51
|
Thomas LS, Targan SR, Tsuda M, Yu QT, Salumbides BC, Haritunians T, Mengesha E, McGovern DPB, Michelsen KS. The TNF family member TL1A induces IL-22 secretion in committed human T h17 cells via IL-9 induction. J Leukoc Biol 2017; 101:727-737. [PMID: 27733581 PMCID: PMC6608031 DOI: 10.1189/jlb.3a0316-129r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
TL1A contributes to the pathogenesis of several chronic inflammatory diseases, including those of the bowel by enhancing TH1, TH17, and TH2 responses. TL1A mediates a strong costimulation of these TH subsets, particularly of mucosal CCR9+ T cells. However, the signaling pathways that TL1A induces in different TH subsets are incompletely understood. We investigated the function of TL1A on human TH17 cells. TL1A, together with TGF-β, IL-6, and IL-23, enhanced the secretion of IL-17 and IFN-γ from human CD4+ memory T cells. TL1A induced expression of the transcription factors BATF and T-bet that correlated with the secretion of IL-17 and IFN-γ. In contrast, TL1A alone induced high levels of IL-22 in memory CD4+ T cells and committed TH17 cells. However, TL1A did not enhance expression of IL-17A in TH17 cells. Expression of the transcription factor aryl hydrocarbon receptor, which regulates the expression of IL-22 was not affected by TL1A. Transcriptome analysis of TH17 cells revealed increased expression of IL-9 in response to TL1A. Blocking IL-9 receptor antibodies abrogated TL1A-induced IL-22 secretion. Furthermore, TL1A increased IL-9 production by peripheral TH17 cells isolated from patients with Crohn's disease. These data suggest that TL1A differentially induces expression of TH17 effector cytokines IL-17, -9, and -22 and provides a potential target for therapeutic intervention in TH17-driven chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lisa S Thomas
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masato Tsuda
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Qi T Yu
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brenda C Salumbides
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
52
|
Gorczynski RM, Sadozai H, Zhu F, Khatri I. Effect of infusion of monoclonal antibodies to tumour necrosis factor-receptor super family 25 on graft rejection in allo-immune mice receiving autologous marrow transplantation. Immunology 2016; 150:418-431. [PMID: 27859243 DOI: 10.1111/imm.12693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Significant barriers to transplantation exist for individuals who are pre-sensitized to donor antigen and have high titres of donor-reactive antibody. We report the effect of autologous bone marrow transplantation (BMTx) after myeloablation in pre-sensitized mice along with the use of monoclonal antibodies (mAbs) to tumour necrosis factor-receptor super family 25 (TNFRSF25), expressed on regulatory T (Treg) cells. C57BL/6 mice, which had been sensitized earlier with BALB/c skin allografts, received secondary BALB/c grafts after the primary grafts had been rejected. Subsequently, recipient mice underwent myeloablation with cyclophosphamide and busulphan and were injected with T-cell-depleted bone marrow from CD45.1 congenic donors (BMTx). Recipient mice underwent immunosuppressive treatment with rapamycin. A subgroup of mice was also treated with mAbs to TNFRSF25. Control mice were pre-sensitized mice that received cyclophosphamide and busulphan followed by rapamycin. BMTx-treated mice had significantly prolonged skin graft survival versus control mice. These mice also showed attenuated donor-specific mixed lymphocyte co-culture responses relative to controls, increased splenic Treg cells and markedly diminished serum anti-donor IgG. Infusion of anti-TNFRSF25 mAbs further augmented graft survival and increased graft-infiltrating Treg cells. These mAbs also expanded murine and human Treg cells in vitro with the capacity to attenuate mixed lymphocyte co-cultures using fresh peripheral blood mononuclear cells. Overall, this study delineates the roles of autologous BMTx and anti-TNFRSF25 mAbs in expanding Treg cells and attenuating alloimmune responses in pre-sensitized mice.
Collapse
Affiliation(s)
- Reginald M Gorczynski
- Transplant Research Division, University Health Network and Toronto General Hospital, Toronto, ON, Canada.,Department of Immunology and Surgery, University of Toronto, Toronto, ON, Canada
| | - Hassan Sadozai
- Transplant Research Division, University Health Network and Toronto General Hospital, Toronto, ON, Canada
| | - Fang Zhu
- Transplant Research Division, University Health Network and Toronto General Hospital, Toronto, ON, Canada
| | - Ismat Khatri
- Transplant Research Division, University Health Network and Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
53
|
Meylan F, Siegel RM. TNF superfamily cytokines in the promotion of Th9 differentiation and immunopathology. Semin Immunopathol 2016; 39:21-28. [PMID: 27896636 DOI: 10.1007/s00281-016-0612-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor (TNF) receptors and their corresponding cytokine ligands have been implicated in many aspects of the biology of immune functions. TNF receptors have key roles during various stages of T cell homeostasis. Many of them can co-stimulate lymphocyte proliferation and cytokine production. Additionally, several TNF cytokines can regulate T cell differentiation, including promoting Th1, Th2, Th17, and more recently the newly described Th9 subset. Four TNF family cytokines have been identified as regulators for IL-9 production by T cells. OX40L, TL1A, and GITRL can promote Th9 formation but can also divert iTreg into Th9, while 4-1BBL seems to inhibit IL-9 production from iTreg and has not been studied for its ability to promote Th9 generation. Regulation of IL-9 production by TNF family cytokines has repercussions in vivo, including enhancement of anti-tumor immunity and immunopathology in allergic lung and ocular inflammation. Regulating T cell production of IL-9 through blockade or agonism of TNF family cytokine receptors may be a therapeutic strategy for autoimmune and allergic diseases and in tumor.
Collapse
Affiliation(s)
- Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
54
|
DR3 signaling modulates the function of Foxp3+ regulatory T cells and the severity of acute graft-versus-host disease. Blood 2016; 128:2846-2858. [PMID: 27760760 DOI: 10.1182/blood-2016-06-723783] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Treg) are a subpopulation of T cells, which regulate the immune system and enhance immune tolerance after transplantation. Donor-derived Treg prevent the development of lethal acute graft-versus-host disease (GVHD) in murine models of allogeneic hematopoietic stem cell transplantation. We recently demonstrated that a single treatment of the agonistic antibody to DR3 (death receptor 3, αDR3) to donor mice resulted in the expansion of donor-derived Treg and prevented acute GVHD, although the precise role of DR3 signaling in GVHD has not been elucidated. In this study, we comprehensively analyzed the immunophenotype of Treg after DR3 signal activation, demonstrating that DR3-activated Treg (DR3-Treg) had an activated/mature phenotype. Furthermore, the CD25+Foxp3+ subpopulation in DR3-Treg showed stronger suppressive effects in vivo. Prophylactic treatment of αDR3 to recipient mice expanded recipient-derived Treg and reduced the severity of GVHD, whereas DR3 activation in mice with ongoing GVHD further promoted donor T-cell activation/proliferation. These data suggest that the function of DR3 signaling was highly dependent on the activation status of the T cells. In conclusion, our data demonstrated that DR3 signaling affects the function of Treg and T-cell activation after alloantigen exposure in a time-dependent manner. These observations provide important information for future clinical testing using human DR3 signal modulation and highlight the critical effect of the state of T-cell activation on clinical outcomes after activation of DR3.
Collapse
|
55
|
Death Receptor 3 Promotes Chemokine-Directed Leukocyte Recruitment in Acute Resolving Inflammation and Is Essential for Pathological Development of Mesothelial Fibrosis in Chronic Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2813-2823. [PMID: 27664471 DOI: 10.1016/j.ajpath.2016.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Death receptor 3 (DR3; TNFRSF25) and its tumor necrosis factor-like ligand TL1A (TNFSF15) control several processes in inflammatory diseases through the expansion of effector T cells and the induction of proinflammatory cytokines from myeloid and innate lymphoid cells. Using wild-type (DR3+/+) and DR3-knockout (DR3-/-) mice, we show that the DR3/TL1A pathway triggers the release of multiple chemokines after acute peritoneal inflammation initiated by a single application of Staphylococcus epidermidis supernatant, correlating with the infiltration of multiple leukocyte subsets. In contrast, leukocyte infiltration was not DR3 dependent after viral challenge with murine cytomegalovirus. DR3 expression was recorded on connective tissue stroma, which provided DR3-dependent release of chemokine (C-C motif) ligand (CCL) 2, CCL7, CXCL1, and CXCL13. CCL3, CCL4, and CXCL10 production was also DR3 dependent, but quantitative RT-PCR showed that their derivation was not stromal. In vitro cultures identified resident macrophages as a DR3-dependent source of CCL3. Whether DR3 signaling could contribute to a related peritoneal pathology was then tested using multiple applications of S. epidermidis supernatant, the repetitive inflammatory episodes of which lead to peritoneal membrane thickening and collagen deposition. Unlike their DR3+/+ counterparts, DR3-/- mice did not develop fibrosis of the mesothelial layer. Thus, this work describes both a novel function and essential requirement for the DR3/TL1A pathway in acute, resolving, and chronic inflammation in the peritoneal cavity.
