51
|
McVicar DW, Burshtyn DN. Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752646 DOI: 10.1126/stke.2001.75.re1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Once thought to be promiscuous killers, it is now known that natural killer (NK) cells possess an elaborate array of receptors that regulate NK cytotoxic and secretory functions upon interaction with target cell MHC class I proteins. These receptors, known as killer cell immunoglobulin-like receptors (KIRs) in humans, and Ly49 receptors in the mouse, have become the focus of intense study in an effort to discern the underlying biology of these large receptor families. These receptor families include both inhibitory and activating receptors. Interrogation of a target expressing KIR ligands leads to coengagement of the inhibitory receptor with as-yet poorly defined activation receptors. Kinases activated during engagement mediate the phosphorylation of the KIR or Ly49 cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The phosphorylated ITIMs serve as efficient recruitment points for the cytosolic protein tyrosine phosphatases, SHP-1 and SHP-2, resulting in the dephosphorylation of substrates critical for cellular activation. In contrast, some KIRs and Ly49s lack the ITIM and possess a charged residue in their transmembrane domains that mediates interaction with the DAP12 signal transduction chain. DAP12 uses its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM) to mediate cellular activation. Engagement of a DAP12 coupled KIR or Ly49 results in phosphorylation of DAP12, and other key substrates, including the Syk tryosine kinase, phospholipase C, and c-Cbl. DAP12 activation then leads to the Mapk cascade and ultimately to enhanced degranulation, and production of cytokines and chemokines. Although the context in which inhibitory and activating KIR and Ly49s function is not yet known, the dissection of the activating and inhibitory signal transduction pathways should shed light on their method of integration into the activation sequela of NK cells. Ultimately, this work will lead to concrete understanding of the immunobiology of these seemingly antagonistic receptor systems.
Collapse
Affiliation(s)
- D W McVicar
- Laboratory of Experimental Immunology, Division of Basic Sciences, National Cancer Institute, NCI-FCRDC Building 560/Rm 31-93, Frederick, MD 21702, USA.
| | | |
Collapse
|
52
|
Sathish JG, Johnson KG, Fuller KJ, LeRoy FG, Meyaard L, Sims MJ, Matthews RJ. Constitutive association of SHP-1 with leukocyte-associated Ig-like receptor-1 in human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1763-70. [PMID: 11160222 DOI: 10.4049/jimmunol.166.3.1763] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.
Collapse
Affiliation(s)
- J G Sathish
- Department of Medicine, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
With the detailed description and analysis of several inhibitory receptor systems on lymphoid and myeloid cells, a central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses. In some cases, the activating and inhibitory receptors recognize similar ligands, and the net outcome is determined by the relative strength of these opposing signals. The importance of this modulation is demonstrated by the sometimes fatal autoimmune disorders observed in mice with targeted disruption of inhibitory receptors. The significance of these receptors is further evidenced by the conservation of immunoreceptor tyrosine-based inhibitory motifs during their evolution.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation/immunology
- Autoimmune Diseases/immunology
- B-Lymphocytes/immunology
- Blood Cells/immunology
- CTLA-4 Antigen
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunity, Cellular
- Immunoconjugates
- Killer Cells, Natural/immunology
- Lymphocyte Activation
- Phagocytes/immunology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- J V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
54
|
Pluskota E, Chen Y, D'Souza SE. Src homology domain 2-containing tyrosine phosphatase 2 associates with intercellular adhesion molecule 1 to regulate cell survival. J Biol Chem 2000; 275:30029-36. [PMID: 10864922 DOI: 10.1074/jbc.m000240200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) binds to the plasma protein fibrinogen (Fg) to mediate leukocyte/endothelial cell interactions. In our studies, the ligation of Fg to ICAM-1 on tumor necrosis factor-alpha-stimulated endothelial cells resulted in the tyrosine phosphorylation of Src homology domain 2 (SH2)-containing phosphatase-2 (SHP-2). The ICAM-1 cytoplasmic sequence IKKYRLQ conforms poorly to the concensus immunoreceptor tyrosine-based inhibition motifs found in receptors that bind SHP-2. Nevertheless, the tyrosine phosphorylated sequence (IKKpYRLQ) bound specifically to the SH2 domain proximal to the NH(2)-terminal of SHP-2 (SHP-2-N) but not to the SH2 domain proximal on the COOH-terminal side (SHP-2-C). Phosphorylated ICAM-1 bound SHP-2-N. In immunoprecipitation experiments, SHP-2 associated with phosphorylated ICAM-1. Cells expressing truncated ICAM-1 that lacked the cytoplasmic sequence (ICAM-1(TR)) failed to associate with SHP-2. ICAM-1 containing the tyrosine to alanine substitution at position 485 (ICAM-1(Y485A)) associated weakly with SHP-2. Cells expressing ICAM-1(TR) and ICAM-1(Y485A) underwent apoptosis upon adhesion to Fg, whereas the wild type ICAM-1 maintained cell survival. These results indicate that ICAM-1 interactions with SHP-2 allow better cellular survival mediated through Fg-ICAM-1 ligation.
Collapse
Affiliation(s)
- E Pluskota
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
55
|
Pasquet JM, Quek L, Pasquet S, Poole A, Matthews JR, Lowell C, Watson SP. Evidence of a role for SHP-1 in platelet activation by the collagen receptor glycoprotein VI. J Biol Chem 2000; 275:28526-31. [PMID: 10871605 DOI: 10.1074/jbc.m001531200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology (SH)2 domain-containing protein-tyrosine phosphatase SHP-1 is tyrosine phosphorylated in platelets in response to the glycoprotein VI (GPVI)-selective agonist collagen-related peptide (CRP), collagen, and thrombin. Two major unidentified tyrosine-phosphorylated bands of 28 and 32 kDa and a minor band of 130 kDa coprecipitate with SHP-1 in response to all three agonists. Additionally, tyrosine-phosphorylated proteins of 50-55 and 70 kDa specifically associate with SHP-1 following stimulation by CRP and collagen. The tyrosine kinases Lyn, which exists as a 53 and 56-kDa doublet, and Syk were identified as major components of these bands, respectively. Kinase assays on SHP-1 immunoprecipitates performed in the presence of the Src family kinase inhibitor PP1 confirmed the presence of a Src kinase in CRP- but not thrombin-stimulated cells. Lyn, Syk, and SLP-76, along with tyrosine-phosphorylated 28-, 32-, and 130-kDa proteins, bound selectively to a glutathione S-transferase protein encoding the SH2 domains of SHP-1, suggesting that this is the major site of interaction. Platelets isolated from motheaten viable mice (mev/mev) revealed the presence of a heavily tyrosine-phosphorylated 26-kDa protein that was not found in wild-type platelets. CRP-stimulated mev/mev platelets manifested hypophosphorylation of Syk and Lyn and reduced P-selectin expression relative to controls. These observations provide evidence of a functional role for SHP-1 in platelet activation by GPVI.
Collapse
Affiliation(s)
- J M Pasquet
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
56
|
Borges L, Cosman D. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev 2000; 11:209-17. [PMID: 10817964 DOI: 10.1016/s1359-6101(00)00007-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells exhibit a complex network of inhibitory and stimulatory signaling pathways, which interact with each other to maintain an homeostatic balance and modulate cellular responses to external stimuli. During most of the 1980s, a great effort was put into the characterization of stimulatory cell surface receptors for cytokines and growth factors. In the last decade, a large number of inhibitory receptors have been identified and it has become apparent that inhibitory signaling pathways are subject to intricate regulatory mechanisms. Inhibitory and stimulatory signaling pathways work in concert with each other to establish activation thresholds and provide sensitive tuning mechanisms that help control cellular responses. LIRs/ILTs/MIRs are a novel family of inhibitory and stimulatory receptors expressed both in myeloid and lymphoid cells. They contain two or four immunoglobulin-like domains in the extracellular region and their cytoplasmic domains are either very short and without any signaling motifs or are long and contain a variable number of immunoreceptor tyrosine-based inhibition motifs (ITIMs). LIRs within the first group send stimulatory signals by association with the FcR common gamma chain and LIRs within the second group deliver inhibitory signals by association with the protein tyrosine phosphatase SHP-1. This review summarizes our current knowledge on the LIRs, their ligands, and biological functions.
