51
|
Yamada K, Osawa Y, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T. Serum C14:1/C12:1 ratio is a useful marker for differentiating affected patients with very long-chain acyl-CoA dehydrogenase deficiency from heterozygous carriers. Mol Genet Metab Rep 2019; 21:100535. [PMID: 31844625 PMCID: PMC6895747 DOI: 10.1016/j.ymgmr.2019.100535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/20/2019] [Indexed: 10/28/2022] Open
Abstract
Introduction Various markers, such as C14:1 and the C14:1/C2 ratio, are used as diagnostic markers of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). However, the levels of these markers in patients with VLCADD overlap with those in heterozygous carriers and even healthy subjects. Materials and methods In twenty-three affected patients and 15 heterozygous carriers with VLCADD, the accuracies of C14:1, C14:1/C12:1, C14:1/C2, and C14:1/C16 in dried blood spots (DBS) and serum were statistically estimated. Results Among the serum markers, the sensitivity, specificity, positive predictive value, negative predictive value, false-positive rate, false-negative rate, and validity of C14:1/C12:1 were superior to those of C14:1, C14:1/C2, and C14:1/C16, but C14:1/C2 demonstrated a statistical advantage compared with only C14:1 and C14:1/C16. Elevation in serum C14:1/C12:1 was observed in only one heterozygous carrier, whereas almost half of the carriers displayed false positive results for the other markers. Among the DBS markers, although the accuracy of C14:1/C2 was ostensibly the best, no statistical significance was observed. Discussion Serum C14:1/C12:1 might be useful for differentiating patients with VLCADD from heterozygous carriers. Although serum C14:1/C2 was significantly useful for the detection of VLCADD, this marker could not distinguish the affected patients from carriers. C14:1/C12:1 might be optimal compared with the other markers.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Yoshimitsu Osawa
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan.,Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Yuki Hasegawa
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
52
|
Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M. Metabolic Alterations in Inherited Cardiomyopathies. J Clin Med 2019; 8:E2195. [PMID: 31842377 PMCID: PMC6947282 DOI: 10.3390/jcm8122195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Claudia Sacchetto
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department of Biology, University of Padova, via Ugo Bassi 58B, 35121 Padova, Italy
| | - Vasco Sequeira
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Edoardo Bertero
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Jan Dudek
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Martina Calore
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|
53
|
One potential hotspot ACADVL mutation in Chinese patients with very-long-chain acyl-coenzyme A dehydrogenase deficiency. Clin Chim Acta 2019; 503:218-222. [PMID: 31794763 DOI: 10.1016/j.cca.2019.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency), a rare autosomal recessive disorder, is characterized by hypoketotic hypoglycemia, cardiomyopathy, liver damage, and myopathy. VLCAD deficiency is caused by defects of ACADVL gene, which encodes VLCAD protein. The aim of this study was to determine the clinical, biochemical, prognosis and mutation spectrum of patients with VLCAD deficiency in mainland China. A total of Six families visited us, four patients (2 boys and 2 girls) were admitted in hospital due to liver dysfunction, hypoglycemia, and positive newborn screen result. The parents of the other two patients (2 girls) visited us for genetic consultation after their children's death. All the six patients had elevated level of serum tetradecenoylcarnitine (C14:1-carnitine), four of them showed decreased free carnitine (C0) level, and three had dicarboxylic aciduria. Eight types of mutations of the ACADVL gene were detected, three of them are novel, including c.563G > A (p.G188D) c.1387G > A (p.G463R) and c.1582_1586del (p.L529Sfs*31). The p.R450H mutation accounts for 9/52 alleles (5/40 in previous study of 20 unrelated patients, and 4/12 in this study) of genetically diagnosed Chinese VLCAD deficiency cases. The four alive patients (Patient 1-4) responded well to diet prevention and drug therapy with stable hepatic dysfunction condition. In conclusion, we describe three novel mutations of the ACADVL gene among six unrelated families with VLCAD deficiency. Moreover, we suggest that the p.R450H may be a potential hotspot mutation in the Chinese population.
Collapse
|
54
|
Wang T, Ma J, Zhang Q, Gao A, Wang Q, Li H, Xiang J, Wang B. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Genet 2019; 10:1052. [PMID: 31737040 PMCID: PMC6828960 DOI: 10.3389/fgene.2019.01052] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Expanded newborn screening for inborn errors of metabolism (IEMs) by tandem mass spectrometry (MS/MS) could simultaneously analyze more than 40 metabolites and identify about 50 kinds of IEMs. Next generation sequencing (NGS) targeting hundreds of IMEs-associated genes as a follow-up test in expanded newborn screening has been used for genetic analysis of patients. The spectrum, prevalence, and genetic characteristic of IEMs vary dramatically in different populations. To determine the spectrum, prevalence, and gene mutations of IEMs in newborns in Suzhou, China, 401,660 newborns were screened by MS/MS and 138 patients were referred to genetic analysis by NGS. The spectrum of 22 IEMs were observed in Suzhou population of newborns, and the overall incidence (excluding short chain acyl-CoA dehydrogenase deficiency (SCADD) and 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD)) was 1/3,163. The prevalence of each IEM ranged from 1/401,660 to 1/19,128, while phenylketonuria (PKU) (1/19,128) and Mild hyperphenylalaninemia (M-HPA) (1/19,128) were the most common IEMs, followed by primary carnitine uptake defect (PCUD) (1/26,777), SCADD (1/28,690), hypermethioninemia (H-MET) (1/30,893), 3-MCCD (1/33,412) and methylmalonic acidemia (MMA) (1/40,166). Moreover, 89 reported mutations and 51 novel mutations in 25 IMEs-associated genes were detected in 138 patients with one of 22 IEMs. Some hotspot mutations were observed for ten IEMs, including PAH gene c.728G > A, c.611A > G, and c.721C > T for Phenylketonuria, PAH gene c.158G > A, c.1238G > C, c.728G > A, and c.1315+6T > A for M-HPA, SLC22A5 gene c.1400C > G, c.51C > G, and c.760C > T for PCUD, ACADS gene c.1031A > G, c.164C > T, and c.1130C > T for SCAD deficiency, MAT1A gene c.791G > A for H-MET, MCCC1 gene c.639+2T > A and c.863A > G for 3-MCCD, MMUT gene c.1663G > A for MMA, SLC25A13 gene c.IVS16ins3Kb and c.852_855delTATG for cittrullinemia II, PTS gene c.259C > T and c.166G > A for Tetrahydrobiopterin deficiency, and ACAD8 gene c.1000C > T and c.286C > A for Isobutyryl coa dehydrogenase deficiency. All these hotspot mutations were reported to be pathogenic or likely pathogenic, except a novel mutation of ACAD8 gene c.286C > A. These mutational hotspots could be potential candidates for gene screening and these novel mutations expanded the mutational spectrum of IEMs. Therefore, our findings could be of value for genetic counseling and genetic diagnosis of IEMs.
Collapse
Affiliation(s)
- Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Genetic Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
55
|
Cecatto C, Amaral AU, Wajner A, Wajner SM, Castilho RF, Wajner M. Disturbance of mitochondrial functions associated with permeability transition pore opening induced by cis-5-tetradecenoic and myristic acids in liver of adolescent rats. Mitochondrion 2019; 50:1-13. [PMID: 31655165 DOI: 10.1016/j.mito.2019.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency commonly present liver dysfunction whose pathogenesis is poorly known. We demonstrate here that major metabolites accumulating in this disorder, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), markedly impair mitochondrial respiration, decreasing ATP production in liver mitochondrial preparations from adolescent rats. Other parameters of mitochondrial homeostasis such as membrane potential (ΔΨm) and Ca2+retention capacity were strongly compromised by these fatty acids, involving induction of mitochondrial permeability transition. The present data indicate that disruption of mitochondrial bioenergetics and Ca2+homeostasis may contribute to the liver dysfunction of VLCAD deficient patients.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
56
|
Wang B, Zhang Q, Gao A, Wang Q, Ma J, Li H, Wang T. New Ratios for Performance Improvement for Identifying Acyl-CoA Dehydrogenase Deficiencies in Expanded Newborn Screening: A Retrospective Study. Front Genet 2019; 10:811. [PMID: 31620161 PMCID: PMC6759686 DOI: 10.3389/fgene.2019.00811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Some success in identifying acyl-CoA dehydrogenase (ACAD) deficiencies before they are symptomatic has been achieved through tandem mass spectrometry. However, there has been several challenges that need to be confronted, including excess false positives, the occasional false negatives and indicators selection. To select ideal indicators and evaluate their performance for identifying ACAD deficiencies, data from 352,119 newborn babies, containing 20 cases, were used in this retrospective study. A total of three new ratios, C4/C5DC+C6-OH, C8/C14:1, and C14:1/C16-OH, were selected from 43 metabolites. Around 903 ratios derived from pairwise combinations of all metabolites via multivariate logistic regression analysis were used. In the current study, the regression analysis was performed to identify short chain acyl-CoA dehydrogenase (SCAD) deficiency, medium chain acyl-CoA dehydrogenase (MCAD) deficiency, and very long chain acyl-CoA dehydrogenase (VLCAD) deficiency. In both model-building and testing data, the C4/C5DC+C6-OH, C8/C14:1 and C14:1/C16-OH were found to be better indicators for SCAD, MCAD and VLCAD deficiencies, respectively, compared to [C4, (C4, C4/C2)], [C8, (C6, C8, C8/C2, C4DC+C5-OH/C8:1)], and [C14:1, (C14:1, C14:1/C16, C14:1/C2)], respectively. In addition, 22 mutations, including 5 novel mutations and 17 reported mutations, in ACADS, ACADM, and ACADL genes were detected in 20 infants with ACAD deficiency by using high-thorough sequencing based on target capture. The pathogenic mutations of c.1031A > G in ACADS, c.449_452delCTGA in ACADM and c.1349G > A in ACADL were found to be hot spots in Suzhou patients with SCAD, MCAD, and VLCAD, respectively. In conclusion, we had identified three new ratios that could improve the performance for ACAD deficiencies compared to the used indicators. We considered to utilize C4/C5DC+C6-OH, C8/C14:1, and C14:1/C16-OH as primary indicators for SCAD, MCAD, and VLCAD deficiency, respectively, in further expanded newborn screening practice. In addition, the spectrum of mutations in Suzhou population enriches genetic data of Chinese patients with one of ACAD deficiencies.
