51
|
Zaki-Dizaji M, Shafiee A, Kohandel Gargari O, Fathi H, Heidary Z. Maternal and Fetal Factors Affecting Cell-Free Fetal DNA (cffDNA) Fraction: A Systematic Review. J Reprod Infertil 2023; 24:219-231. [PMID: 38164433 PMCID: PMC10757682 DOI: 10.18502/jri.v24i4.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/07/2023] [Indexed: 01/03/2024] Open
Abstract
Background Cell-free fetal DNA (cffDNA) is a novel screening method for fetal aneuploidy that facilitated non-invasive prenatal testing (NIPT) through analysis of cffDNA in maternal plasma. However, despite increased sensitivity, it has a number of limitations that may complicate of its results interpretation. Therefore, elucidating factors affecting fetal fraction, as a critical limitation, guides its clinical application. Methods In this report, systematic search was carried out through PubMed, Web of Science, and Scopus databases until February 11, 2022 by using keywords consist of "noninvasive prenatal screening", "NIPT", "noninvasive prenatal", "cell free DNA" and "fetal fraction". The articles were screened for eligibility criteria before data extraction. Results A total of 39 eligible studies, most published between 2010 and 2020, were included. Based on the results of studies, a negative correlation between maternal age and BMI/body weight with fetal fraction was found. Furthermore, LDL, cholesterol, triglyceride level, metformin, heparin and enoxaparin therapy, hemoglobin-related hemoglobinopathies, and physical activity showed to have negative associations. Interestingly, it seems the ethnicity of patients from South and East Asia has a correlation with fetal fraction compared to Caucasians. Positive correlation was observed between gestational age, free β-hCG, PAPP-A, living in high altitude, and twin pregnancy. Conclusion Considering each factor, there was significant inconsistency and controversy regarding their impact on outcomes. Indeed, multiple factors can influence the accuracy of NIPS results, and it is worth noting that the impact of these factors may vary depending on the individual's ethnic background. Therefore, it is important to recognize that NIPS remains a screening test, and comprehensive pre- and post-NIPS counseling should be conducted as part of standard clinical practice.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Omid Kohandel Gargari
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Haniyeh Fathi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zohreh Heidary
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Faldynová L, Walczysková S, Černá D, Kudrejová M, Hilscherová Š, Kaniová R, Širůčková S. Non-invasive prenatal testing (NIPT): Combination of copy number variant and gene analyses using an "in-house" target enrichment next generation sequencing-Solution for non-centralized NIPT laboratory? Prenat Diagn 2023; 43:1320-1332. [PMID: 37602788 DOI: 10.1002/pd.6421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Recent studies have integrated copy number variant (CNV) and gene analysis using target enrichment. Here, we transferred this concept to our routine genetics laboratory, which is not linked to centralized non-invasive prenatal testing (NIPT) facilities. METHOD From a cohort of 100 pregnant women, 22 were selected for the analysis of maternal genomic DNA (gDNA) along with fetal cell-free DNA. Using targeted enrichment, 135 genes were analyzed, combined with aberrations of chromosomes 21, 18, 13, X, and Y. The data were subjected to specificity and sensitivity analyses, and correlated with the results from invasive testing methods. RESULTS The sensitivity/specificity was determined for the CNV analysis of chromosomes: 21 (80%/75%), 18 (-/82%), 13 (100%/67%), and Y (100%/100%). The gene detection was valid for maternal gDNA. However, for cell-free fetal DNA, it was not possible to determine the boundary between an artifact and a real sequence variant. CONCLUSION The target enrichment method combining CNV and gene detection seems feasible in a regular laboratory. However, this method can only be responsibly optimized with a sufficient number of controls and further validation on a strong bioinformatic background. The present results showed that NIPT should be performed in specialized centers, and that its introduction to isolated laboratories may not provide valid data.
Collapse
Affiliation(s)
- Lucie Faldynová
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Sylwia Walczysková
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Dita Černá
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Monika Kudrejová
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Šárka Hilscherová
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Romana Kaniová
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Simona Širůčková
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| |
Collapse
|
53
|
Luo X, Zhang L, Cui J, An Q, Li H, Zhang Z, Sun G, Huang W, Li Y, Li C, Jia W, Zou L, Zhao G, Xiao F. Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring. Clin Transl Med 2023; 13:e1393. [PMID: 37649244 PMCID: PMC10468585 DOI: 10.1002/ctm2.1393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Small extrachromosomal circular DNAs (eccDNAs) have the potential to be cancer biomarkers. However, the formation mechanisms and functions of small eccDNAs selected in carcinogenesis are not clear, and whether the small eccDNA profile in the plasma of cancer patients represents that in cancer tissues remains to be elucidated. METHODS A novel sequencing workflow based on the nanopore sequencing platform was used to sequence naturally existing full-length small eccDNAs in tissues and plasma collected from 25 cancer patients (including prostate cancer, hepatocellular carcinoma and colorectal cancer), and from an independent validation cohort (including 7 cancer plasma and 14 healthy plasma). RESULTS Compared with those in non-cancer tissues, small eccDNAs detected in cancer tissues had a significantly larger number and size (P = 0.040 and 2.2e-16, respectively), along with more even distribution and different formation mechanisms. Although small eccDNAs had different general characteristics and genomic annotation between cancer tissues and the paired plasma, they had similar formation mechanisms and cancer-related functions. Small eccDNAs originated from some specific genes had great multi-cancer diagnostic value in tissues (AUC ≥ 0.8) and plasma (AUC > 0.9), especially increasing the accuracy of multi-cancer prediction of CEA/CA19-9 levels. The high multi-cancer diagnostic value of small eccDNAs originated from ALK&ETV6 could be extrapolated from tissues (AUC = 0.804) to plasma and showed high positive predictive value (100%) and negative predictive value (82.35%) in a validation cohort. CONCLUSIONS As independent and stable circular DNA molecules, small eccDNAs in both tissues and plasma can be used as ideal biomarkers for cost-effective multi-cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Xuanmei Luo
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Lili Zhang
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Jian Cui
- Department of General SurgeryBeijing HospitalBeijingChina
| | - Qi An
- Department of General SurgeryBeijing HospitalBeijingChina
| | - Hexin Li
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Zaifeng Zhang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Gaoyuan Sun
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Wei Huang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Yifei Li
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chang Li
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Wenzhuo Jia
- Department of General SurgeryBeijing HospitalBeijingChina
- National Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Lihui Zou
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Gang Zhao
- Department of General SurgeryBeijing HospitalBeijingChina
- National Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Fei Xiao
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
54
|
Norton ME. Cell-free DNA Screening for Aneuploidy. Clin Obstet Gynecol 2023; 66:557-567. [PMID: 37650668 DOI: 10.1097/grf.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cell-free DNA (cfDNA) screening has high detection for the common fetal autosomal aneuploidies, but is not diagnostic. The positive predictive value should be utilized in counseling after a positive cell-free DNA screen, and diagnostic testing should be offered for confirmation. cfDNA screening does not report a result in ~3% of cases; nonreportable results indicate an increased risk for aneuploidy and some adverse perinatal outcomes. False-positive cfDNA screening occurs due to confined placental mosaicism, maternal copy number variants, mosaicism, and cancer. Pretest education and counseling should be provided with emphasis on the potential benefits, risks, and limitations before cfDNA screening.
