51
|
Khodanovich M, Pishchelko A, Glazacheva V, Pan E, Akulov A, Svetlik M, Tyumentseva Y, Anan'ina T, Yarnykh V. Quantitative Imaging of White and Gray Matter Remyelination in the Cuprizone Demyelination Model Using the Macromolecular Proton Fraction. Cells 2019; 8:cells8101204. [PMID: 31590363 PMCID: PMC6830095 DOI: 10.3390/cells8101204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Macromolecular proton fraction (MPF) has been established as a quantitative clinically-targeted MRI myelin biomarker based on recent demyelination studies. This study aimed to assess the capability of MPF to quantify remyelination using the murine cuprizone-induced reversible demyelination model. MPF was measured in vivo using the fast single-point method in three animal groups (control, cuprizone-induced demyelination, and remyelination after cuprizone withdrawal) and compared to quantitative immunohistochemistry for myelin basic protein (MBP), myelinating oligodendrocytes (CNP-positive cells), and oligodendrocyte precursor cells (OPC, NG2-positive cells) in the corpus callosum, caudate putamen, hippocampus, and cortex. In the demyelination group, MPF, MBP-stained area, and oligodendrocyte count were significantly reduced, while OPC count was significantly increased as compared to both control and remyelination groups in all anatomic structures (p < 0.05). All variables were similar in the control and remyelination groups. MPF and MBP-stained area strongly correlated in each anatomic structure (Pearson’s correlation coefficients, r = 0.80–0.90, p < 0.001). MPF and MBP correlated positively with oligodendrocyte count (r = 0.70–0.84, p < 0.01 for MPF; r = 0.81–0.92, p < 0.001 for MBP) and negatively with OPC count (r = −0.69–−0.77, p < 0.01 for MPF; r = −0.72–−0.89, p < 0.01 for MBP). This study provides immunohistological validation of fast MPF mapping as a non-invasive tool for quantitative assessment of de- and remyelination in white and gray matter and indicates the feasibility of using MPF as a surrogate marker of reparative processes in demyelinating diseases.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Anna Pishchelko
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Valentina Glazacheva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Edgar Pan
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Andrey Akulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Yana Tyumentseva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Tatyana Anan'ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Vasily Yarnykh
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
52
|
Impact of mTOR hyperactive neurons on the morphology and physiology of adjacent neurons: Do PTEN KO cells make bad neighbors? Exp Neurol 2019; 321:113029. [PMID: 31377403 DOI: 10.1016/j.expneurol.2019.113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 01/18/2023]
Abstract
Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is associated with epilepsy, autism and brain growth abnormalities in humans. mTOR hyperactivation often results from developmental somatic mutations, producing genetic lesions and associated dysfunction in relatively restricted populations of neurons. Disrupted brain regions, such as those observed in focal cortical dysplasia, can contain a mix of normal and mutant cells. Mutant cells exhibit robust anatomical and physiological changes. Less clear, however, is whether adjacent, initially normal cells are affected by the presence of abnormal cells. To explore this question, we used a conditional, inducible mouse model approach to delete the mTOR negative regulator phosphatase and tensin homolog (PTEN) from <1% to >30% of hippocampal dentate granule cells. We then examined the morphology of PTEN-expressing granule cells located in the same dentate gyri as the knockout (KO) cells. Despite the development of spontaneous seizures in higher KO animals, and disease worsening with increasing age, the morphology and physiology of PTEN-expressing cells was only modestly affected. PTEN-expressing cells had smaller somas than cells from control animals, but other parameters were largely unchanged. These findings contrast with the behavior of PTEN KO cells, which show increasing dendritic extent with greater KO cell load. Together, the findings indicate that genetically normal neurons can exhibit relatively stable morphology and intrinsic physiology in the presence of nearby pathological neurons and systemic disease.