Collapse
Affiliation(s)
- Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
57
|
Yamada K, Matsubara K, Matsubara Y, Watanabe A, Kawakami S, Ochi F, Kuwabara K, Mushimoto Y, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T. Clinical course in a patient with myopathic VLCAD deficiency during pregnancy with an affected baby. JIMD Rep 2019; 49:17-20. [PMID: 31497477 PMCID: PMC6718132 DOI: 10.1002/jmd2.12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/08/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive mitochondrial fatty acid oxidation disorder that manifests in three clinical forms: (a) severe, (b) milder, and (c) myopathic. Patients with the myopathic form present intermittent muscular symptoms such as myalgia, muscle weakness, and rhabdomyolysis during adolescence or adulthood. Here, the clinical symptoms and serum creatine kinase (CK) levels of a pregnant 31-year-old woman with the myopathic form of VLCAD deficiency were reduced during pregnancy. Clinical symptoms rarely appeared during pregnancy, although she had sometimes suffered from muscular symptoms before pregnancy. When ritodrine was administered for threatened premature labor at 35 weeks of gestation, her CK level was elevated to over 3900 IU/L. She delivered a full-term baby via cesarean section but suffered from muscle weakness with elevated CK levels soon after delivery. It has been reported that an unaffected placenta and fetus can improve maternal β-oxidation during pregnancy. However, in our case, the baby was also affected by VLCAD deficiency. These suggest that the clinical symptoms of a woman with VLCAD deficiency might be reduced during pregnancy even if the fetus is affected with VLCAD deficiency.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Keiichi Matsubara
- Department of Obstetrics and GynecologyEhime University School of MedicineToonEhimeJapan
| | - Yuko Matsubara
- Department of Obstetrics and GynecologyEhime University School of MedicineToonEhimeJapan
| | - Asami Watanabe
- Department of PediatricsYawatahama City General HospitalYawatahamaEhimeJapan
- Department of PediatricsEhime University Graduate School of MedicineToonEhimeJapan
| | - Sanae Kawakami
- Department of PediatricsYawatahama City General HospitalYawatahamaEhimeJapan
| | - Fumihiro Ochi
- Department of PediatricsYawatahama City General HospitalYawatahamaEhimeJapan
- Department of PediatricsEhime University Graduate School of MedicineToonEhimeJapan
| | - Kozue Kuwabara
- Department of PediatricsEhime University Graduate School of MedicineToonEhimeJapan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Hironori Kobayashi
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Yuki Hasegawa
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Seiji Fukuda
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Seiji Yamaguchi
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Takeshi Taketani
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| |
Collapse
|
58
|
Vannoy CH, Leroy V, Broniowska K, Lu QL. Metabolomics Analysis of Skeletal Muscles from FKRP-Deficient Mice Indicates Improvement After Gene Replacement Therapy. Sci Rep 2019; 9:10070. [PMID: 31296900 PMCID: PMC6624266 DOI: 10.1038/s41598-019-46431-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Muscular dystrophy-dystroglycanopathies comprise a heterogeneous and complex group of disorders caused by loss-of-function mutations in a multitude of genes that disrupt the glycobiology of α-dystroglycan, thereby affecting its ability to function as a receptor for extracellular matrix proteins. Of the various genes involved, FKRP codes for a protein that plays a critical role in the maturation of a novel glycan found only on α-dystroglycan. Yet despite knowing the genetic cause of FKRP-related dystroglycanopathies, the molecular pathogenesis of disease and metabolic response to therapeutic intervention has not been fully elucidated. To address these challenges, we utilized mass spectrometry-based metabolomics to generate comprehensive metabolite profiles of skeletal muscle across diseased, treated, and normal states. Notably, FKRP-deficient mice elicit diverse metabolic abnormalities in biomarkers of extracellular matrix remodeling and/or aging, pentoses/pentitols, glycolytic intermediates, and lipid metabolism. More importantly, the restoration of FKRP protein activity following AAV-mediated gene therapy induced a substantial correction of these metabolic impairments. While interconnections of the affected molecular mechanisms remain unclear, our datasets support the notion that global metabolic profiling can be valuable for determining the involvement of previously unsuspected regulatory or pathological pathways as well as identifying potential targets for drug discovery and diagnostics.
Collapse
Affiliation(s)
- Charles Harvey Vannoy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA.
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | | | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA.
| |
Collapse
|
59
|
Long AH, Fiore JG, Gillani R, Douglass LM, Fujii AM, Hoffman JD. Hypotonia and Lethargy in a Two-Day-Old Male Infant. Pediatrics 2019; 144:peds.2018-0788. [PMID: 31227563 DOI: 10.1542/peds.2018-0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
A 2-day old term male infant was found to be hypotonic and minimally reactive during routine nursing care in the newborn nursery. At 40 hours of life, he was hypoglycemic and had intermittent desaturations to 70%. His mother had an unremarkable pregnancy and spontaneous vaginal delivery. The mother's prenatal serology results were negative for infectious risk factors. Apgar scores were 9 at 1 and 5 minutes of life. On day 1 of life, he fed, stooled, and voided well. Our expert panel discusses the differential diagnosis of hypotonia in a neonate, offers diagnostic and management recommendations, and discusses the final diagnosis.
Collapse
Affiliation(s)
- Adrienne H Long
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; and .,Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Jennifer G Fiore
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; and.,Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Riaz Gillani
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; and.,Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | | | | | | |
Collapse
|
60
|
Herrera-Olivares AM, Fernández-Luque JA, Paradas C, Lucia A, Santalla A. Combined HIIT and Resistance Training in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: A Case Report. Front Physiol 2019; 10:650. [PMID: 31191348 PMCID: PMC6547021 DOI: 10.3389/fphys.2019.00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a rare disorder of mitochondrial fatty acid β-oxidation characterized by a spectrum of clinical manifestations. Patients with the adult-onset form can present with muscle pain, rhabdomyolysis and myoglobinuria after physiological stress, such as fasting and exercise. We report on a 23-year-old female patient with a history of recurrent rhabdomyolysis. The patient completed a 6-month supervised combined (high-intensity interval training [HIIT] + resistance training) program, with the addition of a medium chain triglyceride + carbohydrate supplement provided 60 min before each session. The HIIT consisted of 6 sets of 70–80 s performed at maximum intensity with a minimum cadence of 100 rpm. Resistance training consisted of a circuit of basic exercises with dumbbells and elastic bands, with sets of 4–7 repetitions. The patient was evaluated at months 0, 3 and 6 using an incremental discontinuous step protocol, with steps of 1 min of exercise/1 min of passive recovery, at a high pedal cadence. The test started at 10 W, with a load increase of 10 W/step. Blood creatine kinase (CK) concentration was measured before each evaluation. There was a training-induced increment of 90.2% in peak oxygen uptake (VO2peak), 71.4% in peak power output and 24.7% in peak heart rate. The patient reported no muscle pain, contractures, rhabdomyolysis (basal CK concentration was always <200 U/L) or hospital admissions during the training period. After completion of 6-month program, the patient remained active, doing similar but non-supervised training for 1.5 years (to date). During this period, the patient has not reported myalgias, contractures, rhabdomyolysis or hospital admissions. Our preliminary data suggest that it is possible to carry out a combined (HIIT + strength) training program in patients with VLCADD, safely (without muscle contractures or rhabdomyolysis) and obtaining high values of VO2peak and cycling power output.
Collapse
Affiliation(s)
| | | | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alfredo Santalla
- Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
61
|
Bleeker JC, Kok IL, Ferdinandusse S, van der Pol WL, Cuppen I, Bosch AM, Langeveld M, Derks TGJ, Williams M, de Vries M, Mulder MF, Gozalbo ER, de Sain-van der Velden MGM, Rennings AJ, Schielen PJCI, Dekkers E, Houtkooper RH, Waterham HR, Pras-Raves ML, Wanders RJA, van Hasselt PM, Schoenmakers M, Wijburg FA, Visser G. Impact of newborn screening for very-long-chain acyl-CoA dehydrogenase deficiency on genetic, enzymatic, and clinical outcomes. J Inherit Metab Dis 2019; 42:414-423. [PMID: 30761551 DOI: 10.1002/jimd.12075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
Most infants with very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) identified by newborn screening (NBS) are asymptomatic at the time of diagnosis and remain asymptomatic. If this outcome is due to prompt diagnosis and initiation of therapy, or because of identification of individuals with biochemical abnormalities who will never develop symptoms, is unclear. Therefore, a 10-year longitudinal national cohort study of genetically confirmed VLCADD patients born before and after introduction of NBS was conducted. Main outcome measures were clinical outcome parameters, acyl-CoA dehydrogenase very long chain gene analysis, VLCAD activity, and overall capacity of long-chain fatty acid oxidation (LC-FAO flux) in lymphocytes and cultured skin fibroblasts. Median VLCAD activity in lymphocytes of 54 patients, 21 diagnosed pre-NBS and 33 by NBS was, respectively, 5.4% (95% confidence interval [CI]: 4.0-8.3) and 12.6% (95% CI: 10.7-17.7; P < 0.001) of the reference mean. The median LC-FAO flux was 33.2% (95% CI: 22.8-48.3) and 41% (95% CI: 40.8-68; P < 0.05) of the control mean, respectively. Clinical characteristics in 23 pre-NBS and 37 NBS patients revealed hypoglycemic events in 12 vs 2 patients, cardiomyopathy in 5 vs 4 patients and myopathy in 14 vs 3 patients. All patients with LC-FAO flux <10% developed symptoms. Of the patients with LC-FAO flux >10% 7 out of 12 diagnosed pre-NBS vs none by NBS experienced hypoglycemic events. NBS has a clear beneficial effect on the prevention of hypoglycemic events in patients with some residual enzyme activity, but does not prevent hypoglycemia nor cardiac complications in patients with very low residual enzyme activity. The effect of NBS on prevalence and prevention of myopathy-related complications remains unclear.
