51
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
52
|
Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M, Mayo A, Halperin C, Pevsner-Fischer M, Lavon H, Mayer S, Nevo R, Stein Y, Balint-Lahat N, Barshack I, Ali HR, Caldas C, Nili-Gal-Yam E, Alon U, Amit I, Scherz-Shouval R. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4 + and PDPN + CAFs to clinical outcome. NATURE CANCER 2020; 1:692-708. [PMID: 35122040 DOI: 10.1038/s43018-020-0082-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/19/2020] [Indexed: 02/01/2023]
Abstract
Tumors are supported by cancer-associated fibroblasts (CAFs). CAFs are heterogeneous and carry out distinct cancer-associated functions. Understanding the full repertoire of CAFs and their dynamic changes as tumors evolve could improve the precision of cancer treatment. Here we comprehensively analyze CAFs using index and transcriptional single-cell sorting at several time points along breast tumor progression in mice, uncovering distinct subpopulations. Notably, the transcriptional programs of these subpopulations change over time and in metastases, transitioning from an immunoregulatory program to wound-healing and antigen-presentation programs, indicating that CAFs and their functions are dynamic. Two main CAF subpopulations are also found in human breast tumors, where their ratio is associated with disease outcome across subtypes and is particularly correlated with BRCA mutations in triple-negative breast cancer. These findings indicate that the repertoire of CAF changes over time in breast cancer progression, with direct clinical implications.
Collapse
Affiliation(s)
- Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Chamutal Bornstein
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Maya Dadiani
- Chaim Sheba Medical Center, Cancer Research Center, Tel-Hashomer, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Iris Barshack
- Pathology Institute, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Breast Cancer Programme, Cancer Research UK Cancer Centre, Cambridge, UK
| | | | - Uri Alon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
53
|
Barnhoorn MC, Hakuno SK, Bruckner RS, Rogler G, Hawinkels LJAC, Scharl M. Stromal Cells in the Pathogenesis of Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:995-1009. [PMID: 32160284 PMCID: PMC7392167 DOI: 10.1093/ecco-jcc/jjaa009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up till now, research on inflammatory bowel disease [IBD] has mainly been focused on the immune cells present in the gastrointestinal tract. However, recent insights indicate that stromal cells also play an important and significant role in IBD pathogenesis. Stromal cells in the intestines regulate both intestinal epithelial and immune cell homeostasis. Different subsets of stromal cells have been found to play a role in other inflammatory diseases [e.g. rheumatoid arthritis], and these various stromal subsets now appear to carry out also specific functions in the inflamed gut in IBD. Novel potential therapies for IBD utilize, as well as target, these pathogenic stromal cells. Injection of mesenchymal stromal cells [MSCs] into fistula tracts of Crohn's disease patients is already approved and used in clinical settings. In this review we discuss the current knowledge of the role of stromal cells in IBD pathogenesis. We further outline recent attempts to modify the stromal compartment in IBD with agents that target or replace the pathogenic stroma.
Collapse
Affiliation(s)
- M C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands,Corresponding author: Prof. Dr Michael Scharl, Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, Zurich 8091, Switzerland. Tel: 41 44 255 3419; Fax: 41 44 255 9497;
| | - S K Hakuno
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R S Bruckner
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands,Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - L J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
54
|
Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, Thoma OM, Kramer V, Waldner MJ, Büttner C, Farin HF, Pešić M, Knieling F, Merkel S, Grüneboom A, Gunzer M, Grützmann R, Rose-John S, Koralov SB, Kollias G, Vieth M, Hartmann A, Greten FR, Neurath MF, Neufert C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 2020; 69:1269-1282. [PMID: 31685519 DOI: 10.1136/gutjnl-2019-319200] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs) influence the tumour microenvironment and tumour growth. However, the role of CAFs in colorectal cancer (CRC) development is incompletely understood. DESIGN We quantified phosphorylation of STAT3 (pSTAT3) expression in CAFs of human colon cancer tissue using a tissue microarray (TMA) of 375 patients, immunofluorescence staining and digital pathology. To investigate the functional role of CAFs in CRC, we took advantage of two murine models of colorectal neoplasia and advanced imaging technologies. In loss-of-function and gain-of-function experiments, using genetically modified mice with collagen type VI (COLVI)-specific signal transducer and activator of transcription 3 (STAT3) targeting, we evaluated STAT3 signalling in fibroblasts during colorectal tumour development. We performed a comparative gene expression profiling by whole genome RNA-sequencing of fibroblast subpopulations (COLVI+ vs COLVI-) on STAT3 activation (IL-6 vs IL-11). RESULTS The analysis of pSTAT3 expression in CAFs of human TMAs revealed a negative correlation of increased stromal pSTAT3 expression with the survival of colon cancer patients. In the loss-of-function and gain-of-function approach, we found a critical role of STAT3 activation in fibroblasts in driving colorectal tumourigenesis in vivo. With different imaging technologies, we detected an expansion of activated fibroblasts in colorectal neoplasias. Comparative gene expression profiling of fibroblast subpopulations on STAT3 activation revealed the regulation of transcriptional patterns associated with angiogenesis. Finally, the blockade of proangiogenic signalling significantly reduced colorectal tumour growth in mice with constitutive STAT3 activation in COLVI+ fibroblasts. CONCLUSION Altogether our work demonstrates a critical role of STAT3 activation in CAFs in CRC development.
Collapse
Affiliation(s)
- Christina Heichler
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kristina Scheibe
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anabel Schmied
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I Geppert
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oana-Maria Thoma
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Viktoria Kramer
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilian J Waldner
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marina Pešić
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Ferdinand Knieling
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen Kinder- und Jugendklinik, Erlangen, Germany
| | - Susanne Merkel
- Chirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Third Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Robert Grützmann
- Chirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - George Kollias
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Markus F Neurath
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
55
|
Hu X, Tang F, Liu P, Zhong T, Yuan F, He Q, von Itzstein M, Li H, Weng L, Yu X. Structural and Functional Insight Into the Glycosylation Impact Upon the HGF/c-Met Signaling Pathway. Front Cell Dev Biol 2020; 8:490. [PMID: 32626713 PMCID: PMC7314907 DOI: 10.3389/fcell.2020.00490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Upon interactions with its specific ligand hepatocyte growth factor (HGF), the c-Met signal is relayed to series of downstream pathways, exerting essential biological roles. Dysregulation of the HGF-c-Met signaling pathway has been implicated in the onset, progression and metastasis of various cancers, making the HGF-c-Met axis a promising therapeutic target. Both c-Met and HGF undergo glycosylation, which appears to be biologically relevant to their function and structural integrity. Different types of glycoconjugates in the local cellular environment can also regulate HGF/c-Met signaling by distinct mechanisms. However, detailed knowledge pertaining to the glycosylation machinery of the HGF-c-Met axis as well as its potential applications in oncology research is yet to be established. This mini review highlights the significance of the HGF-c-Met signaling pathway in physiological and pathological context, and discusses the molecular mechanisms by which affect the glycosylation of the HGF-c-Met axis. Owing to the crucial role played by glycosylation in the regulation of HGF/c-Met activity, better understanding of this less exploited field may contribute to the development of novel therapeutics targeting glycoepitopes.