Collapse
Affiliation(s)
- Mary E Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| |
Collapse
|
55
|
Schreiber AR, Santos J, McMahon B, Buckner TW, Olson C, Alberti MO, Guimarães-Young A, Knoeckel C, Broussard L, Aubrey M, Palmer BE, Weiss E, Connors GR, Brunner S, Wisell JA, Pacheco T, Aisner DL, Gutman JA. A Case of Fetal-Induced Graft-versus-Host Disease. N Engl J Med 2023; 389:668-670. [PMID: 37585636 DOI: 10.1056/nejmc2307669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
56
|
Biglari N, Soltani-Zangbar MS, Mohammadian J, Mehdizadeh A, Abbasi K. ctDNA as a novel and promising approach for cancer diagnosis: a focus on hepatocellular carcinoma. EXCLI JOURNAL 2023; 22:752-780. [PMID: 37720239 PMCID: PMC10502204 DOI: 10.17179/excli2023-6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 09/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer worldwide. Therefore, it is essential to diagnose and treat HCC patients promptly. As a novel discovery, circulating tumor DNA (ctDNA) can be used to analyze the tumor type and the cancer location. Additionally, ctDNA assists the cancer stage determination, which enables medical professionals to provide patients with the most appropriate treatment. This review will discuss the HCC-related mutated genes diagnosed by ctDNA. In addition, we will introduce the different and the most appropriate ctDNA diagnosis approaches based on the facilities.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
57
|
Meriranta L, Pitkänen E, Leppä S. Blood has never been thicker: Cell-free DNA fragmentomics in the liquid biopsy toolbox of B-cell lymphomas. Semin Hematol 2023; 60:132-141. [PMID: 37455222 DOI: 10.1053/j.seminhematol.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Liquid biopsies utilizing plasma circulating tumor DNA (ctDNA) are anticipated to revolutionize decision-making in cancer care. In the field of lymphomas, ctDNA-based blood tests represent the forefront of clinically applicable tools to harness decades of genomic research for disease profiling, quantification, and detection. More recently, the discovery of nonrandom fragmentation patterns in cell-free DNA (cfDNA) has opened another avenue of liquid biopsy research beyond mutational interrogation of ctDNA. Through examination of structural features, nucleotide content, and genomic distribution of massive numbers of plasma cfDNA molecules, the study of fragmentomics aims at identifying new tools that augment existing ctDNA-based analyses and discover new ways to profile cancer from blood tests. Indeed, the characterization of aberrant lymphoma ctDNA fragment patterns and harnessing them with powerful machine-learning techniques are expected to unleash the potential of nonmutant molecules for liquid biopsy purposes. In this article, we review cfDNA fragmentomics as an emerging approach in the ctDNA research of B-cell lymphomas. We summarize the biology behind the formation of cfDNA fragment patterns and discuss the preanalytical and technical limitations faced with current methodologies. Then we go through the advances in the field of lymphomas and envision what other noninvasive tools based on fragment characteristics could be explored. Last, we place fragmentomics as one of the facets of ctDNA analyses in emerging multiview and multiomics liquid biopsies. We pay attention to the unknowns in the field of cfDNA fragmentation biology that warrant further mechanistic investigation to provide rational background for the development of these precision oncology tools and understanding of their limitations.
Collapse
Affiliation(s)
- Leo Meriranta
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Esa Pitkänen
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), HILIFE, Helsinki, Finland
| | - Sirpa Leppä
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
58
|
Li Z, Zhang S, Liu M, Ding H, Wen Y, Zhu H, Zeng H. Bacterial DNA metabolism analysis by metagenomic next-generation sequencing (mNGS) after treatment of bloodstream infection. BMC Infect Dis 2023; 23:392. [PMID: 37308837 DOI: 10.1186/s12879-023-08378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND With the advent of metagenomic next-generation sequencing (mNGS), the time of DNA metabolism can be explored after bacteria be killed. In this study, we applied mNGS in investigation of the clearance profile of circulating bacteria DNA. METHODS All of the rabbits were injected with the inactivated Escherichia coli. Using mNGS, we analyzed serial samples of plasma collected from rabbits to detect clearance profile of circulating E. coli DNA. RESULTS In this study, we found that the of E. coli DNA could still be detected 6 h after injecting killed bacteria. The clearance half-lives associated with the 2 phases are 0.37 and 1.81 h. We also explored there is no correlation between the disease severity with the E. coli DNA reads in circulation. CONCLUSIONS After the bacteria were completely killed, their DNA could still be detected in the blood circulation. The metabolism of bacterial DNA in the circulation had two phases: fast and slow phases, and there were no correlations between the level of bacteria reads with the severity of patients' disease after the bacteria have been completely killed.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Shiying Zhang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Mengting Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hongguang Ding
- Department of Emergency, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Yin Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Huishan Zhu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
59
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 PMCID: PMC10236604 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
60
|
Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet 2023; 39:285-307. [PMID: 36792446 DOI: 10.1016/j.tig.2023.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.
Collapse
Affiliation(s)
- Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Stefan Kühberger
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| |
Collapse
|
61
|
Schlaikjær Hartwig T, Ambye L, Gruhn JR, Petersen JF, Wrønding T, Amato L, Chi-Ho Chan A, Ji B, Bro-Jørgensen MH, Werge L, Petersen MMBS, Brinkmann C, Ribberholt JB, Dunø M, Bache I, Herrgård MJ, Jørgensen FS, Hoffmann ER, Nielsen HS. Cell-free fetal DNA for genetic evaluation in Copenhagen Pregnancy Loss Study (COPL): a prospective cohort study. Lancet 2023; 401:762-771. [PMID: 36739882 DOI: 10.1016/s0140-6736(22)02610-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND One in four pregnancies end in a pregnancy loss. Although the effect on couples is well documented, evidence-based treatments and prediction models are absent. Fetal aneuploidy is associated with a higher chance of a next successful pregnancy compared with euploid pregnancy loss in which underlying maternal conditions might be causal. Ploidy diagnostics are therefore advantageous but challenging as they require collection of the pregnancy tissue. Cell-free fetal DNA (cffDNA) from maternal blood has the potential for evaluation of fetal ploidy status, but no large-scale validation of the method has been done. METHODS In this prospective cohort study, women with a pregnancy loss were recruited as a part of the Copenhagen Pregnancy Loss (COPL) study from three gynaecological clinics at public hospitals in Denmark. Women were eligible for inclusion if older than 18 years with a pregnancy loss before gestational age 22 weeks (ie, 154 days) and with an intrauterine pregnancy confirmed by ultrasound (including anembryonic sac), and women with pregnancies of unknown location or molar pregnancies were excluded. Maternal blood was collected while pregnancy tissue was still in situ or within 24 h after pregnancy tissue had passed and was analysed by genome-wide sequencing of cffDNA. Direct sequencing of the pregnancy tissue was done as reference. FINDINGS We included 1000 consecutive women, at the time of a pregnancy loss diagnosis, between Nov 12, 2020, and May 1, 2022. Results from the first 333 women with a pregnancy loss (recruited between Nov 12, 2020, and Aug 14, 2021) were used to evaluate the validity of cffDNA-based testing. Results from the other 667 women were included to evaluate cffDNA performance and result distribution in a larger cohort of 1000 women in total. Gestational age of fetus ranged from 35-149 days (mean of 70·5 days [SD 16·5], or 10 weeks plus 1 day). The cffDNA-based test had a sensitivity for aneuploidy detection of 85% (95% CI 79-90) and a specificity of 93% (95% CI 88-96) compared with direct sequencing of the pregnancy tissue. Among 1000 cffDNA-based test results, 446 (45%) were euploid, 405 (41%) aneuploid, 37 (4%) had multiple aneuploidies, and 112 (11%) were inconclusive. 105 (32%) of 333 women either did not manage to collect the pregnancy tissue or collected a sample classified as unknown tissue giving a high risk of being maternal. INTERPRETATION This validation of cffDNA-based testing in pregnancy loss shows the potential and feasibility of the method to distinguish euploid and aneuploid pregnancy loss for improved clinical management and benefit of future reproductive medicine and women's health research. FUNDING Ole Kirks Foundation, BioInnovation Institute Foundation, and the Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Tanja Schlaikjær Hartwig
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Hvidovre Hospitals NIPT Center, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Louise Ambye
- Hvidovre Hospitals NIPT Center, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jennifer R Gruhn
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Friis Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Obstetrics and Gynaecology, Copenhagen University Hospital-North Zealand, Hillerød, Denmark; Department of Obstetrics and Gynaecology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Tine Wrønding
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Letizia Amato
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; BioInnovation Institute, Copenhagen, Denmark
| | - Andrew Chi-Ho Chan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boyang Ji
- BioInnovation Institute, Copenhagen, Denmark
| | | | - Lene Werge
- Hvidovre Hospitals NIPT Center, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Clara Brinkmann
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iben Bache
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Finn Stener Jørgensen
- Hvidovre Hospitals NIPT Center, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
62
|
Aucamp J, van der Zwan H, Geldenhuys Z, Abera A, Louw R, van der Sluis R. Diagnostic applications and limitations for the use of cell-free fetal DNA (cffDNA) in animal husbandry and wildlife management. Res Vet Sci 2023; 158:106-116. [PMID: 36989830 DOI: 10.1016/j.rvsc.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
In animal breeding, a species sex can influence the value of the animal. For example, in the horse breeding industry, mares are preferred as polo horses, while in wildlife breeding males with larger horns are more valuable. Therefore, the economic advantages of knowing the unborn fetus' sex are important to successful animal management. Ultrasonography is used to determine the sex of unborn fetuses, but this method places additional stress on the animal and require specialized equipment and expertise. Conversely, molecular-based sexing techniques require less invasive sampling and can determine sex more reliably. Although in humans, various studies have evaluated the use of cell-free fetal DNA (cffDNA) for prenatal sexing, very few animal studies have been published in this field. Several factors can affect the sensitivity of cffDNA-based sex determination, for example the gestational age. These factors are often not optimized and validated when establishing a protocol for prenatal sexing. In this review, we summarize the current literature on cffDNA in animals. We discuss the diagnostic applications and limitations in the use thereof in animal husbandry and wildlife management. Lastly, the feasibility of implementing diagnostic tests is evaluated and solutions are given to the current drawbacks of the technology.