Collapse
|
56
|
Williams JO, Wang ECY, Lang D, Williams AS. Characterization of death receptor 3-dependent aortic changes during inflammatory arthritis. Pharmacol Res Perspect 2016; 4:e00240. [PMID: 27347421 PMCID: PMC4915515 DOI: 10.1002/prp2.240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023] Open
Abstract
Murine collagen-induced arthritis (mCIA) is characterized by decreased vascular constriction responses and increased MMP-9. Here, we describe additional histological alterations within the aorta and surrounding perivascular adipose tissue (PVAT), study the role of PVAT in constriction response, and investigate the potential involvement of death receptor 3 (DR3). mCIA was induced in wild-type (WT) and DR3-/- mice with nonimmunized, age-matched controls. Vascular function was determined in isolated aortic rings ±PVAT, using isometric tension myography, in response to cumulative serotonin concentrations. Cellular expression of F4/80 (macrophages), Ly6G (neutrophils), DR3, and MMP-9 was determined using immunohistochemistry. In WTs, arthritis-induced vascular dysfunction was associated with increased F4/80+ macrophages and increased DR3 expression in the aorta and PVAT. MMP-9 was also up-regulated in PVAT, but did not correlate with alterations of PVAT intact constriction. DR3-/- mice inherently showed increased leukocyte numbers and MMP-9 expression in the PVAT, but retained the same nonarthritic constriction response as DR3WT mice ±PVAT. Arthritic DR3-/- mice had a worsened constriction response than DR3WT and showed an influx of neutrophils to the aorta and PVAT. Macrophage numbers were also up-regulated in DR3-/- PVAT. Despite this influx, PVAT intact DR3-/- constriction responses were restored to the same level as DR3WT. Impaired vascular constriction in inflammatory arthritis occurs independently of total MMP-9 levels, but correlates with macrophage and neutrophil ingress. Ablating DR3 worsens the associated vasculature dysfunction, however, DR3-/- PVAT is able to protect the aorta against aberrant vasoconstriction caused in this model.
Collapse
Affiliation(s)
- Jessica O. Williams
- Division of Infection and ImmunityCardiff University School of MedicineCardiffUnited Kingdom
| | - Eddie C. Y. Wang
- Division of Infection and ImmunityCardiff University School of MedicineCardiffUnited Kingdom
| | - Derek Lang
- Division of Medical EducationCardiff University School of MedicineCardiffUnited Kingdom
| | - Anwen S. Williams
- Division of Infection and ImmunityCardiff University School of MedicineCardiffUnited Kingdom
| |
Collapse
|
57
|
Jia LG, Bamias G, Arseneau KO, Burkly LC, Wang ECY, Gruszka D, Pizarro TT, Cominelli F. A Novel Role for TL1A/DR3 in Protection against Intestinal Injury and Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:377-86. [PMID: 27233964 PMCID: PMC5016081 DOI: 10.4049/jimmunol.1502466] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/30/2016] [Indexed: 12/13/2022]
Abstract
TNF-like cytokine 1A (TL1A) is expressed on APCs and provides costimulatory signals to activated lymphocytes that bear its functional receptor, death receptor 3 (DR3). TL1A/DR3 signaling is involved in the pathogenesis of human and experimental inflammatory bowel disease. In the current study, we investigated the role of this cytokine/receptor pair in acute intestinal injury/repair pathways. We demonstrate that intact DR3 signaling protected mice from acute dextran sodium sulfate colitis because DR3(-/-) mice showed more severe mucosal inflammation and increased mortality. DR3(-/-) mice were compromised in their ability to maintain adequate numbers of CD4(+)CD25(+)Foxp3(+) regulatory T cells in response to acute mucosal damage. This defect in immune regulation led to a nonspecific upregulation of effector proinflammatory pathways, which was most prominent for the Th17 immunophenotype. TL1A(-/-) mice were similarly more susceptible to dextran sodium sulfate colitis, although without mortality and with delayed kinetics compared with DR3(-/-) mice, and also displayed significantly reduced numbers of regulatory T cells. Infection of DR3(-/-) mice with Salmonella typhimurium was associated with defective microbial clearance and elevated bacterial load. Taken together, our findings indicate a novel protective role for the TL1A/DR3 axis in the regulation of mucosal homeostasis during acute intestinal injury/repair, which contrasts with its known pathogenic function during chronic intestinal inflammation.
Collapse
Affiliation(s)
- Li-Guo Jia
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Kapodistrian University of Athens, Laikon Hospital, 11527 Athens, Greece
| | - Kristen O Arseneau
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Linda C Burkly
- Department of Immunobiology and Drug Discovery, Biogen Idec, Cambridge, MA 02142
| | - Eddy C Y Wang
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Dennis Gruszka
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106;
| |
Collapse
|
58
|
Differential Levels of Tl1a Affect the Expansion and Function of Regulatory T Cells in Modulating Murine Colitis. Inflamm Bowel Dis 2016; 22:548-59. [PMID: 26818423 PMCID: PMC4752386 DOI: 10.1097/mib.0000000000000653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Expression of TL1A (tumor necrosis factor-like ligand 1A) is increased in patients with inflammatory bowel disease (IBD). Mice with elevated T-cell expression of Tl1a (L-Tg) have increased regulatory T cells, yet develop worsened colitis and intestinal fibrosis. The aim of this study was to investigate the role of Tl1a in the differentiation and function of Tregs and their effects in modulating murine colitis. METHODS Tl1a overexpressing L-Tg, Foxp3-mRFP (FIR)-LTg, and DR3KO-LTg mice were used for the study. In the L-Tg mice, Tl1a expressing cells can be identified by green fluorescent protein (GFP). RESULTS We report that Foxp3 expression in the L-Tg mice is variable based on high or low level of Tl1a expression, referred to herein as GFPhigh and GFPlow T cells. Treg-specific suppressive molecules were highly expressed on the GFPlow Foxp3 Tregs and were significantly reduced on Tregs expressing high Tl1a. In vitro suppression function was significantly enhanced in the GFPlow compared with the GFPhigh Tregs. RAG mice cotransferred with either GFPlow or wild-type Tregs were protected from colitis. Furthermore, GFPlow Tregs lost the suppression function in the absence of DR3 (Death receptor 3). CONCLUSIONS Tregs expressing low levels of Tl1a ameliorate murine colitis and promote the maintenance of Treg suppressor function in a DR3-dependent manner, partly due to a heightened regulatory program. These data reveal novel roles for differential levels of Tl1a in regulating T cell-mediated immune responses that have implications in understanding the pathogenesis of IBD.
