51
|
Sengupta PP, Tondato F, Khandheria BK, Belohlavek M, Jahangir A. Electromechanical Activation Sequence in Normal Heart. Heart Fail Clin 2008; 4:303-14. [DOI: 10.1016/j.hfc.2008.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. J Mol Cell Cardiol 2008; 45:209-16. [PMID: 18573260 DOI: 10.1016/j.yjmcc.2008.05.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 01/02/2023]
Abstract
Phosphorylation of myosin binding protein C (MyBP-C) was investigated in intraventricular septum samples taken from patients with hypertrophic cardiomyopathy undergoing surgical septal myectomy. These samples were compared with donor heart muscle, as a well-characterised control tissue, and with end-stage failing heart muscle. MyBP-C was partly purified from myofibrils using a modification of the phosphate-EDTA extraction of Hartzell and Glass. MyBP-C was separated by SDS-PAGE and stained for phosphoproteins using Pro-Q Diamond followed by total protein staining using Coomassie Blue. Relative phosphorylation level was determined from the ratio of Pro-Q Diamond to Coomassie Blue staining of MyBP-C bands as measured by densitometry. We compared 9 myectomy samples and 9 failing heart samples with 9 donor samples. MyBP-C phosphorylation in pathological muscle was lower than in donor (myectomy 40+/-2% of donor, P<0.0001; failing 45+/-3% of donor, P<0.0001). 6 myectomy samples were identified with MYBPC3 mutations, one with MYH7 mutation and two remained unknown, but there was no correlation between MYBPC3 mutation and MyBP-C phosphorylation level. In order to determine the number of phosphorylated sites in human cardiac MyBP-C samples, we phosphorylated the recombinant MyBP-C fragment, C0-C2 (1-453) with PKA using (gamma32)P-ATP up to 3.5 mol Pi/mol C0-C2. This measurement of phosphorylation was used to calibrate measurements of phosphorylation in SDS-PAGE using Pro-Q Diamond stain. The level of phosphorylation in donor heart MyBP-C was calculated to be 4.6+/-0.6 mol Pi/mol and 2.0+/-0.3 mol Pi/mol in myectomy samples. We conclude that MyBP-C is a highly phosphorylated protein in vivo and that diminished MyBP-C phosphorylation is a feature of both end-stage heart failure and hypertrophic cardiomyopathy.
Collapse
|
53
|
Campbell KB, Simpson AM, Campbell SG, Granzier HL, Slinker BK. Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships. J Appl Physiol (1985) 2007; 104:958-75. [PMID: 18048589 DOI: 10.1152/japplphysiol.00912.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To integrate myocardial contractile processes into left ventricular (LV) function, a mathematical model was built. Muscle fiber force was set equal to the product of stiffness and elastic distortion of stiffness elements, i.e., force-bearing cross bridges (XB). Stiffness dynamics arose from recruitment of XB according to the kinetics of myofilament activation and fiber-length changes. Elastic distortion dynamics arose from XB cycling and the rate-of-change of fiber length. Muscle fiber stiffness and distortion dynamics were transformed into LV chamber elastance and volumetric distortion dynamics. LV pressure equaled the product of chamber elastance and volumetric distortion, just as muscle-fiber force equaled the product of muscle-fiber stiffness and lineal elastic distortion. Model validation was in terms of its ability to reproduce cycle-time-dependent LV pressure response, DeltaP(t), to incremental step-like volume changes, DeltaV, in the isolated rat heart. All DeltaP(t), regardless of the time in the cycle at which DeltaP(t) was elicited, consisted of three phases: phase 1, concurrent with the leading edge of DeltaV; phase 2, a brief transient recovery from phase 1; and phase 3, sustained for the duration of systole. Each phase varied with the time in the cycle at which DeltaP(t) was elicited. When the model was fit to the data, cooperative activation was required to sustain systole for longer periods than was possible with Ca(2+) activation alone. The model successfully reproduced all major features of the measured DeltaP(t) responses, and thus serves as a credible indicator of the role of underlying contractile processes in LV function.
