51
|
Peng Z, Fang X, Yan P, Shan H, Liu T, Pei X, Wang G, Liu B, Kalra MK, Xu XG. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med Phys 2020; 47:2526-2536. [PMID: 32155670 DOI: 10.1002/mp.14131] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE One technical barrier to patient-specific computed tomography (CT) dosimetry has been the lack of computational tools for the automatic patient-specific multi-organ segmentation of CT images and rapid organ dose quantification. When previous CT images are available for the same body region of the patient, the ability to obtain patient-specific organ doses for CT - in a similar manner as radiation therapy treatment planning - will open the door to personalized and prospective CT scan protocols. This study aims to demonstrate the feasibility of combining deep-learning algorithms for automatic segmentation of multiple radiosensitive organs from CT images with the GPU-based Monte Carlo rapid organ dose calculation. METHODS A deep convolutional neural network (CNN) based on the U-Net for organ segmentation is developed and trained to automatically delineate multiple radiosensitive organs from CT images. Two databases are used: The lung CT segmentation challenge 2017 (LCTSC) dataset that contains 60 thoracic CT scan patients, each consisting of five segmented organs, and the Pancreas-CT (PCT) dataset, which contains 43 abdominal CT scan patients each consisting of eight segmented organs. A fivefold cross-validation method is performed on both sets of data. Dice similarity coefficients (DSCs) are used to evaluate the segmentation performance against the ground truth. A GPU-based Monte Carlo dose code, ARCHER, is used to calculate patient-specific CT organ doses. The proposed method is evaluated in terms of relative dose errors (RDEs). To demonstrate the potential improvement of the new method, organ dose results are compared against those obtained for population-average patient phantoms used in an off-line dose reporting software, VirtualDose, at Massachusetts General Hospital. RESULTS The median DSCs are found to be 0.97 (right lung), 0.96 (left lung), 0.92 (heart), 0.86 (spinal cord), 0.76 (esophagus) for the LCTSC dataset, along with 0.96 (spleen), 0.96 (liver), 0.95 (left kidney), 0.90 (stomach), 0.87 (gall bladder), 0.80 (pancreas), 0.75 (esophagus), and 0.61 (duodenum) for the PCT dataset. Comparing with organ dose results from population-averaged phantoms, the new patient-specific method achieved smaller absolute RDEs (mean ± standard deviation) for all organs: 1.8% ± 1.4% (vs 16.0% ± 11.8%) for the lung, 0.8% ± 0.7% (vs 34.0% ± 31.1%) for the heart, 1.6% ± 1.7% (vs 45.7% ± 29.3%) for the esophagus, 0.6% ± 1.2% (vs 15.8% ± 12.7%) for the spleen, 1.2% ± 1.0% (vs 18.1% ± 15.7%) for the pancreas, 0.9% ± 0.6% (vs 20.0% ± 15.2%) for the left kidney, 1.7% ± 3.1% (vs 19.1% ± 9.8%) for the gallbladder, 0.3% ± 0.3% (vs 24.2% ± 18.7%) for the liver, and 1.6% ± 1.7% (vs 19.3% ± 13.6%) for the stomach. The trained automatic segmentation tool takes <5 s per patient for all 103 patients in the dataset. The Monte Carlo radiation dose calculations performed in parallel to the segmentation process using the GPU-accelerated ARCHER code take <4 s per patient to achieve <0.5% statistical uncertainty in all organ doses for all 103 patients in the database. CONCLUSION This work shows the feasibility to perform combined automatic patient-specific multi-organ segmentation of CT images and rapid GPU-based Monte Carlo dose quantification with clinically acceptable accuracy and efficiency.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xi Fang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Pingkun Yan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hongming Shan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Tianyu Liu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xi Pei
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Anhui Wisdom Technology Company Limited, Hefei, Anhui, 238000, China
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bob Liu
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - X George Xu
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
52
|