Collapse
Affiliation(s)
- Xinyue Hu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Feiyu Tang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peilin Liu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Taowei Zhong
- College of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology in Hunan Province, Central South University, Changsha, China
| | - Xing Yu
- College of Medicine, Hunan Normal University, Changsha, China.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
56
|
Krämer M, Plum PS, Velazquez Camacho O, Folz-Donahue K, Thelen M, Garcia-Marquez I, Wölwer C, Büsker S, Wittig J, Franitza M, Altmüller J, Löser H, Schlößer H, Büttner R, Schröder W, Bruns CJ, Alakus H, Quaas A, Chon SH, Hillmer AM. Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics. Mol Oncol 2020; 14:1170-1184. [PMID: 32255255 PMCID: PMC7266280 DOI: 10.1002/1878-0261.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Single‐cell transcriptomics have revolutionized our understanding of the cell composition of tumors and allowed us to identify new subtypes of cells. Despite rapid technological advancements, single‐cell analysis remains resource‐intense hampering the scalability that is required to profile a sufficient number of samples for clinical associations. Therefore, more scalable approaches are needed to understand the contribution of individual cell types to the development and treatment response of solid tumors such as esophageal adenocarcinoma where comprehensive genomic studies have only led to a small number of targeted therapies. Due to the limited treatment options and late diagnosis, esophageal adenocarcinoma has a poor prognosis. Understanding the interaction between and dysfunction of individual cell populations provides an opportunity for the development of new interventions. In an attempt to address the technological and clinical needs, we developed a protocol for the separation of esophageal carcinoma tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibroblasts (two out of PDGFRα, CD90, anti‐fibroblast) by fluorescence‐activated cell sorting and subsequent RNA sequencing. We confirm successful separation of the three cell populations by mapping their transcriptomic profiles to reference cell lineage expression data. Gene‐level analysis further supports the isolation of individual cell populations with high expression of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1 for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts. As a proof of concept, we profiled tumor samples of nine patients and explored expression differences in the three cell populations between tumor and normal tissue. Interestingly, we found that angiogenesis‐related genes were upregulated in fibroblasts isolated from tumors compared with normal tissue. Overall, we suggest our protocol as a complementary and more scalable approach compared with single‐cell RNA sequencing to investigate associations between clinical parameters and transcriptomic alterations of specific cell populations in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Max Krämer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Patrick S Plum
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Oscar Velazquez Camacho
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Thelen
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | | | - Christina Wölwer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Sören Büsker
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Jana Wittig
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, University of Cologne, Germany
| | | | - Heike Löser
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hans Schlößer
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| |
Collapse
|
57
|
Jing Y, Chavez V, Khatwani N, Ban Y, Espejo AP, Chen X, Merchan JR. In vivo antitumor activity by dual stromal and tumor-targeted oncolytic measles viruses. Cancer Gene Ther 2020; 27:910-922. [PMID: 32231231 DOI: 10.1038/s41417-020-0171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
The tumor stroma acts as a barrier that limits the efficacy of systemically administered oncolytic viruses (OV). We previously demonstrated that stromal-selective, retargeted oncolytic measles viruses (MVs) delay in vivo tumor progression. To further characterize the contribution of stromal targeting to MV's overall in vivo efficacy in an experimental cancer model, a dual targeted oncolytic measles virus (MV-CD46-muPA) able to simultaneously infect murine stromal (via murine uPAR) and human cancer (via CD46) cells was developed. MV-CD46-muPA infected, replicated, and induced cytotoxicity in both murine and human cancer cells. Viral infection was successfully transferred from stromal to tumor cells in vitro, leading to tumor cell oncolysis. Systemic administration of MV-CD46-muPA led to improved antitumor effects in colon (HT-29) cancer xenografts compared to vehicle or CD46 only targeted MVs. These effects were associated with improved tumor viral deposition, increased apoptosis, and decreases in murine stromal endothelial cells and fibroblasts. MV-CD46-muPA modulated cell cycle, survival, proliferation, and metabolic pathways, as determined by functional proteomic analysis of treated tumors. The above findings further validate the concept that dual stromal and tumor cell viral targeting enhances the therapeutic effects of systemically administered OVs and support further preclinical and clinical development of stromal directed virotherapies.
Collapse
Affiliation(s)
- Yuqi Jing
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Valery Chavez
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Natasha Khatwani
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer, Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea P Espejo
- Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xi Chen
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer, Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaime R Merchan
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
58
|
Miyai Y, Esaki N, Takahashi M, Enomoto A. Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives. Cancer Sci 2020; 111:1047-1057. [PMID: 32060987 PMCID: PMC7156845 DOI: 10.1111/cas.14346] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
The roles of cancer‐associated fibroblasts (CAF) in the progression of various types of cancers are well established. CAF promote cancer progression through pleiotropic mechanisms, including the secretion of soluble factors and extracellular matrix, physical interactions with cancer cells, and the regulation of angiogenesis, immunity and metabolism. Their contribution to therapeutic resistance is also well appreciated. Therefore, CAF have been considered as a therapeutic target in cancer. However, recent studies in autochthonous pancreatic cancer models suggest that specific subset(s) of CAF exhibit cancer‐restraining roles, indicating that CAF are functionally and molecularly heterogeneous, which is supported by recent single‐cell transcriptome analyses. While cancer‐promoting CAF (pCAF) have been extensively studied, the nature and specific marker(s) of cancer‐restraining CAF (rCAF) have remained uncharacterized. Interestingly, a recent study provided insight into the nature of rCAF and suggested that they may share molecular properties with pancreatic stellate cells (PSC) and mesenchymal stem/stromal cells (MSC). Complicating this finding is that PSC and MSC have been shown to promote the formation of a tumor‐permissive and tumor‐promoting environment in xenograft tumor models. However, these cells undergo significant transcriptional and epigenetic changes during ex vivo culture, which confounds the interpretation of experimental results based on the use of cultured cells. In this short review, we describe recent studies and hypotheses on the identity of rCAF and discuss their analogy to fibroblasts that suppress fibrosis in fibrotic diseases. Finally, we discuss how these findings can be exploited to develop novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
59
|
Salimifard S, Masjedi A, Hojjat-Farsangi M, Ghalamfarsa G, Irandoust M, Azizi G, Mohammadi H, Keramati MR, Jadidi-Niaragh F. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract 2020; 216:152915. [PMID: 32146002 DOI: 10.1016/j.prp.2020.152915] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most important women-related malignancies, which is incurable (particularly in advanced stages) and tumor microenvironment is a number one accused part in the inefficiency of current anti-breast cancer therapeutic strategies. The tumor microenvironment is composed of various cellular and acellular components, which provide an optimum condition for freely expanding cancer cells in various cancer types, particularly breast cancer. Cancer-associated fibroblasts (CAFs) are one of the main cell types in the breast tumor region, which can promote various tumor-promoting processes such as expansion, angiogenesis, metastasis and drug resistance. CAFs directly (by cell-to-cell communication) and indirectly (through secreting soluble factors) can exert their tumorigenic functions. We try to elucidate the immunobiology of CAFs, their origin, function, and heterogeneity in association with their role in various cancer-promoting processes in breast cancer. Based on current knowledge, we believe that the origin of CAFs, their subsets, and their specific expressed biomarkers determine their pro- or anti-tumor functions. Therefore, targeting CAF without considering their specific functions may lead to a deleterious outcome. We propose to find and characterize each subtype of CAFs in association with its specific function in different stages of breast cancer to develop novel promising therapeutic approaches against the right CAF subtype.
Collapse
Affiliation(s)
- Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Masjedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahzad Irandoust
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
60
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20:174-186. [PMID: 31980749 PMCID: PMC7046529 DOI: 10.1038/s41568-019-0238-1] [Citation(s) in RCA: 2026] [Impact Index Per Article: 506.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
Collapse
Affiliation(s)
- Erik Sahai
- The Francis Crick Institute, London, UK.
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David G DeNardo
- Division of Oncology, Washington University Medical School, St Louis, MO, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Douglas Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, NY, USA
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, University of Manchester, Nether Alderley, UK
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Robert G Maki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - R Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell Health System, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sheila Stewart
- Department of Cell Biology and Physiology, Department of Medicine, ICCE Institute, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Thea D Tlsty
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
61
|
Miyai Y, Esaki N, Takahashi M, Enomoto A. Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives. Cancer Sci 2020. [PMID: 32060987 DOI: 10.1111/cas.14346.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The roles of cancer-associated fibroblasts (CAF) in the progression of various types of cancers are well established. CAF promote cancer progression through pleiotropic mechanisms, including the secretion of soluble factors and extracellular matrix, physical interactions with cancer cells, and the regulation of angiogenesis, immunity and metabolism. Their contribution to therapeutic resistance is also well appreciated. Therefore, CAF have been considered as a therapeutic target in cancer. However, recent studies in autochthonous pancreatic cancer models suggest that specific subset(s) of CAF exhibit cancer-restraining roles, indicating that CAF are functionally and molecularly heterogeneous, which is supported by recent single-cell transcriptome analyses. While cancer-promoting CAF (pCAF) have been extensively studied, the nature and specific marker(s) of cancer-restraining CAF (rCAF) have remained uncharacterized. Interestingly, a recent study provided insight into the nature of rCAF and suggested that they may share molecular properties with pancreatic stellate cells (PSC) and mesenchymal stem/stromal cells (MSC). Complicating this finding is that PSC and MSC have been shown to promote the formation of a tumor-permissive and tumor-promoting environment in xenograft tumor models. However, these cells undergo significant transcriptional and epigenetic changes during ex vivo culture, which confounds the interpretation of experimental results based on the use of cultured cells. In this short review, we describe recent studies and hypotheses on the identity of rCAF and discuss their analogy to fibroblasts that suppress fibrosis in fibrotic diseases. Finally, we discuss how these findings can be exploited to develop novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
62
|
Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer 2020; 146:895-905. [PMID: 30734283 PMCID: PMC6972582 DOI: 10.1002/ijc.32193] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to have a strong tumor-modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically been carried based on the expression of various "CAF markers", such as fibroblast activation protein alpha (FAP) and alpha smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further characterizing research, are vital for the standardization of CAF identification in order to improve the cross-applicability of different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential future avenues for CAF identification and targeting.