Collapse
Affiliation(s)
- L Borges
- Immunex Corporation, 51 University Street, Seattle WA 98101, USA.
| | | |
Collapse
|
57
|
Keilhack H, Hellman U, van Hengel J, van Roy F, Godovac-Zimmermann J, Böhmer FD. The protein-tyrosine phosphatase SHP-1 binds to and dephosphorylates p120 catenin. J Biol Chem 2000; 275:26376-84. [PMID: 10835420 DOI: 10.1074/jbc.m001315200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A prominent tyrosine-phosphorylated protein of approximately 100 kDa (designated pp100) in epidermal growth factor (EGF)-stimulated A431 cells was found to be a main interaction partner of the protein-tyrosine phosphatase SHP-1 in pull-down experiments with a glutathione S-transferase-SHP-1 fusion protein. Binding was largely mediated by the N-terminal SH2 domain of SHP-1 and apparently direct and independent from the previously described association of SHP-1 with the activated EGF receptor. pp100 was partially purified and identified by mass spectrometric analysis of tryptic fragments, partial amino acid sequencing, and use of authentic antibodies as the 3A isoform of the Armadillo repeat protein superfamily member p120 catenin (p120(ctn)). Different p120(ctn) isoforms expressed in human embryonal kidney 293 cells, exhibited differential binding to SHP-1 that correlated partly with the extent of EGF-dependent p120(ctn) tyrosine phosphorylation. Despite strong phosphorylation, p120(ctn) isoforms 3B and 3AB bound, however, less readily to SHP-1. SHP-1 associated transiently with p120(ctn) in EGF-stimulated A431 cells stably transfected with a tetracycline-responsive SHP-1 expression construct, and p120(ctn) exhibited elevated phosphorylation upon a tetracycline-mediated decrease in the SHP-1 level. Functions of p120(ctn), which are regulated by tyrosine phosphorylation, may be modulated by the described SHP-1-p120(ctn) interaction.
Collapse
Affiliation(s)
- H Keilhack
- Research Unit "Molecular Cell Biology," Klinikum der Friedrich-Schiller-Universität Jena, Drackendorfer Strasse 1, D-07747 Jena, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Zhang J, Somani AK, Siminovitch KA. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol 2000; 12:361-78. [PMID: 10995583 DOI: 10.1006/smim.2000.0223] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The critical role for the SH2 domain-containing SHP-1 tyrosine phosphatase in regulating haemopoietic cell behaviour was initially revealed by data linking SHP-1 deficiency to the systemic autoimmunity and severe inflammation exhibited by motheaten mice. This discovery laid the groundwork for the identification of SHP-1 as an inhibitor of activation-promoting signalling cascades and for the coincident demonstration that protein tyrosine phosphatases (PTPs) such as SHP-1 show considerable specificity with respect to the mechanisms whereby they modulate the biochemical and biological sequelae of extracellular simulation. As outlined in this review, SHP-1 has now been implicated in the regulation of a myriad of signalling cascades and cell functions. As a result, the cumulative data generated from studies of this PTP have elucidated not only the functional relevance of SHP-1, but also a number of novel paradigms as to the molecular mechanisms whereby signalling cascades are regulated so as to either augment or abrogate specific cell behaviours.
Collapse
Affiliation(s)
- J Zhang
- Department of Medicine, University of Toronto, Ontario, Canada, M5G 1X5
| | | | | |
Collapse
|
59
|
Motoda K, Takata M, Kiura K, Nakamura I, Harada M. SHP-1/immunoreceptor tyrosine-based inhibition motif-independent inhibitory signalling through murine natural killer cell receptor Ly-49A in a transfected B-cell line. Immunology 2000; 100:370-7. [PMID: 10929060 PMCID: PMC2327019 DOI: 10.1046/j.1365-2567.2000.00046.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 02/21/2000] [Accepted: 02/21/2000] [Indexed: 11/20/2022] Open
Abstract
Ly-49A is a member of the Ly-49 family of mouse natural killer cell receptors that inhibit cytotoxicity upon recognition of their ligands, the major histocompatibility complex (MHC) class I molecules, on the target cell surface. Although Ly-49A has an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic tail, relatively little is known about the mechanisms underlying its inhibitory function. We report here that antibody-mediated co-ligation of the B-cell receptor (BCR) with the transfected Ly-49A molecule results in abrogation of BCR-induced interleukin-2 (IL-2) secretion and mild reduction in activation of Erk1/2 and p38 mitogen-activated protein (MAP) kinases in the B-cell line A20. Surprisingly, BCR-induced calcium mobilization was unaffected by cross-linking of BCR with Ly-49A. Furthermore, substitution of the single tyrosine residue in ITIM with phenylalanine, did not result in a complete loss of inhibitory function, as measured by BCR-induced IL-2 secretion. Deletion of the N-terminal 37 amino acid peptide, which includes the ITIM, did abrogate the inhibitory activity. Co-immunoprecipitation experiments revealed that, upon induction of tyrosine phosphorylation, Ly-49A recruits tyrosine phosphatase src-homology 2 (SH2) containing tyrosine phosphatases-1 (SHP-1), but not inositol phosphatase src-homology 2 (SH2) containing inositol phosphatase (SHIP), and that the tyrosine residue in the ITIM is critical for this interaction. These results suggest that transfected Ly-49A utilizes two different inhibitory mechanisms in B-cell signalling: ITIM-dependent and ITIM-independent.
Collapse
Affiliation(s)
- K Motoda
- Second Department of Internal Medicine, Okayama University Medical School, Okayama, Japan
| | | | | | | | | |
Collapse
|
60
|
Affiliation(s)
- L L Lanier
- Immunobiology Department, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, California 94304, USA.