Collapse
|
53
|
Chen K, Zheng Y, Wei JA, Ouyang H, Huang X, Zhang F, Lai CSW, Ren C, So KF, Zhang L. Exercise training improves motor skill learning via selective activation of mTOR. SCIENCE ADVANCES 2019; 5:eaaw1888. [PMID: 31281888 PMCID: PMC6609215 DOI: 10.1126/sciadv.aaw1888] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/23/2019] [Indexed: 06/01/2023]
Abstract
Physical exercise improves learning and memory, but little in vivo evidence has been provided to illustrate the molecular mechanisms. Here, we show that chronic treadmill exercise activates the mechanistic target of rapamycin (mTOR) pathway in mouse motor cortex. Both ex vivo and in vivo recordings suggest that mTOR activation leads to potentiated postsynaptic excitation and enhanced neuronal activity of layer 5 pyramidal neurons after exercise, in association with increased oligodendrogenesis and axonal myelination. Exercise training also increases dendritic spine formation and motor learning. Together, exercise activates mTOR pathway, which is necessary for spinogenesis, neuronal activation, and axonal myelination leading to improved motor learning. This model provides new insights for neural network adaptations through exercises and supports the intervention of cognitive deficits using exercise training.
Collapse
Affiliation(s)
- Kai Chen
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Yuhan Zheng
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Ji-an Wei
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Huan Ouyang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaodan Huang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Feilong Zhang
- Peking University, Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chaoran Ren
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, P. R. China
| | - Kwok-Fai So
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, P. R. China
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, P. R. China
| |
Collapse
|
54
|
Peters JM, Struyven RR, Prohl AK, Vasung L, Stajduhar A, Taquet M, Bushman JJ, Lidov H, Singh JM, Scherrer B, Madsen JR, Prabhu SP, Sahin M, Afacan O, Warfield SK. White matter mean diffusivity correlates with myelination in tuberous sclerosis complex. Ann Clin Transl Neurol 2019; 6:1178-1190. [PMID: 31353853 PMCID: PMC6649396 DOI: 10.1002/acn3.793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Diffusion tensor imaging (DTI) of the white matter is a biomarker for neurological disease burden in tuberous sclerosis complex (TSC). To clarify the basis of abnormal diffusion in TSC, we correlated ex vivo high‐resolution diffusion imaging with histopathology in four tissue types: cortex, tuber, perituber, and white matter. Methods Surgical specimens of three children with TSC were scanned in a 3T or 7T MRI with a structural image isotropic resolution of 137–300 micron, and diffusion image isotropic resolution of 270‐1,000 micron. We stained for myelin (luxol fast blue, LFB), gliosis (glial fibrillary acidic protein, GFAP), and neurons (NeuN) and registered the digitized histopathology slides (0.686 micron resolution) to MRI for visual comparison. We then performed colocalization analysis in four tissue types in each specimen. Finally, we applied a linear mixed model (LMM) for pooled analysis across the three specimens. Results In white matter and perituber regions, LFB optical density measures correlated with fractional anisotropy (FA) and inversely with mean diffusivity (MD). In white matter only, GFAP correlated with MD, and inversely with FA. In tubers and in the cortex, there was little variation in mean LFB and GFAP signal intensity, and no correlation with MRI metrics. Neuronal density correlated with MD. In the analysis of the combined specimens, the most robust correlation was between white matter MD and LFB metrics. Interpretation In TSC, diffusion imaging abnormalities in microscopic tissue types correspond to specific histopathological markers. Across all specimens, white matter diffusivity correlates with myelination.
Collapse
Affiliation(s)
- Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robbert R Struyven
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lana Vasung
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrija Stajduhar
- Croatian Institute for Brain Research and Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Maxime Taquet
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John J Bushman
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hart Lidov
- Division of Neuropathology, Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jolene M Singh
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sanjay P Prabhu
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
55
|
Blair JD, Bateup HS. New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn 2019; 249:46-55. [PMID: 31070828 DOI: 10.1002/dvdy.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Recent advances in human stem cell and genome engineering have enabled the generation of genetically defined human cellular models for brain disorders. These models can be established from a patient's own cells and can be genetically engineered to generate isogenic, controlled systems for mechanistic studies. Given the challenges of obtaining and working with primary human brain tissue, these models fill a critical gap in our understanding of normal and abnormal human brain development and provide an important complement to animal models. Recently, there has been major progress in modeling the neuropathophysiology of the canonical "mTORopathy" tuberous sclerosis complex (TSC) with such approaches. Studies using two- and three-dimensional cultures of human neurons and glia have provided new insights into how mutations in the TSC1 and TSC2 genes impact human neural development and function. Here we discuss recent progress in human stem cell-based modeling of TSC and highlight challenges and opportunities for further efforts in this area.