Gao Y, Mahmood U, Liu T, Quinn B, Gollub MJ, Xu XG, Dauer LT. Patient-Specific Organ and Effective Dose Estimates in Adult Oncologic CT. AJR Am J Roentgenol 2020; 214:738-746. [PMID: 31414882 PMCID: PMC7393764 DOI: 10.2214/ajr.19.21197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. Patient-specific organ and effective dose provides essential information for CT protocol optimization. However, such information is not readily available in the scan records. The purpose of this study was to develop a method to obtain accurate examination- and patient-specific organ and effective dose estimates by use of available scan data and patient body size information for a large cohort of patients. MATERIALS AND METHODS. The data were randomly collected for 1200 patients who underwent CT in a 2-year period. Physical characteristics of the patients and CT technique were processed as inputs for the dose estimator. Organ and effective doses were estimated by use of the inputs and computational human phantoms matched to patients on the basis of sex and effective diameter. Size-based ratios were applied to correct for patient-phantom body size differences. RESULTS. Patients received a mean of 59.9 mGy to the lens of the eye per brain scan, 10.1 mGy to the thyroid per chest scan, 17.5 mGy to the liver per abdomen and pelvis scan, and 19.0 mGy to the liver per body scan. A factor of 2 difference in dose estimates was observed between patients of various habitus. CONCLUSION. Examination- and patient-specific organ and effective doses were estimated for 1200 adult oncology patients undergoing CT. The dose conversion factors calculated facilitate rapid organ and effective dose estimation in clinics. Compared with nonspecific dose estimation methods, patient dose estimations with data specific to the patient and examination can differ by a factor of 2.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Medical Physics, Box 84, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Usman Mahmood
- Department of Medical Physics, Box 84, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Tianyu Liu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian Quinn
- Department of Medical Physics, Box 84, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Marc J. Gollub
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - X. George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lawrence T. Dauer
- Department of Medical Physics, Box 84, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
53
|
Saeed MK. A comparison of the CT-dosimetry software packages based on stylized and boundary representation phantoms. Radiography (Lond) 2020; 26:e214-e222. [PMID: 32192855 DOI: 10.1016/j.radi.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION With the rapid development of computed tomography (CT) equipment, the assessment of effective and organ dose using suitable tools becomes an important issue and will provide health professionals with useful information regarding the radiation risks and the development of standard imaging protocols. Different clinical centres and/or institutions may use several software packages, each with different methods and algorithms for CT dose evaluation. Consequently, radiation doses calculated with these computer software packages might be different for the same patient and representative scanner models. METHODS The effective and organ doses calculated by VirtualDose, CT-expo, and ImPACT software were compared for both males and females using kidney, chest, head, pelvis, abdomen, and whole-body CT protocols. The calculation of radiation dose in these software depends on the use of stylized and boundary representation (BREP) phantoms. RESULTS In general, the results showed that there was a discrepancy between the effective dose values calculated by the three packages. The effective dose in all examinations varied by factors ranging from 1.1 to 1.5 for male and from 1.1 to 1.3 for female. For the female phantom, the VirtualDose shows the highest effective doses in kidney and abdomen examinations while CT-expo gives the highest doses for head and pelvis examinations. For the male phantom, the VirtualDose shows the highest effective doses were for chest examinations. CONCLUSION VirtualDose approach gives the most accurate estimation, however, further work using a size-based method are necessary to improve the assessment of the effective and equivalent organ dose in CT examinations using these packages. IMPLICATIONS FOR PRACTICE The re-evaluation dosimetry software in comparison with patient size would allow for a more accurate estimation of dose and support the optimization process.