| |
Collapse
|
61
|
Kwon D, Chwae YJ, Choi IH, Park JH, Kim SJ, Kim J. Diversity of the p70 killer cell inhibitory receptor (KIR3DL) family members in a single individual. Mol Cells 2000; 10:54-60. [PMID: 10774747 DOI: 10.1007/s10059-000-0054-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
NK cells and some T cells express members of a multigenic family of killer cell inhibitory receptors (KIRs) including p70 KIR (KIR3DL) and p58 KIR (KIR2DL) family that recognize polymorphic class I MHC molecules on target cells and transmit an inhibitory signal to prevent killer cell-mediated cytoxicity. The cDNA sequences of p70 KIR family members reported so far suggest that the p70 KIR gene consists of a multigene complex and that each gene may exhibit certain degrees of polymorphism. However, it is not clear how diverse the repertoire of the p70 KIR family is, particularly in a single individual. To address this question in more detail and to determine some indication as to the origin of the diversity, we cloned p70 KIR cDNAs from a single individual. We identified nine new KIRs that are different from the previously reported ones. A comparison of the amino acid sequences with published sequences of p70 KIRs showed that two clones belonged to the KIR3DL1 family, five clones belonged to the KIR3DL2 family, one clone belonged to the KIR2DL4 family, and one clone appeared to be an alternatively spliced form of p70 KIR. These results suggested that the repertoire of p70 KIR family members in a single individual is highly diverse. It is not clear how the diverse receptors are generated in a single individual, but a comparison of amino acid sequences of p70 KIR family members suggested that some of them may be encoded by distinct genes or their alleles, while others may be generated by a recombination mechanism and/or an alternative splicing mechanism at the maturation of the mRNA transcripts.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Genetic Variation
- Humans
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Molecular Sequence Data
- Multigene Family/genetics
- Protein Isoforms/genetics
- Receptors, Immunologic/genetics
- Receptors, KIR
- Receptors, KIR2DL3
- Receptors, KIR2DL4
- Receptors, KIR3DL1
- Receptors, KIR3DL2
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- D Kwon
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
62
|
Lou Z, Jevremovic D, Billadeau DD, Leibson PJ. A balance between positive and negative signals in cytotoxic lymphocytes regulates the polarization of lipid rafts during the development of cell-mediated killing. J Exp Med 2000; 191:347-54. [PMID: 10637278 PMCID: PMC2195747 DOI: 10.1084/jem.191.2.347] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1999] [Accepted: 11/16/1999] [Indexed: 11/08/2022] Open
Abstract
Plasma membrane microdomains containing sphingolipids and cholesterol (lipid rafts) are enriched in signaling molecules. The cross-linking of certain types of cell surface receptors initiates the redistribution of these lipid rafts, resulting in the formation of signaling complexes. However, little is known about the regulation of the initial raft redistribution and whether negative regulatory signaling pathways target this phase of cellular activation. We used natural killer (NK) cells as a model to investigate the regulation of raft redistribution, as both positive and negative signals have been implicated in the development of their cellular function. Here we show that after NK cells form conjugates with sensitive tumor cells, rafts become polarized to the site of target recognition. This redistribution of lipid rafts requires the activation of both Src and Syk family protein tyrosine kinases. In contrast, engagement of major histocompatibility complex (MHC)-recognizing killer cell inhibitory receptors (KIRs) on NK cells by resistant, MHC-bearing tumor targets blocks raft redistribution. This inhibition is dependent on the catalytic activity of KIR-associated SHP-1, a Src homology 2 (SH2) domain containing tyrosine phosphatase. These results suggest that the influence of integrated positive and negative signals on raft redistribution critically influences the development of cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Zhenkun Lou
- Department of Pharmacology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Dragan Jevremovic
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul J. Leibson
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
63
|
Gary-Gouy H, Bruhns P, Schmitt C, Dalloul A, Daëron M, Bismuth G. The pseudo-immunoreceptor tyrosine-based activation motif of CD5 mediates its inhibitory action on B-cell receptor signaling. J Biol Chem 2000; 275:548-56. [PMID: 10617650 DOI: 10.1074/jbc.275.1.548] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic studies revealed that CD5 could be a negative regulator of the B-cell antigen receptor (BCR). We explore here the effect of human CD5 on BCR-triggered responses. B cells were obtained expressing a chimera composed of extracellular and transmembrane domains of Fcgamma type IIB receptor fused to CD5 cytoplasmic domain (CD5cyt). Coligation of the chimera with the BCR induces CD5cyt tyrosine phosphorylation. A rapid inhibition of BCR-induced calcium response is observed, as well as a partial but delayed inhibition of phospholipase Cgamma-1 phosphorylation. Activation of extracellular regulated kinase-2 is also severely impaired. Moreover, at the functional level, interleukin-2 production is abolished. Src homology 2 domain-bearing tyrosine phosphatase SHP-1 and Src homology 2 domain-bearing inositol 5'-phosphatase SHIP usually participate in negative regulation of the BCR. We show that they do not associate with the phosphorylated CD5 chimera. We finally demonstrate that the pseudo-immunoreceptor tyrosine based activation motif present in CD5cyt is involved because its deletion eliminates the inhibitory effect of the chimera, both at biochemical and functional levels. These results demonstrate the inhibitory role of CD5 pseudo-immunoreceptor tyrosine based activation motif tyrosine phosphorylation on BCR signaling. They further support the idea that CD5 uses mechanisms different from those already described to negatively regulate the BCR pathway.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD5 Antigens/metabolism
- Calcium Signaling
- Enzyme Activation
- Interleukin-2/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- H Gary-Gouy
- Laboratoire d'Immunologie Cellulaire, CNRS UMR 7627, Centre Hospitalier Pitié-Salpêtrière, CERVI, 83 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
This review focuses on recent findings on the structural features of inhibitory NK cell receptors containing immunoreceptor tyrosine-based inhibition motif (ITIM) and of NK cell activating receptors, both in human and mouse. First, the study of the inhibitory killer cell immunoglobulin-like receptors (KIR) unveiled the presence of intracytoplasmic ITIM and their capacity to recruit protein tyrosine phosphatases such as SHP-1 in vivo. A brief summary of the known SHP-1 targets may help us to understand the inhibition mediated by the KIR. The characterization of ITIM thus allowed the definition of a large group of inhibitory cell surface receptors. The second part of the review describes the known NK cell activating receptors. Most of them require association with ITAM-containing polypeptides in order to mediate cell activation.
Collapse
Affiliation(s)
- M Bléry
- Centre d'immunologie INSERM-CNRS de Marseille-Luminy, France.
| | | | | |
Collapse
|
65
|
Valés-Gómez M, Reyburn H, Strominger J. Molecular analyses of the interactions between human NK receptors and their HLA ligands. Hum Immunol 2000; 61:28-38. [PMID: 10658975 DOI: 10.1016/s0198-8859(99)00159-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NK cell cytotoxicity is regulated by the action of multiple families of receptors. The interactions of these receptors with their ligands control different activating/inhibiting signal pathways and it is the balance of these signals which determines the behavior of the NK cell. The major described inhibitory pathways begin either with the recognition of a target cell classical class I HLA molecule by a killer cell immunologlobulin-like receptor (KIR) or the binding of the non-classical class I molecule HLA-E to the CD94/NKG2-A heterodimer. Activating counterparts to these inhibitory NK receptors have also been described and this review focuses on the molecular details of the binding of the inhibitory and activating receptors to their HLA ligands.
Collapse
Affiliation(s)
- M Valés-Gómez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
66
|
Kera J, Mizuki N, Ota M, Katsuyama Y, Pivetti-Pezzi P, Ohno S, Inoko H. Significant associations of HLA-B*5101 and B*5108, and lack of association of class II alleles with Behçet's disease in Italian patients. TISSUE ANTIGENS 1999; 54:565-71. [PMID: 10674970 DOI: 10.1034/j.1399-0039.1999.540605.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Behçet's disease has been known to be strongly associated with human leukocyte antigen (HLA) B51, one of the split antigens of HLA-B5. An increased incidence of HLA-B51 in the patient group has also been reported in an Italian population. Since the B51 antigen has been recently identified to comprise nine alleles, B*5101-B*5109, we performed HLA-B51 allele genotyping by the polymerase chain reaction-sequencing based typing (PCR-SBT) method as well as serological HLA-A and -B typing among 21 Italian patients with Behçet's disease in order to investigate whether there is any correlation of one particular B51-associated allele with Behcet's disease. In addition, HLA class II genotyping was performed by the PCR-restriction fragment length polymorphism (RFLP) method. As a result, only the phenotype frequency of the B51 antigen was found to be significantly increased in the patient group as compared to the ethnically matched control group by the corrected P-value analysis (71.4% in patients vs. 17.9% in controls; chi2 = 14.26, Pc = 0.0042, R.R. = 11.5). In the B51 allele genotyping, 11 out of 15 B51-positive patients were B*5101 and the remaining four were B*5108, whereas all of 5 normal controls were B*5101, showing significant association of each allele with Behçet's disease. No significant difference was observed between the patient and control groups in the HLA class II allelic distribution. This study revealed a strong association of Behçet's disease in Italian with B*5108 as well as B*5101, providing important insight into the molecular mechanism underlying an HLA association with Behçet's disease.