Collapse
|
59
|
YU MIAO, LU GUIHUA, ZHU XUN, HUANG ZHIBIN, FENG CHONG, FANG RONG, WANG YESONG, GAO XIUREN. Downregulation of VEGF and upregulation of TL1A expression induce HUVEC apoptosis in response to high glucose stimuli. Mol Med Rep 2016; 13:3265-72. [DOI: 10.3892/mmr.2016.4924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/30/2015] [Indexed: 11/05/2022] Open
|
60
|
Tougaard P, Zervides KA, Skov S, Hansen AK, Pedersen AE. Biologics beyond TNF-αinhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders. Immunopharmacol Immunotoxicol 2016; 38:29-38. [DOI: 10.3109/08923973.2015.1130721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Tumor Necrosis Factor-like Cytokine TL1A and Its Receptors DR3 and DcR3: Important New Factors in Mucosal Homeostasis and Inflammation. Inflamm Bowel Dis 2015; 21:2441-52. [PMID: 26099067 DOI: 10.1097/mib.0000000000000492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF)-like cytokine 1A (TL1A) is a member of the TNF superfamily of proteins (TNFSF15), which signals through association with death domain receptor 3 (DR3). Decoy receptor 3 (DcR3) competes with DR3 for TL1A binding and inhibits functional signaling. These proteins are significantly upregulated in inflamed intestinal tissues, and their pathogenetic importance for inflammatory bowel disease (IBD) is suggested by accumulating evidence. TL1A/DR3 induce costimulatory signals to activated lymphocytes, including the gut-specific populations of CD4+CD161+ and CD4+CCR9+ cells, affecting all major effector pathways and inducing the mucosal upregulation of Th1, Th2, and Th17 factors. They may also participate in mucosal homeostasis and defense against pathogens through their effects on the development and function of the recently described innate lymphoid cells. T-regulatory lymphocytes highly express DR3, and they respond to TL1A stimulation also. Mechanistic studies by transgenic expression of TL1A, deletion of TL1A or DR3, and therapeutic blockade by anti-TL1A antibodies all support the critical involvement of the corresponding pathways in the pathogenesis of chronic mucosal inflammation. Wide genome association studies have identified IBD-specific polymorphisms in TNFSF15 gene, which have functional implications and serve as poor prognostic factors. Recently, TL1A blockade in mice was presented as a unique pharmacological treatment for the reversal of established intestinal fibrosis. Finally, TL1A/DR3 signaling seems to critically participate in extraintestinal inflammatory conditions that are frequently associated with IBD as part of the gut-joint-skin-eye axis. These converging lines of evidence make TL1A/DR3 a suitable model for personalized approaches to IBD therapy.
Collapse
|
62
|
Ślebioda TJ, Bojarska-Junak A, Stanisławowski M, Cyman M, Wierzbicki PM, Roliński J, Celiński K, Kmieć Z. TL1A as a Potential Local Inducer of IL17A Expression in Colon Mucosa of Inflammatory Bowel Disease Patients. Scand J Immunol 2015; 82:352-60. [PMID: 26072972 DOI: 10.1111/sji.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Affiliation(s)
- T. J. Ślebioda
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - A. Bojarska-Junak
- Department of Clinical Immunology; Medical University of Lublin; Lublin Poland
| | - M. Stanisławowski
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - M. Cyman
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - P. M. Wierzbicki
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - J. Roliński
- Department of Clinical Immunology; Medical University of Lublin; Lublin Poland
| | - K. Celiński
- Department of Gastroenterology with Endoscopic Unit; Medical University of Lublin; Lublin Poland
| | - Z. Kmieć
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| |
Collapse
|
63
|
Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 2015; 98:333-45. [PMID: 26188076 PMCID: PMC4763597 DOI: 10.1189/jlb.3ri0315-095r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Originally described in 2002 as a T cell-costimulatory cytokine, the tumor necrosis factor family member TNF-like factor 1A (TL1A), encoded by the TNFSF15 gene, has since been found to affect multiple cell lineages through its receptor, death receptor 3 (DR3, encoded by TNFRSF25) with distinct cell-type effects. Genetic deficiency or blockade of TL1A-DR3 has defined a number of disease states that depend on this cytokine-receptor pair, whereas excess TL1A leads to allergic gastrointestinal inflammation through stimulation of group 2 innate lymphoid cells. Noncoding variants in the TL1A locus are associated with susceptibility to inflammatory bowel disease and leprosy, predicting that the level of TL1A expression may influence host defense and the development of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Arianne C Richard
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John R Ferdinand
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Françoise Meylan
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Erika T Hayes
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Odile Gabay
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Richard M Siegel
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
64
|
Ahn YO, Weeres MA, Neulen ML, Choi J, Kang SH, Heo DS, Bergerson R, Blazar BR, Miller JS, Verneris MR. Human group3 innate lymphoid cells express DR3 and respond to TL1A with enhanced IL-22 production and IL-2-dependent proliferation. Eur J Immunol 2015; 45:2335-42. [PMID: 26046454 PMCID: PMC4595159 DOI: 10.1002/eji.201445213] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/17/2015] [Accepted: 06/02/2015] [Indexed: 11/06/2022]
Abstract
Death receptor 3 (DR3, TNFRSF25) is expressed by activated lymphocytes and signaling by its ligand, TL1A, enhances cytokine expression and proliferation. Recent studies show that DR3 is also present on murine type 2 innate lymphoid cells (ILC2s). Here, we show that DR3 is expressed by IL-22-producing human group 3 innate lymphoid cells (ILC3s). Stimulation of ILC3s with exogenous TL1A alone had no impact on cytokine production or proliferation. Addition of TL1A to IL-1β + IL-23 significantly enhanced the amount IL-22 produced by ILC3s as well as the percentage IL-22- and IL-8-producing cells. Addition of TL1A to IL-1β + IL-23 also augmented ILC3 proliferation. Mechanistically, this occurred through the upregulation of CD25 and responsiveness to IL-2 stimulation. The combination of TL1A, IL-1β+ IL-23, and IL-2 expanded ILC3s while IL-1β+ IL-23 did not increase proliferation above controls. After 2 weeks of expansion, ILC3s maintained their phenotype, transcription factor expression, and function (IL-22 production). These findings identify DR3 as a costimulatory molecule on ILC3s that could be exploited for ex vivo expansion and clinical use.
Collapse
Affiliation(s)
- Yong-Oon Ahn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, USA
- Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Matthew A Weeres
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, USA
| | - Marie-Luise Neulen
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, USA
| | - Jahyang Choi
- Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Seong-Ho Kang
- Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Rachel Bergerson
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Blood and Marrow Transplantation, University of Minnesota, USA
| | - Michael R Verneris
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, USA
| |
Collapse
|
65
|
Richard AC, Tan C, Hawley ET, Gomez-Rodriguez J, Goswami R, Yang XP, Cruz AC, Penumetcha P, Hayes ET, Pelletier M, Gabay O, Walsh M, Ferdinand JR, Keane-Myers A, Choi Y, O'Shea JJ, Al-Shamkhani A, Kaplan MH, Gery I, Siegel RM, Meylan F. The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3567-82. [PMID: 25786692 PMCID: PMC5112176 DOI: 10.4049/jimmunol.1401220] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A-DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9.
Collapse
Affiliation(s)
- Arianne C Richard
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Cuiyan Tan
- Experimental Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Eric T Hawley
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julio Gomez-Rodriguez
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ritobrata Goswami
- Department of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Xiang-Ping Yang
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pallavi Penumetcha
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erika T Hayes
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Martin Pelletier
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Odile Gabay
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Matthew Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John R Ferdinand
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; and
| | - Andrea Keane-Myers
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD 21702
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Aymen Al-Shamkhani
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; and
| | - Mark H Kaplan
- Department of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Igal Gery
- Experimental Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
66
|
Siakavellas SI, Sfikakis PP, Bamias G. The TL1A/DR3/DcR3 pathway in autoimmune rheumatic diseases. Semin Arthritis Rheum 2015; 45:1-8. [PMID: 25887448 DOI: 10.1016/j.semarthrit.2015.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
IMPORTANCE TNF-like cytokine 1A (TL1A) and its receptors, death receptor 3 (DR3) and decoy receptor 3 (DcR3) are members of the TNF and TNF receptor superfamilies of proteins, respectively. They constitute a cytokine system that actively interferes with the regulation of immune responses and may participate in the pathogenesis of autoimmune diseases. OBJECTIVES This review aims to present the current knowledge on the role of the TL1A/DR3/DcR3 system in the pathophysiology of autoimmune rheumatic diseases, with a focus on rheumatoid arthritis (RA). METHODS An extensive literature search was performed in the PubMed database using the following keywords: TL1A, death receptor 3, DR3, decoy receptor 3, DcR3, TNFSF15, TNFRSF25, and TNFSF6B. Studies were assessed and selected in view of their relevance to autoimmune rheumatic diseases. CONCLUSION The TL1A/DR3/DcR3 axis is a novel immune pathway that participates in the pathogenesis of a variety of autoimmune rheumatic diseases. These molecules may be promising therapeutic targets for inflammatory arthritis.