Collapse
|
63
|
From Gut to Blood: Spatial and Temporal Pathobiome Dynamics during Acute Abdominal Murine Sepsis. Microorganisms 2023; 11:microorganisms11030627. [PMID: 36985201 PMCID: PMC10054525 DOI: 10.3390/microorganisms11030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Abdominal sepsis triggers the transition of microorganisms from the gut to the peritoneum and bloodstream. Unfortunately, there is a limitation of methods and biomarkers to reliably study the emergence of pathobiomes and to monitor their respective dynamics. Three-month-old CD-1 female mice underwent cecal ligation and puncture (CLP) to induce abdominal sepsis. Serial and terminal endpoint specimens were collected for fecal, peritoneal lavage, and blood samples within 72 h. Microbial species compositions were determined by NGS of (cell-free) DNA and confirmed by microbiological cultivation. As a result, CLP induced rapid and early changes of gut microbial communities, with a transition of pathogenic species into the peritoneum and blood detected at 24 h post-CLP. NGS was able to identify pathogenic species in a time course-dependent manner in individual mice using cfDNA from as few as 30 microliters of blood. Absolute levels of cfDNA from pathogens changed rapidly during acute sepsis, demonstrating its short half-life. Pathogenic species and genera in CLP mice significantly overlapped with pathobiomes from septic patients. The study demonstrated that pathobiomes serve as reservoirs following CLP for the transition of pathogens into the bloodstream. Due to its short half-life, cfDNA can serve as a precise biomarker for pathogen identification in blood.
Collapse
|
64
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
65
|
Rezaie Keikhaie K, Moshfeghi M, Rezaie Kahkhaie L, Eftekhari M, Ajami S, Forghani F, Afshari M. Evaluation of The Relationship between Cell-Free DNA Fetal Fraction of The Circulatory System and Fetal and Maternal Pregnancy Prognosis: A Prospective Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:115-119. [PMID: 36906828 PMCID: PMC10009507 DOI: 10.22074/ijfs.2022.535676.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 03/13/2023]
Abstract
BACKGROUND Non-invasive prenatal testing (NIPT), sometimes called noninvasive prenatal screening (NIPS), is a non-invasive prenatal genetic test using cell-free DNA in maternal blood. This method is used to diagnose fetal aneuploidy disorders such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18) and Patau syndrome (trisomy 13), which causes disability disorders or significant postpartum defects. The aim of this study was to investigate the relationship between high and low fetal fraction (FF) and prognosis of maternal pregnancy. MATERIALS AND METHODS In this prospective study, after obtaining informed consent, 10 ml of blood was collected from 450 mothers with singleton pregnancies with gestational age above 11 weeks (11-16) at the request of NIPT for cell-free DNA BCT test. After obtaining the test results, maternal and embryonic results were evaluated based on the amount of non-cellular DNA FF. Data analysis was performed by using SPSS software version 21 and independent t test, chi-square statistical tests. RESULTS Based on test results, 20.5% of women were nulli par. The mean FF index in the studied women was 8.3% with a standard deviation of 4.6. The minimum and maximum values were 0 and 27, respectively. The frequency of normal, low and high FFs was 73.2, 17.3 and 9.5%, respectively. CONCLUSION High FF has fewer risks to the mother and fetus than low FF. The use of FF level (high or low) can help us determining the prognosis of pregnancy and using it to better manage the pregnancy.
Collapse
Affiliation(s)
| | - Maryam Moshfeghi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, ACECR, Tehran, Iran
| | | | - Mahya Eftekhari
- School of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mahdi Afshari
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
66
|
Hadipour M, Fasihi Harandi M, Mirhendi H, Yousofi Darani H. Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA. Expert Rev Mol Diagn 2023; 23:133-142. [PMID: 36756744 DOI: 10.1080/14737159.2023.2178903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Diagnosis of echinococcosis is difficult and usually performed based on clinical findings, imaging, and serological test. However, all of them have limitations, especially in follow-up approaches. AREAS COVERED Detection of cell-free DNA (cfDNA) and micro-RNA (miRNA) is currently a hot topic for diagnosis of echinococcosis diseases. For detecting cell-free DNA in echinococcosis patient's samples such as sera, some techniques are based on next-generation sequencing (NGS), DNA-deep sequencing, some are based on PCR-based methods, and a few works related to the detection of miRNA for the diagnosis of human echinococcosis. EXPERT OPINION In the detection of cell-free DNA in echinococcosis patient' samples, NGS and DNA-deep sequencing have shown high level of sensitivity, but are not suitable for routine clinical examination as they are expensive and inaccessible in the majority of endemic areas. However, PCR-based methods have shown a sensitivity of about 20-25%. To improve the sensitivity of these tests, improving the DNA extraction method, designing appropriate primers for detecting short-length fragments of circulating DNA, using a higher volume of a serum sample, and application of more sensitive PCR methods are recommended. In the field of miRNA detection, further works are recommended.
Collapse
Affiliation(s)
- Mahboubeh Hadipour
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Majid Fasihi Harandi
- Research center for Hydatid disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mirhendi
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| |
Collapse
|
67
|
El Hejjioui B, Bouguenouch L, Melhouf MA, El Mouhi H, Bennis S. Clinical Evidence of Circulating Tumor DNA Application in Aggressive Breast Cancer. Diagnostics (Basel) 2023; 13:470. [PMID: 36766575 PMCID: PMC9914403 DOI: 10.3390/diagnostics13030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is clinically and biologically heterogeneous and is classified into different subtypes according to the molecular landscape of the tumor. Triple-negative breast cancer is a subtype associated with higher tumor aggressiveness, poor prognosis, and poor response to treatment. In metastatic breast cancer, approximately 6% to 10% of new breast cancer cases are initially staged IV (de novo metastatic disease). The number of metastatic recurrences is estimated to be 20-30% of all existing breast tumor cases, whereby the need to develop specific genetic markers to improve the prognosis of patients suffering from these deadly forms of breast cancer. As an alternative, liquid biopsy methods can minutely identify the molecular architecture of breast cancer, including aggressive forms, which provides new perspectives for more precise diagnosis and more effective therapeutics. This review aimed to summarize the current clinical evidence for the application of circulating tumor DNA in managing breast cancer by detailing the increased usefulness of this biomarker as a diagnostic, prognostic, monitoring, and surveillance marker for breast cancer.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Hind El Mouhi
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| |
Collapse
|
68
|
Machado Carvalho JV, Dutoit V, Corrò C, Koessler T. Promises and Challenges of Predictive Blood Biomarkers for Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. Cells 2023; 12:413. [PMID: 36766755 PMCID: PMC9913546 DOI: 10.3390/cells12030413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The treatment of locally advanced rectal cancer (LARC) requires a multimodal approach combining neoadjuvant radiotherapy or chemoradiotherapy (CRT) and surgery. Predicting tumor response to CRT can guide clinical decision making and improve patient care while avoiding unnecessary toxicity and morbidity. Circulating biomarkers offer both the advantage to be easily accessed and followed over time. In recent years, biomarkers such as proteins, blood cells, or nucleic acids have been investigated for their predictive value in oncology. We conducted a comprehensive literature review with the aim to summarize the status of circulating biomarkers predicting response to CRT in LARC. Forty-nine publications, of which forty-seven full-text articles, one review and one systematic review, were retrieved. These studies evaluated circulating markers (CEA and CA 19-9), inflammatory biomarkers (CRP, albumin, and lymphocytes), hematologic markers (hemoglobin and thrombocytes), lipids and circulating nucleic acids (cell-free DNA [cfDNA], circulating tumor DNA [ctDNA], and microRNA [miRNA]). Post-CRT CEA levels had the most consistent association with tumor response, while cfDNA integrity index, MGMT promoter methylation, ERCC-1, miRNAs, and miRNA-related SNPs were identified as potential predictive markers. Although circulating biomarkers hold great promise, inconsistent results, low statistical power, and low specificity and sensibility prevent them from reliably predicting tumor response following CRT. Validation and standardization of methods and technologies are further required to confirm results.