Collapse
Affiliation(s)
- Jeannette C Bleeker
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Irene L Kok
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Internal Medicine and Dermatology, Dietetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, Spieren voor Spieren Kindercentrum, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Cuppen
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, Spieren voor Spieren Kindercentrum, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annet M Bosch
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique Williams
- Center for Lysosomal and Metabolic Disorders, Department of Pediatrics, Sophia Children's Hospital EMC, Rotterdam, The Netherlands
| | - Maaike de Vries
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot F Mulder
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Estela R Gozalbo
- Department of Pediatrics and Clinical Genomics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Monique G M de Sain-van der Velden
- Department of Medical Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J Rennings
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter J C I Schielen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Eugenie Dekkers
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marja Schoenmakers
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, Spieren voor Spieren Kindercentrum, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frits A Wijburg
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
62
|
Rovelli V, Manzoni F, Viau K, Pasquali M, Longo N. Clinical and biochemical outcome of patients with very long-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2019; 127:64-73. [PMID: 31031081 DOI: 10.1016/j.ymgme.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Very-Long-Chain Acyl-CoA Dehydrogenase (VLCAD) deficiency is a disorder of fatty acid oxidation included in the recommended uniform newborn screening (NBS) panel in the USA. It can have variable clinical severity and there is limited information on the natural history of this condition, clinical presentation according to genotype and effectiveness of newborn screening. METHODS Retrospective data (growth parameters, morbidity, biochemical and genetic testing results) were collected from patients with VLCAD deficiency, to evaluate biochemical and clinical outcomes. Descriptive statistics was used for qualitative variables, while linear regression analysis was used to correlate continuous variables. RESULTS VLCAD deficiency (screened by measuring elevated levels of C14:1-carnitine in blood spots) was more frequent in Utah than the national average (1:27,617 versus 1:63,481) in the first ten years of screening. Twenty-six patients had a confirmed diagnosis of VLCAD deficiency using DNA testing or functional studies. The c.848T>C (p.V283A) variant in the ACADVL gene was the most frequent in our population. Novel variants (c.623-21A>G (IVS7-21A>G); c.1052C>T (p.T351I); c.1183-7A>G (IVS11-7A>G); c.1281G>C (p.W427C); c.1923G>C (p.L641F); c.1924G>A (p.V642M)) were identified in this study, with their pathogenicity remaining unclear in most cases. C14:1-carnitine levels decreased with age and significantly correlated with CK levels as index of muscle involvement. There were no cases of HELLP syndrome nor liver disease during pregnancies in the mothers of VLCAD patients. None of our patients developed cardiac involvement after birth and all patients had normal growth parameters while on treatment. Clinical manifestations were related to concomitant infections and altered biochemical parameters. DISCUSSION VLCAD deficiency can be identified by neonatal screening. Most patients compliant with therapy normalized biochemical parameters and had no major clinical manifestations. Complications were completely prevented with a relatively low number of pre-emptive ER visits or hospital admissions. It remains unclear whether neonatal screening is now identifying less severely affected patient or if complications will arise as subjects become older. Observation beyond puberty is necessary to fully understand the impact of VLCAD deficiency on morbidity in patients with VLCAD deficiency.
Collapse
Affiliation(s)
- Valentina Rovelli
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA; Clinical Department of Pediatrics, University of Milan, San Paolo Hospital, Milan, Italy
| | - Francesca Manzoni
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA; Clinical Department of Neuropsychiatry, University of Milan, San Paolo Hospital, Milan, Italy
| | - Krista Viau
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA; Boston Children's Hospital, Boston, MA, USA
| | - Marzia Pasquali
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nicola Longo
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
63
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
64
|
Bleeker JC, Kok IL, Ferdinandusse S, de Vries M, Derks TGJ, Mulder MF, Williams M, Gozalbo ER, Bosch AM, van den Hurk DT, de Sain-van der Velden MGM, Waterham HR, Wijburg FA, Visser G. Proposal for an individualized dietary strategy in patients with very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2019; 42:159-168. [PMID: 30740737 DOI: 10.1002/jimd.12037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Patients with very long chain acyl-CoA dehydrogenase deficiency (VLCADD), a long chain fatty acid oxidation disorder, are traditionally treated with a long chain triglyceride (LCT) restricted and medium chain triglyceride (MCT) supplemented diet. Introduction of VLCADD in newborn screening (NBS) programs has led to the identification of asymptomatic newborns with VLCADD, who may have a more attenuated phenotype and may not need dietary adjustments. OBJECTIVE To define dietary strategies for individuals with VLCADD based on the predicted phenotype. METHOD We evaluated long-term dietary histories of a cohort of individuals diagnosed with VLCADD identified before the introduction of VLCADD in NBS and their beta-oxidation (LC-FAO) flux score (rate of oleate oxidation) in cultured skin fibroblasts in relation to the clinical outcome. Based on these results a dietary strategy is proposed. RESULTS Sixteen individuals with VLCADD were included. One had an LC-FAO flux score >90%, was not on a restricted diet and is asymptomatic to date. Four patients had an LC-FAO flux score <10%, and significant VLCADD related symptoms despite the use of strict diets including LCT restriction, MCT supplementation and nocturnal gastric drip feeding. Patients with an LC-FAO flux score between 10 and 90% (n = 11) showed a more heterogeneous phenotype. CONCLUSIONS This study shows that a strict diet cannot prevent poor clinical outcome in severely affected patients and that the LC-FAO flux is a good predictor of clinical outcome in individuals with VLCADD identified before its introduction in NBS. Hereby, we propose an individualized dietary strategy based on the LC-FAO flux score.
Collapse
Affiliation(s)
- Jeannette C Bleeker
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital (UMCU), University Medical Center Utrecht, Internal Mail KE 04.306.0, PO Box 85090 3508 AB, Utrecht, Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Irene L Kok
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital (UMCU), University Medical Center Utrecht, Internal Mail KE 04.306.0, PO Box 85090 3508 AB, Utrecht, Netherlands
- Department of Internal Medicine and Dermatology, Dietetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands
| | - Maaike de Vries
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Terry G J Derks
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Margot F Mulder
- Department of Pediatrics, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Monique Williams
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, Netherlands
| | - Estela Rubio Gozalbo
- Department of Pediatrics and Laboratory Genetic Metabolic Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dorine T van den Hurk
- Department of Internal Medicine and Dermatology, Dietetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Monique G M de Sain-van der Velden
- Department of Medical Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands
| | - Frits A Wijburg
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital (UMCU), University Medical Center Utrecht, Internal Mail KE 04.306.0, PO Box 85090 3508 AB, Utrecht, Netherlands
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
65
|
Pennisi EM, Garibaldi M, Antonini G. Lipid Myopathies. J Clin Med 2018; 7:E472. [PMID: 30477112 PMCID: PMC6306737 DOI: 10.3390/jcm7120472] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Disorders of lipid metabolism affect several tissues, including skeletal and cardiac muscle tissues. Lipid myopathies (LM) are rare multi-systemic diseases, which most often are due to genetic defects. Clinically, LM can have acute or chronic clinical presentation. Disease onset can occur in all ages, from early stages of life to late-adult onset, showing with a wide spectrum of clinical symptoms. Muscular involvement can be fluctuant or stable and can manifest as fatigue, exercise intolerance and muscular weakness. Muscular atrophy is rarely present. Acute muscular exacerbations, resulting in rhabdomyolysis crisis are triggered by several factors. Several classifications of lipid myopathies have been proposed, based on clinical involvement, biochemical defect or histopathological findings. Herein, we propose a full revision of all the main clinical entities of lipid metabolism disorders with a muscle involvement, also including some those disorders of fatty acid oxidation (FAO) with muscular symptoms not included among previous lipid myopathies classifications.
Collapse
Affiliation(s)
- Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, 00135 Rome, Italy.
| | - Matteo Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| | - Giovanni Antonini
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| |
Collapse
|
66
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
67
|
Hesse J, Braun C, Behringer S, Matysiak U, Spiekerkoetter U, Tucci S. The diagnostic challenge in very-long chain acyl-CoA dehydrogenase deficiency (VLCADD). J Inherit Metab Dis 2018; 41:1169-1178. [PMID: 30194637 DOI: 10.1007/s10545-018-0245-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is the most common defect of mitochondrial β-oxidation of long-chain fatty acids. However, the unambiguous diagnosis of true VLCADD patients may be challenging, and a high rate of false positive individuals identified by newborn screening undergo confirmation diagnostics. In this study, we show the outcome of enzyme testing in lymphocytes as a confirmatory tool in newborns identified by screening, and the correlation with molecular sequencing of the ACADVL gene. From April 2013 to March 2017, in 403 individuals with characteristic acylcarnitine profiles indicative of VLCADD, palmitoyl-CoA oxidation was measured followed by molecular genetic analysis in most of the patients with residual activity (RA) <50%. In almost 50% of the samples (209/403) the RA was >50%, one-third of the individuals (125/403) displayed a RA of 30-50% and 69/403 individuals showed a residual activity of 0-30%. Sequencing of the ACADVL gene revealed that all individuals with activities below 24% were true VLCADD patients, individuals with residual activities between 24 and 27% carried either one or two mutations. Twenty new mutations could be identified and functionally classified based on their effect on enzyme function. Finally, we observed an up-regulation of MCAD-activity in many patients. However, this did not correlate with the degree of VLCAD RA. Although the likely clinical phenotype cannot be fully foreseen by genetic and functional tests as it depends on many factors, our data demonstrate the strength of this functional enzyme test in lymphocytes as a quick and reliable method for confirmation diagnostics of VLCADD.