Collapse
Affiliation(s)
- Spyros I Siakavellas
- Academic Department of Gastroenterology, Laikon Hospital, Kapodistrian University of Athens, 17 Agiou Thoma St, Athens 11527, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, Kapodistrian University of Athens, Athens, Greece
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Laikon Hospital, Kapodistrian University of Athens, 17 Agiou Thoma St, Athens 11527, Greece.
| |
Collapse
|
67
|
Dissecting DR3 signaling. Methods Mol Biol 2014; 1155:15-22. [PMID: 24788169 DOI: 10.1007/978-1-4939-0669-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Receptor signaling can be evaluated in multiple ways, including analysis of phosphorylation of downstream molecules and analysis of proteins that are recruited to the receptor upon ligand binding. Majority of studies on the mechanism of DR3 signaling were performed using overexpression systems that can often lead to artifacts. In this chapter we describe how to analyze DR3 downstream events with most attention being paid to endogenous immunoprecipitation.
Collapse
|
68
|
Wang ECY, Newton Z, Hayward OA, Clark SR, Collins F, Perks WV, Singh RK, Twohig JP, Williams AS. Regulation of early cartilage destruction in inflammatory arthritis by death receptor 3. Arthritis Rheumatol 2014; 66:2762-72. [PMID: 25044706 PMCID: PMC4286106 DOI: 10.1002/art.38770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/26/2014] [Indexed: 12/28/2022]
Abstract
Objective To investigate the role of death receptor 3 (DR-3) and its ligand tumor necrosis factor–like molecule 1A (TL1A) in the early stages of inflammatory arthritis. Methods Antigen-induced arthritis (AIA) was generated in C57BL/6 mice deficient in the DR-3 gene (DR3−/−) and their DR3+/+ (wild-type) littermates by priming and intraarticular injection of methylated bovine serum albumin. The joints were sectioned and analyzed histochemically for damage to cartilage and expression of DR3, TL1A, Ly-6G (a marker for neutrophils), the gelatinase matrix metalloproteinase 9 (MMP-9), the aggrecanase ADAMTS-5, and the neutrophil chemoattractant CXCL1. In vitro production of MMP-9 was measured in cultures from fibroblasts, macrophages, and neutrophils following the addition of TL1A and other proinflammatory stimuli. Results DR3 expression was up-regulated in the joints of wild-type mice following generation of AIA. DR3−/− mice were protected against cartilage damage compared with wild-type mice, even at early time points prior to the main accumulation of Teff cells in the joint. Early protection against AIA in vivo correlated with reduced levels of MMP-9. In vitro, neutrophils were major producers of MMP-9, while neutrophil numbers were reduced in the joints of DR3−/− mice. However, TL1A neither induced MMP-9 release nor affected the survival of neutrophils. Instead, reduced levels of CXCL1 were observed in the joints of DR3−/− mice. Conclusion DR-3 drives early cartilage destruction in the AIA model of inflammatory arthritis through the release of CXCL1, maximizing neutrophil recruitment to the joint and leading to enhanced local production of cartilage-destroying enzymes.
Collapse
Affiliation(s)
- Eddie C Y Wang
- Cardiff Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zhang YC, Guo LQ, Chen X, Wang GN, Ni R, Wang MC, Wei FX. The role of death receptor 3 in the biological behavior of hepatocellular carcinoma cells. Mol Med Rep 2014; 11:797-804. [PMID: 25370568 PMCID: PMC4262488 DOI: 10.3892/mmr.2014.2858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/05/2014] [Indexed: 01/26/2023] Open
Abstract
Death receptor 3 (DR3) belongs to the tumor necrosis factor (TNF) receptor superfamily, primarily found in lymphoid tissues. Reports have determined that DR3 may also be distributed in numerous types of tumors. Therefore, it is thought that DR3 may have an important role in the process of tumorigenesis. The aim of the present study was to observe the effect of silencing DR3 expression on hepatocarcinoma cell growth, apoptosis and invasion in order to elucidate the role of DR3 in tumor development. The hepatocarcinoma cell lines (HepG2, Huh7, SMMC7721 and Bel-7402) and normal human liver cells (HL-7702) were transfected with three stealth RNA interference (RNAi) sequences that target the DR3 gene. Reverse transcription quantitative polymerase chain reaction was used to detect the expression levels of DR3 in hepatocarcinoma cell lines and normal liver HL-7702 cells. MTT assay and flow cytometry (FCM) were used to determine the rates of cell proliferation and apoptosis, respectively. Following silencing of the DR3 gene, western blot analysis was used to determine the protein expression of P53, Fas, Caspase8, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Caspase3. DR3 messenger RNA (mRNA) expression in hepatocarcinoma cell lines was significantly increased compared with that in the normal liver cell line. Three targeted DR3 gene small interfering RNAs significantly inhibited DR3 gene expression in Bel-7402 cells at the nucleic acid level. AF02670.1_stealth_883 and cocktail demonstrated the most efficient inhibition of DR3 gene expression at 48 and 72 h following transfection, with mRNA inhibition rates of 89.46 and 92.75%, and 90.53 and 94.25% (P<0.01), respectively. Cell viability was significantly reduced by AF02670.1_stealth_883 and RNAi cocktail at 24, 48 and 72 h following transfection. The inhibition rates of cell proliferation were 50.76 and 61.76% (P<0.05) at 72 h following transfection. FCM revealed that AF02670.1_stealth_883 and RNAi cocktail also induced apoptosis in Bel-7402 cells at 72 h following transfection. Reduction of NF-κB and P53 levels was observed (P<0.05) in Bel-7402 cells following DR3 silencing, whereas levels of Fas, Caspase3 and Caspase8 were markedly elevated (P<0.05). DR3 expression levels in hepatocellular carcinoma cells were significantly higher than those in normal cells. DR3 silencing effectively inhibited proliferation and invasion of hepatocellular carcinoma cells in vitro. However, silencing of the DR3 gene affect levels of apoptosis antigen-3 ligand in cells, therefore indicating that it may be involved with other pathways that regulate apoptosis in HCCs. In conclusion, the results of the present study indicated that DR3 may be a promising therapeutic target molecule for further study of hepatocellular carcinoma gene therapy.
Collapse
Affiliation(s)
- You Cheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Liu Qing Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xiao Chen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Gen Nian Wang
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Ri Ni
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Man Cai Wang
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Feng Xian Wei
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
70
|
Shih DQ, Zheng L, Zhang X, Zhang H, Kanazawa Y, Ichikawa R, Wallace KL, Chen J, Pothoulakis C, Koon HW, Targan SR. Inhibition of a novel fibrogenic factor Tl1a reverses established colonic fibrosis. Mucosal Immunol 2014; 7:1492-503. [PMID: 24850426 PMCID: PMC4205266 DOI: 10.1038/mi.2014.37] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/06/2014] [Indexed: 02/04/2023]
Abstract
Intestinal fibrostenosis is among the hallmarks of severe Crohn's disease. Patients with certain TNFSF15 (gene name for TL1A) variants over-express TL1A and have a higher risk of developing strictures in the small intestine. In addition, sustained Tl1a expression in mice leads to small and large intestinal fibrostenosis under colitogenic conditions. The aim of this study was to determine whether established murine colonic fibrosis could be reversed with Tl1a antibody (Ab). Treatment with neutralizing Tl1a Ab reversed colonic fibrosis back to the original pre-inflamed levels, potentially as a result of lowered expression of connective tissue growth factor, Il31Ra, transforming growth factor β1 and insulin-like growth factor-1. In addition, blocking Tl1a function by either neutralizing Tl1a Ab or deletion of death domain receptor 3 (Dr3) reduced the number of fibroblasts and myofibroblasts, the primary cell types that mediate tissue fibrosis. Primary intestinal myofibroblasts expressed Dr3 and functionally responded to direct Tl1a signaling by increasing collagen and Il31Ra expression. These data demonstrated a direct role for TL1A-DR3 signaling in tissue fibrosis and that modulation of TL1A-DR3 signaling could inhibit gut fibrosis.