Collapse
Affiliation(s)
- Joao Victor Machado Carvalho
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
| | - Claudia Corrò
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Thibaud Koessler
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
69
|
NIPAT as Non-Invasive Prenatal Paternity Testing Using a Panel of 861 SNVs. Genes (Basel) 2023; 14:genes14020312. [PMID: 36833238 PMCID: PMC9957069 DOI: 10.3390/genes14020312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In 1997, it was discovered that maternal plasma contains Cell-Free Fetal DNA (cffDNA). cffDNA has been investigated as a source of DNA for non-invasive prenatal testing for fetal pathologies, as well as for non-invasive paternity testing. While the advent of Next Generation Sequencing (NGS) led to the routine use of Non-Invasive Prenatal Screening (NIPT or NIPS), few data are available regarding the reliability and reproducibility of Non-Invasive Prenatal Paternity Testing (NIPPT or NIPAT). Here, we present a non-invasive prenatal paternity test (NIPAT) analyzing 861 Single Nucleotide Variants (SNV) from cffDNA through NGS technology. The test, validated on more than 900 meiosis samples, generated log(CPI)(Combined Paternity Index) values for designated fathers ranging from +34 to +85, whereas log(CPI) values calculated for unrelated individuals were below -150. This study suggests that NIPAT can be used with high accuracy in real cases.
Collapse
|
70
|
Jang MK, Markowitz TE, Andargie TE, Apalara Z, Kuhn S, Agbor-Enoh S. Cell-free Chromatin Immunoprecipitation to detect molecular pathways in Physiological and Disease States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525414. [PMID: 36789421 PMCID: PMC9928031 DOI: 10.1101/2023.01.24.525414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Patient monitoring is a cornerstone in clinical practice to define disease phenotypes and guide clinical management. Unfortunately, this is often reliant on invasive and/or less sensitive methods that do not provide deep phenotype assessments of disease state to guide treatment. This paper examined plasma cell-free DNA chromatin immunoprecipitation sequencing (cfChIP-seq) to define molecular gene sets in physiological and heart transplant patients taking immunosuppression medications. We show cfChIP-seq reliably detect gene signals that correlate with gene expression. In healthy controls and in heart transplant patients, cfChIP-seq reliably detected housekeeping genes. cfChIP-seq identified differential gene signals of the relevant immune and non-immune molecular pathways that were predominantly downregulated in immunosuppressed heart transplant patients compared to healthy controls. cfChIP-seq also identified tissue sources of cfDNA, detecting greater cell-free DNA from cardiac, hematopoietic, and other non-hematopoietic tissues such as the pulmonary, digestive, and neurological tissues in transplant patients than healthy controls. cfChIP-seq gene signals were reproducible between patient populations and blood collection methods. cfChIP-seq may therefore be a reliable approach to provide dynamic assessments of molecular pathways and tissue injury associated to disease.
Collapse
Affiliation(s)
- Moon K. Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision. Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | - Tovah E. Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision. Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision. Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | - Skyler Kuhn
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision. Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| |
Collapse
|
71
|
Li H, Lu S, Zhou Z, Zhu X, Shao Y. Role of Circulating Tumor DNA in Colorectal Cancer. Methods Mol Biol 2023; 2695:227-236. [PMID: 37450122 DOI: 10.1007/978-1-0716-3346-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is a very common gastrointestinal tumor, ranking second in the global cause of cancer death. Because of the invasive nature of biopsy and cannot reflect the heterogeneity of tumor or monitor the dynamic progress of tumor, it is necessary to induce a novel noninvasive method to improve the current treatment strategies of colorectal cancer. Among all the components of liquid biopsy, circulating tumor DNA (ctDNA) may have the best future. CtDNA maintains the same genomic characteristics as those in matched tumor tissues, so it allows quantitative evaluation and analysis of mutation load in body fluid. Furthermore, because the half-life of ctDNA is from 16 min to several hours in circulation, the circulating ctDNA can be measured repeatedly within a certain period to monitor the response of CRC to treatment, the occurrence of drug resistance, and the diagnosis of recurrence.
Collapse
Affiliation(s)
- Haotian Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sheng Lu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zidong Zhou
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaocheng Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yong Shao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
72
|
Baumann AK, Beck J, Kirchner T, Hartleben B, Schütz E, Oellerich M, Wedemeyer H, Jaeckel E, Taubert R. Elevated fractional donor-derived cell-free DNA during subclinical graft injury after liver transplantation. Liver Transpl 2022; 28:1911-1919. [PMID: 35429207 DOI: 10.1002/lt.26479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Personalized immunosuppression (IS) promises to improve the balance of necessary control of alloreactivity and dose-dependent adverse effects of long-term IS such as kidney insufficiency, infections, and malignancies. The majority of liver transplantation (LT) recipients exhibit graft injuries (graft inflammation and/or fibrosis) that are not eligible for an IS reduction according to current Banff criteria, even when liver enzymes are normal or only marginally elevated. This cross-sectional study evaluated the noninvasive prediction of such subclinical graft injuries in surveillance liver biopsies via donor-derived cell-free DNA (dd-cfDNA). Absolute and fractional dd-cfDNA increased stepwise from patients without histological signs of rejection (n = 26) over subclinical graft injury (n = 61), including subclinical T cell-mediated rejection to clinical overt T cell-mediated rejection (n = 21). Thus, fractional plasma dd-cfDNA was significantly elevated paired to surveillance biopsies with relevant subclinical graft injury according to 2016 Banff criteria compared with those with minimal or absent histological graft injury. In contrast, the presence of donor-specific anti-human leukocyte antigen antibodies was not associated with the amount of dd-cfDNA. The sensitivity and specificity of fractional dd-cfDNA to noninvasively predict relevant subclinical graft injury was rather limited with 73% and 52% at the cutoff value of 2.1% fractional dd-cfDNA. The positive predictive value of fractional dd-cfDNA above 2.1% was 76% to noninvasively predict subclinical graft injury, calculated on the prevalence of graft injury in our prospective surveillance biopsy program, whereas the negative predictive values was not predictive (47%). In conclusion, dd-cfDNA has a rather limited diagnostic fidelity in addition to other noninvasive markers for the assessment of subclinical graft injury in personalized IS approaches after LT in a cross-sectional setting.