Collapse
Affiliation(s)
- Martin Nurmik
- Molecular Disease Mechanisms Group, Life Sciences Research UnitUniversity of LuxembourgBelvauxLuxembourg
| | - Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research UnitUniversity of LuxembourgBelvauxLuxembourg
| | - Fabien Rodriguez
- Molecular Disease Mechanisms Group, Life Sciences Research UnitUniversity of LuxembourgBelvauxLuxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research UnitUniversity of LuxembourgBelvauxLuxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research UnitUniversity of LuxembourgBelvauxLuxembourg
| |
Collapse
|
63
|
Song XD, Wang YN, Zhang AL, Liu B. Advances in research on the interaction between inflammation and cancer. J Int Med Res 2019; 48:300060519895347. [PMID: 31885347 PMCID: PMC7686609 DOI: 10.1177/0300060519895347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's response to cell damage. Cancer is a general
term that describes all malignant tumours. There are no confirmed data
on cancer-related inflammation, but some research suggests that up to
50% of cancers may be linked to inflammation, which has led to the
concept of ‘cancer-associated inflammation’. Although some cancer
patients do not appear to have a chronic inflammatory background,
there might be inflammatory cell infiltration in their cancer tissues.
The continuation of the inflammatory response plays an important role
in the initiation, promotion, malignant transformation, invasion and
metastasis of cancer. Anti-inflammatory therapy has been shown to have
some effects on the prevention and treatment of cancer, which supports
a pathogenic relationship between inflammation and cancer. This review
describes the interaction between inflammation and tumour development
and the main mechanism of regulation of the inflammatory response
during tumour development.
Collapse
Affiliation(s)
- Xin-Da Song
- Department of Urinary Surgery, Graduate School of Peking Union Medical College, Beijing Hospital, National Centre of Gerontology, Beijing, China
| | - Ya-Ni Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ai-Li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
64
|
Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019; 51:27-41. [PMID: 31315034 DOI: 10.1016/j.immuni.2019.06.025] [Citation(s) in RCA: 2003] [Impact Index Per Article: 400.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Inflammation predisposes to the development of cancer and promotes all stages of tumorigenesis. Cancer cells, as well as surrounding stromal and inflammatory cells, engage in well-orchestrated reciprocal interactions to form an inflammatory tumor microenvironment (TME). Cells within the TME are highly plastic, continuously changing their phenotypic and functional characteristics. Here, we review the origins of inflammation in tumors, and the mechanisms whereby inflammation drives tumor initiation, growth, progression, and metastasis. We discuss how tumor-promoting inflammation closely resembles inflammatory processes typically found during development, immunity, maintenance of tissue homeostasis, or tissue repair and illuminate the distinctions between tissue-protective and pro-tumorigenic inflammation, including spatiotemporal considerations. Defining the cornerstone rules of engagement governing molecular and cellular mechanisms of tumor-promoting inflammation will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
65
|
Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. FEBS J 2019; 286:4160-4175. [PMID: 31365790 PMCID: PMC6899673 DOI: 10.1111/febs.15028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy has achieved remarkable efficacy, with immune-checkpoint inhibitors as especially promising candidates for cancer therapy. However, some issues caused by immunotherapy have raised attention, such as limited efficacy for some patients, narrow antineoplastic spectrum, and adverse reactions, suggesting that using regulators of tumor immune response may prove to be more complicated than anticipated. Current evidence indicates that different factors collectively constituting the unique tumor microenvironment promote immune tolerance, and these include the expression of co-inhibitory molecules, the secretion of lactate, and competition for nutrients between tumor cells and immune cells. Furthermore, cancer-associated fibroblasts, the main cellular components of solid tumors, promote immunosuppression through inhibition of T cell function and extracellular matrix remodeling. Here, we summarize the research advances in tumor immunotherapy and the latest insights into the influence of microenvironment on tumor immunotherapy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
- Research Center for Translational MedicineEast HospitalTongJi University School of MedicineShanghaiChina
| | - Zhaopeng Shi
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Xiang Xu
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Zuoren Yu
- Research Center for Translational MedicineEast HospitalTongJi University School of MedicineShanghaiChina
| | - Jun Mi
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
- Hongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
66
|
Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol 2019; 35:407-421. [PMID: 30680600 PMCID: PMC6881418 DOI: 10.1007/s10565-019-09461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
The goal of cancer eradication has been overshadowed despite the continuous improvement in research and generation of novel cancer therapeutic drugs. One of the undeniable existing problems is drug resistance due to which the paradigm of killing all cancer cells is ineffective. Tumor microenvironment plays a crucial role in inducing drug resistance besides cancer development and progression. Recently, many efforts have been devoted to understand the role of tumor microenvironment in cancer drug resistance as it provides the shelter, nutrition, and paracrine niche for cancer cells. Cancer-associated fibroblasts (CAFs), one major component of tumor microenvironment, reside in symbiotic relationship with cancer cells, supporting them to survive from cancer drugs. The present review summarizes the recent understandings in the role of CAFs in drug resistance in various tumors. Acknowledging the fact that drug resistance depends not only upon cancer cells but also upon the microenvironment niche could guide us to formulate novel cancer drugs and provide the optimal cancer treatment.
Collapse
Affiliation(s)
- Dhruba Kadel
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Hao-Ran Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yue Zhao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
67
|
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, Gerlic M, Ben-Baruch A, Pasmanik-Chor M, Apte R, Erez N. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun 2019; 10:4375. [PMID: 31558756 PMCID: PMC6763472 DOI: 10.1038/s41467-019-12370-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer-Associated Fibroblasts (CAFs) were shown to orchestrate tumour-promoting inflammation in multiple malignancies, including breast cancer. However, the molecular pathways that govern the inflammatory role of CAFs are poorly characterised. In this study we found that fibroblasts sense damage-associated molecular patterns (DAMPs), and in response activate the NLRP3 inflammasome pathway, resulting in instigation of pro-inflammatory signalling and secretion of IL-1β. This upregulation was evident in CAFs in mouse and in human breast carcinomas. Moreover, CAF-derived inflammasome signalling facilitated tumour growth and metastasis, which was attenuated when NLRP3 or IL-1β were specifically ablated. Functionally, CAF-derived inflammasome promoted tumour progression and metastasis by modulating the tumour microenvironment towards an immune suppressive milieu and by upregulating the expression of adhesion molecules on endothelial cells. Our findings elucidate a mechanism by which CAFs promote breast cancer progression and metastasis, by linking the physiological tissue damage response of fibroblasts with tumour-promoting inflammation.
Collapse
Affiliation(s)
- Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoray Sharon
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Raz
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonor Leider-Trejo
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Roni Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
68
|
Zhong X, Chen B, Liu M, Yang Z. The Role of Adaptor Protein CARD9 in Colitis-Associated Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:1-6. [PMID: 31650020 PMCID: PMC6804436 DOI: 10.1016/j.omto.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adaptor protein CARD9 plays an important role in anti-fungal immunity responses, linking detection of fungi by surface receptors to activation of the transcription factor nuclear factor κB (NF-κB). Recent studies indicate that CARD9 also plays different but vital roles during the development of colitis-associated colorectal cancer (CAC). This review summarizes the current understanding of CARD9 functions in CAC, and we discuss its potentially carcinogenic mechanisms.