Collapse
Affiliation(s)
- John D Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Chan Zuckerberg Biohub, San Francisco, California
| |
Collapse
|
56
|
Khodanovich MY, Pishchelko AO, Glazacheva VY, Pan ES, Krutenkova EP, Trusov VB, Yarnykh VL. Plant polyprenols reduce demyelination and recover impaired oligodendrogenesis and neurogenesis in the cuprizone murine model of multiple sclerosis. Phytother Res 2019; 33:1363-1373. [PMID: 30864249 PMCID: PMC6594192 DOI: 10.1002/ptr.6327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 11/07/2022]
Abstract
Recent studies showed hepatoprotective, neuroprotective, and immunomodulatory properties of polyprenols isolated from the green verdure of Picea abies (L.) Karst. This study aimed to investigate effects of polyprenols on oligodendrogenesis, neurogenesis, and myelin content in the cuprizone demyelination model. Demyelination was induced by 0.5% cuprizone in CD-1 mice during 10 weeks. Nine cuprizone-treated animals received daily injections of polyprenols intraperitoneally at a dose of 12-mg/kg body weight during Weeks 6-10. Nine control animals and other nine cuprizone-treated received sham oil injections. At Week 10, brain sections were stained for myelin basic protein, neuro-glial antigen-2, and doublecortin to evaluate demyelination, oligodendrogenesis, and neurogenesis. Cuprizone administration caused a decrease in myelin basic protein in the corpus callosum, cortex, hippocampus, and the caudate putamen compared with the controls. Oligodendrogenesis was increased, and neurogenesis in the subventricular zone and the dentate gyrus of the hippocampus was decreased in the cuprizone-treated group compared with the controls. Mice treated with cuprizone and polyprenols did not show significant demyelination and differences in oligodendrogenesis and neurogenesis as compared with the controls. Our results suggest that polyprenols can halt demyelination, restore impaired neurogenesis, and mitigate reactive overproduction of oligodendrocytes caused by cuprizone neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - Edgar S. Pan
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
| | | | - Vladimir B. Trusov
- Prenolica Limited (formerly Solagran Limited), Biotechnology CompanyMelbourneVictoriaAustralia
| | - Vasily L. Yarnykh
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
57
|
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex. Annu Rev Genomics Hum Genet 2019; 20:217-240. [PMID: 31018109 DOI: 10.1146/annurev-genom-083118-015354] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects multiple organ systems due to an inactivating variant in either TSC1 or TSC2, resulting in the hyperactivation of the mechanistic target of rapamycin (mTOR) pathway. Dysregulated mTOR signaling results in increased cell growth and proliferation. Clinically, TSC patients exhibit great phenotypic variability, but the neurologic and neuropsychiatric manifestations of the disease have the greatest morbidity and mortality. TSC-associated epilepsy occurs in nearly all patients and is often difficult to treat because it is refractory to multiple antiseizure medications. The advent of mTOR inhibitors offers great promise in the treatment of TSC-associated epilepsy and other neurodevelopmental manifestations of the disease; however, the optimal timing of therapeutic intervention is not yet fully understood.
Collapse
Affiliation(s)
- Catherine L Salussolia
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Katarzyna Klonowska
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
58
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
59
|
Yu IS, Chang HC, Chen KC, Lu YL, Shy HT, Chen CY, Lee KY, Lee LJ. Genetic Elimination of Connective Tissue Growth Factor in the Forebrain Affects Subplate Neurons in the Cortex and Oligodendrocytes in the Underlying White Matter. Front Neuroanat 2019; 13:16. [PMID: 30842729 PMCID: PMC6391576 DOI: 10.3389/fnana.2019.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a secreted extracellular matrix-associated protein, which play a role in regulating various cellular functions. Although the expression of CTGF has been reported in the cortical subplate, its function is still not clear. Thus, to explore the significance of CTGF in the brain, we created a forebrain-specific Ctgf knockout (FbCtgf KO) mouse model. By crossing Ctgffl/fl mice with Emx1-Cre transgenic mice, in which the expression of Cre is prenatally initiated, the full length Ctgf is removed in the forebrain structures. In young adult (2–3 months old) FbCtgf KO mice, subplate markers such as Nurr1 and Cplx3 are still expressed in the cortical layer VIb; however, the density of the subplate neurons is increased. Interestingly, in these mutants, we found a reduced structural complexity in the subplate neurons. The distribution patterns of neurons and glial cells, examined by immunohistochemistry, are comparable between genotypes in the somatosensory cortex. However, increased densities of mature oligodendrocytes, but not immature ones, were noticed in the external capsule underneath the cortical layer VIb in young adult FbCtgf KO mice. The features of myelinated axons in the external capsule were then examined using electron microscopy. Unexpectedly, the thickness of the myelin sheath was reduced in middle-aged (>12 months old), but not young adult FbCtgf KO mice. Our results suggest a secretory function of the subplate neurons, through the release of CTGF, which regulates the density and dendritic branching of subplate neurons as well as the maturation and function of nearby oligodendrocytes in the white matter.