Collapse
Affiliation(s)
- Anna K Baumann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Theresa Kirchner
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Björn Hartleben
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Goettingen, Goettingen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
73
|
Gibor U, Perry Z, Netz U, Kirshtein B, Mizrahi S, Czeiger D, Sebbag G, Douvdevani A. Circulating Cell-free DNA in Patients With Acute Biliary Pancreatitis: Association With Disease Markers and Prolonged Hospitalization Time-A Prospective Cohort Study. Ann Surg 2022; 276:e861-e867. [PMID: 33351491 DOI: 10.1097/sla.0000000000004679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate cfDNA as an indicator of pancreatitis severity. BACKGROUND Acute pancreatitis severity scores have limited proficiency, and are complex and challenging to use clinically. Elevation of circulating cfDNA concentration has been shown to be associated with hospital length of stay (LOS) and mortality. METHODS In a prospective study, cfDNA concentration was measured by a simple fluorometric test, at admission and for 2 consecutive days, in patients with acute biliary pancreatitis (ABP). Ranson and APACHE II scores were used as measures of pancreatitis severity. Hospital LOS and mortality were used as outcome measures. RESULTS Seventy-eight patients were included. Patients with severe disease according to Ranson's Criteria (n = 24) had elevated median admission cfDNA compared to patients with mild disease (n = 54, 2252ng/ml vs 1228 ng/ml, P < 0.05 ). Admission cfDNA levels correlated with Ranson and APACHE II scores and markers of bile duct obstruction. LOS did not differ between patients with mild and severe disease according to Ranson and APACHE II scores. Patients with cfDNA at 24 hours concentrations above the cutoff value of healthy patients (>850 ng/ml) had a significantly longer LOS compared to those with normal cfDNA levels ( P < 0.001 ). CONCLUSIONS cfDNA, measured by a rapid simple assay, proved a valuable early marker of severity in ABP with clear advantages for prediction of LOS over Ranson and APACHE II. Measurement of cfDNA has the potential to be an effective practical approach to predict the course of ABP and should be further evaluated in larger trials.
Collapse
Affiliation(s)
- Udit Gibor
- Department of Surgery A, Soroka University Medical Center, Beer Sheva, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zvi Perry
- Department of Surgery A, Soroka University Medical Center, Beer Sheva, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uri Netz
- Department of Surgery A, Soroka University Medical Center, Beer Sheva, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Boris Kirshtein
- Department of Surgery A, Soroka University Medical Center, Beer Sheva, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Solly Mizrahi
- Department of Surgery A, Soroka University Medical Center, Beer Sheva, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - David Czeiger
- Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Surgery B, Soroka University Medical Center, Beer Sheva, Israel
| | - Gilbert Sebbag
- Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Surgery B, Soroka University Medical Center, Beer Sheva, Israel
| | - Amos Douvdevani
- Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Clinical Biochemistry and Pharmacology, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
74
|
Yang SY, Kang KM, Kim SY, Lim SY, Jang HY, Hong K, Cha DH, Shim SH, Joung JG. Combined Model-Based Prediction for Non-Invasive Prenatal Screening. Int J Mol Sci 2022; 23:ijms232314990. [PMID: 36499318 PMCID: PMC9737181 DOI: 10.3390/ijms232314990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The risk of chromosomal abnormalities in the child increases with increasing maternal age. Although non-invasive prenatal testing (NIPT) is a safe and effective prenatal screening method, the accuracy of the test results needs to be improved owing to various testing conditions. We attempted to achieve a more accurate and robust prediction of chromosomal abnormalities by combining multiple methods. Here, three different methods, namely standard Z-score, normalized chromosome value, and within-sample reference bin, were used for 1698 reference and 109 test samples of whole-genome sequencing. The logistic regression model combining the three methods achieved a higher accuracy than any single method. In conclusion, the proposed method offers a promising approach for increasing the reliability of NIPT.
Collapse
Affiliation(s)
- So-Yun Yang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Kyung Min Kang
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06135, Republic of Korea
| | - Sook-Young Kim
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13488, Republic of Korea
| | - Seo Young Lim
- Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Hee Yeon Jang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06135, Republic of Korea
| | - Kirim Hong
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Dong Hyun Cha
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06135, Republic of Korea
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06135, Republic of Korea
- Correspondence: (S.H.S.); (J.-G.J.); Tel.: +82-31-881-7182 (J.-G.J.); +82-31-881-7148 (S.H.S.)
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13488, Republic of Korea
- Institute for Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
- Correspondence: (S.H.S.); (J.-G.J.); Tel.: +82-31-881-7182 (J.-G.J.); +82-31-881-7148 (S.H.S.)
| |
Collapse
|
75
|
Hanson B, Scotchman E, Chitty LS, Chandler NJ. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders. Clin Sci (Lond) 2022; 136:1615-1629. [PMID: 36383187 PMCID: PMC9670272 DOI: 10.1042/cs20210380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023]
Abstract
Cell-free fetal DNA (cffDNA) is released into the maternal circulation from trophoblastic cells during pregnancy, is detectable from 4 weeks and is representative of the entire fetal genome. The presence of this cffDNA in the maternal bloodstream has enabled clinical implementation of non-invasive prenatal diagnosis (NIPD) for monogenic disorders. Detection of paternally inherited and de novo mutations is relatively straightforward, and several methods have been developed for clinical use, including quantitative polymerase chain reaction (qPCR), and PCR followed by restriction enzyme digest (PCR-RED) or next-generation sequencing (NGS). A greater challenge has been in the detection of maternally inherited variants owing to the high background of maternal cell-free DNA (cfDNA). Molecular counting techniques have been developed to measure subtle changes in allele frequency. For instance, relative haplotype dosage analysis (RHDO), which uses single nucleotide polymorphisms (SNPs) for phasing of high- and low-risk alleles, is clinically available for several monogenic disorders. A major drawback is that RHDO requires samples from both parents and an affected or unaffected proband, therefore alternative methods, such as proband-free RHDO and relative mutation dosage (RMD), are being investigated. cffDNA was thought to exist only as short fragments (<500 bp); however, long-read sequencing technologies have recently revealed a range of sizes up to ∼23 kb. cffDNA also carries a specific placental epigenetic mark, and so fragmentomics and epigenetics are of interest for targeted enrichment of cffDNA. Cell-based NIPD approaches are also currently under investigation as a means to obtain a pure source of intact fetal genomic DNA.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Lyn S. Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, U.K
| | - Natalie J. Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| |
Collapse
|
76
|
Kamath V, Chacko MP, Kamath MS. Non-invasive Prenatal Testing in Pregnancies Following Assisted Reproduction. Curr Genomics 2022; 23:326-336. [PMID: 36778193 PMCID: PMC9878858 DOI: 10.2174/1389202923666220518095758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
In the decade since non-invasive prenatal testing (NIPT) was first implemented as a prenatal screening tool, it has gained recognition for its sensitivity and specificity in the detection of common aneuploidies. This review mainly focuses on the emerging role of NIPT in pregnancies following assisted reproductive technology (ART) in the light of current evidence and recommendations. It also deals with the challenges, shortcomings and interpretational difficulties related to NIPT in ART pregnancies, with particular emphasis on twin and vanishing twin pregnancies, which are widely regarded as the Achilles' heel of most pre-natal screening platforms. Future directions for exploration towards improving the performance and extending the scope of NIPT are also addressed.