Collapse
Affiliation(s)
| | - Bin Chen
- Department of Surgery, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Min Liu
- Department of Surgery, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| |
Collapse
|
69
|
Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. THE FEBS JOURNAL 2019. [PMID: 31365790 DOI: 10.1111/febs.15028.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Tumor immunotherapy has achieved remarkable efficacy, with immune-checkpoint inhibitors as especially promising candidates for cancer therapy. However, some issues caused by immunotherapy have raised attention, such as limited efficacy for some patients, narrow antineoplastic spectrum, and adverse reactions, suggesting that using regulators of tumor immune response may prove to be more complicated than anticipated. Current evidence indicates that different factors collectively constituting the unique tumor microenvironment promote immune tolerance, and these include the expression of co-inhibitory molecules, the secretion of lactate, and competition for nutrients between tumor cells and immune cells. Furthermore, cancer-associated fibroblasts, the main cellular components of solid tumors, promote immunosuppression through inhibition of T cell function and extracellular matrix remodeling. Here, we summarize the research advances in tumor immunotherapy and the latest insights into the influence of microenvironment on tumor immunotherapy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.,Research Center for Translational Medicine, East Hospital, TongJi University School of Medicine, Shanghai, China
| | - Zhaopeng Shi
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xiang Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Zuoren Yu
- Research Center for Translational Medicine, East Hospital, TongJi University School of Medicine, Shanghai, China
| | - Jun Mi
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.,Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
70
|
Falcomatà C, Bärthel S, Schneider G, Saur D, Veltkamp C. Deciphering the universe of genetic context-dependencies using mouse models of cancer. Curr Opin Genet Dev 2019; 54:97-104. [PMID: 31078084 DOI: 10.1016/j.gde.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
Molecular profiling of cancer patients and modelling of human cancer in mice revealed cell type and tissue-specific differences in tumor development and evolution. However, the context-dependent determinants of cancer remain poorly understood. A systematic characterization of the biological underpinnings of context-specificity will, therefore, be pivotal to design more effective therapies. In this review article, we focus on recent advances on molecular, cellular and microenvironmental aspects of context-dependency. We highlight new strategies to study this phenomenon in tumorigenesis and tumor evolution. Notably, we elucidate tissue and cell type-specific signaling cues as well as tumor microenvironment niches, using novel next-generation dual and triple recombinase-based mouse models of cancer.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Günter Schneider
- German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany.
| | - Christian Veltkamp
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| |
Collapse
|
71
|
Troncone E, Monteleone G. Smad7 and Colorectal Carcinogenesis: A Double-Edged Sword. Cancers (Basel) 2019; 11:cancers11050612. [PMID: 31052449 PMCID: PMC6563107 DOI: 10.3390/cancers11050612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinogenesis is a complex process in which many immune and non-immune cells and a huge number of mediators are involved. Among these latter factors, Smad7, an inhibitor of the transforming growth factor (TGF)-β1 signaling that has been involved in the amplification of the inflammatory process sustaining chronic intestinal inflammation, is supposed to make a valid contribution to the growth and survival of colorectal cancer (CRC) cells. Smad7 is over-expressed by tumoral cells in both sporadic CRC and colitis-associated CRC, where it sustains neoplastic processes through activation of either TGFβ-dependent or non-dependent pathways. Consistently, genome-wide association studies have identified single nucleotide polymorphisms of the Smad7 gene associated with CRC and shown that either amplification or deletion of the Smad7 gene associates with a poor prognosis or better outcome, respectively. On the other hand, there is evidence that over-expression of Smad7 in immune cells infiltrating the inflamed gut of patients with inflammatory bowel disease can elicit anti-tumor responses, with the down-stream effect of attenuating CRC cell growth. Taken together, these observations suggest a double role of Smad7 in colorectal carcinogenesis, which probably depends on the cell subset and the biological context analyzed. In this review, we summarize the available evidences about the role of Smad7 in both sporadic and colitis-associated CRC.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
72
|
Abstract
The tumour microenvironment, also termed the tumour stroma or tumour mesenchyme, includes fibroblasts, immune cells, blood vessels and the extracellular matrix and substantially influences the initiation, growth and dissemination of gastrointestinal cancer. Cancer-associated fibroblasts (CAFs) are one of the critical components of the tumour mesenchyme and not only provide physical support for epithelial cells but also are key functional regulators in cancer, promoting and retarding tumorigenesis in a context-dependent manner. In this Review, we outline the emerging understanding of gastrointestinal CAFs with a particular emphasis on their origin and heterogeneity, as well as their function in cancer cell proliferation, tumour immunity, angiogenesis, extracellular matrix remodelling and drug resistance. Moreover, we discuss the clinical implications of CAFs as biomarkers and potential targets for prevention and treatment of patients with gastrointestinal cancer.
Collapse
|
73
|
Kawamura T, Yamamoto M, Suzuki K, Suzuki Y, Kamishima M, Sakata M, Kurachi K, Setoh M, Konno H, Takeuchi H. Tenascin-C Produced by Intestinal Myofibroblasts Promotes Colitis-associated Cancer Development Through Angiogenesis. Inflamm Bowel Dis 2019; 25:732-741. [PMID: 30517646 DOI: 10.1093/ibd/izy368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colitis-associated cancer (CAC) is one of the prognostic factors in inflammatory bowel disease (IBD), and prevention of CAC is a critical concern for patients with IBD. Component cells of the microenvironment, especially myofibroblasts, are known to affect tumor development, but the role of intestinal myofibroblasts (IMFs) in CAC has not been clarified. Here, we explored the role of IMFs in CAC and sought to identify candidate genes as novel therapeutic targets for the prevention of CAC. METHODS We used the azoxymethane (AOM)/dextran sodium sulfate (DSS) model for dysplasia and CAC. Flow cytometry and RNA sequencing (RNA-seq) were performed to obtain an unbiased gene expression profile of IMFs. The transcriptome of significantly differentially expressed genes was analyzed by RNA-seq, quantitative reverse transcriptase polymerase chain reaction, and immunohistochemistry. RESULTS Comparison of normal intestinal fibroblasts and IMFs revealed 1045 genes with significantly differential expression. Among them, we focused on tenascin-C (TNC; q = 0.00232, Log2(Fold Change) = 3.87). Tenascin-C gene expression was markedly increased in the dysplasia model compared with control and CAC model (P < 0.05). Tenascin-C protein was barely expressed in normal and nondysplastic mucosa but strongly expressed in the stroma around dysplastic lesions. Moreover, TNC surrounded and enclosed integrin αvβ3-positive microvessels. Administration of ATN-161, an antagonist of αvβ3-integrin, significantly suppressed tumorigenesis of CAC through inhibition of angiogenesis (P < 0.05). CONCLUSIONS In the early stages of CAC, TNC produced by IMFs affects tumor development via integrin αvβ3-mediated angiogenesis. Intestinal myofibroblasts might be a novel therapeutic target for preventing CAC.