Collapse
Affiliation(s)
- I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Chien Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
60
|
Gonzalez D, Brandan E. CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Mol Neurobiol 2019; 56:5911-5916. [PMID: 30689195 DOI: 10.1007/s12035-019-1490-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that belongs to the CCN family of proteins. Since its discovery, it has been linked to cellular processes such as cell proliferation, differentiation, adhesion, migration, and synthesis of extracellular matrix (ECM) components, among others. The pro-fibrotic role of CTGF/CCN2 has been well-studied in several pathologies characterized by the development of fibrosis. Reduction of CTGF/CCN2 levels in mdx mice, a murine model for Duchenne muscular dystrophy (DMD), decreases fibrosis and improves skeletal muscle phenotype and function. Recently, it has been shown that skeletal muscle of symptomatic hSOD1G93A mice, a model for Amyotrophic lateral sclerosis (ALS), shows up-regulation of CTGF/CCN2 accompanied by excessive deposition ECM molecules. Elevated levels of CTGF/CCN2 in spinal cord from ALS patients have been previously reported. However, there is no evidence regarding the role of CTGF/CCN2 in neurodegenerative diseases such as ALS, in which alterations in skeletal muscle seem to be the consequence of early pathological denervation. In this regard, the emerging evidence shows that CTGF/CCN2 also exerts non-fibrotic roles in the central nervous system (CNS), specifically impairing oligodendrocyte maturation and regeneration, and inhibiting axon myelination. Despite these striking observations, there is no evidence showing the role of CTGF/CCN2 in peripheral nerves. Therefore, even though more studies are needed to elucidate its precise role, CTGF/CCN2 is starting to emerge as a novel therapeutic target for the treatment of neurodegenerative diseases where demyelination and axonal degeneration occurs.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
61
|
Longitudinal Effects of Everolimus on White Matter Diffusion in Tuberous Sclerosis Complex. Pediatr Neurol 2019; 90:24-30. [PMID: 30424962 PMCID: PMC6314307 DOI: 10.1016/j.pediatrneurol.2018.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We studied the longitudinal effects of everolimus, an inhibitor of the mammalian target of rapamycin (mTOR), on callosal white matter diffusion tensor imaging (DTI) in patients with tuberous sclerosis complex (TSC). METHODS Serial imaging data spanning nine years were used from the open label, Phase I/II trial (NCT00411619) and open-ended extension phase of everolimus for the treatment of subependymal giant cell astrocytoma associated with TSC. From 28 patients treated with everolimus and 25 untreated control patients, 481 MRI scans were available. Rigorous quality control resulted in omission of all scans with diffusion weighted imaging data in less than 15 directions or more than eight artifacted volumes, and all postsurgical scans. We applied a linear mixed-effects model to the remaining 125 scans (17 treated, 24 controls) for longitudinal analysis of each DTI metric of manually drawn callosal regions of interest. RESULTS On a population level, mTOR inhibition was associated with a decrease in mean diffusivity. In addition, in treated patients only, a decrease of radial diffusivity was observed; in untreated patients only, an increase of axial diffusivity was seen. In patients below age 10, effect-sizes were consistently greater, and longer treatment was associated with greater rate of diffusion change. There was no correlation between DTI metrics and reduction of subependymal giant cell astrocytoma volume, or everolimus serum levels. CONCLUSIONS Effects from mTOR overactivity on white matter microstructural integrity in TSC were modified through pharmacologic inhibition of mTOR. These changes sustained over time, were greater with longer treatment and in younger patients during a time of rapid white matter maturation.