Collapse
|
54
|
Nagayama T, Takimoto E, Sadayappan S, Mudd JO, Seidman JG, Robbins J, Kass DA. Control of in vivo left ventricular [correction] contraction/relaxation kinetics by myosin binding protein C: protein kinase A phosphorylation dependent and independent regulation. Circulation 2007; 116:2399-408. [PMID: 17984378 DOI: 10.1161/circulationaha.107.706523] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein whose presence and phosphorylation by protein kinase A (PKA) regulates cross-bridge formation and kinetics in isolated myocardium. We tested the influence of cMyBP-C and its PKA-phosphorylation on contraction/relaxation kinetics in intact hearts and revealed its essential role in several classic properties of cardiac function. METHODS AND RESULTS Comprehensive in situ cardiac pressure-volume analysis was performed in mice harboring a truncation mutation of cMyBP-C (cMyBP-C(t/t)) that resulted in nondetectable protein versus hearts re-expressing solely wild-type (cMyBP-C(WT:(t/t))) or mutated protein in which known PKA-phosphorylation sites were constitutively suppressed (cMyBP-C(AllP-:(t/t))). Hearts lacking cMyBP-C had faster early systolic activation, which then terminated prematurely, limiting ejection. Systole remained short at faster heart rates; thus, cMyBP-C(t/t) hearts displayed minimal rate-dependent decline in diastolic time and cardiac preload. Furthermore, prolongation of pressure relaxation by afterload was markedly blunted in cMyBP-C(t/t) hearts. All 3 properties were similarly restored to normal in cMyBP-C(WT:(t/t)) and cMyBP-C(AllP-:(t/t)) hearts, which supports independence of PKA-phosphorylation. However, the dependence of peak rate of pressure rise on preload was specifically depressed in cMyBP-C(AllP-:(t/t)) hearts, whereas cMyBP-C(t/t) and cMyBP-C(AllP-:(t/t)) hearts had similar blunted adrenergic and rate-dependent contractile reserve, which supports linkage of these behaviors to PKA-cMyBP-C modification. CONCLUSIONS cMyBP-C is essential for major properties of cardiac function, including sustaining systole during ejection, the heart-rate dependence of the diastolic time period, and relaxation delay from increased arterial afterload. These are independent of its phosphorylation by PKA, which more specifically modulates early pressure rise rate and adrenergic/heart rate reserve.
Collapse
Affiliation(s)
- Takahiro Nagayama
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Andruchov O, Galler S. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat. Pflugers Arch 2007; 455:1165-72. [DOI: 10.1007/s00424-007-0369-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/04/2007] [Indexed: 11/30/2022]
|
56
|
McDonald KS. Regulation of cardiac muscle contraction: how paramount are the sarcomeres? Am J Physiol Regul Integr Comp Physiol 2007. [DOI: 10.1152/ajpregu.00426.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
57
|
Stelzer JE, Patel JR, Walker JW, Moss RL. Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation. Circ Res 2007; 101:503-11. [PMID: 17641226 DOI: 10.1161/circresaha.107.153650] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heart is remarkably adaptable in its ability to vary its function to meet the changing demands of the circulatory system. During times of physiological stress, cardiac output increases in response to increased sympathetic activity, which results in protein kinase A (PKA)-mediated phosphorylations of the myofilament proteins cardiac troponin (cTn)I and cardiac myosin-binding protein (cMyBP)-C. Despite the importance of this mechanism, little is known about the relative contributions of cTnI and cMyBP-C phosphorylation to increased cardiac contractility. Using engineered mouse lines either lacking cMyBP-C (cMyBP-C(-/-)) or expressing a non-PKA phosphorylatable cTnI (cTnI(ala2)), or both (cMyBP-C(-/-)/cTnI(ala2)), we investigated the roles of cTnI and cMyBP-C phosphorylation in the regulation of the stretch-activation response. PKA treatment of wild-type and cTnI(ala2) skinned ventricular myocardium accelerated stretch activation such that the response was indistinguishable from stretch activation of cMyBP-C(-/-) or cMyBP-C(-/-)/cTnI(ala2) myocardium; however, PKA had no effect on stretch activation in cMyBP-C(-/-) or cMyBP-C(-/-)/cTnI(ala2) myocardium. These results indicate that the acceleration of stretch activation in wild-type and cTnI(ala2) myocardium is caused by phosphorylation of cMyBP-C and not cTnI. We conclude that the primary effect of PKA phosphorylation of cTnI is reduced Ca(2+) sensitivity of force, whereas phosphorylation of cMyBP-C accelerates the kinetics of force development. These results predict that PKA phosphorylation of myofibrillar proteins in living myocardium contributes to accelerated relaxation in diastole and increased rates of force development in systole.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53711, USA.