Collapse
Affiliation(s)
- Takafumi Kawamura
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayoshi Yamamoto
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsunori Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuhi Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Megumu Kamishima
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mayu Sakata
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyotaka Kurachi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setoh
- Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
74
|
Carneiro-Lobo TC, Scalabrini LC, Magalhães LDS, Cardeal LB, Rodrigues FS, Dos Santos EO, Baldwin AS, Levantini E, Giordano RJ, Bassères DS. IKKβ targeting reduces KRAS-induced lung cancer angiogenesis in vitro and in vivo: A potential anti-angiogenic therapeutic target. Lung Cancer 2019; 130:169-178. [PMID: 30885340 DOI: 10.1016/j.lungcan.2019.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The ability of tumor cells to drive angiogenesis is an important cancer hallmark that positively correlates with metastatic potential and poor prognosis. Therefore, targeting angiogenesis is a rational therapeutic approach and dissecting proangiogenic pathways is important, particularly for malignancies driven by oncogenic KRAS, which are widespread and lack effective targeted therapies. Based on published studies showing that oncogenic RAS promotes angiogenesis by upregulating the proangiogenic NF-κB target genes IL-8 and VEGF, that NF-κB activation by KRAS requires the IKKβ kinase, and that targeting IKKβ reduces KRAS-induced lung tumor growth in vivo, but has limited effects on cell growth in vitro, we hypothesized that IKKβ targeting would reduce lung tumor growth by inhibiting KRAS-induced angiogenesis. MATERIALS AND METHODS To test this hypothesis, we targeted IKKβ in KRAS-mutant lung cancer cell lines either by siRNA-mediated transfection or by treatment with Compound A (CmpdA), a highly specific IKKβ inhibitor, and used in vitro and in vivo assays to evaluate angiogenesis. RESULTS AND CONCLUSIONS Both pharmacological and siRNA-mediated IKKβ targeting in lung cells reduced expression and secretion of NF-κB-regulated proangiogenic factors IL-8 and VEGF. Moreover, conditioned media from IKKβ-targeted lung cells reduced human umbilical vein endothelial cell (HUVEC) migration, invasion and tube formation in vitro. Furthermore, siRNA-mediated IKKβ inhibition reduced xenograft tumor growth and vascularity in vivo. Finally, IKKβ inhibition also affects endothelial cell function in a cancer-independent manner, as IKKβ inhibition reduced pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Taken together, these results provide a novel mechanistic understanding of how the IKKβ pathway affects human lung tumorigenesis, indicating that IKKβ promotes KRAS-induced angiogenesis both by cancer cell-intrinsic and cancer cell-independent mechanisms, which strongly suggests IKKβ inhibition as a promising antiangiogenic approach to be explored for KRAS-induced lung cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Laura B Cardeal
- Chemistry Institute, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Felipe Silva Rodrigues
- Chemistry Institute, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Ricardo J Giordano
- Chemistry Institute, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
75
|
Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L, Moses HL, Grisaru D, Erez N. Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med 2018; 215:3075-3093. [PMID: 30470719 PMCID: PMC6279405 DOI: 10.1084/jem.20180818] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/05/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Raz et al. demonstrate that the expression of PDGFRα distinguishes two functional CAF populations in breast tumors and lung metastases and identify a subpopulation of CAFs that are specifically recruited to the tumor microenvironment from mesenchymal stromal cells in the BM. Cancer-associated fibroblasts (CAFs) are highly prominent in breast tumors, but their functional heterogeneity and origin are still largely unresolved. We report that bone marrow (BM)–derived mesenchymal stromal cells (MSCs) are recruited to primary breast tumors and to lung metastases and differentiate to a distinct subpopulation of CAFs. We show that BM-derived CAFs are functionally important for tumor growth and enhance angiogenesis via up-regulation of Clusterin. Using newly generated transgenic mice and adoptive BM transplantations, we demonstrate that BM-derived fibroblasts are a substantial source of CAFs in the tumor microenvironment. Unlike resident CAFs, BM-derived CAFs do not express PDGFRα, and their recruitment resulted in a decrease in the percentage of PDGFRα-expressing CAFs. Strikingly, decrease in PDGFRα in breast cancer patients was associated with worse prognosis, suggesting that BM-derived CAFs may have deleterious effects on survival. Therefore, PDGFRα expression distinguishes two functionally unique CAF populations in breast tumors and metastases and may have important implications for patient stratification and precision therapeutics.
Collapse
Affiliation(s)
- Yael Raz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel E Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, TN
| | - Lilach Abramovitz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonor Leider-Trejo
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, TN
| | - Dan Grisaru
- Department of Obstetrics and Gynecology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
76
|
Loss of Stat6 affects chromatin condensation in intestinal epithelial cells causing diverse outcome in murine models of inflammation-associated and sporadic colon carcinogenesis. Oncogene 2018; 38:1787-1801. [PMID: 30353167 PMCID: PMC6756235 DOI: 10.1038/s41388-018-0551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
While great advances have been achieved regarding the genetic basis of colorectal cancer, the complex role of cell–cell communication and cytokine-induced signaling during its pathogenesis remains less understood. Signal transducer and activator of transcription 6 (Stat6) is the main transcription factor of interleukin-4 (IL-4) signaling and its participation in the development of various tumor types has been already reported. Here we aimed to examine the contribution of Stat6 in intestinal epithelial cells (IEC) in mouse models of intestinal carcinogenesis. Wild-type (WT), Stat6 knockout (Stat6−/−), and intestinal epithelial cell-specific IL-4Rα knockout (Il-4rαΔIEC) mice were subjected to colitis-associated (AOM/DSS) and colitis-independent (sporadic) carcinogenesis. IEC proliferation, apoptosis and RNA expression were evaluated by immunohistochemical, immunoblot, and RT-PCR analysis. We found that Stat6−/− mice developed more tumors in the colitis-associated carcinogenesis model. This was accompanied by a more pronounced inflammatory response during colitis and an elevated Stat3-dependent proliferation of IEC. Increased sensitivity to DSS-induced colitis was caused by elevated cell death in response to the initial carcinogen exposure as Stat6 deficiency led to increased chromatin compaction affecting DNA damage response in IEC upon treatment with alkylating agents independently of IL-4Rα engagement. Thus, loss of Stat6 caused more severe colitis and increased tumor load, however loss-of-initiated Stat6−/− IEC prevented tumor formation in the absence of overt inflammation. Our data unravel unexpected IL-4-independent functions of Stat6 in chromatin compaction in intestinal epithelial cells ultimately providing both tumor suppressive as well as tumor promoting effects in different models of intestinal tumorigenesis.
Collapse
|
77
|
Zhang Y, Zhou H, Tao Y, Liu X, Yuan Z, Nie C. ARD1 contributes to IKKβ-mediated breast cancer tumorigenesis. Cell Death Dis 2018; 9:860. [PMID: 30154412 PMCID: PMC6113314 DOI: 10.1038/s41419-018-0921-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 02/05/2023]
Abstract
The expression of IκB kinase β (IKKβ) promotes the growth of breast cancer cells. Meanwhile, IKKβ mediates the phosphorylation and subsequent degradation of arrest-defective protein 1 (ARD1). However, the relationship between IKKβ and ARD1 in the occurrence of breast cancer has not been reported. In this study, we found that IKKβ not only acts directly on mammalian target of rapamycin (mTOR) activity but also indirectly acts on mTOR activity through posttranscriptional modification of ARD1, thereby effectively promoting the growth of breast cancer cells. ARD1 prevents mTOR activity and breast cancer cell growth by stabilizing tuberous sclerosis complex 2 (TSC2) to induce autophagy. Moreover, acetylation of heat shock protein 70 (Hsp70) also contributes to ARD1-mediated autophagy. Therefore, upstream IKKβ can further promote the occurrence of breast cancer by mediating the function of ARD1.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, 550002, Guizhou, China
| | - Hang Zhou
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yongjun Tao
- People's Hospital of Danzhai County, 557500, Guizhou, China
| | - Xingyu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
78
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
79
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev 2018; 39:70-113. [DOI: 10.1002/med.21511] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ma Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
- CIBER de Enfermedades Raras (CIBERER); Málaga Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
- CIBER de Enfermedades Raras (CIBERER); Málaga Spain
| |
Collapse
|
80
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
81
|
Ohara Y, Chew SH, Misawa N, Wang S, Somiya D, Nakamura K, Kajiyama H, Kikkawa F, Tsuyuki Y, Jiang L, Yamashita K, Sekido Y, Lipson KE, Toyokuni S. Connective tissue growth factor-specific monoclonal antibody inhibits growth of malignant mesothelioma in an orthotopic mouse model. Oncotarget 2018; 9:18494-18509. [PMID: 29719620 PMCID: PMC5915087 DOI: 10.18632/oncotarget.24892] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma is an aggressive neoplasm with no particularly effective treatments. We previously reported that overexpression of connective tissue growth factor (CTGF/CCN2) promotes mesothelioma growth, thus suggesting it as a novel molecular target. A human monoclonal antibody that antagonizes CTGF (FG-3019, pamrevlumab) attenuates malignant properties of different kinds of human cancers and is currently under clinical trial for the treatment of pancreatic cancer. This study reports the effects of FG-3019 on human mesothelioma in vitro and in vivo. We analyzed the effects of FG-3019 on the proliferation, apoptosis, migration/invasion, adhesion and anchorage-independent growth in three human mesothelioma cell lines, among which ACC-MESO-4 was most efficiently blocked with FG-3019 and was chosen for in vivo experiments. We also evaluated the coexistent effects of fibroblasts on mesothelioma in vitro, which are also known to produce CTGF in various pathologic situations. Coexistent fibroblasts in transwell systems remarkably promoted the proliferation and migration/invasion of mesothelioma cells. In orthotopic nude mice model, FG-3019 significantly inhibited mesothelioma growth. Histological analyses revealed that FG-3019 not only inhibited the proliferation but also induced apoptosis in both mesothelioma cells and fibroblasts. Our data suggest that FG-3019 antibody therapy could be a novel additional choice for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Yuuki Ohara
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shan Hwu Chew
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuaki Misawa
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shenqi Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daiki Somiya
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuta Tsuyuki
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kyoko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
82
|
Zhang D, Li L, Jiang H, Li Q, Wang-Gillam A, Yu J, Head R, Liu J, Ruzinova MB, Lim KH. Tumor-Stroma IL1β-IRAK4 Feedforward Circuitry Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic Cancer. Cancer Res 2018; 78:1700-1712. [PMID: 29363544 PMCID: PMC5890818 DOI: 10.1158/0008-5472.can-17-1366] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/13/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
Targeting the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) holds promise to augment the effect of chemotherapy, but success in the clinic has thus far been limited. Preclinical mouse models suggest that near-depletion of cancer-associated fibroblasts (CAF) carries a risk of accelerating PDAC progression, underscoring the need to concurrently target key signaling mechanisms that drive the malignant attributes of both CAF and PDAC cells. We previously reported that inhibition of IL1 receptor-associated kinase 4 (IRAK4) suppresses NFκB activity and promotes response to chemotherapy in PDAC cells. In this study, we report that CAF in PDAC tumors robustly express activated IRAK4 and NFκB. IRAK4 expression in CAF promoted NFκB activity, drove tumor fibrosis, and supported PDAC cell proliferation, survival, and chemoresistance. Cytokine array analysis of CAF and microarray analysis of PDAC cells identified IL1β as a key cytokine that activated IRAK4 in CAF. Targeting IRAK4 or IL1β rendered PDAC tumors less fibrotic and more sensitive to gemcitabine. In clinical specimens of human PDAC, high stromal IL1β expression associated strongly with poor overall survival. Together, our studies establish a tumor-stroma IL1β-IRAK4 feedforward signal that can be therapeutically disrupted to increase chemotherapeutic efficacy in PDAC.Significance: Targeting the IL1β-IRAK4 signaling pathway potentiates the effect of chemotherapy in pancreatic cancer. Cancer Res; 78(7); 1700-12. ©2018 AACR.