Collapse
Affiliation(s)
- Vandana Kamath
- Department of Cytogenetics, Christian Medical College, Vellore 632004, India
| | - Mary Purna Chacko
- Department of Cytogenetics, Christian Medical College, Vellore 632004, India
| | - Mohan S. Kamath
- Department of Reproductive Medicine and Surgery, Christian Medical College, Vellore 632004, India
| |
Collapse
|
77
|
Zhang M, Li K, Qu S, Guo Z, Wang Y, Yang X, Zhou J, Ouyang G, Weng R, Li F, Wu Y, Yang X. Integrative analyses of maternal plasma cell-free DNA nucleosome footprint differences reveal chromosomal aneuploidy fetuses gene expression profile. J Transl Med 2022; 20:536. [PMID: 36401256 PMCID: PMC9673457 DOI: 10.1186/s12967-022-03735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Chromosomal aneuploidy is the most common birth defect. However, the developmental mechanism and gene expression profile of fetuses with chromosomal aneuploidy are relatively unknown, and the maternal immune changes induced by fetal aneuploidy remain unclear. The inability to obtain the placenta multiple times in real-time is a bottleneck in research on aneuploid pregnancies. Plasma cell-free DNA (cfDNA) carries the gene expression profile information of its source cells and may be used to evaluate the development of fetuses with aneuploidy and the immune changes induced in the mother owing to fetal aneuploidy. Methods Here, we carried out whole-genome sequencing of the plasma cfDNA of 101 pregnant women carrying a fetus with trisomy (trisomy 21, n = 42; trisomy 18, n = 28; trisomy 13, n = 31) based on non-invasive prenatal testing (NIPT) screening and 140 normal pregnant women to identify differential genes according to the cfDNA nucleosome profile in the region around the transcription start sites (TSSs). Results The plasma cfDNA promoter profiles were found to differ between aneuploid and euploid pregnancies. A total of 158 genes with significant differences were identified, of which 43 genes were upregulated and 98 genes were downregulated. Functional enrichment and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases found that these signal pathways were mainly related to the coordination of developmental signals during embryonic development, the control of cell growth and development, regulation of neuronal survival, and immune regulation, such as the MAPK, Hippo, TGF-β, and Rap1 signaling pathways, which play important roles in the development of embryonic tissues and organs. Furthermore, based on the results of differential gene analysis, a total of 14 immune-related genes with significant differences from the ImmPort database were collected and analyzed. These significantly different immune genes were mainly associated with the maintenance of embryonic homeostasis and normal development. Conclusions These results suggest that the distribution characteristics of cfDNA nucleosomes in maternal plasma can be used to reflect the status of fetal development and changes of the immune responses in trisomic pregnancies. Overall, our findings may provide research ideas for non-invasive detection of the physiological and pathological states of other diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03735-7.
Collapse
|
78
|
Galoș D, Gorzo A, Balacescu O, Sur D. Clinical Applications of Liquid Biopsy in Colorectal Cancer Screening: Current Challenges and Future Perspectives. Cells 2022; 11:3493. [PMID: 36359889 PMCID: PMC9657568 DOI: 10.3390/cells11213493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a leading cause of mortality among the population of western countries. However, CRC is frequently a preventable malignancy due to various screening tests being available. While failing to obtain real-time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising minimally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy markers with clinical application in the setting of CRC screening. The review also examines the opportunity to implement liquid biopsy analysis during everyday practice and provides highlights on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review explores potential applications of liquid biopsies in the era of immunotherapy.
Collapse
Affiliation(s)
- Diana Galoș
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
79
|
Lesko P, Chovanec M, Mego M. Biomarkers of disease recurrence in stage I testicular germ cell tumours. Nat Rev Urol 2022; 19:637-658. [PMID: 36028719 DOI: 10.1038/s41585-022-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Stage I testicular cancer is a disease restricted to the testicle. After orchiectomy, patients are considered to be without disease; however, the tumour is prone to relapse in ~4-50% of patients. Current predictive markers of relapse, which are tumour size and invasion to rete testis (in seminoma) or lymphovascular invasion (in non-seminoma), have limited clinical utility and are unable to correctly predict relapse in a substantial proportion of patients. Adjuvant therapeutic strategies based on available biomarkers can lead to overtreatment of 50-85% of patients. Discovery and implementation of novel biomarkers into treatment decision making will help to reduce the burden of adjuvant treatments and improve patient selection for adjuvant therapy.
Collapse
Affiliation(s)
- Peter Lesko
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.
| |
Collapse
|
80
|
Lo YMD. Discovery of Cell-Free Fetal DNA in Maternal Blood and Development of Noninvasive Prenatal Testing: 2022 Lasker-DeBakey Clinical Medical Research Award. JAMA 2022; 328:1293-1294. [PMID: 36170057 DOI: 10.1001/jama.2022.14982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In this Viewpoint, 2022 Lasker-DeBakey Clinical Medical Research Award winner Y. M. Dennis Lo discusses his discovery and application of cell-free fetal DNA for noninvasive prenatal testing.
Collapse
Affiliation(s)
- Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
81
|
Davis TH. QnAs with Yuk-Ming Dennis Lo: Winner of the 2022 Lasker∼DeBakey Clinical Medical Research Award. Proc Natl Acad Sci U S A 2022; 119:e2213996119. [PMID: 36170248 PMCID: PMC9546625 DOI: 10.1073/pnas.2213996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
82
|
Study on the Clinical Value of Noninvasive Prenatal Testing in Screening the Chromosomal Abnormalities of the Fetus in the Elderly Pregnant Women. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2977128. [PMID: 36213582 PMCID: PMC9534664 DOI: 10.1155/2022/2977128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Introduction To explore the clinical value of noninvasive prenatal testing (NIPT) in screening the chromosomal abnormalities of the fetus in the elderly pregnant women. Materials and Methods Between January 2020 and December 2021, 1949 elderly pregnant women underwent NIPT in our hospital. At the same time, 236 elderly pregnant women received invasive prenatal diagnosis, and the pregnancy outcomes were followed-up. Results When NIPT was used for prenatal screening of fetal chromosomal aneuploidy, its diagnostic coincidence rate for trisomy 21 was the highest, with a coincidence rate of 90.00%, and the diagnostic coincidence rate for other chromosomal abnormalities was the lowest, only 22.22%. The sensitivity, specificity, positive predictive rate, and negative predictive rate for T21 by NIPT were 100%, 99.97%, 94.28%, and 100%; for T18 were 100%, 99.92%, 72.22%, and 100%, respectively; and for T13 were 100%, 99.95%, 50%, and 100%, respectively. Patients with high risks according to NIPT results further received invasive prenatal diagnosis, and 18 cases were excluded from the follow-up. For the remaining 1933 cases in the NIPT group, there was an incidence of 2.28% of adverse pregnancy outcomes. For the remaining 234 cases in the Amniocentesis group, there was an incidence of 1.28% of adverse pregnancy outcomes. There was no significant difference between the two groups (P > 0.05). The diagnostic rate of fetal chromosomal abnormalities in pregnant women under 40 years old was about 0.39-0.79%; however, the risk for people over 40 is relatively high at 1.32-4.44%. Conclusion The noninvasive prenatal screening of fetal DNA in the second trimester of pregnancy for elderly pregnant women has high application value in the prediction of pregnancy outcome. The high risk of pregnancy can be determined by detecting trisomy 21, 18, and 13 syndromes, and the probability of adverse pregnancy outcome increases.
Collapse
|
83
|
Callesen LB, Hansen TF, Andersen RF, Pallisgaard N, Kramer S, Schlander S, Rafaelsen SR, Boysen AK, Jensen LH, Jakobsen A, Spindler KLG. OPTIMISE: Optimisation of treatment selection and follow-up in oligometastatic colorectal cancer - a ctDNA-guided phase II randomised approach. Study protocol. Acta Oncol 2022; 61:1152-1156. [PMID: 36094310 DOI: 10.1080/0284186x.2022.2116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Rikke Fredslund Andersen
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Stine Kramer
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Sven Schlander
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Rafael Rafaelsen
- Department of Radiology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | | | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | | |
Collapse
|
84
|
Liquid Biopsies in Colorectal Liver Metastases: Towards the Era of Precision Oncologic Surgery. Cancers (Basel) 2022; 14:cancers14174237. [PMID: 36077774 PMCID: PMC9455047 DOI: 10.3390/cancers14174237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor mutational analysis has been incorporated into the management of patients with CRLM since it can provide valuable prognostic information as well as guide peri-operative systemic treatment. Unlike tumor biopsy, liquid biopsy has emerged as a promising, non-invasive alternative that can detect cell-derived markers from a variety of body fluids and might better characterize all subclones present at a specific time point and allow sequential monitoring of disease evolution. Although not currently considered standard of care, an increasing number of cancer centers are nowadays routinely using liquid biopsies in the treatment of CRLM patients with promising results. The current review provides an overview of liquid biopsies in cancer therapeutics and focuses on the application of this relatively new approach on patients with CRLM.
