasmic foci induced by various stress conditions. It is a protective strategy used by cells to suppress overall translation during stress. In cancer cells, it was thought that the formation of stress granules could protect them from apoptosis and induces resistance towards anti-cancer drugs or radiation treatment which makes the stress granules a potential target for cancer treatment. However, most of our understanding of stress granules are still in the stage of molecular and cell biology, and a transitional gap for its actual effect on clinical settings remains. In this review, we summarize the mechanism and effect of stress granules formation in cancer and try to illuminate its potential applications in cancer therapy, using breast cancer as an example.
Collapse
|
99
|
Matheny T, Van Treeck B, Huynh TN, Parker R. RNA partitioning into stress granules is based on the summation of multiple interactions. RNA (NEW YORK, N.Y.) 2021; 27:174-189. [PMID: 33199441 PMCID: PMC7812873 DOI: 10.1261/rna.078204.120] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 05/28/2023]
Abstract
Stress granules (SGs) are stress-induced RNA-protein assemblies formed from a complex transcriptome of untranslating ribonucleoproteins (RNPs). Although RNAs can be either enriched or depleted from SGs, the rules that dictate RNA partitioning into SGs are unknown. We demonstrate that the SG-enriched NORAD RNA is sufficient to enrich a reporter RNA within SGs through the combined effects of multiple elements. Moreover, artificial tethering of G3BP1, TIA1, or FMRP can target mRNAs into SGs in a dose-dependent manner with numerous interactions required for efficient SG partitioning, which suggests individual protein interactions have small effects on the SG partitioning of mRNPs. This is supported by the observation that the SG transcriptome is largely unchanged in cell lines lacking the abundant SG RNA-binding proteins G3BP1 and G3BP2. We suggest the targeting of RNPs into SGs is due to a summation of potential RNA-protein, protein-protein, and RNA-RNA interactions with no single interaction dominating RNP recruitment into SGs.
Collapse
Affiliation(s)
- Tyler Matheny
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Briana Van Treeck
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
100
|
Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive. Viruses 2021; 13:v13020200. [PMID: 33525628 PMCID: PMC7910986 DOI: 10.3390/v13020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.
Collapse
|