Collapse
Affiliation(s)
- David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Libo Zheng
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA,Dept. of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xiaolan Zhang
- Dept. of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Hong Zhang
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA,Dept. of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yoshitake Kanazawa
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ryan Ichikawa
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kori L Wallace
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jeremy Chen
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Hon W Koon
- IBD Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
71
|
Abstract
TNFRSF25 is an understudied broad-acting T cell costimulator with high homology to TNFR1, however, the overall role of this receptor in T cell immunobiology is unclear. Ligation of TNFRSF25 by its monogamous ligand, TNFSF15 (TL1A), leads to recruitment of TNFR-associated factor 2 and TNFR-associated death domain in primary T cells with downstream activation of both NFκB as well as the PI3K/Akt axis. These signaling pathways are dependent upon coordinated engagement of the T cell receptor and interleukin-2 receptor and leads to the constitutive proliferation of CD4+FoxP3+ regulatory T cells (Treg) as a result of tonic exposure to self-antigen. Concurrent activation of CD4+ or CD8+ conventional T cell clones is dependent upon the availability of cognate foreign antigen. Here, we provide a review of both the literature and our work on this receptor and propose that the overall function of TL1A signaling to TNFRSF25 in T cells is to provide simultaneous costimulation of foreign-antigen-specific effector T cells and pre-existing Treg in order to focus the clonality of effector immunity to pathogen-derived antigens and reduce the risk of bystander inflammation toward self- or endogenous microbial antigens.
Collapse
|
72
|
A role for impaired regulatory T cell function in adverse responses to aluminum adjuvant-containing vaccines in genetically susceptible individuals. Vaccine 2014; 32:5149-55. [PMID: 25066736 DOI: 10.1016/j.vaccine.2014.07.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/28/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Regulatory T cells play a critical role in the immune response to vaccination, but there is only a limited understanding of the response of regulatory T cells to aluminum adjuvants and the vaccines that contain them. Available studies in animal models show that although induced T regulatory cells may be induced concomitantly with effector T cells following aluminum-adjuvanted vaccination, they are unable to protect against sensitization, suggesting that under the Th2 immune-stimulating effects of aluminum adjuvants, Treg cells may be functionally compromised. Allergic diseases are characterized by immune dysregulation, with increases in IL-4 and IL-6, both of which exert negative effects on Treg function. For individuals with a genetic predisposition, the beneficial influence of adjuvants on immune responsiveness may be accompanied by immune dysregulation, leading to allergic diseases. This review examines aspects of the regulatory T cell response to aluminum-adjuvanted immunization and possible genetic susceptibility factors related to that response.
Collapse
|
73
|
Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2014; 2014:325129. [PMID: 25045210 PMCID: PMC4087264 DOI: 10.1155/2014/325129] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract of unclear aetiology of which two major forms are Crohn's disease (CD) and ulcerative colitis (UC). CD and UC are immunologically distinct, although they both result from hyperactivation of proinflammatory pathways in intestines and disruption of intestinal epithelial barrier. Members of the tumour necrosis factor superfamily (TNFSF) are molecules of broad spectrum of activity, including direct disruption of intestinal epithelial barrier integrity and costimulation of proinflammatory functions of lymphocytes. Tumour necrosis factor (TNF) has a well-established pathological role in IBD which also serves as a target in IBD treatment. In this review we discuss the role of TNF and other TNFSF members, notably, TL1A, FasL, LIGHT, TRAIL, and TWEAK, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Tomasz J. Ślebioda
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
74
|
Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J, Yan D, Xu M, Lee WP, Grogan JL. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol 2014; 7:730-40. [PMID: 24220298 PMCID: PMC3998636 DOI: 10.1038/mi.2013.92] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/07/2013] [Indexed: 02/04/2023]
Abstract
Immune responses at mucosal barriers are regulated by innate type 2 lymphoid cells (ILC2s) that elaborate effector cytokines interleukins 5 and 13 (IL5 and IL13). IL25 and IL33 are key cytokines that support ILC2s; however, mice deficient in these pathways retain some functional ILC2s. Analysis of human and murine cells revealed that ILC2s highly express tumor necrosis factor (TNF)-receptor superfamily member DR3 (TNFRSF25). Engagement of DR3 with cognate ligand TL1A promoted ILC2 expansion, survival, and function. Exogenous protein or genetic overexpression of TL1A activated ILC2s independent of IL25 or IL33. Dr3(-/-) mice failed to control gut helminthic infections, and failed to mount ILC2 responses in the lung after nasal challenge with papain. Our data demonstrate a key role for TL1A in promoting ILC2s at mucosal barriers.
Collapse
Affiliation(s)
- X Yu
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - R Pappu
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - V Ramirez-Carrozzi
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - N Ota
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - P Caplazi
- Department of Pathology, Genentech, South San Francisco, California, USA
| | - J Zhang
- Department of Translational Immunology, Genentech, South San Francisco, California, USA
| | - D Yan
- Department of Translational Immunology, Genentech, South San Francisco, California, USA
| | - M Xu
- Department of Translational Immunology, Genentech, South San Francisco, California, USA
| | - W P Lee
- Department of Translational Immunology, Genentech, South San Francisco, California, USA
| | - J L Grogan
- Department of Immunology, Genentech, South San Francisco, California, USA,
| |
Collapse
|
75
|
Liu C, Li XX, Gao W, Liu W, Liu DS. Progranulin-derived Atsttrin directly binds to TNFRSF25 (DR3) and inhibits TNF-like ligand 1A (TL1A) activity. PLoS One 2014; 9:e92743. [PMID: 24651300 PMCID: PMC3961393 DOI: 10.1371/journal.pone.0092743] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Atsttrin, a progranulin (PGRN)-derived molecule composed of three TNFR-binding domains of PGRN, binds to TNF receptors (TNFR) and is therapeutic against inflammatory arthritis. Here we screened the associations of Atsttrin and other members in TNFR subfamily, which led to the discovery of TNFRSF25 (DR3) as an additional Atsttrin-interacting member in TNFR family. Similar to TNFR1 and TNFR2, DR3 also directly bound to Atsttrin. The first three cysteine-rich domains (CRD) in the extracellular portion of DR3 were required for this interaction. Atsttrin inhibited the interaction between DR3 and its TNF-Like Ligand 1A (TL1A). In addition, Atsttrin inhibited TL1A-stimulated target gene expressions and neutralized TL1A-enhanced osteoclastogenesis in vitro. Furthermore, Atsttrin ameliorated the pathology in dextran sulfate sodium induced colitis. Taken together, these findings not only provide the new insights into Atsttrin's therapeutic action in inflammatory arthritis, but may also present Atsttrin as a novel biological agent for treating various types of diseases associated with TL1A/DR3 pathway.
Collapse
MESH Headings
- Animals
- Body Weight/drug effects
- Cell Line
- Colitis/chemically induced
- Colitis/metabolism
- Colitis/pathology
- Cysteine/chemistry
- Dextran Sulfate/adverse effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hemorrhage/prevention & control
- Macrophages/metabolism
- Mice
- Multigene Family
- Protein Binding/drug effects
- Protein Interaction Domains and Motifs
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 25/chemistry
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Receptors, Tumor Necrosis Factor, Member 25/metabolism
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacology
- Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism
Collapse
Affiliation(s)
- Cui Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xing-Xia Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Gao
- Department of Nursing, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Liu
- Department of Biotechnology, Taishan Medical University, Taian, China
| | - De-Shan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
76
|
TL1A induces TCR independent IL-6 and TNF-α production and growth of PLZF⁺ leukocytes. PLoS One 2014; 9:e85793. [PMID: 24416448 PMCID: PMC3885722 DOI: 10.1371/journal.pone.0085793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/08/2013] [Indexed: 12/24/2022] Open
Abstract
An elevated level of the cytokine TL1A is known to be associated with several autoimmune diseases, e.g. rheumatoid arthritis and inflammatory bowel disease. However, the mode of action of TL1A remains elusive. In this study, we investigated the role of TL1A in a pro-inflammatory setting, using human leukocytes purified from healthy donors. We show that TL1A, together with IL-12, IL-15 and IL-18, directly induces the production of IL-6 and TNF-α from leukocytes. Interestingly, TL1A-induced IL-6 was not produced by CD14+ monocytes. We further show that the produced IL-6 is fully functional, as measured by its ability to signal through the IL-6 receptor, and that the induction of IL-6 is independent of TCR stimulation. Furthermore, the transcription factor PLZF was induced in stimulated cells. These results offer a substantial explanation for the role of TL1A, since TNF-α and IL-6 are directly responsible for much of the inflammatory state in many autoimmune diseases. Our study suggests that TL1A is a possible target for the treatment of autoimmune diseases.