Collapse
Affiliation(s)
- Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Qiong Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jinsheng Yu
- Department of Genetics, Genome Technology Access Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Richard Head
- Department of Genetics, Genome Technology Access Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
83
|
Sun Y, Wang R, Qiao M, Xu Y, Guan W, Wang L. Cancer associated fibroblasts tailored tumor microenvironment of therapy resistance in gastrointestinal cancers. J Cell Physiol 2018; 233:6359-6369. [PMID: 29334123 DOI: 10.1002/jcp.26433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancers (GI), are a group of highly aggressive malignancies with heavy cancer-related mortalities. Even if continued development of therapy methods, therapy resistance has been a great obstruction for cancer treatment and thereby inevitably leads to depressed final mortality. Peritumoral cancer associated fibroblasts (CAFs), a versatile population assisting cancer cells to build a facilitated tumor microenvironment (TME), has been demonstrated exerting a promotion influence on cancer proliferation, migration, invasion, metastasis, and also therapy resistance. In this review, we provide an update progress in describing how CAFs mediate therapy resistance in GI by various means, meanwhile highlight the crosstalk between CAFs and cancer cells and present some vital signaling pathways activated by CAFs in this resistant process. Furthermore, we discuss the current advances in adopting novel drugs against CAFs and how the knowledge contributing to improved therapy efficacy in clinical practice. In sum, CAFs create a therapy-resistant TME in several aspects of GI progression, although some key problems about distinguishing CAFs subpopulations and controversial issues on pleiotropic CAFs in medication need to be solved for subsequent clinical application. Predictably, targeting therapy-resistant CAFs is a promising adjunctive treatment to benefit GI patients.
Collapse
Affiliation(s)
- Yeqi Sun
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruifen Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Qiao
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanchun Xu
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
84
|
Andriani F, Majorini MT, Mano M, Landoni E, Miceli R, Facchinetti F, Mensah M, Fontanella E, Dugo M, Giacca M, Pastorino U, Sozzi G, Delia D, Roz L, Lecis D. MiR-16 regulates the pro-tumorigenic potential of lung fibroblasts through the inhibition of HGF production in an FGFR-1- and MEK1-dependent manner. J Hematol Oncol 2018; 11:45. [PMID: 29558956 PMCID: PMC5861674 DOI: 10.1186/s13045-018-0594-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype. Methods We employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts. Multiplex assays and ELISA were instrumental to study the effect of miRNAs on the secretome of both primary and immortalized lung fibroblasts from lung cancer patients and to evaluate plasmatic levels of HGF in heavy smokers. Direct mRNA targeting by miRNAs was investigated through dual-luciferase reporter assay and western blot. Finally, the pro-tumorigenic activity of fibroblasts and their conditioned media was tested by employing in vitro migration experiments and mouse xenografts. Results We identified miR-16 as a master regulator of fibroblast secretome and showed that its upregulation reduces HGF secretion by fibroblasts, impairing their capacity to promote cancer cell migration. This effect is due to a pleiotropic activity of miR-16 which prevents HGF expression through direct inhibition of FGFR-1 signaling and targeting of HGF mRNA. Mechanistically, miR-16 targets FGFR-1 downstream mediator MEK1, thus reducing ERK1/2 activation. Consistently, chemical or genetic inhibition of FGFR-1 mimics miR-16 activity and prevents HGF production. Of note, we report that primary fibroblast cell lines derived from lungs of heavy smokers express reduced miR-16 levels compared to those from lungs not exposed to smoke and that HGF concentration in heavy smokers’ plasma correlates with levels of tobacco exposure. Finally, in vivo experiments confirmed that restoration of miR-16 expression in fibroblasts reduced their ability to promote tumor growth and that HGF plays a central role in the pro-tumorigenic activity of fibroblasts. Conclusions Overall, these results uncover a central role for miR-16 in regulating HGF production by lung fibroblasts, thus affecting their pro-tumorigenic potential. Correlation between smoking exposure and miR-16 levels could provide novel clues regarding the formation of a tumor-proficient milieu during the early phases of lung cancer development. Electronic supplementary material The online version of this article (10.1186/s13045-018-0594-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Andriani
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Teresa Majorini
- Molecular Mechanisms of Cell Cycle Control Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Present Address: Functional Genomics and RNA-based Therapeutics laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3060-197, Coimbra, Portugal
| | - Elena Landoni
- Unit of Medical Statistics, Biometry, and Bioinformatics Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosalba Miceli
- Unit of Medical Statistics, Biometry, and Bioinformatics Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Facchinetti
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mavis Mensah
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Fontanella
- Molecular Mechanisms of Cell Cycle Control Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenico Delia
- Molecular Mechanisms of Cell Cycle Control Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Daniele Lecis
- Molecular Mechanisms of Cell Cycle Control Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. .,Present Address: Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
85
|
An J, Wu M, Xin X, Lin Z, Li X, Zheng Q, Gui X, Li T, Pu H, Li H, Lu D. Inflammatory related gene IKKα, IKKβ, IKKγ cooperates to determine liver cancer stem cells progression by altering telomere via heterochromatin protein 1-HOTAIR axis. Oncotarget 2018; 7:50131-50149. [PMID: 27367027 PMCID: PMC5226573 DOI: 10.18632/oncotarget.10321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are associated with tumor recurrence. IKK is a protein kinase that is composed of IKKα, IKKβ, IKKγ. Herein, we demonstrate that IKKα plus IKKβ promoted and IKKγ inhibited liver cancer stem cell growth in vitro and in vivo. Mechanistically, IKKα plus IKKβ enhanced and IKKγ inhibited the interplay among HP1α, HP1β and HP1γ that competes for the interaction among HP1α, SUZ12, HEZ2. Therefore, IKKα plus IKKβ inhibited and IKKγ enhanced the activity of H3K27 methyltransferase SUZ12 and EZH2, which methylates H3K27 immediately sites on HOTAIR promoter region. Therefore, IKKα plus IKKβ increased and IKKγ decreased the HOTAIR expression. Strikingly, IKKα plus IKKβ decreases and IKKγ increases the HP1α interplays with DNA methyltransferase DNMT3b, which increases or decreases TERRA promoter DNA methylation. Thus IKKα plus IKKβ reduces and IKKγ increases to recruit TRF1 and RNA polymerase II deposition and elongation on the TERRA promoter locus, which increases or decreases TERRA expression. Furthermore, IKKα plus IKKβ decreases/increases and IKKγ increases/decreases the interplay between TERT and TRRRA/between TERT and TREC. Ultimately, IKKα plus IKKβ increases and IKKγ decreases the telomerase activity. On the other hand, at the telomere locus, IKKα plus IKKβ increases/drcreases and IKKγ decreases/increases TRF2, POT1, pPOT1, Exo1, pExo1, SNM1B, pSNM1B/CST-AAF binding, which keep active telomere regulatory genes and poised for telomere length. Strikingly, HOTAIR is required for IKKα plus IKKβ and IKKγ to control telomerase activity and telomere length. These observations suggest that HOTAIR operates the action of IKKα, IKKβ, IKKγ in liver cancer stem cells. This study provides a novel basis to elucidate the oncogenic action of IKKα, IKKβ, IKKγ and prompts that IKKα, IKKβ, IKKγ cooperate to HOTAR to be used as a novel therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