| | | | | | | |
Collapse
|
58
|
Chandra M, Tschirgi ML, Ford SJ, Slinker BK, Campbell KB. Interaction between myosin heavy chain and troponin isoforms modulate cardiac myofiber contractile dynamics. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1595-607. [PMID: 17626127 DOI: 10.1152/ajpregu.00157.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coordinated expression of species-specific myosin heavy chain (MHC) and troponin (Tn) isoforms may bring about a dynamic complementarity to match muscle contraction speed with species-specific heart rates. Contractile system function and dynamic force-length measurements were made in muscle fibers from mouse and rat hearts and in muscle fibers after reconstitution with either recombinant homologous Tn or orthologous Tn. The rate constants of length-mediated cross-bridge (XB) recruitment (b) and tension redevelopment (k(tr)) of mouse fibers were significantly faster than those of rat fibers. Both the tension cost (ATPase/tension) and rate constant of length-mediated XB distortion (c) were higher in the mouse than in the rat. Thus the mouse fiber was faster in all dynamic and functional aspects than the rat fiber. Mouse Tn significantly increased b and k(tr) in rat fibers; conversely, rat Tn significantly decreased b and k(tr) in mouse fibers. Thus the length-mediated recruitment of force-bearing XB occurs much more rapidly in the presence of mouse Tn than in the presence of rat Tn, demonstrating that the speed of XB recruitment is regulated by Tn. There was a significant interaction between Tn and MHC such that changes in either Tn or MHC affected the speed of XB recruitment. Our data demonstrate that the dynamics of myocardial contraction are different in the mouse and rat hearts because of sequence heterogeneity in MHC and Tn. At the myofilament level, coordinated expression of complementary regulatory contractile proteins produces a functional dynamic phenotype that allows the cardiovascular systems to function effectively at different heart rates.
Collapse
Affiliation(s)
- Murali Chandra
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, 205 Wegner Hall, Pullman, Washington 99164, USA.