Collapse
|
77
|
The role of TL1A and DR3 in autoimmune and inflammatory diseases. Mediators Inflamm 2013; 2013:258164. [PMID: 24453414 PMCID: PMC3880748 DOI: 10.1155/2013/258164] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023] Open
Abstract
TNF-like ligand 1A (TL1A), which binds its cognate receptor DR3 and the decoy receptor DcR3, is an identified member of the TNF superfamily. TL1A exerts pleiotropic effects on cell proliferation, activation, and differentiation of immune cells, including helper T cells and regulatory T cells. TL1A and its two receptors expression is increased in both serum and inflamed tissues in autoimmune diseases such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and ankylosing spondylitis (AS). Polymorphisms of the TNFSF15 gene that encodes TL1A are associated with the pathogenesis of irritable bowel syndrome, leprosy, and autoimmune diseases, including IBD, AS, and primary biliary cirrhosis (PBC). In mice, blocking of TL1A-DR3 interaction by either antagonistic antibodies or deletion of the DR3 gene attenuates the severity of multiple autoimmune diseases, whereas sustained TL1A expression on T cells or dendritic cells induces IL-13-dependent small intestinal inflammation. This suggests that modulation of TL1A-DR3 interaction may be a potential therapeutic target in several autoimmune diseases, including IBD, RA, AS, and PBC.
Collapse
|
78
|
Wang X, Hu Y, Charpentier T, Lamarre A, Qi S, Wu J, Luo H. TNF-like Ligand 1A (TL1A) Gene Knockout Leads to Ameliorated Collagen-Induced Arthritis in Mice: Implication of TL1A in Humoral Immune Responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:5420-9. [DOI: 10.4049/jimmunol.1301475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
79
|
Florea V, Bhagavatula N, Simovic G, Macedo FY, Fock RA, Rodrigues CO. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype. PLoS One 2013; 8:e73146. [PMID: 24039874 PMCID: PMC3765198 DOI: 10.1371/journal.pone.0073146] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb) were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4) were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.
Collapse
Affiliation(s)
- Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nithya Bhagavatula
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Gordana Simovic
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Francisco Y. Macedo
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ricardo A. Fock
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
80
|
Dhama K, Latheef SK, Samad HA, Chakrabort S, Tiwari R, Kumar A, Rahal A. Tumor Necrosis Factor as Mediator of Inflammatory Diseases and its Therapeutic Targeting: A Review. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.226.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
81
|
Gonsky R, Deem RL, Targan SR. Multiple activating and repressive cis-promoter regions regulate TNFSF15 expression in human primary mononuclear cells. Cytokine 2013; 63:36-42. [PMID: 23642711 DOI: 10.1016/j.cyto.2013.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/15/2013] [Accepted: 04/01/2013] [Indexed: 12/13/2022]
Abstract
TL1A/TNFSF15 has been associated with IBD (inflammatory bowel disease) in GWAS (genome-wide association study) and plays a role mediating mucosal inflammation in IBD. Higher TL1A expression is associated with disease severity in both patients and mouse models. Although TL1A has been studied extensively for IBD-associated SNPs, the cis/trans-regulatory regions are poorly defined. Herein we identify response elements regulating TNFSF15 in primary human myeloid cells. Peripheral mononuclear cells transfected with TNFSF15 promoter constructs displayed 30-fold enhanced promoter activity in a minimal -74 bp region. Transactivation was mediated partly by AP-1, since mutation of the AP-1 site resulting in loss of promoter activity. Monocytes transfected with c-Jun siRNA or treated with TAT-TI-JIP (JNK Inhibitor VII TAT-TI-JIP) demonstrated reduced TL1A mRNA and protein levels. Surprisingly, constructs larger than -74 bp did not increase promoter expression (expression of -1275 bp construct was 25% of -74 bp activity), suggesting the presence of both activating and repressing TL1A promoter elements. In fact, mutation of the -210 bp NFκB site enhanced promoter activity (60-fold) suggesting a repressive role for this site. DNA-protein binding to the TL1A AP-1 and NFκB elements was inhibited by excess consensus or TL1A oligonucleotides and binding and confirmed by chromatin immuno-precipitation analysis. Yet, despite the fact that the -210 bp NFκB site acts as a suppressor element, overall mRNA and protein expression were inhibited in monocytes treated with MG132 (NFκB/proteasome inhibitor) or SN50 (NFκB-p50 blocking peptide), suggesting that NFκB acts as both an activator and silencer of TL1A expression. These data suggest that modulation of TL1A expression involves a complex interplay between positive and negative signals, binding to distinct regulatory regions.
Collapse
Affiliation(s)
- Rivkah Gonsky
- F. Widjaja Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Richard L Deem
- F. Widjaja Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Stephan R Targan
- F. Widjaja Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States.
| |
Collapse
|
82
|
The TNF-family cytokine TL1A inhibits proliferation of human activated B cells. PLoS One 2013; 8:e60136. [PMID: 23565196 PMCID: PMC3614993 DOI: 10.1371/journal.pone.0060136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/21/2013] [Indexed: 01/08/2023] Open
Abstract
Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.
Collapse
|
83
|
Zheng L, Zhang X, Chen J, Ichikawa R, Wallace K, Pothoulakis C, Koon HW, Targan SR, Shih DQ. SUSTAINED TL1A (TNFSF15) EXPRESSION ON BOTH LYMPHOID AND MYELOID CELLS LEADS TO MILD SPONTANEOUS INTESTINAL INFLAMMATION AND FIBROSIS. Eur J Microbiol Immunol (Bp) 2013; 3:11-20. [PMID: 23638306 DOI: 10.1556/eujmi.3.2013.1.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TL1A is a member of the TNF superfamily, and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, patients with certain TNFSF15 variants over-express TL1A and have a higher risk of developing strictures in the small intestine. Consistently, mice with sustained Tl1a expression in either lymphoid or myeloid cells develop spontaneous ileitis and increased intestinal collagen deposition. Transgenic (Tg) mice with constitutive Tl1a expression in both lymphoid and myeloid cells were generated to assess their in vivo consequence. Constitutive expression of Tl1a in both lymphoid and myeloid cells showed increased spontaneous ileitis and collagen deposition than WT mice. T cells with constitutive expression of Tl1a in both lymphoid and myeloid cells were found to have a more activated phenotype, increased gut homing marker CCR9 expression, and enhanced Th1 and Th17 cytokine activity than WT mice. Although no differences in T cell activation marker, Th1 or Th17 cytokine activity, ileitis, or collagen deposition were found between constitutive Tl1a expression in lymphoid only, myeloid only, or combined lymphoid and myeloid cells. Double hemizygous Tl1a-Tg mice appeared to have worsened ileitis and intestinal fibrosis. Our findings confirm that TL1A-DR3 interaction is involved in T cell-dependent ileitis and fibrosis.
Collapse
Affiliation(s)
- Libo Zheng
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Khan SQ, Tsai MS, Schreiber TH, Wolf D, Deyev VV, Podack ER. Cloning, expression, and functional characterization of TL1A-Ig. THE JOURNAL OF IMMUNOLOGY 2013; 190:1540-50. [PMID: 23319737 DOI: 10.4049/jimmunol.1201908] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TNF superfamily member 15 (TL1A) is the ligand for TNFR superfamily (TNFRSF)25. We previously reported that TNFRSF25 stimulation with an agonist Ab, 4C12, expands pre-existing CD4(+)Foxp3(+) regulatory T cells (Tregs) in vivo. To determine how the physiological ligand differs from the Ab, we generated a soluble mouse TL1A-Ig fusion protein that forms a dimer of TL1A trimers in solution with an apparent molecular mass of 516 kDa. In vitro, TL1A-Ig mediated rapid proliferation of Foxp3(+) Tregs and a population of CD4(+)Foxp3(-) conventional T cells. TL1A-Ig also blocked de novo biogenesis of inducible Tregs and it attenuated the suppressive function of Tregs. TNFRSF25 stimulation by TL1A-Ig in vivo induced expansion of Tregs such that they increased to 30-35% of all CD4(+) T cells in the peripheral blood within 5 d of treatment. Treg proliferation in vivo was dependent on TCR engagement with MHC class II. Elevated Treg levels can be maintained for at least 20 d with daily injections of TL1A-Ig. TL1A-Ig-expanded Tregs expressed high levels of activation/memory markers KLRG1 and CD103 and were highly suppressive ex vivo. TL1A-Ig-mediated Treg expansion in vivo was protective against allergic lung inflammation, a mouse model for asthma, by reversing the ratio of conventional T cells to Tregs in the lung and blocking eosinophil exudation into the bronchoalveolar fluid. Thus, TL1A-Ig fusion proteins are highly active and tightly controllable agents to stimulate Treg proliferation in vivo, and they are uniquely able to maintain high levels of expanded Tregs by repeated administration.