Collapse
Affiliation(s)
- Julia Hesse
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Clinical Biochemistry and Metabolism, Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, D-79106, Freiburg, Germany
| | - Carina Braun
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Clinical Biochemistry and Metabolism, Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, D-79106, Freiburg, Germany
| | - Sidney Behringer
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Clinical Biochemistry and Metabolism, Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, D-79106, Freiburg, Germany
| | - Uta Matysiak
- Pediatric Genetics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sara Tucci
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Laboratory of Clinical Biochemistry and Metabolism, Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, D-79106, Freiburg, Germany.
| |
Collapse
|
68
|
A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy. G3-GENES GENOMES GENETICS 2018; 8:1545-1554. [PMID: 29491033 PMCID: PMC5940147 DOI: 10.1534/g3.118.200084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several enzymes are involved in fatty acid oxidation, which is a key process in mitochondrial energy production. Inherited defects affecting any step of fatty acid oxidation can result in clinical disease. We present here an extended family of German Hunting Terriers with 10 dogs affected by clinical signs of exercise induced weakness, muscle pain, and suspected rhabdomyolysis. The combination of clinical signs, muscle histopathology and acylcarnitine analysis with an elevated tetradecenoylcarnitine (C14:1) peak suggested a possible diagnosis of acyl-CoA dehydrogenase very long chain deficiency (ACADVLD). Whole genome sequence analysis of one affected dog and 191 controls revealed a nonsense variant in the ACADVL gene encoding acyl-CoA dehydrogenase very long chain, c.1728C>A or p.(Tyr576*). The variant showed perfect association with the phenotype in the 10 affected and more than 500 control dogs of various breeds. Pathogenic variants in the ACADVL gene have been reported in humans with similar myopathic phenotypes. We therefore considered the detected variant to be the most likely candidate causative variant for the observed exercise induced myopathy. To our knowledge, this is the first description of this disease in dogs, which we propose to name exercise induced metabolic myopathy (EIMM), and the identification of the first canine pathogenic ACADVL variant. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring.
Collapse
|
69
|
El-Gharbawy A, Vockley J. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. Pediatr Clin North Am 2018; 65:317-335. [PMID: 29502916 PMCID: PMC6566095 DOI: 10.1016/j.pcl.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acid oxidation disorders (FAODs) and carnitine shuttling defects are inborn errors of energy metabolism with associated mortality and morbidity due to cardiomyopathy, exercise intolerance, rhabdomyolysis, and liver disease with physiologic stress. Hypoglycemia is characteristically hypoketotic. Lactic acidemia and hyperammonemia may occur during decompensation. Recurrent rhabdomyolysis is debilitating. Expanded newborn screening can detect most of these disorders, allowing early, presymptomatic treatment. Treatment includes avoiding fasting and sustained extraneous exercise and providing high-calorie hydration during illness to prevent lipolysis, and medium-chain triglyceride oil supplementation in long-chain FAODs. Carnitine supplementation may be helpful. However, conventional treatment does not prevent all symptoms.
Collapse
Affiliation(s)
- Areeg El-Gharbawy
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Cairo University, Kasr Al-Aini, Cairo, Egypt
| | - Jerry Vockley
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
70
|
Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018; 19:93-106. [PMID: 29926323 PMCID: PMC6208583 DOI: 10.1007/s11154-018-9448-1] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial fatty acid oxidation is an essential pathway for energy production, especially during prolonged fasting and sub-maximal exercise. Long-chain fatty acids are the most abundant fatty acids in the human diet and in body stores, and more than 15 enzymes are involved in long-chain fatty acid oxidation. Pathogenic mutations in genes encoding these enzymes result in a long-chain fatty acid oxidation disorder in which the energy homeostasis is compromised and long-chain acylcarnitines accumulate. Symptoms arise or exacerbate during catabolic situations, such as fasting, illness and (endurance) exercise. The clinical spectrum is very heterogeneous, ranging from hypoketotic hypoglycemia, liver dysfunction, rhabdomyolysis, cardiomyopathy and early demise. With the introduction of several of the long-chain fatty acid oxidation disorders (lcFAOD) in newborn screening panels, also asymptomatic individuals with a lcFAOD are identified. However, despite early diagnosis and dietary therapy, a significant number of patients still develop symptoms emphasizing the need for individualized treatment strategies. This review aims to function as a comprehensive reference for clinical and laboratory findings for clinicians who are confronted with pediatric and adult patients with a possible diagnosis of a lcFAOD.
Collapse
Affiliation(s)
- Suzan J G Knottnerus
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Jeannette C Bleeker
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Lodewijk IJlst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Gepke Visser
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands.
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Riekelt H Houtkooper
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
71
|
Targeted next-generation sequencing analysis in couples at increased risk for autosomal recessive disorders. Orphanet J Rare Dis 2018; 13:23. [PMID: 29373990 PMCID: PMC5787287 DOI: 10.1186/s13023-018-0763-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Many of the genetic childhood disorders leading to death in the pre- or neonatal period or during early childhood follow autosomal recessive modes of inheritance and bear specific challenges for genetic counseling and prenatal diagnostics. Parents are carriers but clinically unaffected, and diseases are rare but have recurrence risks of 25% in the same family. Often, affected children (or fetuses) die before a genetic diagnosis can be established, post-mortem analysis and phenotypic descriptions are insufficient and DNA from affected fetuses or children is not available for later analysis. A genetic diagnosis showing biallelic causative mutations is, however, the requirement for targeted carrier testing in parents and prenatal and preimplantation genetic diagnosis in further pregnancies. Methods We undertook targeted next-generation sequencing (NGS) for carrier screening of autosomal recessive lethal disorders in 8 consanguineous and 5 non-consanguineous couples with one or more affected children. We searched for heterozygous variants (non-synonymous coding or splice variants) in parents’ DNA, using a set of 430 genes known to be causative for rare autosomal recessive diseases with poor prognosis, and then filtering for variants present in genes overlapping in both partners. Putative pathogenic variants were tested for cosegregation in affected fetuses or children where material was available. Results The diagnosis for the premature death in children was established in 5 of the 13 couples. Out of the 8 couples in which no causative diagnosis could be established 4 consented to undergo further analysis, in two of those a potentially causative variant in a novel candidate gene was identified. Conclusions For the families in whom causative variants could be identified, these may now be used for prenatal and preimplantation genetic diagnostics. Our data show that NGS based gene panel sequencing of selected genes involved in lethal autosomal recessive disorders is an effective tool for carrier screening in parents and for the identification of recessive gene defects and offers the possibility of prenatal and preimplantation genetic diagnosis in further pregnancies in families that have experienced deaths in early childhood and /or multiple abortions. Electronic supplementary material The online version of this article (10.1186/s13023-018-0763-0) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Alaygut D, Torun Bayram M, Kasap B, Soylu A, Türkmen M, Kavukcu S. Rhabdomyolysis with different etiologies in childhood. World J Clin Pediatr 2017; 6:161-168. [PMID: 29184760 PMCID: PMC5691034 DOI: 10.5409/wjcp.v6.i4.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/21/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate different etiologies and management of the rhabdomyolysis in children.
METHODS Eight pediatric rhabdomyolysis cases who applied to the Dokuz Eylul University Faculty of Medicine Department of Pediatric Nephrology with different etiologies between January 2004 and January 2012 were evaluated in terms of age, gender, admission symptoms, physical examination findings, factors provoking rhabdomyolysis, number of rhabdomyolysis attacks, laboratory results, family history and the final diagnosis received after the treatment.
RESULTS Average diagnosis ages of eight cases were 129 (24-192) ± 75.5 mo and five of them were girls. All of them had applied with the complaint of muscle pain, calf pain, and dark color urination. Infection (pneumonia) and excessive physical activity were the most important provocative factors and excessive licorice consumption was observed in one case. In 5 cases, acute kidney injury was determined and two cases needed hemodialysis. As a result of the further examinations; the cases had received diagnoses of rhabdomyolysis associated with mycoplasma pneumoniae, sepsis associated rhabdomyolysis, licorice-induced hypokalemic rhabdomyolysis, carnitine palmitoyltransferase II deficiency, very long-chain acyl-CoA dehydrogenase deficiency, congenital muscular dystrophy and idiopathic paroxysmal rhabdomyolysis (Meyer-Betz syndrome).
CONCLUSION It is important to distinguish the sporadic and recurrent rhabdomyolysis cases from each other. Recurrent rhabdomyolysis cases should follow up more regardful and attentive.
Collapse
Affiliation(s)
- Demet Alaygut
- Department of Pediatric Nephrology, Dokuz Eylul University Faculty of Medicine, 35340 İnciralti İzmir, Turkey
| | - Meral Torun Bayram
- Department of Pediatric Nephrology, Dokuz Eylul University Faculty of Medicine, 35340 İnciralti İzmir, Turkey
| | - Belde Kasap
- Department of Pediatric Nephrology, Dokuz Eylul University Faculty of Medicine, 35340 İnciralti İzmir, Turkey
| | - Alper Soylu
- Department of Pediatric Nephrology, Dokuz Eylul University Faculty of Medicine, 35340 İnciralti İzmir, Turkey
| | - Mehmet Türkmen
- Department of Pediatric Nephrology, Dokuz Eylul University Faculty of Medicine, 35340 İnciralti İzmir, Turkey
| | - Salih Kavukcu
- Department of Pediatric Nephrology, Dokuz Eylul University Faculty of Medicine, 35340 İnciralti İzmir, Turkey
| |
Collapse
|
73
|
Vengalil S, Preethish-Kumar V, Polavarapu K, Christopher R, Gayathri N, Natarajan A, Manjunath M, Nashi S, Prasad C, Nalini A. Fatty acid oxidation defects presenting as primary myopathy and prominent dropped head syndrome. Neuromuscul Disord 2017; 27:986-996. [DOI: 10.1016/j.nmd.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/11/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
|
74
|
Clinical, Biochemical, and Molecular Features in 37 Saudi Patients with Very Long Chain Acyl CoA Dehydrogenase Deficiency. JIMD Rep 2017; 40:47-53. [PMID: 28980192 DOI: 10.1007/8904_2017_58] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Very long chain acyl CoA dehydrogenase (VLCAD) deficiency (OMIM#201475) is an autosomal recessive disorder of fatty acid beta oxidation caused by defect in the ACADVL. The aim of this study was to analyze the clinical, biochemical, and molecular features of VLCAD deficiency in Saudi Arabia, including the treatment and outcome. METHODS We carried out a retrospective chart review analysis of 37 VLCAD deficiency patients from two tertiary centers in Saudi Arabia, over a 14-year period (2002-2016). Twenty-three patients were managed at King Abdul-Aziz Medical City and fourteen patients at King Fahad Medical City. RESULTS Severe early onset VLCAD deficiency is the most frequent phenotype in our patients, caused by four different mutations in ACADVL; 31 patients (83.7%) had a homozygous nonsense mutation in exon 2 of ACADVL c.65C>A;p. Ser22X. Twenty-three patients died before the age of 2 years, despite early detection by newborn screening and implementation of treatment, including supplementation with medium chain triglycerides. CONCLUSION This study reports the clinical, biochemical, molecular findings, treatment, and outcome of patients with VLCAD deficiency over the last 14 years. We identified the most common variant and one new variant in ACADVL. Despite early diagnosis and treatment, the outcome of VLCAD deficiency in this Saudi Arabian population remains poor. Preventive measures, such as prenatal diagnosis, could be implemented.