Collapse
Affiliation(s)
- J Kera
- Department of Genetic Information, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- K M Coggeshall
- Department of Microbiology, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
68
|
Ono M, Yuasa T, Ra C, Takai T. Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors. J Biol Chem 1999; 274:30288-96. [PMID: 10514523 DOI: 10.1074/jbc.274.42.30288] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paired Ig-like receptors (PIR) are polymorphic type I transmembrane proteins belonging to an Ig superfamily encoded by multiple isotypic genes. They are expressed on immune cells such as mast cells, macrophages, and B lymphocytes. Two subtypes of PIR have been classified according to the difference in the primary structure of the PIR transmembrane and cytoplasmic regions. These subtypes are designated as PIR-A and PIR-B. In this study, the transmembrane and cytoplasmic regions of the PIR-A subtype were shown to mediate activation signal events such as cytoplasmic calcium mobilization, protein tyrosine phosphorylations, and degranulation in rat mast cell line RBL-2H3. The association of the Fc receptor gamma and beta subunits with PIR-A was shown to be responsible for PIR-A function but not required for membrane expression of PIR-A on COS-7 cells. We further revealed the role of two charged amino acid residues in the transmembrane region, namely arginine and glutamic acid, in PIR-A function and its association with the above subunits. In contrast to the inhibitory nature of the PIR-B subtype, present findings reveal that PIR-A potentially acts as a stimulatory receptor in mast cells, suggesting a mechanism for regulation of mast cell functions by the PIR family.
Collapse
Affiliation(s)
- M Ono
- Department of Experimental Immunology, Institute of Development, Tohoku University, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
69
|
Eriksson M, Leitz G, Fällman E, Axner O, Ryan JC, Nakamura MC, Sentman CL. Inhibitory receptors alter natural killer cell interactions with target cells yet allow simultaneous killing of susceptible targets. J Exp Med 1999; 190:1005-12. [PMID: 10510090 PMCID: PMC2195645 DOI: 10.1084/jem.190.7.1005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector-target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49-MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.
Collapse
Affiliation(s)
- M Eriksson
- Umeå Center for Molecular Pathogenesis (UCMP), Umeå University, S-901 87 Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
70
|
Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J Biol Chem 1999; 274:28301-7. [PMID: 10497187 DOI: 10.1074/jbc.274.40.28301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tyrosine phosphatase SHP-1 functions as a negative regulator in hematopoietic cell development, proliferation, and receptor-mediated cellular activation. In Jurkat T cells, a major 68-kDa band and a minor 70-kDa band were immunoprecipitated by a monoclonal antibody against the SHP-1 protein-tyrosine phosphatase domain, while an antibody against the SHP-1 C-terminal 19 amino acids recognized only the 68-kDa SHP-1. The SDS-gel-purified 70-kDa protein was subjected to tryptic mapping and microsequencing, which was followed by molecular cloning. It revealed that the 70-kDa protein, termed SHP-1L, is a C-terminal alternatively spliced form of SHP-1. SHP-1L is 29 amino acids longer than SHP-1, and its 66 C-terminal amino acids are different from SHP-1. The C terminus of SHP-1L contains a proline-rich motif PVPGPPVLSP, a potential Src homology 3 domain-binding site. In contrast to SHP-1, tyrosine phosphorylation of SHP-1L is not detected upon stimulation in Jurkat T cells. This is apparently due to the lack of a single in vivo tyrosine phosphorylation site, which only exists in the C terminus of SHP-1 (Y564). COS cell-expressed glutathione S-transferase-SHP-1L can dephosphorylate tyrosine-phosphorylated ZAP70. At pH 7.4, SHP-1L was shown to be more active than SHP-1 in the dephosphorylation of ZAP70. At pH 5.4, SHP-1L and SHP-1 exhibited similar catalytic activity. It is likely that these two isoforms play different roles in the regulation of hematopoietic cell signal transduction.
Collapse
Affiliation(s)
- Y J Jin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
71
|
Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L Differs from 68-kDa SHP-1 in Its C-terminal Structure and Catalytic Activity. J Biol Chem 1999. [DOI: 10.1074/jbc.274.40.99999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
72
|
Meyaard L. LAIR-1, a widely distributed human ITIM-bearing receptor on hematopoietic cells. Curr Top Microbiol Immunol 1999; 244:151-7. [PMID: 10453657 DOI: 10.1007/978-3-642-58537-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L Meyaard
- University Hospital Utrecht, Dept. of Immunology, The Netherlands
| |
Collapse
|
73
|
Colonna M, Navarro F, López-Botet M. A novel family of inhibitory receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. Curr Top Microbiol Immunol 1999; 244:115-22. [PMID: 10453654 DOI: 10.1007/978-3-642-58537-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M Colonna
- Basel Institute for Immunology, Switzerland
| | | | | |
Collapse
|
74
|
Borges L, Fanger N, Cosman D. Interactions of LIRs, a family of immunoreceptors expressed in myeloid and lymphoid cells, with viral and cellular MHC class I antigens. Curr Top Microbiol Immunol 1999; 244:123-36. [PMID: 10453655 DOI: 10.1007/978-3-642-58537-1_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- L Borges
- Immunex Corporation, Seattle, WA 98101-2936, USA
| | | | | |
Collapse
|
75
|
Moretta A, Bottino C, Millo R, Biassoni R. HLA-specific and non-HLA-specific human NK receptors. Curr Top Microbiol Immunol 1999; 244:69-84. [PMID: 10453650 DOI: 10.1007/978-3-642-58537-1_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A Moretta
- Dipartimento di Medicina Sperimentale, University of Genoa, Italy
| | | | | | | |
Collapse
|
76
|
Cho HI, Park CG, Kim J. Reconstitution of killer cell inhibitory receptor-mediated signal transduction machinery in a cell-free model system. Arch Biochem Biophys 1999; 368:221-31. [PMID: 10441372 DOI: 10.1006/abbi.1999.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognition of class I MHC molecules on target cells by killer cell inhibitory receptors (KIRs) blocks natural cytotoxicity and antibody-dependent cell cytotoxicity of NK cells and CD3/TCR dependent cytotoxicity of T cells. The inhibitory effect of KIR ligation requires phosphorylation of the cytoplasmic tail of KIR and subsequent recruitment of an SH2-containing protein tyrosine phosphatase, SHP-1. To better understand the molecular mechanism of the KIR-mediated inhibitory signal transduction, we developed an in vitro assay system using a purified His-tag fusion protein of KIR cytoplasmic tail (His-CytKIR) and Jurkat T cell lysates. We identified a target molecule of SHP-1 by comparing the phosphorylation of major cellular substrates following in vitro phosphorylation of Jurkat cell lysates in the presence and absence of the His-CytKIR in this cell-free model system. The His-CytKIR was tyrosine phosphorylated by Lck in vitro, and the phosphorylated His-CytKIR recruited SHP-1. Interestingly, we observed that among major substrates phosphorylated in vitro, PLC-gamma exhibited a dramatic decrease in phosphorylation when the His-CytKIR was mixed with Jurkat T cell lysates. However, PLC-gamma exhibited no decrease in phosphorylation when SHP-1 or Lck was depleted or deficient in this reaction mixture, suggesting that the SHP-1 recruited by the phosphorylated His-CytKIR directly mediate the dephosphorylation of PLC-gamma. The cell-free model system could be used to reveal the detailed molecular interactions in the KIR-mediated signal transduction.