| | | | | | | | | |
Collapse
|
59
|
Martyn DA, Smith L, Kreutziger KL, Xu S, Yu LC, Regnier M. The effects of force inhibition by sodium vanadate on cross-bridge binding, force redevelopment, and Ca2+ activation in cardiac muscle. Biophys J 2007; 92:4379-90. [PMID: 17400698 PMCID: PMC1877787 DOI: 10.1529/biophysj.106.096768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 02/22/2007] [Indexed: 11/18/2022] Open
Abstract
Strongly bound, force-generating myosin cross-bridges play an important role as allosteric activators of cardiac thin filaments. Sodium vanadate (Vi) is a phosphate analog that inhibits force by preventing cross-bridge transition into force-producing states. This study characterizes the mechanical state of cross-bridges with bound Vi as a tool to examine the contribution of cross-bridges to cardiac contractile activation. The K(i) of force inhibition by Vi was approximately 40 microM. Sinusoidal stiffness was inhibited with Vi, although to a lesser extent than force. We used chord stiffness measurements to monitor Vi-induced changes in cross-bridge attachment/detachment kinetics at saturating [Ca(2+)]. Vi decreased chord stiffness at the fastest rates of stretch, whereas at slow rates chord stiffness actually increased. This suggests a shift in cross-bridge population toward low force states with very slow attachment/detachment kinetics. Low angle x-ray diffraction measurements indicate that with Vi cross-bridge mass shifted away from thin filaments, implying decreased cross-bridge/thin filament interaction. The combined x-ray and mechanical data suggest at least two cross-bridge populations with Vi; one characteristic of normal cycling cross-bridges, and a population of weak-binding cross-bridges with bound Vi and slow attachment/detachment kinetics. The Ca(2+) sensitivity of force (pCa(50)) and force redevelopment kinetics (k(TR)) were measured to study the effects of Vi on contractile activation. When maximal force was inhibited by 40% with Vi pCa(50) decreased, but greater force inhibition at higher [Vi] did not further alter pCa(50). In contrast, the Ca(2+) sensitivity of k(TR) was unaffected by Vi. Interestingly, when force was inhibited by Vi k(TR) increased at submaximal levels of Ca(2+)-activated force. Additionally, k(TR) is faster at saturating Ca(2+) at [Vi] that inhibit force by > approximately 70%. The effects of Vi on k(TR) imply that k(TR) is determined not only by the intrinsic properties of the cross-bridge cycle, but also by cross-bridge contribution to thin filament activation.
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Stelzer JE, Moss RL. Contributions of stretch activation to length-dependent contraction in murine myocardium. ACTA ACUST UNITED AC 2007; 128:461-71. [PMID: 17001086 PMCID: PMC2151573 DOI: 10.1085/jgp.200609634] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steep relationship between systolic force production and end diastolic volume (Frank-Starling relationship) in myocardium is a potentially important mechanism by which the work capacity of the heart varies on a beat-to-beat basis, but the molecular basis for the effects of myocardial fiber length on cardiac work are still not well understood. Recent studies have suggested that an intrinsic property of myocardium, stretch activation, contributes to force generation during systolic ejection in myocardium. To examine the role of stretch activation in length dependence of activation we recorded the force responses of murine skinned myocardium to sudden stretches of 1% of muscle length at both short (1.90 μm) and long (2.25 μm) sarcomere lengths (SL). Maximal Ca2+-activated force and Ca2+ sensitivity of force were greater at longer SL, such that more force was produced at a given Ca2+ concentration. Sudden stretch of myocardium during an otherwise isometric contraction resulted in a concomitant increase in force that quickly decayed to a minimum and was followed by a delayed development of force, i.e., stretch activation, to levels greater than prestretch force. At both maximal and submaximal activations, increased SL significantly reduced the initial rate of force decay following stretch; at submaximal activations (but not at maximal) the rate of delayed force development was accelerated. This combination of mechanical effects of increased SL would be expected to increase force generation during systolic ejection in vivo and prolong the period of ejection. These results suggest that sarcomere length dependence of stretch activation contributes to the steepness of the Frank-Starling relationship in living myocardium.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | |
Collapse
|
61
|
Stelzer JE, Brickson SL, Locher MR, Moss RL. Role of myosin heavy chain composition in the stretch activation response of rat myocardium. J Physiol 2006; 579:161-73. [PMID: 17138609 PMCID: PMC2075383 DOI: 10.1113/jphysiol.2006.119719] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The speed and force of myocardial contraction during systolic ejection is largely dependent on the intrinsic contractile properties of cardiac myocytes. As the myosin heavy chain (MHC) isoform of cardiac muscle is an important determinant of the contractile properties of individual myocytes, we studied the effects of altered MHC isoform expression in rat myocardium on the mechanical properties of skinned ventricular preparations. Skinned myocardium from thyroidectomized rats expressing only the beta MHC isoform displayed rates of force redevelopment that were about 2.5-fold slower than in myocardium from hyperthyroid rats expressing only the alpha MHC isoform, but the amount of force generated at a given level of Ca2+ activation was not different. Because recent studies suggest that the stretch activation response in myocardium has an important role in systolic function, we also examined the effect of MHC isoform expression on the stretch activation response by applying a rapid stretch (1% of muscle length) to an otherwise isometrically contracting muscle fibre. Sudden stretch of myocardium resulted in a concomitant increase in force that quickly decayed to a minimum and was followed by a delayed redevelopment of force (i.e. stretch activation) to levels greater than prestretch force. beta MHC expression dramatically slowed the overall rate of the stretch activation response compared to expression of alpha MHC isoform; specifically, the rate of force decay was approximately 2-fold slower and the rate of delayed force development was approximately 2.5-fold slower. In contrast, MHC isoform had no effect on the amplitude of the stretch activation response. Collectively, these data show that expression of beta MHC in myocardium dramatically slows rates of cross-bridge recruitment and detachment which would be expected to decrease power output and contribute to depressed systolic function in end-stage heart failure.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin Medical School, 601 Science Drive, Madison, WI 53711, USA.