Collapse
|
85
|
Allegra A, Cancemi G, Mirabile G, Tonacci A, Musolino C, Gangemi S. Circulating Tumour Cells, Cell Free DNA and Tumour-Educated Platelets as Reliable Prognostic and Management Biomarkers for the Liquid Biopsy in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174136. [PMID: 36077672 PMCID: PMC9454477 DOI: 10.3390/cancers14174136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Even though the presently employed biomarkers in the detection and management of multiple myeloma are demonstrating encouraging results, the mortality percentage of the malignancy is still elevated. Thus, searching for new diagnostic or prognostic markers is pivotal. Liquid biopsy allows the examination of circulating tumour DNA, cell-free DNA, extracellular RNA, and cell free proteins, which are released into the bloodstream due to the breakdown of tumour cells or exosome delivery. Liquid biopsy can now be applied in clinical practice to diagnose, and monitor multiple myeloma, probably allowing a personalized treatment of the disease. Abstract Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses in the last few years. Bone marrow aspirate is the traditional tool for diagnosis, prognosis, and genetic evaluation in multiple myeloma patients. However, this painful procedure presents a relevant drawback for regular disease examination as it requires an invasive practice. Moreover, new data demonstrated that a sole bone marrow aspirate is incapable of expressing the multifaceted multiple myeloma genetic heterogeneity. In this review, we report the emerging usefulness of the assessment of circulating tumour cells, cell-free DNA, extracellular RNA, cell-free proteins, extracellular vesicles, and tumour-educated platelets to evaluate the changing mutational profile of multiple myeloma, as early markers of disease, reliable predictors of prognosis, and as useful tools to perform less invasive monitoring in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
86
|
Li Z, Lai GR. Discrepancy between non-invasive prenatal testing result and fetal karyotype caused by rare confined placental mosaicism: A case report. World J Clin Cases 2022; 10:8641-8647. [PMID: 36157819 PMCID: PMC9453383 DOI: 10.12998/wjcc.v10.i24.8641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Confined placental mosaicism (CPM) is one of the major reasons for discrepancies between the results of non-invasive prenatal testing (NIPT) and fetal karyotype analysis.
CASE SUMMARY We encountered a primiparous singleton pregnant woman with a rare CPM consisting of 47,XY,+21; 47,XXY; and 46,XY, who obtained a false-positive result on NIPT with a high risk for trisomy 21. Copy-number variation sequencing on amniotic fluid cells, fetal tissue, and placental biopsies showed that the fetal karyotype was 47,XXY, while the placenta was a rare mosaic of 47,XY,+21; 47,XXY; and 46,XY.
CONCLUSION The patient had a rare CPM consisting of 47,XY,+21; 47,XXY; and 46,XY, which caused a discrepancy between the result of NIPT and the actual fetal karyotype. It is important to remember that NIPT is a screening test, not a diagnostic test. Any positive result should be confirmed with invasive testing, and routine ultrasound examination is still necessary after a negative result.
Collapse
Affiliation(s)
- Zhen Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Guang-Rui Lai
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
87
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
88
|
Rink BD, Stevens BK, Norton ME. Incidental Detection of Maternal Malignancy by Fetal Cell-Free DNA Screening. Obstet Gynecol 2022. [DOI: 10.109710.1097/aog.0000000000004833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
89
|
Incidental Detection of Maternal Malignancy by Fetal Cell-Free DNA Screening. Obstet Gynecol 2022; 140:121-131. [DOI: 10.1097/aog.0000000000004833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
90
|
Murrieta-Coxca JM, Fuentes-Zacarias P, Ospina-Prieto S, Markert UR, Morales-Prieto DM. Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy. Front Immunol 2022; 13:837281. [PMID: 35844513 PMCID: PMC9285877 DOI: 10.3389/fimmu.2022.837281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.
Collapse
Affiliation(s)
| | | | | | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
91
|
Janovičová Ľ, Čonka J, Lauková L, Celec P. Variability of endogenous deoxyribonuclease activity and its pathophysiological consequences. Mol Cell Probes 2022; 65:101844. [DOI: 10.1016/j.mcp.2022.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
92
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Dar GM, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: https:/doi.org/10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
93
|
Cabello FC, Embers ME, Newman SA, Godfrey HP. Borreliella burgdorferi Antimicrobial-Tolerant Persistence in Lyme Disease and Posttreatment Lyme Disease Syndromes. mBio 2022; 13:e0344021. [PMID: 35467428 PMCID: PMC9239140 DOI: 10.1128/mbio.03440-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The annual incidence of Lyme disease, caused by tick-transmitted Borreliella burgdorferi, is estimated to be at least 476,000 cases in the United States and many more worldwide. Ten to 20% of antimicrobial-treated Lyme disease patients display posttreatment Lyme disease syndrome (PTLDS), a clinical complication whose etiology and pathogenesis remain uncertain. Autoimmunity, cross-reactivity, molecular mimicry, coinfections, and borrelial tolerance to antimicrobials/persistence have been hypothesized and studied as potential causes of PTLDS. Studies of borrelial tolerance/persistence in vitro in response to antimicrobials and experimental studies in mice and nonhuman primates, taken together with clinical reports, have revealed that B. burgdorferi becomes tolerant to antimicrobials and may sometimes persist in animals and humans after the currently recommended antimicrobial treatment. Moreover, B. burgdorferi is pleomorphic and can generate viable-but-nonculturable bacteria, states also involved in antimicrobial tolerance. The multiple regulatory pathways and structural genes involved in mediating this tolerance to antimicrobials and environmental stressors by persistence might include the stringent (rel and dksA) and host adaptation (rpoS) responses, sugar metabolism (glpD), and polypeptide transporters (opp). Application of this recently reported knowledge to clinical studies can be expected to clarify the potential role of bacterial antibacterial tolerance/persistence in Lyme disease and PTLDS.
Collapse
Affiliation(s)
- Felipe C. Cabello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, Louisiana, USA
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Henry P. Godfrey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
94
|
Main SC, Cescon DW, Bratman SV. Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:727-748. [PMID: 36176758 PMCID: PMC9511796 DOI: 10.20517/cdr.2022.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment response.
Collapse
Affiliation(s)
- Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto M5T 1P5, Ontario, Canada
| |
Collapse
|
95
|
Lubotzky A, Pelov I, Teplitz R, Neiman D, Smadja A, Zemmour H, Piyanzin S, Ochana BL, Spalding KL, Glaser B, Shemer R, Dor Y, Kohn Y. Elevated brain-derived cell-free DNA among patients with first psychotic episode - a proof-of-concept study. eLife 2022; 11:76391. [PMID: 35699419 PMCID: PMC9203052 DOI: 10.7554/elife.76391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a common, severe, and debilitating psychiatric disorder. Despite extensive research there is as yet no biological marker that can aid in its diagnosis and course prediction. This precludes early detection and intervention. Imaging studies suggest brain volume loss around the onset and over the first few years of schizophrenia, and apoptosis has been proposed as the underlying mechanism. Cell-free DNA (cfDNA) fragments are released into the bloodstream following cell death. Tissue-specific methylation patterns allow the identification of the tissue origins of cfDNA. We developed a cocktail of brain-specific DNA methylation markers, and used it to assess the presence of brain-derived cfDNA in the plasma of patients with a first psychotic episode. We detected significantly elevated neuron- (p=0.0013), astrocyte- (p=0.0016), oligodendrocyte- (p=0.0129), and whole brain-derived (p=0.0012) cfDNA in the plasma of patients during their first psychotic episode (n=29), compared with healthy controls (n=31). Increased cfDNA levels were not correlated with psychotropic medications use. Area under the curve (AUC) was 0.77, with 65% sensitivity at 90% specificity in patients with a psychotic episode. Potential interpretations of these findings include increased brain cell death, disruption of the blood-brain barrier, or a defect in clearance of material from dying brain cells. Brain-specific cfDNA methylation markers can potentially assist early detection and monitoring of schizophrenia and thus allow early intervention and adequate therapy.