Collapse
|
62
|
Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen-Steijger P, van Hugte E, Dooves S, Harwood AJ, Heine VM. Neuron-Glia Interactions Increase Neuronal Phenotypes in Tuberous Sclerosis Complex Patient iPSC-Derived Models. Stem Cell Reports 2018; 12:42-56. [PMID: 30581017 PMCID: PMC6335594 DOI: 10.1016/j.stemcr.2018.11.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare neurodevelopmental disorder resulting from autosomal dominant mutations in the TSC1 or TSC2 genes, leading to a hyperactivated mammalian target of rapamycin (mTOR) pathway, and gray and white matter defects in the brain. To study the involvement of neuron-glia interactions in TSC phenotypes, we generated TSC patient induced pluripotent stem cell (iPSC)-derived cortical neuronal and oligodendrocyte (OL) cultures. TSC neuron mono-cultures showed increased network activity, as measured by calcium transients and action potential firing, and increased dendritic branching. However, in co-cultures with OLs, neuronal defects became more apparent, showing cellular hypertrophy and increased axonal density. In addition, TSC neuron-OL co-cultures showed increased OL cell proliferation and decreased OL maturation. Pharmacological intervention with the mTOR regulator rapamycin suppressed these defects. Our patient iPSC-based model, therefore, shows a complex cellular TSC phenotype arising from the interaction of neuronal and glial cells and provides a platform for TSC disease modeling and drug development. TSC neuron mono-cultures show an increase in network activity and dendritic branching TSC co-cultures show hypertrophy and an increase in axonal length and OL proliferation mTOR regulators normalize TSC neuronal and glial phenotypes
Collapse
Affiliation(s)
- Aishwarya G Nadadhur
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Mouhamed Alsaqati
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lisa Gasparotto
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Paulien Cornelissen-Steijger
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Eline van Hugte
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Stephanie Dooves
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Vivi M Heine
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
63
|
de la Vega Gallardo N, Dittmer M, Dombrowski Y, Fitzgerald DC. Regenerating CNS myelin: Emerging roles of regulatory T cells and CCN proteins. Neurochem Int 2018; 130:104349. [PMID: 30513363 DOI: 10.1016/j.neuint.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Efficient myelin regeneration in the central nervous system (CNS) requires the migration, proliferation and differentiation of oligodendrocyte progenitor cells (OPC) into myelinating oligodendrocytes. In demyelinating diseases such as multiple sclerosis (MS), this regenerative process can fail, and therapies targeting myelin repair are currently completely lacking in the clinic. The immune system is emerging as a key regenerative player in many tissues, such as muscle and heart. We recently reported that regulatory T cells (Treg) are required for efficient CNS remyelination. Furthermore, Treg secrete CCN3, a matricellular protein from the CCN family, implicated in regeneration of other tissues. Treg-derived CCN3 promoted oligodendrocyte differentiation and myelination. In contrast, previous studies showed that CCN2 inhibited myelination. These studies highlight the need for further scrutiny of the roles that CCN proteins play in myelin development and regeneration. Collectively, these findings open up exciting avenues of research to uncover the regenerative potential of the adaptive immune system.