| | | | | | | |
Collapse
|
62
|
Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 2006; 48:1988-2001. [PMID: 17112989 DOI: 10.1016/j.jacc.2006.08.030] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/29/2006] [Accepted: 08/30/2006] [Indexed: 12/11/2022]
Abstract
The myofiber geometry of the left ventricle (LV) changes gradually from a right-handed helix in the subendocardium to a left-handed helix in the subepicardium. In this review, we associate the LV myofiber architecture with emerging concepts of the electromechanical sequence in a beating heart. We discuss: 1) the morphogenesis and anatomical arrangement of muscle fibers in the adult LV; 2) the sequence of depolarization and repolarization; 3) the physiological inhomogeneity of transmural myocardial mechanics and the apex-to-base sequence of longitudinal and circumferential deformation; 4) the sequence of LV rotation; and 5) the link between LV deformation and the intracavitary flow direction observed during each phase of the cardiac cycle. Integrating the LV structure with electrical activation and motion sequences observed in vivo provides an understanding about the spatiotemporal sequence of regional myocardial performance that is essential for noninvasive cardiac imaging.
Collapse
Affiliation(s)
- Partho P Sengupta
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Granzier HL, Campbell KB. New insights in the role of cardiac myosin binding protein C as a regulator of cardiac contractility. Circ Res 2006; 99:795-7. [PMID: 17038648 DOI: 10.1161/01.res.0000247031.56868.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
64
|
|
65
|
Stelzer JE, Patel JR, Moss RL. Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C. Circ Res 2006; 99:884-90. [PMID: 16973906 DOI: 10.1161/01.res.0000245191.34690.66] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta-adrenergic agonists induce protein kinase A (PKA) phosphorylation of the cardiac myofilament proteins myosin binding protein C (cMyBP-C) and troponin I (cTnI), resulting in enhanced systolic function, but the relative contributions of cMyBP-C and cTnI to augmented contractility are not known. To investigate possible roles of cMyBP-C in this response, we examined the effects of PKA treatment on the rate of force redevelopment and the stretch activation response in skinned ventricular myocardium from both wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)) myocardium. In WT myocardium, PKA treatment accelerated the rate of force redevelopment and the stretch activation response, resulting in a shorter time to the peak of delayed force development when the muscle was stretched to a new isometric length. Ablation of cMyBP-C accelerated the rate of force redevelopment and stretch activation response to a degree similar to that observed in PKA treatment of WT myocardium; however, PKA treatment had no effect on the rate of force development and the stretch activation response in null myocardium. These results indicate that ablation of cMyBP-C and PKA treatment of WT myocardium have similar effects on cross-bridge cycling kinetics and suggest that PKA phosphorylation of cMyBP-C accelerates the rate of force generation and thereby contributes to the accelerated twitch kinetics observed in living myocardium during beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin Medical School, 1300 University Ave, Madison, WI 53706, USA.