Collapse
Affiliation(s)
- H I Cho
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 120-752, Korea
| | | | | |
Collapse
|
77
|
Daws MR, Eriksson M, Oberg L, Ullén A, Sentman CL. H-2Dd engagement of Ly49A leads directly to Ly49A phosphorylation and recruitment of SHP1. Immunology 1999; 97:656-64. [PMID: 10457220 PMCID: PMC2326881 DOI: 10.1046/j.1365-2567.1999.00825.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1998] [Revised: 03/18/1999] [Accepted: 03/18/1999] [Indexed: 12/27/2022] Open
Abstract
We have used a number of in vitro and in vivo techniques to identify the molecules that can bind to the cytoplasmic tail of the Ly49A receptor. Affinity chromatography using peptides corresponding to the N-terminal 18 amino acids of Ly49A allowed the recovery of a number of proteins that bound preferentially to the tyrosine-phosphorylated peptide, including SH2-containing phosphatase-1 (SHP1) and the SH2-containing inositol 5' phosphatase (SHIP). In another approach, using the entire cytoplasmic domain of the Ly49A receptor, we found that SHP2 also interacted with the tyrosine-phosphorylated form of the Ly49A cytoplasmic tail. Using BIACORE(R)2000 analysis, we determined that both SHP1 and SHP2 bound to the tyrosine-phosphorylated cytoplasmic tail of Ly49A with affinities in the nanomolar range, whilst SHIP showed no binding. Mutation of tyrosine-36 to phenylalanine did not significantly affect the affinities of these proteins for the tyrosine-phosphorylated cytoplasmic tail of Ly49A. In addition, using a whole-cell system with T-cell lymphoma cell lines that expressed the Ly49A receptor or its H-2Dd ligand, we determined that engagement of Ly49A by its major histocompatibility complex (MHC) ligand leads to tyrosine-phosphorylation events and recruitment of SHP1. Recruitment of SHP1 was rapid and transient, reaching a maximum after 5 min. These data suggest that mechanisms for the inhibitory signal are generated following receptor engagement. They also provide direct evidence that ligand engagement of the Ly49A receptor is responsible for recruitment of downstream signalling molecules.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Antigens, Surface/metabolism
- Carrier Proteins/metabolism
- Chromatography, Affinity
- Electrophoresis, Polyacrylamide Gel
- H-2 Antigens/metabolism
- Intracellular Signaling Peptides and Proteins
- Lectins, C-Type
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily A
- Phosphorylation
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Time Factors
- Tumor Cells, Cultured
- Tyrosine/metabolism
Collapse
Affiliation(s)
- M R Daws
- Umeâ Center for Molecular Pathogenesis, Umeâ University, Umeâ, Sweden
| | | | | | | | | |
Collapse
|
78
|
Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999; 285:730-2. [PMID: 10426994 DOI: 10.1126/science.285.5428.730] [Citation(s) in RCA: 758] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.
Collapse
Affiliation(s)
- J Wu
- DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Newton-Nash DK, Newman PJ. A New Role for Platelet-Endothelial Cell Adhesion Molecule-1 (CD31): Inhibition of TCR-Mediated Signal Transduction. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa transmembrane glycoprotein expressed by endothelial cells, platelets, monocytes, neutrophils, and certain T cell subsets. The PECAM-1 extracellular domain has six Ig-homology domains that share sequence similarity with cellular adhesion molecules. The PECAM-1 cytoplasmic domain contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when appropriately engaged, becomes phosphorylated on tyrosine residues, creating docking sites for nontransmembrane, Src homology 2 domain-bearing protein tyrosine phosphatase (SHP)-1 and SHP-2. The purpose of the present study was to determine whether PECAM-1 inhibits protein tyrosine kinase (PTK)-dependent signal transduction mediated by the immunoreceptor tyrosine-based activation motif-containing TCR. Jurkat cells, which coexpress PECAM-1 and the TCR/CD3 complex, were INDO-1AM-labeled and then incubated with anti-CD3ε mAbs, anti-PECAM-1 mAbs, or both, and goat anti-mouse IgG was used to cross-link surface-bound mAbs. Calcium mobilization induced by CD3 cross-linking was found to be attenuated by coligation of PECAM-1 in a dose-dependent manner. PECAM-1-mediated inhibition of TCR signaling was attributable, at least in part, to inhibition of release of calcium from intracellular stores. These data provide evidence that PECAM-1 can dampen signals transduced by ITAM-containing receptors and support inclusion of PECAM-1 within the family of ITIM-containing inhibitors of PTK-dependent signal transduction.
Collapse
Affiliation(s)
- Debra K. Newton-Nash
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, WI 53233
| | - Peter J. Newman
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, WI 53233
| |
Collapse
|
80
|
Giezeman-Smits KM, Gorter A, van Vlierberghe RLP, v. Eendenburg JDH, Eggermont AMM, Fleuren GJ, Kuppen PJK. The Regulatory Role of CD45 on Rat NK Cells in Target Cell Lysis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
To investigate the role of CD45 in rat NK cell function, we developed new mAbs directed against rat CD45. mAb ANK12 binds to a high molecular isoform of CD45 and mAb ANK74 binds to the common part on all known CD45 isoforms, as has been described for the anti-rat CD45 mAb OX1. The ability of these mAbs to affect NK cell-mediated lysis was tested using the Fc receptor-positive target cell line P815. mAb ANK12 was found to significantly enhance the lysis of P815, whereas ANK74 and the anti-CD45 mAb OX1 did not. In addition, cross-linking of the CD45 isoform by ANK12 induced tyrosine phosphorylation of specific proteins in NK cells. Subsequently, the involvement of CD45 in the negative signaling after “self” MHC class I recognition by rat NK cells was investigated. The anti-CD45 mAbs were found to affect NK cell-mediated lysis of syngeneic tumor cell lines, depending upon the expression level of MHC class I on target cells. mAbs ANK74 and OX1 only inhibited lysis of the syngeneic tumor cell lines that expressed low levels of MHC class I. Furthermore, both mAbs caused an inhibition of NK cell-mediated lysis of these tumor cell lines when MHC class I molecules on the tumor cell lines were masked by an Ab. These results suggest that CD45 regulates the inhibitory signal pathway after self MHC class I recognition, supposedly by dephosphorylation of proteins.
Collapse
Affiliation(s)
| | | | | | | | - Alexander M. M. Eggermont
- ‡Department of Surgery, University Hospital Rotterdam-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | | | - Peter J. K. Kuppen
- †Surgery, Leiden University Medical Center, Leiden, The Netherlands; and
| |
Collapse
|
81
|
Affiliation(s)
- S Bolland
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
82
|
Cho HI, Park CG, Kim J. The cytoplasmic tail of killer inhibitory receptor (KIR) associates with TCR zeta in a phosphorylation-dependent manner. Immunol Lett 1999; 68:339-45. [PMID: 10424441 DOI: 10.1016/s0165-2478(99)00057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Killer inhibitory receptor (KIR) inhibits cytolytic function of killer cells by specific interaction with class I MHC molecules. The inhibitory effect mediated by KIR requires co-engagement of KIR with an activating receptor, such as TCR or FcR. This implies that KIR may function in the immediate vicinity of activating molecules, and previous studies have shown that p58 KIR is associated with TCR zeta- and FcR gamma-chain in NK cells. To better understand the molecular interaction between KIR and TCR zeta-chain, we generated a His-tag fusion protein of a p70 KIR cytoplasmic tail (His-CytKIR) and used this protein to coprecipitate TCR zeta-chain from Jurkat T cells. Western blots of the resolved coprecipitates showed that the cytoplasmic tail of KIR associates with TCR zeta in vitro. Interestingly, the association between the His-CytKIR and TCR zeta was dependent on the phosphorylation of the His-CytKIR. Unlike the unphosphorylated His-CytKIR, the phosphorylated form no longer associated with TCR zeta. However, the association was not affected by the tyrosine phosphorylation of TCR zeta. These results suggest that the cytoplasmic tail of KIR may couple to TCR zeta in a phosphorylation-dependent manner, so it could fine-tune the activation signals induced via the TCR.
Collapse
Affiliation(s)
- H I Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
83
|
Carlyle JR, Martin A, Mehra A, Attisano L, Tsui FW, Zúñiga-Pflücker JC. Mouse NKR-P1B, a Novel NK1.1 Antigen with Inhibitory Function. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.5917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The mouse NK1.1 Ag originally defined as NK cell receptor (NKR)-P1C (CD161) mediates NK cell activation. Here, we show that another member of the mouse CD161 family, NKR-P1B, represents a novel NK1.1 Ag. In contrast to NKR-P1C, which functions as an activating receptor, NKR-P1B inhibits NK cell activation. Association of NKR-P1B with Src homology 2-containing protein tyrosine phosphatase-1 provides a molecular mechanism for this inhibition. The existence of these two NK1.1 Ags with opposite functions suggests a potential role for NKR-P1 molecules, such as those of the Ly-49 gene family, in regulating NK cell function.