86
|
Eissmann MF, Dijkstra C, Wouters MA, Baloyan D, Mouradov D, Nguyen PM, Davalos-Salas M, Putoczki TL, Sieber OM, Mariadason JM, Ernst M, Masson F. Interleukin 33 Signaling Restrains Sporadic Colon Cancer in an Interferon-γ-Dependent Manner. Cancer Immunol Res 2018; 6:409-421. [PMID: 29463593 DOI: 10.1158/2326-6066.cir-17-0218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
Interleukin 33 (IL33) is an inflammatory cytokine released during necrotic cell death. The epithelium and stroma of the intestine express large amounts of IL33 and its receptor St2. IL33 is therefore continuously released during homeostatic turnover of the intestinal mucosa. Although IL33 can prevent colon cancer associated with inflammatory colitis, the contribution of IL33 signaling to sporadic colon cancer remains unknown. Here, we utilized a mouse model of sporadic colon cancer to investigate the contribution of IL33 signaling to tumorigenesis in the absence of preexisting inflammation. We demonstrated that genetic ablation of St2 enhanced colon tumor development. Conversely, administration of recombinant IL33 reduced growth of colon cancer cell allografts. In reciprocal bone marrow chimeras, the concurrent loss of IL33 signaling within radioresistant nonhematopoietic, and the radiosensitive hematopoietic, compartments was associated with increased tumor burden. We detected St2 expression within the radioresistant mesenchymal cell compartment of the colon whose stimulation with IL33 induced expression of bona fide NF-κB target genes. Mechanistically, we discovered that St2 deficiency within the nonhematopoietic compartment coincided with increased abundance of regulatory T cells and suppression of an IFNγ gene expression signature, whereas IL33 administration triggered IFNγ expression by tumor allograft-infiltrating T cells. The decrease of this IFNγ gene expression signature was associated with more aggressive disease in human colon cancer patients, suggesting that lack of IL33 signaling impaired the generation of a potent IFNγ-mediated antitumor immune response. Collectively, our data reveal that IL33 functions as a tumor suppressor in sporadic colon cancer. Cancer Immunol Res; 6(4); 409-21. ©2018 AACR.
Collapse
Affiliation(s)
- Moritz F Eissmann
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Christine Dijkstra
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Merridee A Wouters
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - David Baloyan
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul M Nguyen
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Mercedes Davalos-Salas
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Tracy L Putoczki
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Oliver M Sieber
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia.,School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - John M Mariadason
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| | - Frederick Masson
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| |
Collapse
|
87
|
Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response? Oncotarget 2018; 7:60752-60774. [PMID: 27542276 PMCID: PMC5312417 DOI: 10.18632/oncotarget.11354] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022] Open
Abstract
The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis.
Collapse
|
88
|
|
89
|
Oliveira AG, Araújo TG, Carvalho BDM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne) 2018; 9:503. [PMID: 30214428 PMCID: PMC6125308 DOI: 10.3389/fendo.2018.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in β-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes.
Collapse
Affiliation(s)
- Alexandre G. Oliveira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- *Correspondence: Alexandre G. Oliveira
| | - Tiago G. Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Mario J. A. Saad
| |
Collapse
|
90
|
Page A, Navarro M, Suárez-Cabrera C, Bravo A, Ramirez A. Context-Dependent Role of IKKβ in Cancer. Genes (Basel) 2017; 8:E376. [PMID: 29292732 PMCID: PMC5748694 DOI: 10.3390/genes8120376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is a kinase principally known as a positive regulator of the ubiquitous transcription factor family Nuclear Factor-kappa B (NF-κB). In addition, IKKβ also phosphorylates a number of other proteins that regulate many cellular processes, from cell cycle to metabolism and differentiation. As a consequence, IKKβ affects cell physiology in a variety of ways and may promote or hamper tumoral transformation depending on hitherto unknown circumstances. In this article, we give an overview of the NF-κB-dependent and -independent functions of IKKβ. We also summarize the current knowledge about the relationship of IKKβ with cellular transformation and cancer, obtained mainly through the study of animal models with cell type-specific modifications in IKKβ expression or activity. Finally, we describe the most relevant data about IKKβ implication in cancer obtained from the analysis of the human tumoral samples gathered in The Cancer Genome Atlas (TCGA) and the Catalogue of Somatic Mutations in Cancer (COSMIC).
Collapse
Affiliation(s)
- Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Angel Ramirez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.
- Oncogenomic Unit, Institute of Biomedical Investigation "12 de Octubre i+12", 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
91
|
Peri-tumor associated fibroblasts promote intrahepatic metastasis of hepatocellular carcinoma by recruiting cancer stem cells. Cancer Lett 2017; 404:19-28. [PMID: 28716525 DOI: 10.1016/j.canlet.2017.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Fibroblasts have been reported to play an important role in hepatocellular carcinoma (HCC). However, the role of fibroblasts have not been fully understood. Conditioned medium collected from human peri-tumor tissue-derived fibroblasts (CM-pTAFs) showed high metastasis ability than human HCC tissues-derived fibroblasts (CM-TAFs). To determine what component was secreted from fibroblasts, we used Bio-Plex analysis system and compared the factors secreted from CM-pTAFs and CM-TAFs, found a series of up-regulated cytokines in the CM-pTAFs, including IL-6, CCL2, CXCL1, CXCL8, SCGF-β, HGF and VEGF. Pretreatment of IL-6 inhibitor Tocilizumab could inhibit metastasis the HCC cell treated with CM-pTAFs in vitro and in vivo. The expression of CCR2 and CXCR1 were up-regulated after CM-pTAFs treatment in HCC cell line SMMC-7721. Flow cytometric analysis experiment showed that most CCR2 or CXCR1 positive cells were also EpCAM positive. In vitro studies also showed that CM-pTAFs could increase stemness of SMMC-7721. In addition, neutralization of SCGF-β and HGF could significantly reduce metastasis and viability of cancer stem cells treated with CM-pTAFs. Taken together, these results indicated that the peri-tumor tissues derived fibroblasts may promote development of HCC by recruiting cancer stem cells and maintaining their stemness characteristic.