Collapse
Affiliation(s)
- Samia Q Khan
- Sheila and David Fuente Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
85
|
Sun X, Zhao J, Liu R, Jia R, Sun L, Li X, Li Z. Elevated serum and synovial fluid TNF-like ligand 1A (TL1A) is associated with autoantibody production in patients with rheumatoid arthritis. Scand J Rheumatol 2013; 42:97-101. [DOI: 10.3109/03009742.2012.727026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Affiliation(s)
- Eddie C Y Wang
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK.
| |
Collapse
|
87
|
|
88
|
Espín R, Roca FJ, Candel S, Sepulcre MP, González-Rosa JM, Alcaraz-Pérez F, Meseguer J, Cayuela ML, Mercader N, Mulero V. TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3. Dis Model Mech 2012; 6:383-96. [PMID: 22956347 PMCID: PMC3597020 DOI: 10.1242/dmm.010249] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-κB rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-κB. Similarly, TNFα promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Raquel Espín
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER. T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 189:3311-8. [PMID: 22956587 DOI: 10.4049/jimmunol.1200597] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNFR superfamily (TNFRSF)4 (OX40, CD134) and TNFRSF25 are costimulatory receptors that influence CD4(+) and CD8(+) T cell responses to cognate Ag. Independently, these receptors have been described to stimulate overlapping functions, including enhanced proliferation and activation for both regulatory T cells (CD4(+)Foxp3(+); Tregs) and conventional T cells (CD4(+)Foxp3(-) or CD8(+)Foxp3(-); Tconvs). To determine the relative functionality of TNFRSF4 and TNFRSF25 in T cell immunity, the activity of TNFRSF4 and TNFRS25 agonistic Abs was compared in the context of both traditional protein/adjuvant (OVA/aluminum hydroxide) and CD8(+)-specific heat shock protein-based (gp96-Ig) vaccine approaches. These studies demonstrate that both TNFRSF4 and TNFRSF25 independently and additively costimulate vaccine-induced CD8(+) T cell proliferation following both primary and secondary Ag challenge. In contrast, the activities of TNFRSF4 and TNFRSF25 were observed to be divergent in the costimulation of CD4(+) T cell immunity. TNFRSF4 agonists were potent costimulators of OVA/aluminum hydroxide-induced CD4(+) Tconv proliferation, but they only weakly costimulated Treg proliferation and IgG2a production, whereas TNFRSF25 agonists were strong costimulators of Treg proliferation, producers of IgG1, IgG2a, and IgG2b, and weak costimulators of CD4(+) Tconv proliferation. Interestingly, Ag-specific cellular and humoral responses were uncoupled upon secondary immunization, which was dramatically affected by the presence of TNFRSF4 or TNFRSF25 costimulation. These studies highlight the overlapping but nonredundant activities of TNFRSF4 and TNFRSF25 in T cell immunity, which may guide the application of receptor agonistic agents as vaccine adjuvants for infectious disease and tumor immunity.
Collapse
Affiliation(s)
- Taylor H Schreiber
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
90
|
TNFSF15 Modulates Neovascularization and Inflammation. CANCER MICROENVIRONMENT 2012; 5:237-47. [PMID: 22833050 DOI: 10.1007/s12307-012-0117-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor superfamily-15 (TNFSF15; also known as VEGI or TL1A) is a unique cytokine that functions in the modulation of vascular homeostasis and inflammation. TNFSF15 is expressed abundantly in established vasculature but is down-regulated at sites of neovascularization such as in cancers and wounds. TNFSF15 inhibits endothelial cell proliferation and endothelial progenitor cell differentiation. Additionally, TNFSF15 stimulates T cell activation, Th1 cytokine production, and dendritic cell maturation. Some of the functions of TNFSF15 are mediated by death receptor-3. We review the experimental evidences on TNFSF15 activities in angiogenesis, vasculogenesis, inflammation, and immune system mobilization.
Collapse
|
91
|
TNFRSF25 agonistic antibody and galectin-9 combination therapy controls herpes simplex virus-induced immunoinflammatory lesions. J Virol 2012; 86:10606-20. [PMID: 22811539 DOI: 10.1128/jvi.01391-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ocular infection with herpes simplex virus 1 (HSV-1) results in a chronic immunoinflamammtory reaction in the cornea, which is primarily orchestrated by CD4(+) T cells. Hence, targeting proinflammatory CD4(+) T cells or increasing the representation of cells that regulate their function is a relevant therapeutic strategy. In this report, we demonstrate that effective therapeutic control can be achieved using a combination of approaches under circumstances where monotherapy is ineffective. We use a convenient and highly effective monoclonal antibody (MAb) approach with MAbT25 to expand cells that express the tumor necrosis factor receptor superfamily member 25 (TNFRSF25). In naïve animals, these are predominantly cells that are Foxp3-positive regulatory T cells. MAbT25 treatment before or at the time of initial HSV infection was an effective means of reducing the severity of subsequent stromal keratitis lesions. However, MAbT25 treatment was not effective if given 6 days after infection since it expanded proinflammatory effector T cells, which also express TNFRSF25. Therefore, the MAbT25 procedure was combined with galectin-9 (Gal-9), an approach that compromises the activity of T cells involved in tissue damage. The combination therapy provided highly effective lesion control over that achieved by treatment with one of them. The beneficial outcome of the combination therapy was attributed to the expansion of the regulatory T cell population that additionally expressed activation markers such as CD103 needed to access inflammatory sites. Additionally, there was a marked reduction of CD4(+) gamma interferon-producing effector T cells responsible for orchestrating the tissue damage. The approach that we describe has potential application to control a wide range of inflammatory diseases, in addition to stromal keratitis, an important cause of human blindness.
Collapse
|
92
|
Cheng G, Yuan X, Tsai MS, Podack ER, Yu A, Malek TR. IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:1780-91. [PMID: 22786769 DOI: 10.4049/jimmunol.1103768] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thymic-derived natural T regulatory cells (Tregs) are characterized by functional and phenotypic heterogeneity. Recently, a small fraction of peripheral Tregs has been shown to express Klrg1, but it remains unclear as to what extent Klrg1 defines a unique Treg subset. In this study, we show that Klrg1(+) Tregs represent a terminally differentiated Treg subset derived from Klrg1(-) Tregs. This subset is a recent Ag-responsive and highly activated short-lived Treg population that expresses enhanced levels of Treg suppressive molecules and that preferentially resides within mucosal tissues. The development of Klrg1(+) Tregs also requires extensive IL-2R signaling. This activity represents a distinct function for IL-2, independent from its contribution to Treg homeostasis and competitive fitness. These and other properties are analogous to terminally differentiated short-lived CD8(+) T effector cells. Our findings suggest that an important pathway driving Ag-activated conventional T lymphocytes also operates for Tregs.
Collapse
Affiliation(s)
- Guoyan Cheng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
93
|
Twohig JP, Marsden M, Cuff SM, Ferdinand JR, Gallimore AM, Perks WV, Al-Shamkhani A, Humphreys IR, Wang ECY. The death receptor 3/TL1A pathway is essential for efficient development of antiviral CD4⁺ and CD8⁺ T-cell immunity. FASEB J 2012; 26:3575-86. [PMID: 22593543 DOI: 10.1096/fj.11-200618] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Death receptor 3 (DR3, TNFRSF25), the closest family relative to tumor necrosis factor receptor 1, promotes CD4(+) T-cell-driven inflammatory disease. We investigated the in vivo role of DR3 and its ligand TL1A in viral infection, by challenging DR3-deficient (DR3(KO)) mice and their DR3(WT) littermates with the β-herpesvirus murine cytomegalovirus or the poxvirus vaccinia virus. The phenotype and function of splenic T-cells were analyzed using flow cytometry and molecular biological techniques. We report surface expression of DR3 by naive CD8(+) T cells, with TCR activation increasing its levels 4-fold and altering the ratio of DR3 splice variants. T-cell responses were reduced up to 90% in DR3(KO) mice during acute infection. Adoptive transfer experiments indicated this was dependent on T-cell-restricted expression of DR3. DR3-dependent CD8(+) T-cell expansion was NK and CD4 independent and due to proliferation, not decreased cell death. Notably, impaired immunity in DR3(KO) hosts on a C57BL/6 background was associated with 4- to 7-fold increases in viral loads during the acute phase of infection, and in mice with suboptimal NK responses was essential for survival (37.5%). This is the first description of DR3 regulating virus-specific T-cell function in vivo and uncovers a critical role for DR3 in mediating antiviral immunity.