Collapse
Affiliation(s)
| | | | - Arun Mehra
- †Anatomy and Cell Biology, University of Toronto, Toronto, Ontario, Canada
| | - Liliana Attisano
- †Anatomy and Cell Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
84
|
Famiglietti SJ, Nakamura K, Cambier JC. Unique features of SHIP, SHP-1 and SHP-2 binding to FcgammaRIIb revealed by surface plasmon resonance analysis. Immunol Lett 1999; 68:35-40. [PMID: 10397153 DOI: 10.1016/s0165-2478(99)00027-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A growing family of inhibitory receptors characterized by content of one or more immunoreceptor tyrosine-based inhibitor motif (ITIM), I/V xYxxL/V, has been shown to regulate activation and effector function of immune system cells. The inhibitory activity of these receptors is mediated in large part by tyrosyl phosphorylated ITIM (pITIM) interactions with cytoplasmic effectors. Interestingly, different members of the family utilize partially distinct subsets of effectors from a group that includes SHP-1, SHP-2 and SHIP, an inositol 5' phosphatase. For example, while killer inhibitory receptors bind only SHP-1 and SHP-2, FcgammaRIIB bind SHIP, SHP-1 and SHP-2. The basis of selectivity of ITIMs for effectors is unclear. In this study surface plasmon resonance has been used to characterize the binding of phosphorylated FcgammaRIIB ITIM peptides to SHP-1, SHP-2 and SHIP derived Src-homology 2 (SH2) domains. SHIP was found to bind with highest affinity with intermediate on and off rates. SHP-1 bound with lowest affinity with slow on and slow off kinetics, and only its C-terminal SH2 domain exhibited binding activity. Both C- and N-terminal SH-2 domains of SHP-2 bound the pITIM. The affinity of these interactions were similar, however, they exhibited relatively fast on fast off and slow on slow off kinetics respectively. Interestingly, removal of the Ala-Glu-Asn sequence which lies immediately N-terminal from the ITIM in FcR ablated binding to SHP-1 and SHP-2 but not to SHIP. These results reveal a previously unrecognized level of complexity of effector binding to pITIM, including dependence of optimal SHP-1 and SHP-2 binding on residues N-terminal from the ITIM.
Collapse
Affiliation(s)
- S J Famiglietti
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
85
|
Gergely J, Pecht I, Sármay G. Immunoreceptor tyrosine-based inhibition motif-bearing receptors regulate the immunoreceptor tyrosine-based activation motif-induced activation of immune competent cells. Immunol Lett 1999; 68:3-15. [PMID: 10397150 DOI: 10.1016/s0165-2478(99)00024-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ITIM-bearing receptors, a family which only recently has been recognized, play a key role in the regulation of the ITAM-induced activation of immune competent cells. The mechanism of ITM-mediated regulation in various cells was recently clarified. The present review focuses on ITIM bearing membrane proteins that negatively regulate the activation of cells when co-crosslinked with ITAM containing receptors, illustrates the inhibitory processes by the negative regulation of B-, NK-, T-cells and mast cells and summarizes current views on the mechanism of ITIM-mediated inhibition.
Collapse
Affiliation(s)
- J Gergely
- Research Group of the Hungarian Academy of Science at the Department of Immunology, Eötvös Loránd University, Göd
| | | | | |
Collapse
|
86
|
Bruhns P, Marchetti P, Fridman WH, Vivier E, Daëron M. Differential Roles of N- and C-Terminal Immunoreceptor Tyrosine-Based Inhibition Motifs During Inhibition of Cell Activation by Killer Cell Inhibitory Receptors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N+C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N+C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N+C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.
Collapse
Affiliation(s)
- Pierre Bruhns
- *Laboratoire d’Immunologie Cellulaire et Clinique, Institut National de la Santé et de la Recherche Médicale U.255, Institut Curie, Paris, France; and
| | - Philippe Marchetti
- *Laboratoire d’Immunologie Cellulaire et Clinique, Institut National de la Santé et de la Recherche Médicale U.255, Institut Curie, Paris, France; and
| | - Wolf H. Fridman
- *Laboratoire d’Immunologie Cellulaire et Clinique, Institut National de la Santé et de la Recherche Médicale U.255, Institut Curie, Paris, France; and
| | - Eric Vivier
- †Centre d’Immunologie Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique de Marseille Luminy, Marseille, France
| | - Marc Daëron
- *Laboratoire d’Immunologie Cellulaire et Clinique, Institut National de la Santé et de la Recherche Médicale U.255, Institut Curie, Paris, France; and
| |
Collapse
|
87
|
Mavoungou E, Sall A, Poaty-Mavoungou V, Toure FS, Yaba P, Delicat A, Lansoud-Soukate J. Alloreactivity and association of human natural killer cells with the major histocompatibility complex. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:254-9. [PMID: 10066663 PMCID: PMC95696 DOI: 10.1128/cdli.6.2.254-259.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All NK cells potentially lytic for autologous cells but not expressing self-major histocompatibility complex (MHC)-reactive receptors could be eliminated by a negative selection mechanism during ontogeny. This idea is based on the existence of a NK cell subset expressing a specific inhibitory receptor for allogeneic MHC alleles. As ancestral haplotypes of the MHC appear to define identical MHC haplotypes in unrelated individuals, unrelated individuals having the same ancestral haplotype should also have the same NK-defined allospecificities that have been shown to map to the human MHC. To test this prediction, multiple cell lines from unrelated individuals having the same ancestral haplotypes were tested for the NK-defined allospecificities. It was found that cells having the same ancestral haplotypes do have the same NK-defined specificities. Furthermore, the NK-defined phenotype of cells that possess two different ancestral haplotypes can be predicted from the NK-defined phenotypes of unrelated cells that are homozygous for the ancestral haplotypes concerned. Although the group 1 and 2 NK-defined allospecificities can be explained to some extent by HLA-C alleles, evidence is presented that additional genes may modify the phenotype conferred by HLA-C.
Collapse
Affiliation(s)
- E Mavoungou
- Unit of Emerging and Re-Emerging Diseases, International Center for Medical Research (CIRMF), Franceville, Gabon.
| | | | | | | | | | | | | |
Collapse
|
88
|
Wang LL, Blasioli J, Plas DR, Thomas ML, Yokoyama WM. Specificity of the SH2 Domains of SHP-1 in the Interaction with the Immunoreceptor Tyrosine-Based Inhibitory Motif-Bearing Receptor gp49B. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Inhibitory receptors on hemopoietic cells critically regulate cellular function. Despite their expression on a variety of cell types, these inhibitory receptors signal through a common mechanism involving tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM), which engages Src homology 2 (SH2) domain-containing cytoplasmic tyrosine or inositol phosphatases. In this study, we have investigated the proximal signal-transduction pathway of an ITIM-bearing receptor, gp49B, a member of a newly described family of murine NK and mast cell receptors. We demonstrate that the tyrosine residues within the ITIMs are phosphorylated and serve for the association and activation of the cytoplasmic tyrosine phosphatase SHP-1. Furthermore, we demonstrate a physiologic association between gp49B and SHP-1 by coimmunoprecipitation studies from NK cells. To address the mechanism of binding between gp49B and SHP-1, binding studies involving glutathione S-transferase SHP-1 mutants were performed. Utilizing the tandem SH2 domains of SHP-1, we show that either SH2 domain can interact with phosphorylated gp49B. Full-length SHP-1, with an inactivated amino SH2 domain, also retained gp49B binding. However, binding to gp49B was disrupted by inactivation of the carboxyl SH2 domain of full-length SHP-1, suggesting that in the presence of the phosphatase domain, the carboxyl SH2 domain is required for the recruitment of phosphorylated gp49B. Thus, gp49B signaling involves SHP-1, and this association is dependent on tyrosine phosphorylation of the gp49B ITIMs, and an intact SHP-1 carboxyl SH2 domain.