Collapse
Affiliation(s)
- M K Saeed
- Department of Radiological Sciences, Applied Medical Sciences College, Najran University, Najran, 1966, Saudi Arabia.
| |
Collapse
|
54
|
Assessment of out-of-field doses in radiotherapy treatments of paediatric patients using Monte Carlo methods and measurements. Phys Med 2020; 71:53-61. [DOI: 10.1016/j.ejmp.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 01/22/2023] Open
|
55
|
De Mattia C, Campanaro F, Rottoli F, Colombo PE, Pola A, Vanzulli A, Torresin A. Patient organ and effective dose estimation in CT: comparison of four software applications. Eur Radiol Exp 2020; 4:14. [PMID: 32060664 PMCID: PMC7021892 DOI: 10.1186/s41747-019-0130-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Background Radiation dose in computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. Hence, dose tracking and organ dose calculation software are increasingly used. We evaluated the organ dose variability associated with the use of different software applications or calculation methods. Methods We tested four commercial software applications on CT protocols actually in use in our hospital: CT-Expo, NCICT, NCICTX, and Virtual Dose. We compared dose coefficients, estimated organ doses and effective doses obtained by the four software applications by varying exposure parameters. Our results were also compared with estimates reported by the software authors. Results All four software applications showed dependence on tube voltage and volume CT dose index, while only CT-Expo was also dependent on other exposure parameters, in particular scanner model and pitch caused a variability till 50%. We found a disagreement between our results and those reported by the software authors (up to 600%), mainly due to a different extent of examined body regions. The relative range of the comparison of the four software applications was within 35% for most organs inside the scan region, but increased over the 100% for organs partially irradiated and outside the scan region. For effective doses, this variability was less evident (ranging from 9 to 36%). Conclusions The two main sources of organ dose variability were the software application used and the scan region set. Dose estimate must be related to the process used for its calculation.
Collapse
Affiliation(s)
- Cristina De Mattia
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Federica Campanaro
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Federica Rottoli
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Paola Enrica Colombo
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Andrea Pola
- Department of Energy, Politecnico di Milano, via La Masa, 34, 20156, Milan, Italy
| | - Angelo Vanzulli
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy.
| | - Alberto Torresin
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| |
Collapse
|
56
|
Quinn BM, Gao Y, Mahmood U, Pandit-Taskar N, Behr G, Zanzonico P, Dauer LT. Patient-adapted organ absorbed dose and effective dose estimates in pediatric 18F-FDG positron emission tomography/computed tomography studies. BMC Med Imaging 2020; 20:9. [PMID: 31996149 PMCID: PMC6988339 DOI: 10.1186/s12880-020-0415-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Organ absorbed doses and effective doses can be used to compare radiation exposure among medical imaging procedures, compare alternative imaging options, and guide dose optimization efforts. Individual dose estimates are important for relatively radiosensitive patient populations such as children and for radiosensitive organs such as the eye lens. Software-based dose calculation methods conveniently calculate organ dose using patient-adjusted and examination-specific inputs. METHODS Organ absorbed doses and effective doses were calculated for 429 pediatric 18F-FDG PET-CT patients. Patient-adjusted and scan-specific information was extracted from the electronic medical record and scanner dose-monitoring software. The VirtualDose and OLINDA/EXM (version 2.0) programs, respectively, were used to calculate the CT and the radiopharmaceutical organ absorbed doses and effective doses. Patients were grouped according to age at the time of the scan as follows: less than 1 year old, 1 to 5 years old, 6 to 10 years old, 11 to 15 years old, and 16 to 17 years old. RESULTS The mean (+/- standard deviation, range) total PET plus CT effective dose was 14.5 (1.9, 11.2-22.3) mSv. The mean (+/- standard deviation, range) PET effective dose was 8.1 (1.2, 5.7-16.5) mSv. The mean (+/- standard deviation, range) CT effective dose was 6.4 (1.8, 2.9-14.7) mSv. The five organs with highest PET dose were: Urinary bladder, heart, liver, lungs, and brain. The five organs with highest CT dose were: Thymus, thyroid, kidneys, eye lens, and gonads. CONCLUSIONS Organ and effective dose for both the CT and PET components can be estimated with actual patient and scan data using commercial software. Doses calculated using software generally agree with those calculated using dose conversion factors, although some organ doses were found to be appreciably different. Software-based dose calculation methods allow patient-adjusted dose factors. The effort to gather the needed patient data is justified by the resulting value of the characterization of patient-adjusted dosimetry.