Collapse
|
92
|
Wang L, Dong H, Song G, Zhang R, Pan J, Han J. TXNDC5 synergizes with HSC70 to exacerbate the inflammatory phenotype of synovial fibroblasts in rheumatoid arthritis through NF-κB signaling. Cell Mol Immunol 2017; 15:685-696. [PMID: 28603283 DOI: 10.1038/cmi.2017.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
The upregulated expression of thioredoxin domain-containing protein 5 (TXNDC5) is associated with rheumatoid arthritis in patients and model mice. However, the underlying mechanism by which TXNDC5 influences the pathological activation of rheumatoid arthritis synovial fibroblasts (RASFs) remains unknown. In this study, we show that TXNDC5 expression in RASFs and their cytokine production are significantly upregulated in response to LPS, TNF-α and IL-6, but suppressed by transfection with TXNDC5-siRNA. TXNDC5 is further validated as the direct target of NF-κB signaling. Mechanistically, TXNDC5 directly interacts with heat shock cognate 70 protein (HSC70) to sequester it in the cytoplasm, and HSC70 silencing exerts the same effects as TXNDC5 on the biological activity of RASFs (for example, decreased cell viability, invasion and cytokine production). Furthermore, HSC70 activates NF-κB signaling by destabilizing IκBβ protein in the absence of LPS or facilitating its nuclear translocation in the presence of LPS. Importantly, TXNDC5 can also regulate the activity of NF-κB signaling in a HSC70-IκBβ-dependent manner. Taken together, by linking HSC70 and NF-κB signaling, TXNDC5 plays a pro-inflammatory role in RASFs, highlighting a potential approach to treat RA by blocking the TXNDC5/HSC70 interaction.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China, Shandong.,Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong
| | - Hongyan Dong
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China, Shandong
| | - Rui Zhang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong
| | - Jihong Pan
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong
| | - Jinxiang Han
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong.
| |
Collapse
|
93
|
Page A, Bravo A, Suarez-Cabrera C, Alameda JP, Casanova ML, Lorz C, Segrelles C, Segovia JC, Paramio JM, Navarro M, Ramirez A. IKKβ-Mediated Resistance to Skin Cancer Development Is Ink4a/Arf-Dependent. Mol Cancer Res 2017; 15:1255-1264. [PMID: 28584022 DOI: 10.1158/1541-7786.mcr-17-0157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
Abstract
IKKβ (encoded by IKBKB) is a protein kinase that regulates the activity of numerous proteins important in several signaling pathways, such as the NF-κB pathway. IKKβ exerts a protumorigenic role in several animal models of lung, hepatic, intestinal, and oral cancer. In addition, genomic and proteomic studies of human tumors also indicate that IKBKB gene is amplified or overexpressed in multiple tumor types. Here, the relevance of IKKβ in skin cancer was determined by performing carcinogenesis studies in animal models overexpressing IKKβ in the basal skin layer. IKKβ overexpression resulted in a striking resistance to skin cancer development and an increased expression of several tumor suppressor proteins, such as p53, p16, and p19. Mechanistically, this skin tumor-protective role of IKKβ is independent of p53, but dependent on the activity of the Ink4a/Arf locus. Interestingly, in the absence of p16 and p19, IKKβ-increased expression favors the appearance of cutaneous spindle cell-like squamous cell carcinomas, which are highly aggressive tumors. These results reveal that IKKβ activity prevents skin tumor development, and shed light on the complex nature of IKKβ effects on cancer progression, as IKKβ can both promote and prevent carcinogenesis depending on the cell type or molecular context.Implications: The ability of IKKβ to promote or prevent carcinogenesis suggests the need for further evaluation when targeting this protein. Mol Cancer Res; 15(9); 1255-64. ©2017 AACR.
Collapse
Affiliation(s)
- Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Cristian Suarez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Josefa P Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - M Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Corina Lorz
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - José C Segovia
- Hematopoietic Innovative Therapies Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Angel Ramirez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
- Cell and Molecular Oncology Group, Institute of Biomedical Research, Universitary Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
94
|
Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9040035. [PMID: 28420162 PMCID: PMC5406710 DOI: 10.3390/cancers9040035] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment plays a key role in tumor development and progression. Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote growth, survival and metastatic spread of cancer cells. Fibroblasts are the predominant constituent of the tumor stroma and Hepatocyte Growth Factor (HGF), the specific ligand for the tyrosine kinase receptor c-MET, is a major component of their secretome. Indeed, cancer-associated fibroblasts have been shown to promote growth, survival and migration of cancer cells in an HGF-dependent manner. Fibroblasts also confer resistance to anti-cancer therapy through HGF-induced epithelial mesenchymal transition (EMT) and activation of pro-survival signaling pathways such as ERK and AKT in tumor cells. Constitutive HGF/MET signaling in cancer cells is associated with increased tumor aggressiveness and predicts poor outcome in cancer patients. Due to its role in tumor progression and therapeutic resistance, both HGF and MET have emerged as valid therapeutic targets. Several inhibitors of MET and HGF are currently being tested in clinical trials. Preclinical data provide a strong indication that inhibitors of HGF/MET signaling overcome both primary and acquired resistance to EGFR, HER2, and BRAF targeting agents. These findings support the notion that co-targeting of cancer cells and stromal cells is required to prevent therapeutic resistance and to increase the overall survival rate of cancer patients. HGF dependence has emerged as a hallmark of therapeutic resistance, suggesting that inhibitors of biological activity of HGF should be included into therapeutic regimens of cancer patients.
Collapse
|
95
|
Kahounová Z, Kurfürstová D, Bouchal J, Kharaishvili G, Navrátil J, Remšík J, Šimečková Š, Študent V, Kozubík A, Souček K. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition. Cytometry A 2017; 93:941-951. [PMID: 28383825 DOI: 10.1002/cyto.a.23101] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Abstract
The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Daniela Kurfürstová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiří Navrátil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ján Remšík
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Šimečková
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
96
|
Abstract
How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research that have enabled molecular tumour profiling. The identification and validation of cancer drivers that are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so-called basket or umbrella trials which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumorigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumorigenesis and the mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly guided cancer therapies in the future.
Collapse
Affiliation(s)
- Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
97
|
Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal Cells in Colon Cancer. Gastroenterology 2017; 152:964-979. [PMID: 28111227 DOI: 10.1053/j.gastro.2016.11.049] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal cells in the intestine comprise a variety of cell types of diverse origins, functions, and molecular markers. They provide mechanical and structural support and have important functions during intestinal organogenesis, morphogenesis, and homeostasis. Recent studies of the human transcriptome have revealed their importance in the development of colorectal cancer, and studies from animal models have provided evidence for their roles in the pathogenesis of colitis-associated cancer and sporadic colorectal cancer. Mesenchymal cells in tumors, called cancer-associated fibroblasts, arise via activation of resident mesenchymal cell populations and the recruitment of bone marrow-derived mesenchymal stem cells and fibrocytes. Cancer-associated fibroblasts have a variety of activities that promote colon tumor development and progression; these include regulation of intestinal inflammation, epithelial proliferation, stem cell maintenance, angiogenesis, extracellular matrix remodeling, and metastasis. We review the intestinal mesenchymal cell-specific pathways that regulate these processes, with a focus on their roles in mediating interactions between inflammation and carcinogenesis. We also discuss how increasing our understanding of intestinal mesenchymal cell biology and function could lead to new strategies to identify and treat colitis-associated cancers.
Collapse
Affiliation(s)
| | - Charles K Pallangyo
- Muhimbili University of Health and Allied Sciences, School of Medicine, Dar es Salaam, Tanzania
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - George Kollias
- Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
98
|
Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology. Cancer Lett 2017; 392:83-93. [PMID: 28189533 DOI: 10.1016/j.canlet.2017.01.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease.
Collapse
|
99
|
Targeting TGF-β Signaling in Cancer. Trends Cancer 2017; 3:56-71. [PMID: 28718426 DOI: 10.1016/j.trecan.2016.11.008] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
The transforming growth factor (TGF)-β signaling pathway is deregulated in many diseases, including cancer. In healthy cells and early-stage cancer cells, this pathway has tumor-suppressor functions, including cell-cycle arrest and apoptosis. However, its activation in late-stage cancer can promote tumorigenesis, including metastasis and chemoresistance. The dual function and pleiotropic nature of TGF-β signaling make it a challenging target and imply the need for careful therapeutic dosing of TGF-β drugs and patient selection. We review here the rationale for targeting TGF-β signaling in cancer and summarize the clinical status of pharmacological inhibitors. We discuss the direct effects of TGF-β signaling blockade on tumor and stromal cells, as well as biomarkers that can predict the efficacy of TGF-β inhibitors in cancer patients.
Collapse
|
100
|
Nowarski R, Jackson R, Flavell RA. The Stromal Intervention: Regulation of Immunity and Inflammation at the Epithelial-Mesenchymal Barrier. Cell 2017; 168:362-375. [DOI: 10.1016/j.cell.2016.11.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022]
|