Collapse
Affiliation(s)
- Lawrence L. Wang
- *Howard Hughes Medical Institute,
- †Rheumatology Division, Department of Medicine, and
| | - Julie Blasioli
- *Howard Hughes Medical Institute,
- ‡Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110
| | - David R. Plas
- *Howard Hughes Medical Institute,
- ‡Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110
| | - Matthew L. Thomas
- *Howard Hughes Medical Institute,
- ‡Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110
| | - Wayne M. Yokoyama
- *Howard Hughes Medical Institute,
- †Rheumatology Division, Department of Medicine, and
| |
Collapse
|
89
|
Long EO. Regulation of immune responses by inhibitory receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 452:19-28. [PMID: 9889955 DOI: 10.1007/978-1-4615-5355-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- E O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
90
|
Lanier LL. Activating and inhibitory NK cell receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 452:13-8. [PMID: 9889954 DOI: 10.1007/978-1-4615-5355-7_2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- L L Lanier
- Department of Immunobiology, DNAX Research Institute, Palo Alto, California 94304, USA
| |
Collapse
|
91
|
Burshtyn DN, Lam AS, Weston M, Gupta N, Warmerdam PAM, Long EO. Conserved Residues Amino-Terminal of Cytoplasmic Tyrosines Contribute to the SHP-1-Mediated Inhibitory Function of Killer Cell Ig-Like Receptors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The sequence I/VxYxxL, often referred to as an immunoreceptor tyrosine-based inhibition motif (ITIM), binds to the C-terminal Src homology 2 domain of the tyrosine phosphatase SHP-1. Conserved residues N-terminal of the tyrosine are not ordinarily found in other Src homology 2 domain binding motifs. The inhibitory forms of killer cell Ig-like receptors (KIR) contain two ITIMs. The role of each ITIM, and of the conserved residues upstream of the tyrosine, in the inhibition of NK cells was tested by vaccinia virus-mediated expression of mutant KIRs. Substitution of the tyrosine in the membrane-proximal ITIM abrogated the ability of KIR to block Ab-dependent cellular cytotoxicity, whereas mutation of the membrane-distal ITIM tyrosine had little effect. Substitution of the conserved hydrophobic amino acid that was located two residues N-terminal to the tyrosine weakened, but did not eliminate, the function of the receptor. In contrast, these substitutions drastically reduced the amount of SHP-1 immunoprecipitated with KIR, suggesting that weak interactions with SHP-1 may be sufficient for inhibition.
Collapse
Affiliation(s)
- Deborah N. Burshtyn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Alan S. Lam
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Margaret Weston
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Neetu Gupta
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Petra A. M. Warmerdam
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
92
|
Idris AH, Iizuka K, Smith HR, Scalzo AA, Yokoyama WM. Genetic control of natural killing and in vivo tumor elimination by the Chok locus. J Exp Med 1998; 188:2243-56. [PMID: 9858511 PMCID: PMC2212436 DOI: 10.1084/jem.188.12.2243] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The molecular mechanisms underlying target recognition during natural killing are not well understood. One approach to dissect the complexities of natural killer (NK) cell recognition is through exploitation of genetic differences among inbred mouse strains. In this study, we determined that interleukin 2-activated BALB/c-derived NK cells could not lyse Chinese hamster ovary (CHO) cells as efficiently as C57BL/6-derived NK cells, despite equivalent capacity to kill other targets. This strain-determined difference was also exhibited by freshly isolated NK cells, and was determined to be independent of host major histocompatibility haplotype. Furthermore, CHO killing did not correlate with expression of NK1.1 or 2B4 activation molecules. Genetic mapping studies revealed linkage between the locus influencing CHO killing, termed Chok, and loci encoded within the NK gene complex (NKC), suggesting that Chok encodes an NK cell receptor specific for CHO cells. In vivo assays recapitulated the in vitro data, and both studies determined that Chok regulates an NK perforin-dependent cytotoxic process. These results may have implications for the role of NK cells in xenograft rejection. Our genetic analysis suggests Chok is a single locus that affects NK cell-mediated cytotoxicity similar to other NKC loci that also regulate the complex activity of NK cells.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens/analysis
- Antigens, CD
- Antigens, Ly
- Antigens, Surface
- CHO Cells
- Cell Line
- Cricetinae
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/genetics
- Genetic Linkage
- Haplotypes
- Interleukin-2/pharmacology
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Lymphocyte Activation/drug effects
- Major Histocompatibility Complex/genetics
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred Strains
- NK Cell Lectin-Like Receptor Subfamily A
- NK Cell Lectin-Like Receptor Subfamily B
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Perforin
- Pore Forming Cytotoxic Proteins
- Proteins/analysis
- Receptors, Immunologic/genetics
- Receptors, NK Cell Lectin-Like
- Signaling Lymphocytic Activation Molecule Family
- Species Specificity
Collapse
Affiliation(s)
- A H Idris
- Immunobiology Center, Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | | | |
Collapse
|
93
|
Fanger NA, Cosman D, Peterson L, Braddy SC, Maliszewski CR, Borges L. The MHC class I binding proteins LIR-1 and LIR-2 inhibit Fc receptor-mediated signaling in monocytes. Eur J Immunol 1998; 28:3423-34. [PMID: 9842885 DOI: 10.1002/(sici)1521-4141(199811)28:11<3423::aid-immu3423>3.0.co;2-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The MHC class I binding proteins leukocyte immunoglobulin-like receptor (LIR)-1 and -2 recognize a similar broad spectrum of HLA-A, -B and -C alleles but are differentially expressed in lymphocytes, monocytes, and dendritic cells. In monocytes, phosphorylation of LIR-1 and LIR-2 results in the binding of the tyrosine phosphatase SHP-1. Coligation of either LIR with Fcgamma receptor I (CD64) inhibits tyrosine phosphorylation of the associated Fc receptor gamma chain and Syk molecules, as well as intracellular calcium mobilization. These findings suggest that LIR-1 and LIR-2 function as unique MHC class I receptors involved in the inhibition or down-modulation of monocyte activation signals, particularly those mediated through the receptors for IgG, IgE and IgA.
Collapse
Affiliation(s)
- N A Fanger
- Immunex Corporation, Seattle, Washington 98101, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Binstadt BA, Billadeau DD, Jevremović D, Williams BL, Fang N, Yi T, Koretzky GA, Abraham RT, Leibson PJ. SLP-76 is a direct substrate of SHP-1 recruited to killer cell inhibitory receptors. J Biol Chem 1998; 273:27518-23. [PMID: 9765283 DOI: 10.1074/jbc.273.42.27518] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of immune system cells via antigen-, Fc-, or natural killer cell-triggering-receptor stimulation is aborted by co-engagement of inhibitory receptors. Negative signaling by killer cell inhibitory receptors and related receptors depends on the Src homology 2 (SH2)-containing protein tyrosine phosphatase SHP-1. Using a combination of direct binding and functional assays, we demonstrated that the SH2 domain-containing leukocyte protein 76 (SLP-76) is a specific target for dephosphorylation by SHP-1 in T cells and natural killer cells. Furthermore, we showed that tyrosine-phosphorylated SLP-76 is required for optimal activation of cytotoxic lymphocytes, suggesting that the targeted dephosphorylation of SLP-76 by SHP-1 is an important mechanism for the negative regulation of immune cell activation by inhibitory receptors.