Collapse
Affiliation(s)
- Asael Lubotzky
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ilana Pelov
- Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Jerusalem, Israel
| | - Ronen Teplitz
- Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Adama Smadja
- Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bracha-Lea Ochana
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kirsty L Spalding
- Karolinska Institute, Department of Cell and Molecular Biology Stockholm, Stockholm, Sweden
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yoav Kohn
- Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Jerusalem, Israel.,Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| |
Collapse
|
96
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Mehdi G, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: 10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
|
97
|
Sharma N, Haggstrom L, Sohrabipour S, Dwivedi DJ, Liaw PC. Investigations of the effectiveness of heparin variants as inhibitors of histones. J Thromb Haemost 2022; 20:1485-1495. [PMID: 35313081 DOI: 10.1111/jth.15706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Extracellular histones exert cytotoxic and procoagulant effects which contribute to immunothrombosis in vascular diseases such as sepsis. Heparin has been shown to neutralize the pathologic effects of histones in vitro and in animal models. OBJECTIVES To compare the effectiveness of unfractionated heparin (UFH), low-molecularweight heparin (LMWH), Vasoflux (lacks anticoagulant activity), and fondaparinux in neutralizing the cytotoxic and procoagulant activities of histones METHODS: Binding affinities between heparin variants and histone subunits were determined by Bio-layer Interferometry. The ability of heparin variants to diminish the cytotoxic and procoagulant effects of histones was studied by treating endothelial cells or monocytic THP-1 cells with histones ± heparin variants. RESULTS Unfractionated heparin, LMWH, and Vasoflux bind histone subunits with high affinities (Kd <1 pM-66.7 nM) whereas fondaparinux exhibited a low affinity (Kd of 3.06 µM-81.1 mM). UFH, LMWH, and Vasoflux neutralize histone-mediated cytotoxicity as well as monocytic procoagulant activity (as assessed by cell surface tissue factor and phosphatidylserine). In contrast, fondaparinux has no effect on these activities. All four heparin variants reverse histone-mediated impairment of APC generation in a dose-dependent manner. CONCLUSIONS The ability of heparin to neutralize the cytotoxic and procoagulant effects of histones require heparin fragments >1.7 kDa and is independent of the antithrombin-binding pentasaccharide. In contrast, the ability of heparin to neutralize histone-mediated impairment of APC generation is independent of size and anticoagulant activity. These findings suggest that heparin variants may have differential therapeutic potential in vascular diseases associated with elevated levels of histones.
Collapse
Affiliation(s)
- Neha Sharma
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Lauren Haggstrom
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Sahar Sohrabipour
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
98
|
Li CL, Yeh SH, Chen PJ. Circulating Virus–Host Chimera DNAs in the Clinical Monitoring of Virus-Related Cancers. Cancers (Basel) 2022; 14:cancers14102531. [PMID: 35626135 PMCID: PMC9139492 DOI: 10.3390/cancers14102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cell-free tumor DNA (ctDNA), the DNA released into circulation from tumors, is a promising tumor marker with versatile applications. The associations of the amount, somatic mutation frequency, and epigenetic modifications of ctDNA with the tumor burden, tumor behavior, and prognosis have been widely investigated in different types of tumors. However, there are still some challenging issues to be resolved before ctDNA can complement or even replace current serum tumor markers. We propose employing exogenous viral DNA integration that produces unique virus–host chimera DNA (vh-DNA) at junction sites. Cell-free vh-DNA may become a new biomarker because it overcomes background interference detection problems, takes advantage of virus tropism to localize the tumor, and acts as a universal marker for monitoring clonal expansion or tumor loads in tumors related to oncogenic viruses. Abstract The idea of using tumor-specific cell-free DNA (ctDNA) as a tumor biomarker has been widely tested and validated in various types of human cancers and different clinical settings. ctDNA can reflect the presence or size of tumors in a real-time manner and can enable longitudinal monitoring with minimal invasiveness, allowing it to be applied in treatment response assessment and recurrence monitoring for cancer therapies. However, tumor detection by ctDNA remains a great challenge due to the difficulty in enriching ctDNA from a large amount of homologous non-tumor cell-free DNA (cfDNA). Only ctDNA with nonhuman sequences (or rearrangements) can be selected from the background of cfDNA from nontumor DNAs. This is possible for several virus-related cancers, such as hepatitis B virus (HBV)-related HCC or human papillomavirus (HPV)-related cervical or head and neck cancers, which frequently harbor randomly integrated viral DNA. The junction fragments of the integrations, namely virus–host chimera DNA (vh-DNA), can represent the signatures of individual tumors and are released into the blood. Such ctDNA can be enriched by capture with virus-specific probes and therefore exploited as a circulating biomarker to track virus-related cancers in clinical settings. Here, we review virus integrations in virus-related cancers to evaluate the feasibility of vh-DNA as a cell-free tumor marker and update studies on the development of detection and applications. vh-DNA may be a solution to the development of specific markers to manage virus-related cancers in the future.
Collapse
Affiliation(s)
- Chiao-Ling Li
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Center for Genomic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (S.-H.Y.); (P.-J.C.)
| | - Pei-Jer Chen
- Center for Genomic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (S.-H.Y.); (P.-J.C.)
| |
Collapse
|
99
|
Zhu JW, Charkhchi P, Akbari MR. Potential clinical utility of liquid biopsies in ovarian cancer. Mol Cancer 2022; 21:114. [PMID: 35545786 PMCID: PMC9092780 DOI: 10.1186/s12943-022-01588-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. One of the main challenges in the management of OC is the late clinical presentation of disease that results in poor survival. Conventional tissue biopsy methods and serological biomarkers such as CA-125 have limited clinical applications. Liquid biopsy is a novel sampling method that analyzes distinctive tumour components released into the peripheral circulation, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs) and exosomes. Increasing evidence suggests that liquid biopsy could enhance the clinical management of OC by improving early diagnosis, predicting prognosis, detecting recurrence, and monitoring response to treatment. Capturing the unique tumour genetic landscape can also guide treatment decisions and the selection of appropriate targeted therapies. Key advantages of liquid biopsy include its non-invasive nature and feasibility, which allow for serial sampling and longitudinal monitoring of dynamic tumour changes over time. In this review, we outline the evidence for the clinical utility of each liquid biopsy component and review the advantages and current limitations of applying liquid biopsy in managing ovarian cancer. We also highlight future directions considering the current challenges and explore areas where more studies are warranted to elucidate its emerging clinical potential.
Collapse
Affiliation(s)
- Jie Wei Zhu
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Parsa Charkhchi
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
100
|
Gao Q, Zeng Q, Wang Z, Li C, Xu Y, Cui P, Zhu X, Lu H, Wang G, Cai S, Wang J, Fan J. Start of an era: circulating cell-free DNA for early detection of cancers. Innovation (N Y) 2022; 3:100259. [PMID: 35647572 PMCID: PMC9133648 DOI: 10.1016/j.xinn.2022.100259] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
Effective screening modalities are currently available for only a small subset of cancers, and they generally have suboptimal performance with complicated procedures. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for early detection of cancers. Genetic and epigenetic alterations in plasma circulating cell-free DNA (cfDNA) have shown the potential to revolutionize methods of early detection of cancers and facilitate subsequent diagnosis to improve survival of patients. The medical interest in cfDNA assays has been inspired by emerging single- and multi-early detection of cancers studies. This review summarizes current technological and clinical advances, in the hopes of providing insights into the development and applications of cfDNA assays in various cancers and clinical scenarios. The key phases of clinical development of biomarkers are highlighted, and the future developments of cfDNA-based liquid biopsies in early detection of cancers are outlined. It is hoped that this study can boost the potential integration of cfDNA-based early detection of cancers into the current clinical workflow. Liquid biopsy, characterized by minimal invasiveness and user friendliness, can identify multiple cancers at the early stage and localize the tissue of origin The state-of-the-art technology facilitates the application of circulating cell-free DNA (cfDNA) assays in the early detection of cancers cfDNA assays are expected to be integrated into the clinical workflow after technological refinement and clinical trial validation The development and application strategies of cfDNA assays in various cancers and clinical scenarios can vary, and the harm-and-benefit should be balanced carefully
Collapse
Affiliation(s)
- Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | | | - Yu Xu
- Burning Rock Biotech, Guangzhou 510320, China
| | - Peng Cui
- Burning Rock Biotech, Guangzhou 510320, China
| | - Xin Zhu
- Burning Rock Biotech, Guangzhou 510320, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou 510320, China
| | | | - Shangli Cai
- Burning Rock Biotech, Guangzhou 510320, China
- Corresponding author
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
- Corresponding author
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Corresponding author
| |
Collapse
|