| | | | | |
Collapse
|
66
|
Stelzer JE, Patel JR, Moss RL. Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. ACTA ACUST UNITED AC 2006; 128:261-72. [PMID: 16908724 PMCID: PMC2151564 DOI: 10.1085/jgp.200609547] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulatory light chains (RLCs) of vertebrate muscle myosins bind to the neck region of the heavy chain domain and are thought to play important structural roles in force transmission between the cross-bridge head and thick filament backbone. In vertebrate striated muscles, the RLCs are reversibly phosphorylated by a specific myosin light chain kinase (MLCK), and while phosphorylation has been shown to accelerate the kinetics of force development in skeletal muscle, the effects of RLC phosphorylation in cardiac muscle are not well understood. Here, we assessed the effects of RLC phosphorylation on force, and the kinetics of force development in myocardium was isolated in the presence of 2,3-butanedione monoxime (BDM) to dephosphorylate RLC, subsequently skinned, and then treated with MLCK to phosphorylate RLC. Since RLC phosphorylation may be an important determinant of stretch activation in myocardium, we recorded the force responses of skinned myocardium to sudden stretches of 1% of muscle length both before and after treatment with MLCK. MLCK increased RLC phosphorylation, increased the Ca(2+) sensitivity of isometric force, reduced the steepness of the force-pCa relationship, and increased both Ca(2+)-activated and Ca(2+)-independent force. Sudden stretch of myocardium during an otherwise isometric contraction resulted in a concomitant increase in force that quickly decayed to a minimum and was followed by a delayed redevelopment of force, i.e., stretch activation, to levels greater than pre-stretch force. MLCK had profound effects on the stretch activation responses during maximal and submaximal activations: the amplitude and rate of force decay after stretch were significantly reduced, and the rate of delayed force recovery was accelerated and its amplitude reduced. These data show that RLC phosphorylation increases force and the rate of cross-bridge recruitment in murine myocardium, which would increase power generation in vivo and thereby enhance systolic function.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | | | |
Collapse
|
67
|
Affiliation(s)
- Kenneth B Campbell
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
68
|
Stelzer JE, Dunning SB, Moss RL. Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ Res 2006; 98:1212-8. [PMID: 16574907 DOI: 10.1161/01.res.0000219863.94390.ce] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a thick filament accessory protein that binds tightly to myosin, but despite evidence that mutations in the cMyBP-C gene comprise a frequent cause of hypertrophic cardiomyopathy, relatively little is known about the role(s) of cMyBP-C in myocardium. Based on earlier studies demonstrating the potential importance of stretch activation in cardiac contraction, we examined the effects of cMyBP-C on the stretch activation responses of skinned ventricular preparations from wild-type (WT) and homozygous cMyBP-C knockout mice (cMyBP-C(-/-)) previously developed in our laboratory. Sudden stretch of skinned myocardium during maximal or submaximal Ca2+ activations resulted in an instantaneous increase in force that quickly decayed to a minimum and was followed by a delayed redevelopment of force (ie, stretch activation) to levels greater than prestretch force. Ablation of cMyBP-C dramatically altered the stretch activation response, ie, the rates of force decay and delayed force transient were accelerated compared with WT myocardium. These results suggest that cMyBP-C normally constrains the spatial position of myosin cross-bridges, which, in turn, limits both the rate and extent of interaction of cross-bridges with actin. We propose that ablation of cMyBP-C removes this constraint, increases the likelihood of cross-bridge binding to actin, and speeds the rate of delayed force development following stretch. Regardless of the specific mechanism, acceleration of cross-bridge cycling in cMyBP-C(-/-) myocardium could account for the abbreviation of systolic ejection in this mouse as a direct consequence of premature stretch activation of ventricular myocardium.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53711, USA.
| | | | | |
Collapse
|