Collapse
|
75
|
Merinero B, Alcaide P, Martín-Hernández E, Morais A, García-Silva MT, Quijada-Fraile P, Pedrón-Giner C, Dulin E, Yahyaoui R, Egea JM, Belanger-Quintana A, Blasco-Alonso J, Fernandez Ruano ML, Besga B, Ferrer-López I, Leal F, Ugarte M, Ruiz-Sala P, Pérez B, Pérez-Cerdá C. Four Years' Experience in the Diagnosis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency in Infants Detected in Three Spanish Newborn Screening Centers. JIMD Rep 2017; 39:63-74. [PMID: 28755359 DOI: 10.1007/8904_2017_40] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Identification of very long-chain acyl-CoA dehydrogenase deficiency is possible in the expanded newborn screening (NBS) due to the increase in tetradecenoylcarnitine (C14:1) and in the C14:1/C2, C14:1/C16, C14:1/C12:1 ratios detected in dried blood spots. Nevertheless, different confirmatory tests must be performed to confirm the final diagnosis. We have revised the NBS results and the results of the confirmatory tests (plasma acylcarnitine profiles, molecular findings, and lymphocytes VLCAD activity) for 36 cases detected in three Spanish NBS centers during 4 years, correlating these with the clinical outcome and treatment. Our aim was to distinguish unambiguously true cases from disease carriers in order to obtain useful diagnostic information for clinicians that can be applied in the follow-up of neonates identified by NBS.Increases in C14:1 and of the different ratios, the presence of two pathogenic mutations, and deficient enzyme activity in lymphocytes (<12% of the intra-assay control) identified 12 true-positive cases. These cases were given nutritional therapy and all of them are asymptomatic, except one. Seventeen individuals were considered disease carriers based on the mild increase in plasma C14:1, in conjunction with the presence of only one mutation and/or intermediate residual activity (18-57%). In addition, seven cases were classified as false positives, with normal biochemical parameters and no mutations in the exonic region of ACADVL. All these carriers and the false positive cases remained asymptomatic. The combined evaluation of the acylcarnitine profiles, genetic results, and residual enzyme activities have proven useful to definitively classify individuals with suspected VLCAD deficiency into true-positive cases and carriers, and to decide which cases need treatment.
Collapse
Affiliation(s)
- B Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain.
| | - P Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - E Martín-Hernández
- Departamento de Pediatría, Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Hospital Universitario Doce de Octubre, Universidad Complutense de Madrid, CIBERER, Madrid, Spain
| | - A Morais
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario Infantil La Paz, Madrid, Spain
| | - M T García-Silva
- Departamento de Pediatría, Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Hospital Universitario Doce de Octubre, Universidad Complutense de Madrid, CIBERER, Madrid, Spain
| | - P Quijada-Fraile
- Departamento de Pediatría, Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Hospital Universitario Doce de Octubre, Universidad Complutense de Madrid, CIBERER, Madrid, Spain
| | - C Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - E Dulin
- Laboratorio de Cribado Neonatal, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - R Yahyaoui
- Laboratorio de Metabolopatías, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - J M Egea
- Centro de Bioquímica y Genética Clínica, Unidad de Metabolopatías, Hospital General Universitario Virgen de la Arrixaca, Murcia, Spain
| | - A Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Servicio de Pediatría, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - J Blasco-Alonso
- Sección de Gastroenterología y Nutrición Pediátrica, Hospital Regional de Málaga, Málaga, Spain
| | - M L Fernandez Ruano
- Laboratorio de Cribado Neonatal, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - B Besga
- Laboratorio de Cribado Neonatal, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - I Ferrer-López
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - F Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - M Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - P Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - C Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| |
Collapse
|
76
|
Guo Y, Cui L, Jiang S, Zhang A, Jiang S. Proteomics of acute heart failure in a rat post-myocardial infarction model. Mol Med Rep 2017; 16:1946-1956. [PMID: 28656274 PMCID: PMC5561871 DOI: 10.3892/mmr.2017.6820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 04/07/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to identify the mechanisms underlying the development of post-myocardial infarction (post-MI) heart failure. The left anterior descending coronary artery of rats was occluded to mimic human ischemic heart disease. Linear Trap Quadropole OrbiTrap mass spectrometry was used to profile the expressions of energy metabolism‑associated and calcium‑binding proteins in the post‑MI and control groups. Using the online Protein Analysis Through Evolutionary Relationships classification system, 78 differentially expressed proteins were identified, including 50 downregulated proteins and 28 upregulated proteins in post‑MI group when compared with the control group. The differentially expressed proteins were closely associated with energy metabolism, contractile function, calcium handling, pathological hypertrophy and cardiac remodeling. These results were further validated using western blotting. At different postoperative time points (1st and 14th day following surgery) during the progression of advanced heart failure post‑MI, dynamic alterations in differential protein expression were identified. The expression of the vitamin D protein was significantly upregulated on the 1st day post‑MI however, was then downregulated with progression of the disease on the 14th day post‑MI. These results identified various target proteins associated with the disease, which may be used as diagnostic markers.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shiliang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Airong Zhang
- Department of Cardiology, Shandong Zhongqi Hospital, Jinan, Shandong 250021, P.R. China
| | - Shu Jiang
- Department of Surgery, Huaiyin People's Hospital, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
77
|
Abstract
Inborn errors of metabolism (IEMs) are genetic disorders that disrupt enzyme activity, cellular transport, or energy production. They are individually rare but collectively have an incidence of 1:1000. Most patients with IEMs are followed by a physician with expertise in biochemical genetics (metabolism) but may present outside this setting. Because IEMs can present acutely with life-threatening crises that require specific interventions, it is critical for the emergency medicine physicians, pediatricians, internists, critical care physicians, and biochemical geneticists to be familiar with the initial assessment and management of patients with these disorders. Appropriate early care can be lifesaving. This protocol is not designed to replace the expert consultation of a biochemical geneticist but rather to improve early care and increase the level of comfort of the acute care physician with initial management of fatty acid oxidation and carnitine disorders until specialty consultation is obtained.
Collapse
|
78
|
Vockley J, Burton B, Berry GT, Longo N, Phillips J, Sanchez-Valle A, Tanpaiboon P, Grunewald S, Murphy E, Humphrey R, Mayhew J, Bowden A, Zhang L, Cataldo J, Marsden DL, Kakkis E. UX007 for the treatment of long chain-fatty acid oxidation disorders: Safety and efficacy in children and adults following 24weeks of treatment. Mol Genet Metab 2017; 120:370-377. [PMID: 28189603 DOI: 10.1016/j.ymgme.2017.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Long-chain fatty acid oxidation disorders (LC-FAOD) lead to accumulation of high concentrations of potentially toxic fatty acid intermediates. Newborn screening and early intervention have reduced mortality, but most patients continue to experience frequent hospitalizations and significant morbidity despite treatment. The deficient energy state can cause serious liver, muscle, and heart disease, and may be associated with an increased risk of sudden death. Triheptanoin is a medium odd-chain fatty acid. Anaplerotic metabolites of triheptanoin have the potential to replace deficient tricarboxylic acid (TCA) cycle intermediates, resulting in net glucose production as a novel energy source for the treatment of LC-FAOD. STUDY DESIGN A single-arm, open-label, multicenter Phase 2 safety and efficacy study evaluated patients with severe LC-FAOD evidenced by ongoing related musculoskeletal, cardiac, and/or hepatic events despite treatment. After a four-week run-in on current regimen, investigational triheptanoin (UX007) was titrated to a target dose of 25-35% of total daily caloric intake. Patients were evaluated on several age/condition-eligible endpoints, including submaximal exercise tests to assess muscle function/endurance (12-minute walk test; 12MWT) and exercise tolerance (cycle ergometry), and health related quality of life (HR-QoL). Results through 24weeks of treatment are presented; total study duration is 78weeks. RESULTS Twenty-nine patients (0.8 to 58years) were enrolled; most qualified based on severe musculoskeletal disease. Twenty-five patients (86%) completed the 24-week treatment period. At Week 18, eligible patients (n=8) demonstrated a 28% increase (LS mean=+181.9 meters; p=0.087) from baseline (673.4meters) in 12MWT distance. At Week 24, eligible patients (n=7) showed a 60% increase in watts generated (LS mean=+409.3W; p=0.149) over baseline (744.6W) for the exercise tolerance test. Improvements in exercise tests were supported by significant improvements from baseline in the adult (n=5) self-reported SF-12v2 physical component summary score (LS mean=+8.9; p<0.001). No difference from baseline was seen in pediatric parent-reported (n=5) scores (SF-10) at Week 24. Eighteen patients (62%) had treatment-related adverse events, predominantly gastrointestinal (55%), mild-to-moderate in severity, similar to that seen with prior treatment with medium chain triglyceride (MCT) oil. One patient experienced a treatment-related serious adverse event of gastroenteritis. One patient discontinued from study due to diarrhea of moderate severity; the majority of patients (25/29; 86%) elected to continue treatment in the extension period. CONCLUSIONS In patients with severe LC-FAOD, UX007 interim study results demonstrated improved exercise endurance and tolerance, and were associated with positive changes in self-reported HR-QoL.