Collapse
Affiliation(s)
- Jason P Twohig
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 2012; 7:e37169. [PMID: 22606348 PMCID: PMC3351457 DOI: 10.1371/journal.pone.0037169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/16/2012] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.
Collapse
|
95
|
Calder CJ, Wang ECY. An essential role for death receptor 3 in experimental autoimmune uveoretinitis. Ocul Immunol Inflamm 2012; 20:212-4. [PMID: 22486262 DOI: 10.3109/09273948.2012.658135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
96
|
Buchan SL, Taraban VY, Slebioda TJ, James S, Cunningham AF, Al-Shamkhani A. Death receptor 3 is essential for generating optimal protective CD4⁺ T-cell immunity against Salmonella. Eur J Immunol 2012; 42:580-8. [PMID: 22259035 DOI: 10.1002/eji.201041950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/24/2011] [Accepted: 11/16/2011] [Indexed: 11/12/2022]
Abstract
The TNF receptor superfamily member death receptor 3 (DR3) exacerbates Th2- and Th17-cell-mediated inflammatory and autoimmune conditions, yet no role in host defence has been reported. Here, we examined the role of DR3 during infection with Salmonella enterica serovar Typhimurium. Infection resulted in protracted expression of the DR3 ligand TL1A but not the related TNF superfamily proteins OX40L or CD30L. TL1A expression was localized to splenic F4/80(+) macrophages where S. enterica Typhimurium replicates, and temporally coincided with the onset of CD4(+) -cell expansion. To address the relevance of the TL1A-DR3 interaction, we examined immune responses to S. enterica Typhimurium in mice lacking DR3. Infected DR3(-/-) mice harboured reduced numbers of antigen-experienced and proliferating CD4(+) T cells compared with WT mice. Furthermore, the frequency of IFN-γ(+) CD4(+) T cells in DR3(-/-) mice was lower throughout the time of bacterial clearance. Importantly, bacterial clearance, which is dependent on Th1 cells, was also impaired in DR3(-/-) mice. This defect was intrinsic to CD4(+) T cells as evidenced by an increase in bacterial burden in RAG2-deficient mice receiving DR3(-/-) CD4(+) T cells compared with WT CD4(+) -cell recipients. These data establish for the first time a role for DR3 in a host defence response.
Collapse
Affiliation(s)
- Sarah L Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.
Collapse
Affiliation(s)
- Yelena L Pobezinskaya
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
98
|
Bamias G, Kaltsa G, Siakavellas SI, Gizis M, Margantinis G, Zampeli E, Vafiadis-Zoumboulis I, Michopoulos S, Daikos GL, Ladas SD. Differential expression of the TL1A/DcR3 system of TNF/TNFR-like proteins in large vs. small intestinal Crohn's disease. Dig Liver Dis 2012; 44:30-6. [PMID: 21978578 DOI: 10.1016/j.dld.2011.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND TNF-like cytokine 1A provides co-stimulatory signals to activated lymphocytes through binding to death-domain receptor-3. Decoy receptor-3 inhibits death-domain receptor-3 signalling, rendering immunocytes resistant to apoptosis. These functions may be important for the pathogenesis of Crohn's disease. AIMS To study the mucosal and systemic expression of Decoy receptor-3 and TNF-like cytokine 1A in Crohn's disease, in relation to disease activity, localization, and response to treatment. METHODS Soluble Decoy receptor-3 and TNF-like cytokine 1A were measured by ELISA in active or quiescent Crohn's disease. Relative mRNA expression in non-affected and inflamed intestinal mucosa was determined by real-time RT-PCR. RESULTS We found significant upregulation of Decoy receptor-3 and its ligands TNF-like cytokine 1A and FasL in inflamed intestinal mucosa of Crohn's disease patients. During active disease, Decoy receptor-3 and TNF-like cytokine 1A were detected in the serum in the majority of patients. Intestinal inflammation was strongly associated with these elevations as they were absent during remission and significantly reduced with anti-inflammatory treatment. Regional diversity was observed as Decoy receptor-3 was upregulated in colonic and ileal sites, whereas TNF-like cytokine 1A was preferentially induced in the large bowel mucosa and systemic circulation of patients with colonic involvement. CONCLUSIONS TNF-like cytokine 1A and Decoy receptor-3 are upregulated during active Crohn's disease and may participate in disease pathogenesis and offer novel therapeutic opportunities.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Division - 1st Department of Propaedeutic and Internal Medicine, "Laikon" General Hospital, Athens University Medical School, 17 Agiou Thoma st., 11527 Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Qin T. Upregulation of DR3 expression in CD4⁺ T cells promotes secretion of IL-17 in experimental autoimmune uveitis. Mol Vis 2011; 17:3486-93. [PMID: 22219644 PMCID: PMC3249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/25/2011] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This study investigated the role of death receptor 3 (DR3) in experimental autoimmune uveitis (EAU). METHODS EAU was induced in B10.RIII mice by subcutaneous injection of interphotoreceptor retinoid-binding protein (IRBP) 161-180 emulsified with complete Freund's adjuvant and evaluated with clinical and histopathologic observation. Total protein of draining lymph nodes (DLNs) was extracted from the control, EAU, or recovery phase mice. CD4⁺ T cells were separated from lymphocytes with magnetic-assisted cell sorting. At the same time, some of the CD4⁺ T cells were cultured with or without recombinant TL1A (rTL1A, the DR3 ligand) for three days, and the supernatants were collected for the interleukin-17 (IL-17) test. DR3 mRNA and protein levels in CD4⁺ T cells and the endogenous concentration of TL1A in mice DLNs were assessed with real-time PCR or western blotting. Levels of IL-17 in the supernatants were determined with enzyme-linked immunosorbent assay. RESULTS Histopathological and clinical data revealed severe intraocular inflammation in the immunized mice. The inflammation reached its peak on day 14 in EAU and had resolved in the recovery phase (weeks 4-5 or more after IRBP immunization). CD4⁺ T cells obtained from EAU (day 7 or 14) had higher levels of DR3 mRNA and protein expression compared with the control group treated with complete Freund's adjuvant alone and the recovery group. However, the DR3 mRNA and protein levels on day 21 in EAU were similar to those observed in the control and recovery groups. The endogenous levels of TL1A were upregulated in EAU, and decreased in the recovery phase mice. Adding rTL1A increased the production of IL-17 by CD4⁺ T cells isolated from mice DLNs. Moreover, the increased IL-17 levels in the culture supernatant of CD4⁺ T cells from EAU were much higher than those from the control and recovery phase mice. However, the effects on promoting IL-17 production in TL1A-stimulated CD4⁺ T cells were similar between the controland recovery groups. CONCLUSIONS Our data suggest that DR3 expression is induced during EAU and may be involved in the development of this disease, possibly by promoting IL-17 secretion.
Collapse
|
100
|
Croft M, Duan W, Choi H, Eun SY, Madireddi S, Mehta A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol 2011; 33:144-52. [PMID: 22169337 DOI: 10.1016/j.it.2011.10.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) and TNF receptor superfamilies (TNFSF and TNFRSF) consist of approximately 50 membrane and soluble proteins that can modulate cellular function. Most of these molecules are expressed by or can target cells of the immune system, and they have a wide range of actions including promoting cellular differentiation, survival, and production of inflammatory cytokines and chemokines. Emerging data show that TNFSF ligand-receptor signaling pathways are active in inflammatory and autoimmune disease. Furthermore, several genetic polymorphisms in TNFSF and TNFRSF associate with susceptibility to developing disease. Here, we examine recent data regarding the potential of these molecules as targets for therapy of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Michael Croft
- La Jolla Institute for Allergy and Immunology, Division of Immune Regulation, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|