Collapse
Affiliation(s)
- B A Binstadt
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Wu Y, Nadler MJ, Brennan LA, Gish GD, Timms JF, Fusaki N, Jongstra-Bilen J, Tada N, Pawson T, Wither J, Neel BG, Hozumi N. The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1. Curr Biol 1998; 8:1009-17. [PMID: 9740800 DOI: 10.1016/s0960-9822(07)00421-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Signals from the B-cell antigen receptor (BCR) help to determine B-cell fate, directing either proliferation, differentiation, or growth arrest/apoptosis. The protein tyrosine phosphatase SHP-1 is known to regulate the strength of BCR signaling. Although the B-cell co-receptor CD22 binds SHP-1, B cells in CD22-deficient mice are much less severely affected than those in SHP-1-deficient mice, suggesting that SHP-1 may also regulate B-cell signaling by affecting other signaling molecules. Moreover, direct substrates of SHP-1 have not been identified in any B-cell signaling pathway. RESULTS We identified the B-cell transmembrane protein CD72 as a new SHP-1 binding protein and as an in vivo substrate of SHP-1 in B cells. We also defined the binding sites for SHP-1 and the adaptor protein Grb2 on CD72. Tyrosine phosphorylation of CD72 correlated strongly with BCR-induced growth arrest/apoptosis in B-cell lines and in primary B cells. Preligation of CD72 attenuated BCR-induced growth arrest/death signals in immature and mature B cells or B-cell lines, whereas preligation of CD22 enhanced BCR-induced growth arrest/apoptosis. CONCLUSIONS We have identified CD72 as the first clear in vivo substrate of SHP-1 in B cells. Our results suggest that tyrosine-phosphorylated CD72 may transmit signals for BCR-induced apoptosis. By dephosphorylation CD72. SHP-1 may have a positive role in B-cell signaling. These results have potentially important implications for the involvement of CD72 and SHP-1 in B-cell development and autoimmunity.
Collapse
Affiliation(s)
- Y Wu
- Program in Molecular Biology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Valés-Gómez M, Reyburn HT, Mandelboim M, Strominger JL. Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors. Immunity 1998; 9:337-44. [PMID: 9768753 DOI: 10.1016/s1074-7613(00)80616-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recognition of HLA-C molecules by specific inhibitory receptors is a crucial step in the regulation of natural killer (NK) cell function. Using soluble, recombinant HLA-C molecules and NK inhibitory receptors (NKIR, members of the immunoglobulin superfamily), we show that HLA-C binds to NKIR molecules with extremely fast association and dissociation rates, among the fastest of the immune system interactions so far studied. These kinetics may be essential for the biological function of NK cells, i.e., to facilitate the rapid immunosurveillance of cells for absent or diminished expression of class I MHC proteins.
Collapse
Affiliation(s)
- M Valés-Gómez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
97
|
Posch PE, Borrego F, Brooks AG, Coligan JE. HLA-E is the ligand for the natural killer cell CD94/NKG2 receptors. J Biomed Sci 1998; 5:321-31. [PMID: 9758906 DOI: 10.1007/bf02253442] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- P E Posch
- Structural Biology Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Twinbrook II, Rockville, Md., USA
| | | | | | | |
Collapse
|
98
|
Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ, Rohrschneider LR, Neel BG. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol Cell Biol 1998; 18:3838-50. [PMID: 9632768 PMCID: PMC108968 DOI: 10.1128/mcb.18.7.3838] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 04/09/1998] [Indexed: 02/07/2023] Open
Abstract
The protein tyrosine phosphatase SHP-1 is a critical regulator of macrophage biology, but its detailed mechanism of action remains largely undefined. SHP-1 associates with a 130-kDa tyrosyl-phosphorylated species (P130) in macrophages, suggesting that P130 might be an SHP-1 regulator and/or substrate. Here we show that P130 consists of two transmembrane glycoproteins, which we identify as PIR-B/p91A and the signal-regulatory protein (SIRP) family member BIT. These proteins also form separate complexes with SHP-2. BIT, but not PIR-B, is in a complex with the colony-stimulating factor 1 receptor (CSF-1R), suggesting that BIT may direct SHP-1 to the CSF-1R. BIT and PIR-B bind preferentially to substrate-trapping mutants of SHP-1 and are hyperphosphorylated in macrophages from motheaten viable mice, which express catalytically impaired forms of SHP-1, indicating that these proteins are SHP-1 substrates. However, BIT and PIR-B are hypophosphorylated in motheaten macrophages, which completely lack SHP-1 expression. These data suggest a model in which SHP-1 dephosphorylates specific sites on BIT and PIR-B while protecting other sites from dephosphorylation via its SH2 domains. Finally, BIT and PIR-B associate with two tyrosyl phosphoproteins and a tyrosine kinase activity. Tyrosyl phosphorylation of these proteins and the level of the associated kinase activity are increased in the absence of SHP-1. Our data suggest that BIT and PIR-B recruit multiple signaling molecules to receptor complexes, where they are regulated by SHP-1 and/or SHP-2.
Collapse
Affiliation(s)
- J F Timms
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Robson MacDonald H, Lees RK, Held W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J Exp Med 1998; 187:2109-14. [PMID: 9625772 PMCID: PMC2212363 DOI: 10.1084/jem.187.12.2109] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clonally distributed inhibitory receptors negatively regulate natural killer (NK) cell function via specific interactions with allelic forms of major histocompatibility complex (MHC) class I molecules. In the mouse, the Ly-49 family of inhibitory receptors is found not only on NK cells but also on a minor (NK1.1+) T cell subset. Using Ly-49 transgenic mice, we show here that the development of NK1.1+ T cells, in contrast to NK or conventional T cells, is impaired when their Ly-49 receptors engage self-MHC class I molecules. Impaired NK1.1+ T cell development in transgenic mice is associated with a failure to select the appropriate CD1-reactive T cell receptor repertoire. In normal mice, NK1.1+ T cell maturation is accompanied by extinction of Ly-49 receptor expression. Collectively, our data imply that developmentally regulated extinction of inhibitory MHC-specific receptors is required for normal NK1.1+ T cell maturation and selection.
Collapse
MESH Headings
- Animals
- Antigens/biosynthesis
- Antigens, Ly
- Antigens, Surface
- Cell Differentiation
- Flow Cytometry
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Liver/cytology
- Liver/immunology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily B
- Protein Biosynthesis
- Proteins
- Receptors, Antigen, T-Cell
- Receptors, Immunologic/biosynthesis
- Receptors, NK Cell Lectin-Like
- Selection, Genetic
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- H Robson MacDonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.
| | | | | |
Collapse
|
100
|
Bakker ABH, Phillips JH, Figdor CG, Lanier LL. Killer Cell Inhibitory Receptors for MHC Class I Molecules Regulate Lysis of Melanoma Cells Mediated by NK cells, γδ T Cells, and Antigen-Specific CTL. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.11.5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
NK cells and T cells express killer cell inhibitory receptors (KIR) recognizing polymorphic MHC class I molecules. Although prior studies have established that MHC class I can protect normal and transformed hematopoietic cells from NK cell lysis, the role of MHC class I on the recognition of solid tumors has been controversial. In this study, we investigated whether interactions of KIR with their ligands on melanoma tumor cells could inhibit tumor cell lysis by NK and γδ T cell clones. Ligation of the NK cell receptor KIR3DL1 by HLA-Bw4 allotypes resulted in inhibition of cytotoxicity against HLA-B*4403-transfected melanomas as well as against melanomas endogenously expressing HLA-Bw4 allotypes. Similarly, interactions of KIR2DL2 or KIR2DL3 (KIR2DL2/3) with HLA-Cw3-related allotypes on melanomas resulted in decreased tumor cell lysis. We also investigated whether signaling via KIR affected melanoma recognition by CTL. Introduction of KIR3DL1 molecules into HLA-A*0201-restricted gp100-specific CTL resulted in inhibition of lysis of gp100+ melanomas co-expressing HLA-A*0201 and HLA-Bw4 allotypes. These results suggest that disrupting interactions of KIR with their ligands on tumor cells in vivo may enhance antitumor responses mediated by both innate and adaptive immune effector cells.
Collapse
Affiliation(s)
- Alexander B. H. Bakker
- *Department of Immunobiology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304; and
| | - Joseph H. Phillips
- *Department of Immunobiology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304; and
| | - Carl G. Figdor
- †Department of Tumor Immunology, University Hospital Nijmegen, Nijmegen, The Netherlands
| | - Lewis L. Lanier
- *Department of Immunobiology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304; and
| |
Collapse
|