Collapse
Affiliation(s)
- J Vockley
- University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - B Burton
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - G T Berry
- Boston Children's Hospital, Boston, MA, USA
| | - N Longo
- University of Utah, Salt Lake City, UT, USA
| | - J Phillips
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Sanchez-Valle
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - P Tanpaiboon
- Children's National Medical Center, Washington, DC, USA
| | - S Grunewald
- Great Ormond Street Hospital, UCL Institute of Child Health, London, UK
| | - E Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - R Humphrey
- University of Montana, Missoula, MT, USA
| | - J Mayhew
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - A Bowden
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - L Zhang
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - J Cataldo
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - D L Marsden
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - E Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| |
Collapse
|
79
|
Huang Y, Powers C, Moore V, Schafer C, Ren M, Phoon CKL, James JF, Glukhov AV, Javadov S, Vaz FM, Jefferies JL, Strauss AW, Khuchua Z. The PPAR pan-agonist bezafibrate ameliorates cardiomyopathy in a mouse model of Barth syndrome. Orphanet J Rare Dis 2017; 12:49. [PMID: 28279226 PMCID: PMC5345250 DOI: 10.1186/s13023-017-0605-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The PGC-1α/PPAR axis has been proposed as a potential therapeutic target for several metabolic disorders. The aim was to evaluate the efficacy of the pan-PPAR agonist, bezafibrate, in tafazzin knockdown mice (TazKD), a mouse model of Barth syndrome that exhibits age-dependent dilated cardiomyopathy with left ventricular (LV) dysfunction. RESULTS The effect of bezafibrate on cardiac function was evaluated by echocardiography in TazKD mice with or without beta-adrenergic stress. Adrenergic stress by chronic isoproterenol infusion exacerbates the cardiac phenotype in TazKD mice, significantly depressing LV systolic function by 4.5 months of age. Bezafibrate intake over 2 months substantially ameliorates the development of LV systolic dysfunction in isoproterenol-stressed TazKD mice. Without beta-adrenergic stress, TazKD mice develop dilated cardiomyopathy by 7 months of age. Prolonged treatment with suprapharmacological dose of bezafibrate (0.5% in rodent diet) over a 4-month period effectively prevented LV dilation in mice isoproterenol treatment. Bezafibrate increased mitochondrial biogenesis, however also promoted oxidative stress in cardiomyocytes. Surprisingly, improvement of systolic function in bezafibrate-treated mice was accompanied with simultaneous reduction of cardiolipin content and increase of monolysocardiolipin levels in cardiac muscle. CONCLUSIONS Thus, we demonstrate that bezafibrate has a potent therapeutic effect on preventing cardiac dysfunction in a mouse model of Barth syndrome with obvious implications for treating the human disease. Additional studies are needed to assess the potential benefits of PPAR agonists in humans with Barth syndrome.
Collapse
Affiliation(s)
- Yan Huang
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Corey Powers
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Victoria Moore
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Caitlin Schafer
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Mindong Ren
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Jeanne F James
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Alexander V Glukhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Frédéric M Vaz
- Academic Medical Center, Department of Clinical Chemistry and Pediatrics, Laboratory of Genetic Metabolic Disease (F0-224), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - John L Jefferies
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Arnold W Strauss
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA
| | - Zaza Khuchua
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229-7020, USA.
| |
Collapse
|
80
|
Katz S, Landau Y, Pode-Shakked B, Pessach IM, Rubinshtein M, Anikster Y, Salem Y, Paret G. Cardiac failure in very long chain acyl-CoA dehydrogenase deficiency requiring extracorporeal membrane oxygenation (ECMO) treatment: A case report and review of the literature. Mol Genet Metab Rep 2016; 10:5-7. [PMID: 27995075 PMCID: PMC5154967 DOI: 10.1016/j.ymgmr.2016.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 11/01/2022] Open
Abstract
Fatty acid oxidation (FAO) defects often present with multi-system involvement, including several life-threatening cardiac manifestations, such as cardiomyopathy, pericardial effusion and arrhythmias. We report herein a fatal case of cardiac dysfunction and rapid-onset tamponade following an acute illness in a neonate with molecularly proven very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (harboring the known del799_802 mutation), requiring 15 days of extracorporeal membrane oxygenation (ECMO) treatment. As data regarding the use of ECMO in FAO defects in general, and VLCAD in particular, are scarce, we review the literature and discuss insights from in vitro models and several successful reported cases.
Collapse
Affiliation(s)
- Sharon Katz
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Landau
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itai M Pessach
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Department of Pediatric Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Rubinshtein
- Department of Pediatric Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yishay Salem
- Pediatric Cardiology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Paret
- Department of Pediatric Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
81
|
Wang W, Palmfeldt J, Mohsen AW, Gregersen N, Vockley J. Fasting induces prominent proteomic changes in liver in very long chain Acyl-CoA dehydrogenase deficient mice. Biochem Biophys Rep 2016; 8:333-339. [PMID: 28955973 PMCID: PMC5613767 DOI: 10.1016/j.bbrep.2016.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a clinically heterogeneous disorder of mitochondrial fatty acid β-oxidation usually identified through newborn screening. Genotype-phenotype correlations have been defined, but considerable clinical heterogeneity still exists. Symptoms are often induced by physiological stress such as fasting or intercurrent illness, setting it as an important example of environmental effects altering clinical course in an individual with a genetic disease. However, neither the cellular changes that predispose to this phenomenon nor the alterations it induces are well characterized. We examined the effects of fasting in a knockout mouse model to explore changes in global mitochondria protein profiles in liver and to investigate the physiologically relevant changes that lead to the clinical presentations. An isobaric tags for relative and absolute quantification (iTRAQ) labeling approach was employed to examine mitochondrial proteome changes in VLCAD deficient compared to wild type mice in the fed and fasted states. We identified numerous proteomic changes associated with the gene defect and fasting within relevant metabolic pathways. Few changes induced by fasting were shared between the VLCAD deficient and wild type mice, with more alterations found in the deficient mice on fasting. Particularly, fasting in the deficient mice could reverse the protective response in oxidative phosphorylation pathway seen in wild type animals. In addition, we found that changes in chaperone proteins including heat shock protein 60 (HSP60) and 10 (HSP10) during fasting differed between the two genotypes, highlighting the importance of these proteins in VLCAD deficiency. Finally, the effects on the liver proteome imposed by changes in fasted VLCAD deficient mice indicates that this environmental factor may be an inducer of both cellular and physiological changes. VLCAD deficient mice show significant changes in the proteome compared to wild type animals. Hypoglycemia induces different proteomic changes in VLCAD deficient mice than is seen in wild type animals. Multiple functional pathways are altered in VLCAD deficient animals. Proteomic changes in VLCAD deficient mice may help understand the physiologic ramifications of this deficiency in humans.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Jerry Vockley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA.,Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
82
|
Alfadhel M, Benmeakel M, Hossain MA, Al Mutairi F, Al Othaim A, Alfares AA, Al Balwi M, Alzaben A, Eyaid W. Thirteen year retrospective review of the spectrum of inborn errors of metabolism presenting in a tertiary center in Saudi Arabia. Orphanet J Rare Dis 2016; 11:126. [PMID: 27629047 PMCID: PMC5024448 DOI: 10.1186/s13023-016-0510-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Inborn errors of metabolism (IEMs) are individually rare; however, they are collectively common. More than 600 human diseases caused by inborn errors of metabolism are now recognized, and this number is constantly increasing as new concepts and techniques become available for identifying biochemical phenotypes. The aim of this study was to determine the type and distribution of IEMs in patients presenting to a tertiary care center in Saudi Arabia. METHOD: We conducted a retrospective review of children diagnosed with IEMs presenting to the Pediatric Department of King Abdulaziz Medical City in Riyadh, Saudi Arabia over a 13-year period. Results Over the 13- year period of this retrospective cohort, the total number of live births reached 110,601. A total of 187 patients were diagnosed with IEMs, representing a incidence of 169 in 100,000 births (1:591). Of these, 121 patients (64.7 %) were identified to have small molecule diseases and 66 (35.3 %) to have large molecule diseases. Organic acidemias were the most common small molecule IEMs, while lysosomal storage disorders (LSD) were the most common large molecule diseases. Sphingolipidosis were the most common LSD. Conclusion Our study confirms the previous results of the high rate of IEMs in Saudi Arabia and urges the health care strategists in the country to devise a long-term strategic plan, including an IEM national registry and a high school carrier screening program, for the prevention of such disorders. In addition, we identified 43 novel mutations that were not described previously, which will help in the molecular diagnosis of these disorders.