Collapse
Affiliation(s)
- Nira de la Vega Gallardo
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Marie Dittmer
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Yvonne Dombrowski
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Denise C Fitzgerald
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
64
|
Dazzan P, Fusté M, Davies W. Do Defective Immune System-Mediated Myelination Processes Increase Postpartum Psychosis Risk? Trends Mol Med 2018; 24:942-949. [PMID: 30348609 PMCID: PMC6224363 DOI: 10.1016/j.molmed.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
Postpartum (or puerperal) psychosis (PP) is a rare, severe psychiatric disorder that affects women shortly after childbirth; risk is particularly high in individuals with a history of bipolar disorder or PP, but the underlying pathophysiology remains poorly understood. Emerging evidence suggests that immune system (dys)function plays an important role in disorder onset. On the basis of new findings from clinical and animal model studies, we hypothesise that the abundance and/or activity of regulatory T cells, and the efficacy of consequent (re)myelination processes in the brain mediated by CCN proteins, is perturbed in PP; this pathway may be modulated by risk and protective/treatment factors for the disorder, and identifying abnormalities within it could signpost novel predictive biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Montserrat Fusté
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Neuroscience and Mental Health Research Institute, Schools of Medicine and Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
65
|
Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, Cataltepe D, Turner D, Han MJ, Woolf CJ, Hatten ME, Sahin M. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry 2018; 23:2167-2183. [PMID: 29449635 PMCID: PMC6093816 DOI: 10.1038/s41380-018-0018-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that cerebellar dysfunction early in life is associated with autism spectrum disorder (ASD), but the molecular mechanisms underlying the cerebellar deficits at the cellular level are unclear. Tuberous sclerosis complex (TSC) is a neurocutaneous disorder that often presents with ASD. Here, we developed a cerebellar Purkinje cell (PC) model of TSC with patient-derived human induced pluripotent stem cells (hiPSCs) to characterize the molecular mechanisms underlying cerebellar abnormalities in ASD and TSC. Our results show that hiPSC-derived PCs from patients with pathogenic TSC2 mutations displayed mTORC1 pathway hyperactivation, defects in neuronal differentiation and RNA regulation, hypoexcitability and reduced synaptic activity when compared with those derived from controls. Our gene expression analyses revealed downregulation of several components of fragile X mental retardation protein (FMRP) targets in TSC2-deficient hiPSC-PCs. We detected decreased expression of FMRP, glutamate receptor δ2 (GRID2), and pre- and post-synaptic markers such as synaptophysin and PSD95 in the TSC2-deficient hiPSC-PCs. The mTOR inhibitor rapamycin rescued the deficits in differentiation, synaptic dysfunction, and hypoexcitability of TSC2 mutant hiPSC-PCs in vitro. Our findings suggest that these gene expression changes and cellular abnormalities contribute to aberrant PC function during development in TSC affected individuals.
Collapse
Affiliation(s)
- Maria Sundberg
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ivan Tochitsky
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Buchholz
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kellen Winden
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ville Kujala
- Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, USA
| | - Kush Kapur
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deniz Cataltepe
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daria Turner
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Min-Joon Han
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
66
|
Shi Q, Saifetiarova J, Taylor AM, Bhat MA. mTORC1 Activation by Loss of Tsc1 in Myelinating Glia Causes Downregulation of Quaking and Neurofascin 155 Leading to Paranodal Domain Disorganization. Front Cell Neurosci 2018; 12:201. [PMID: 30050412 PMCID: PMC6052123 DOI: 10.3389/fncel.2018.00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in human tuberous sclerosis complex (TSC) genes TSC1 and TSC2 are the leading causes of developmental brain abnormalities and large tumors in other tissues. Murine Tsc1/2 have been shown to negatively regulate the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in most tissues, and this pathway has been shown to be essential for proper oligodendrocytes/Schwann cell differentiation and myelination. Here, we report that ablation of Tsc1 gene specifically in oligodendrocytes/Schwann cells activates mTORC1 signaling resulting in severe motor disabilities, weight loss, and early postnatal death. The mutant mice of either sex showed reduced myelination, disrupted paranodal domains in myelinated axons, and disorganized unmyelinated Remak bundles. mRNA and protein expression analyses revealed strong reduction in the RNA-binding protein Quaking (Qk) and the 155 kDa glial Neurofascin (NfascNF155). Re-introduction of exogenous Qk gene in Tsc1 mutant oligodendrocytes restored NfascNF155 protein levels indicating that Qk is required for the stabilization of NfascNF155 mRNA. Interestingly, injection of Rapamycin, a pharmacological mTORC1 inhibitor, to pregnant mothers increased the lifespan of the mutant offspring, restored myelination as well as the levels of Qk and NfascNF155, and consequently the organization of the paranodal domains. Together our studies show a critical role of mTORC1 signaling in the differentiation of myelinating glial cells and proper organization of axonal domains and provide insights into TSC-associated myelinated axon abnormalities.