Collapse
Affiliation(s)
- Majid Alfadhel
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia. .,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia. .,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia. .,Division of Genetics, Department of Pediatrics King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, PO Box 22490, 11426, Saudi Arabia.
| | - Mohammed Benmeakel
- King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mohammad Arif Hossain
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Advanced Clinical Research Center, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Fuad Al Mutairi
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al Othaim
- King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed A Alfares
- Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Qassim University, College of Medicine, Department of Pediatrics, Almulyda, Saudi Arabia
| | - Mohammed Al Balwi
- King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah Alzaben
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
83
|
Analysis of lipid profile in lipid storage myopathy. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:157-168. [DOI: 10.1016/j.jchromb.2016.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 01/27/2023]
|
84
|
Evans M, Andresen BS, Nation J, Boneh A. VLCAD deficiency: Follow-up and outcome of patients diagnosed through newborn screening in Victoria. Mol Genet Metab 2016; 118:282-7. [PMID: 27246109 DOI: 10.1016/j.ymgme.2016.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/15/2016] [Accepted: 05/15/2016] [Indexed: 12/31/2022]
Abstract
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited metabolic disorder of fatty acid oxidation. Treatment practices of the disorder have changed over the past 10-15years since this disorder was included in newborn screening programs and patients were diagnosed pre-symptomatically. A genotype-phenotype correlation has been suggested but the discovery of novel mutations make this knowledge limited. Herein, we describe our experience in treating patients (n=22) diagnosed through newborn screening and mutational confirmation and followed up over a median period of 104months. We report five novel mutations. In 2013 we formalised our treatment protocol, which essentially follows a European consensus paper from 2009 and our own experience. The prescribed low natural fat diet is relaxed for patients who are asymptomatic when reaching age 5years but medium-chain triglyceride oil is recommended before and after physical activity regardless of age. Metabolic stability, growth, development and cardiac function are satisfactory in all patients. There were no episodes of encephalopathy or hypoglycaemia but three patients had episodes of muscle pain with our without rhabdomyolysis. Body composition studies showed a negative association between dietary protein intake and percent body fat. Larger patient cohort and longer follow up time are required for further elucidation of genotype-phenotype correlations and for establishing the role of dietary protein in metabolic stability and long-term healthier body composition in patients with VLCAD deficiency.
Collapse
Affiliation(s)
- Maureen Evans
- Department of Metabolic Medicine, Royal Children's Hospital Melbourne, Australia
| | - Brage S Andresen
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus, Denmark; The Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Judy Nation
- Department of Metabolic Medicine, Royal Children's Hospital Melbourne, Australia
| | - Avihu Boneh
- Department of Metabolic Medicine, Royal Children's Hospital Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Metabolic research, Murdoch Childrens Research Institute, Australia.
| |
Collapse
|
85
|
Pena LDM, van Calcar SC, Hansen J, Edick MJ, Walsh Vockley C, Leslie N, Cameron C, Mohsen AW, Berry SA, Arnold GL, Vockley J. Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS and enrolled in the IBEM-IS database. Mol Genet Metab 2016; 118:272-81. [PMID: 27209629 PMCID: PMC4970910 DOI: 10.1016/j.ymgme.2016.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency can present at various ages from the neonatal period to adulthood, and poses the greatest risk of complications during intercurrent illness or after prolonged fasting. Early diagnosis, treatment, and surveillance can reduce mortality; hence, the disorder is included in the newborn Recommended Uniform Screening Panel (RUSP) in the United States. The Inborn Errors of Metabolism Information System (IBEM-IS) was established in 2007 to collect longitudinal information on individuals with inborn errors of metabolism included in newborn screening (NBS) programs, including VLCAD deficiency. We retrospectively analyzed early outcomes for individuals who were diagnosed with VLCAD deficiency by NBS and describe initial presentations, diagnosis, clinical outcomes and treatment in a cohort of 52 individuals ages 1-18years. Maternal prenatal symptoms were not reported, and most newborns remained asymptomatic. Cardiomyopathy was uncommon in the cohort, diagnosed in 2/52 cases. Elevations in creatine kinase were a common finding, and usually first occurred during the toddler period (1-3years of age). Diagnostic evaluations required several testing modalities, most commonly plasma acylcarnitine profiles and molecular testing. Functional testing, including fibroblast acylcarnitine profiling and white blood cell or fibroblast enzyme assay, is a useful diagnostic adjunct if uncharacterized mutations are identified.
Collapse
Affiliation(s)
| | | | | | | | | | - Nancy Leslie
- Cincinnati Children's Hospital Medical Center, USA
| | | | | | | | | | | |
Collapse
|
86
|
Yamamoto F, Nakamagoe K, Yamada K, Ishii A, Furuta J, Yamaguchi S, Tamaoka A. A case of very-long-chain acyl-coenzyme A dehydrogenase deficiency with novel compound heterozygous mutations. J Neurol Sci 2016; 368:165-7. [PMID: 27538624 DOI: 10.1016/j.jns.2016.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Fumiko Yamamoto
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Akiko Ishii
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Junichi Furuta
- Department of Dermatology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
87
|
Guo Y, Cui L, Jiang S, Wang D, Jiang S, Xie C, Jia Y. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats. Mol Med Rep 2016; 14:1538-52. [PMID: 27357314 PMCID: PMC4940056 DOI: 10.3892/mmr.2016.5440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad-S100A1-EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expression in the Ad-S100A1-EGFP and control groups post-AMI. Using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis, 134 energy metabolism-associated proteins, which comprised 20 carbohydrate metabolism-associated and 27 lipid metabolism associated proteins, were identified as differentially expressed in the Ad-S100A1-EGFP hearts compared with controls. The majority of the differentially expressed proteins identified were important enzymes involved in energy metabolism. The present study identified 12 Ca2+-binding proteins and 22 cytoskeletal proteins. The majority of the proteins expressed in the Ad-S100A1-EGFP group were upregulated compared with the control group. These results were further validated using western blot analysis. Following AMI, Ca2+ is crucial for the recovery of myocardial function in S100A1 transgenic rats as indicated by the upregulation of proteins associated with energy metabolism and Ca2+-binding. Thus, the current study ascertained that energy production and contractile ability were enhanced after AMI in the ventricular myocardium of the Ad-S100A1-EGFP group.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shiliang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongmei Wang
- Department of Radiology, Shandong Jiao Tong Hospital, Jinan, Shandong 250063, P.R. China
| | - Shu Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Xie
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanping Jia
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
88
|
Ryder B, Knoll D, Love DR, Shepherd P, Love JM, Reed PW, de Hora M, Webster D, Glamuzina E, Wilson C. The natural history of elevated tetradecenoyl-L-carnitine detected by newborn screening in New Zealand: implications for very long chain acyl-CoA dehydrogenase deficiency screening and treatment. J Inherit Metab Dis 2016; 39:409-414. [PMID: 26743058 DOI: 10.1007/s10545-015-9911-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/06/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Very long chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM #201475) has been increasingly diagnosed since the advent of expanded newborn screening (NBS). Elevated levels of tetradecenoyl-L-carnitine (C14:1) in newborn screening blood spot samples are particularly common in New Zealand, however this has not translated into increased VLCADD clinical presentations. A high proportion of screen-positive cases in NZ are of Maori or Pacific ethnicity and positive for the c.1226C > T (p.Thr409Met) ACADVL gene variant. We performed a retrospective, blinded, case-control study of 255 cases, born between 2006 and 2013, with elevated NBS C14:1 levels between 0.9 and 2.4 μmol/L, below the NZ C14:1 notification cut-off of 2.5 μmol/L. Coded healthcare records were audited for cases and age- and ethnicity- matched controls. The clinical records of those with possible VLCADD-related symptoms were reviewed. The follow-up period was 6 months to 7 years. Two of 247 cases (0.8 %) had possible VLCADD-like symptoms while four of 247 controls (2 %) had VLCADD-like symptoms (p = 0.81). Maori were overrepresented (68 % of the cohort vs 15 % of population). Targeted analysis of the c.1226 locus revealed the local increase in screening C14:1 levels is associated with the c.1226C > T variant (97/152 alleles tested), found predominantly in Maori and Pacific people. There was no increase in clinically significant childhood disease, irrespective of ethnicity. The study suggests that children with elevated C14:1, between 0.9-2.4 μmol/L, on NBS are at very low risk of clinically significant childhood disease. A minimally interventional approach to managing these patients is indicated, at least in the New Zealand population.
Collapse
Affiliation(s)
- Bryony Ryder
- Starship Children's Hospital, Auckland, New Zealand
| | - Detlef Knoll
- Newborn Metabolic Screening Unit, Auckland City Hospital, Auckland, New Zealand
| | - Donald R Love
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | | | - Jennifer M Love
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Peter W Reed
- Children's Research Centre, Starship Children's Health, Auckland, New Zealand
| | - Mark de Hora
- Newborn Metabolic Screening Unit, Auckland City Hospital, Auckland, New Zealand
| | - Dianne Webster
- Newborn Metabolic Screening Unit, Auckland City Hospital, Auckland, New Zealand
| | - Emma Glamuzina
- National Metabolic Service, Starship Children's Hospital, PO Box 92024, Auckland, New Zealand
| | - Callum Wilson
- National Metabolic Service, Starship Children's Hospital, PO Box 92024, Auckland, New Zealand.
| |
Collapse
|
89
|
Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 2016; 36:BSR20150295. [PMID: 26839416 PMCID: PMC4793296 DOI: 10.1042/bsr20150295] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis.
Collapse
|
90
|
Yang Y, Feng Y, Zhang X, Nakajima T, Tanaka N, Sugiyama E, Kamijo Y, Aoyama T. Activation of PPAR α by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis. TOHOKU J EXP MED 2016; 240:113-22. [DOI: 10.1620/tjem.240.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yang Yang
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine
| | - Yuyao Feng
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine
| | - Eiko Sugiyama
- Department of Nutritional Science, Nagano Prefectural College
| | - Yuji Kamijo
- Department of Nephrology, Shinshu University School of Medicine
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine
| |
Collapse
|
91
|
Miller MJ, Burrage LC, Gibson JB, Strenk ME, Lose EJ, Bick DP, Elsea SH, Sutton VR, Sun Q, Graham BH, Craigen WJ, Zhang VW, Wong LJC. Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coA dehydrogenase (VLCAD) deficiency in the United States. Mol Genet Metab 2015; 116:139-45. [PMID: 26385305 PMCID: PMC4790081 DOI: 10.1016/j.ymgme.2015.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
Very long chain acyl-coA dehydrogenase deficiency (VLCADD) is an autosomal recessive inborn error of fatty acid oxidation detected by newborn screening (NBS). Follow-up molecular analyses are often required to clarify VLCADD-suggestive NBS results, but to date the outcome of these studies are not well described for the general screen-positive population. In the following study, we report the molecular findings for 693 unrelated patients that sequentially received Sanger sequence analysis of ACADVL as a result of a positive NBS for VLCADD. Highlighting the variable molecular underpinnings of this disorder, we identified 94 different pathogenic ACADVL variants (40 novel), as well as 134 variants of unknown clinical significance (VUSs). Evidence for the pathogenicity of a subset of recurrent VUSs was provided using multiple in silico analyses. Surprisingly, the most frequent finding in our cohort was carrier status, 57% all individuals had a single pathogenic variant or VUS. This result was further supported by follow-up array and/or acylcarnitine analysis that failed to provide evidence of a second pathogenic allele. Notably, exon-targeted array analysis of 131 individuals screen positive for VLCADD failed to identify copy number changes in ACADVL thus suggesting this test has a low yield in the setting of NBS follow-up. While no genotype was common, the c.848T>C (p.V283A) pathogenic variant was clearly the most frequent; at least one copy was found in ~10% of all individuals with a positive NBS. Clinical and biochemical data for seven unrelated patients homozygous for the p.V283A allele suggests that it results in a mild phenotype that responds well to standard treatment, but hypoglycemia can occur. Collectively, our data illustrate the molecular heterogeneity of VLCADD and provide novel insight into the outcomes of NBS for this disorder.
Collapse
Affiliation(s)
- Marcus J Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - James B Gibson
- Section of Clinical Genetics and Metabolism, 'Specially for Children, Austin, TX 78723, United States
| | - Meghan E Strenk
- Children's Mercy Hospital, Kansas City, MO 64108, United States
| | - Edward J Lose
- Department of Genetics, University of Alabama Birmingham, Birmingham, AL 35294, United States
| | - David P Bick
- Section of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77021, United States.
| |
Collapse
|
92
|
Diekman E, de Sain-van der Velden M, Waterham H, Kluijtmans L, Schielen P, van Veen EB, Ferdinandusse S, Wijburg F, Visser G. The Newborn Screening Paradox: Sensitivity vs. Overdiagnosis in VLCAD Deficiency. JIMD Rep 2015; 27:101-6. [PMID: 26453363 DOI: 10.1007/8904_2015_476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To improve the efficacy of newborn screening (NBS) for very long chain acyl-CoA dehydrogenase deficiency (VLCADD). PATIENTS AND METHODS Data on all dried blood spots collected by the Dutch NBS from October 2007 to 2010 (742.728) were included. Based solely on the C14:1 levels (cutoff ≥0.8 μmol/L), six newborns with VLCADD had been identified through NBS during this period. The ratio of C14:1 over C2 was calculated. DNA of all blood spots with a C14:1/C2 ratio of ≥0.020 was isolated and sequenced. Children homozygous or compound heterozygous for mutations in the ACADVL gene were traced back and invited for detailed clinical, biochemical, and genetic evaluation. RESULTS Retrospective analysis based on the C14:1/C2 ratio with a cutoff of ≥0.020 identified an additional five children with known ACADVL mutations and low enzymatic activity. All were still asymptomatic at the time of diagnosis (age 2-5 years). Increasing the cutoff to ≥0.023 resulted in a sensitivity of 93% and a positive predictive value of 37%. The sensitivity of the previously used screening approach (C14:1 ≥0.8) was 50%. CONCLUSION This study shows that the ratio C14:1/C2 is a more sensitive marker than C14:1 for identifying VLCADD patients in NBS. However, as these patients were all asymptomatic at the time of diagnosis, this suggests that a more sensitive screening approach may also identify individuals who may never develop clinical disease. Long-term follow-up studies are needed to establish the risk of these VLCADD-deficient individuals for developing clinical signs and symptoms.
Collapse
Affiliation(s)
- Eugene Diekman
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital UMC Utrecht, Utrecht, The Netherlands
| | | | - Hans Waterham
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Schielen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Evert Ben van Veen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Frits Wijburg
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Department of Paediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
93
|
Lund M, Olsen RKJ, Gregersen N. A short introduction to acyl-CoA dehydrogenases; deficiencies and novel treatment strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
94
|
Yavarna T, Al-Dewik N, Al-Mureikhi M, Ali R, Al-Mesaifri F, Mahmoud L, Shahbeck N, Lakhani S, AlMulla M, Nawaz Z, Vitazka P, Alkuraya FS, Ben-Omran T. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet 2015; 134:967-80. [PMID: 26077850 DOI: 10.1007/s00439-015-1575-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/30/2015] [Indexed: 12/16/2022]
Abstract
Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.
Collapse
Affiliation(s)
- Tarunashree Yavarna
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O.BOX. 3050, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Scalco RS, Gardiner AR, Pitceathly RD, Zanoteli E, Becker J, Holton JL, Houlden H, Jungbluth H, Quinlivan R. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10:51. [PMID: 25929793 PMCID: PMC4522153 DOI: 10.1186/s13023-015-0264-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/09/2015] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM) is a clinical emergency characterized by fulminant skeletal muscle damage and release of intracellular muscle components into the blood stream leading to myoglobinuria and, in severe cases, acute renal failure. Apart from trauma, a wide range of causes have been reported including drug abuse and infections. Underlying genetic disorders are also a cause of RM and can often pose a diagnostic challenge, considering their marked heterogeneity and comparative rarity. In this paper we review the range of rare genetic defects known to be associated with RM. Each gene has been reviewed for the following: clinical phenotype, typical triggers for RM and recommended diagnostic approach. The purpose of this review is to highlight the most important features associated with specific genetic defects in order to aid the diagnosis of patients presenting with hereditary causes of recurrent RM.
Collapse
Affiliation(s)
- Renata Siciliani Scalco
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil. .,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil.
| | - Alice R Gardiner
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Robert Ds Pitceathly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK.
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Jefferson Becker
- Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK. .,Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust, London, UK. .,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK.
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
96
|
Tucci S, Flögel U, Spiekerkoetter U. Sexual dimorphism of lipid metabolism in very long-chain acyl-CoA dehydrogenase deficient (VLCAD-/-) mice in response to medium-chain triglycerides (MCT). Biochim Biophys Acta Mol Basis Dis 2015; 1852:1442-50. [PMID: 25887160 DOI: 10.1016/j.bbadis.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
Medium-chain triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders. Previously it was shown that long-term MCT supplementation strongly affects lipid metabolism in mice. We here investigate sex-specific effects in mice with very-long-chain-acyl-CoA dehydrogenase (VLCAD) deficiency in response to a long-term MCT modified diet. We quantified blood lipids, acylcarnitines, glucose, insulin and free fatty acids, as well as tissue triglycerides in the liver and skeletal muscle under a control and an MCT diet over 1 year. In addition, visceral and hepatic fat content and muscular intramyocellular lipids (IMCL) were assessed by in vivo(1)H magnetic resonance spectroscopy (MRS) techniques. The long-term application of an MCT diet induced a marked alteration of glucose homeostasis. However, only VLCAD-/- female mice developed a severe metabolic syndrome characterized by marked insulin resistance, dyslipidemia, severe hepatic and visceral steatosis, whereas VLCAD-/- males seemed to be protected and only presented with milder insulin resistance. Moreover, the highly saturated MCT diet is associated with a decreased hepatic stearoyl-CoA desaturase 1 (SCD1) activity in females aggravating the harmful effects of a saturated MCT diet. Long-term MCT supplementation deeply affects lipid metabolism in a sexual dimorphic manner resulting in a severe metabolic syndrome only in female mice. These findings are striking since the first signs of insulin resistance already occur in female VLCAD-/- mice during their reproductive period. How these metabolic adaptations are finally regulated needs to be determined. More important, the relevance of these findings for humans under these dietary modifications needs to be investigated.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, 79106 Freiburg, Germany.
| | - Ulrich Flögel
- Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
97
|
Olpin SE, Murphy E, Kirk RJ, Taylor RW, Quinlivan R. The investigation and management of metabolic myopathies. J Clin Pathol 2015; 68:410-7. [DOI: 10.1136/jclinpath-2014-202808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a ‘rhabdomyolysis’ gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a ‘rhabdomyolysis’ gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Collapse
|
98
|
Diekman EF, Ferdinandusse S, van der Pol L, Waterham HR, Ruiter JPN, Ijlst L, Wanders RJ, Houten SM, Wijburg FA, Blank AC, Asselbergs FW, Houtkooper RH, Visser G. Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency. Genet Med 2015; 17:989-94. [DOI: 10.1038/gim.2015.22] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/20/2015] [Indexed: 01/20/2023] Open
|
99
|
Abstract
Metabolic and mitochondrial myopathies encompass a heterogeneous group of disorders that result in impaired energy production in skeletal muscle. Symptoms of premature muscle fatigue, sometimes leading to myalgia, rhabdomyolysis, and myoglobinuria, typically occur with exercise that would normally depend on the defective metabolic pathway. But in another group of these disorders, the dominant muscle symptom is weakness. This article reviews the clinical features, diagnosis, and management of these diseases with emphasis on the recent literature.
Collapse
Affiliation(s)
- Lydia J Sharp
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, Dallas, TX 75231, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, Dallas, TX 75231, USA; North Texas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA.
| |
Collapse
|
100
|
Tenopoulou M, Chen J, Bastin J, Bennett MJ, Ischiropoulos H, Doulias PT. Strategies for correcting very long chain acyl-CoA dehydrogenase deficiency. J Biol Chem 2015; 290:10486-94. [PMID: 25737446 DOI: 10.1074/jbc.m114.635102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8-17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- From the Division of Neonatology, Department of Pediatrics Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104
| | - Jie Chen
- the Michael Palmieri Metabolic Laboratory at Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, and
| | - Jean Bastin
- the INSERM U1124, Université Paris Descartes, 75270 Paris Cedex 6, France
| | - Michael J Bennett
- the Michael Palmieri Metabolic Laboratory at Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, and
| | - Harry Ischiropoulos
- From the Division of Neonatology, Department of Pediatrics Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Paschalis-Thomas Doulias
- From the Division of Neonatology, Department of Pediatrics Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104,
| |
Collapse
|