Collapse
Affiliation(s)
| | | | | | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
67
|
Abstract
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Collapse
Affiliation(s)
- Kellen D. Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
68
|
Gonzalez D, Rebolledo DL, Correa LM, Court FA, Cerpa W, Lipson KE, van Zundert B, Brandan E. The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Hum Mol Genet 2018; 27:2913-2926. [DOI: 10.1093/hmg/ddy204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lina M Correa
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Brigitte van Zundert
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
69
|
Carlin D, Golden JP, Mogha A, Samineni VK, Monk KR, Gereau RW, Cavalli V. Deletion of Tsc2 in Nociceptors Reduces Target Innervation, Ion Channel Expression, and Sensitivity to Heat. eNeuro 2018; 5:ENEURO.0436-17.2018. [PMID: 29766046 PMCID: PMC5952427 DOI: 10.1523/eneuro.0436-17.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior.
Collapse
Affiliation(s)
- Dan Carlin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Judith P. Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vijay K. Samineni
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly R. Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Valeria Cavalli
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
70
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
71
|
Yuskaitis CJ, Jones BM, Wolfson RL, Super CE, Dhamne SC, Rotenberg A, Sabatini DM, Sahin M, Poduri A. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol Dis 2017; 111:91-101. [PMID: 29274432 DOI: 10.1016/j.nbd.2017.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5flox/flox-Syn1Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Brandon M Jones
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Chloe E Super
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sameer C Dhamne
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| | - Annapurna Poduri
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
72
|
Figlia G, Gerber D, Suter U. Myelination and mTOR. Glia 2017; 66:693-707. [PMID: 29210103 PMCID: PMC5836902 DOI: 10.1002/glia.23273] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. Myelination is metabolically demanding. The metabolic regulator mTORC1 controls differentiation of myelinating cells and promotes myelin
growth. mTORC1‐independent targets of the PI3K‐Akt and Mek‐Erk1/2 pathways may also be significant in myelination.
Collapse
Affiliation(s)
- Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Daniel Gerber
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
73
|
SUN J, ZHENG H, QIN X, QI L. Effects of Immunocytokine Combined with Cattle Encephalon Glycoside and Ignotin on CTGF, HO-1 and NT-3 in Patients with Type 2 Diabetic Peripheral Neuropathy. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1632-1638. [PMID: 29259937 PMCID: PMC5734962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND This study was designed to explore the correlation of connective tissue growth factor (CTGF), heme oxygenase (HO-1), neurotrophic factors (NT-3) with type 2 diabetic peripheral neuropathy, as well as the changes after immune cytokine alone and combined with cattleencephalon glycoside and ignotin treatment. METHODS Seventy-six patients with type 2 diabetes and peripheral neuropathy charged into People's Hospital of Rizhaolanshan, China from 2014-2016 were selected. The severity of neuropathy was evaluated by TCSS. Pearson analysis was used to analyze the correlation between the degree of neuropathy and CTGF, HO-1 and NT-3. The patients were randomly divided into control group and observation group, n=38. The control group accepted TGF-β1 treatment on the basis of controlling diet and blood sugar, while the observation group was treated with cattle encephalon glycoside and ignotin injection on the basis of control group. CTGF, HO-1, NT-3 concentration in the blood and nerve conductive velocity (NCV) were detected and analyzed before and after treatment. RESULTS CTGF(r=-0.865), HO-1(r=-0.706), NT-3(r=-0.587) was negatively correlated with TCSS scores. After treatment, the concentrations of CTGF, HO-1and NT-3 in the observation group were higher than the control group (P<0.05). In moderate and severe lesions, the concentrations of CTGF, HO-1and NT-3 in the observation group were higher than the control group (P<0.05). The conduction velocity of nerve increased with the increase of CTGF, HO-1 and NT-3 concentrations. The obvious effective rate and total effective rate of observation group were both higher than the control group. CONCLUSION Immune cytokine TGF-β1 combined with cattle encephalon glycoside and ignotin injection could improve the contents of CTGF, HO-1 and NT-3, and be better to treat the peripheral neuropathy of type 2 diabetes.
Collapse
Affiliation(s)
- Jianguo SUN
- People’s Hospital of Rizhaolanshan, Rizhao, Shandong, PR China
| | - Hui ZHENG
- People’s Hospital of Wulian, Rizhao, Shandong, PR China
| | - Xiuxia QIN
- People’s Hospital of Rizhaolanshan, Rizhao, Shandong, PR China,Corresponding Author:
| | - Liqin QI
- People’s Hospital of Rizhaolanshan, Rizhao, Shandong, PR China
| |
Collapse
|
74
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|