Collapse
Affiliation(s)
- Brian M Quinn
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Yiming Gao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Gerald Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
57
|
Brambilla M, Vassileva J, Kuchcinska A, Rehani MM. Multinational data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action. Eur Radiol 2019; 30:2493-2501. [PMID: 31792583 DOI: 10.1007/s00330-019-06528-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/15/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To have a global picture of the recurrent use of CT imaging to a level where cumulative effective dose (CED) to individual patients may be exceeding 100 mSv at which organ doses typically are in a range at which radiation effects are of concern METHODS: The IAEA convened a meeting in 2019 with participants from 26 countries, representatives of various organizations, and experts in radiology, medical physics, radiation biology, and epidemiology. Participants were asked to collect data prior to the meeting on cumulative radiation doses to assess the magnitude of patients above a defined level of CED. RESULTS It was observed that the number of patients with CED ≥ 100 mSv is much larger than previously known or anticipated. Studies were presented in the meeting with data from about 3.2 million patients who underwent imaging procedures over periods of between 1 and 5 years in different hospitals. It is probable that an additional 0.9 million patients reach the CED ≥ 100 mSv every year globally. CONCLUSIONS There is a need for urgent actions by all stakeholders to address the issue of high cumulative radiation doses to patients. The actions include development of appropriateness criteria/referral guidelines by professional societies for patients who require recurrent imaging studies, development of CT machines with lower radiation dose than today by manufacturers, and development of policies by risk management organizations to enhance patient radiation safety. Alert values for cumulative radiation exposures of patients should be set up and introduced in dose monitoring systems. KEY POINTS • Recurrent radiological imaging procedures leading to high radiation dose to patients are more common than ever before. • Tracking of radiation exposure of individual patients provides useful information on cumulative radiation dose. • There is a need for urgent actions by all stakeholders to address the issue of high cumulative radiation doses to patients.
Collapse
Affiliation(s)
- Marco Brambilla
- Medical Physics Department, University Hospital "Maggiore della Carità", C.so Mazzini 18, 28100, Novara, Italy.
| | - Jenia Vassileva
- Radiation Protection of Patients Unit, Radiation Safety and Monitoring Section, NSRW, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Agnieszka Kuchcinska
- Medical Physics Department, Maria Skłodowska Curie Memorial Cancer Centre and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Madan M Rehani
- Massachusetts General Hospital, 175 Cambridge Street, Suite 244, Boston, MA, 02114, USA
| |
Collapse
|
58
|
Kostou T, Papadimitroulas P, Papaconstadopoulos P, Devic S, Seuntjens J, Kagadis GC. Size-specific dose estimations for pediatric chest, abdomen/pelvis and head CT scans with the use of GATE. Phys Med 2019; 65:181-190. [PMID: 31494372 DOI: 10.1016/j.ejmp.2019.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The purpose of this study is to create an organ dose database for pediatric individuals undergoing chest, abdomen/pelvis, and head computed tomography (CT) examinations, and to report the differences in absorbed organ doses, when anatomical differences exist for pediatric patients. METHODS The GATE Monte Carlo (MC) toolkit was used to model the GE BrightSpeed Elite CT model. The simulated scanner model was validated with the standard Computed Tomography Dose Index (CTDI) head phantom. Twelve computational models (2.1-14 years old) were used. First, contributions to effective dose and absorbed doses per CTDIvol and per 100 mAs were estimated for all organs. Then, doses per CTDIvol were correlated with patient model weight for the organs inside the scan range for chest and abdomen/pelvis protocols. Finally, effective doses per dose-length product (DLP) were estimated and compared with the conventional conversion k-factors. RESULTS The system was validated against experimental CTDIw measurements. The doses per CTDIvol and per 100 mAs for selected organs were estimated. The magnitude of the dependency between the dose and the anatomical characteristics was calculated with the coefficient of determination at 0.5-0.7 for the internal scan organs for chest and abdomen/pelvis protocols. Finally, effective doses per DLP were compared with already published data, showing discrepancies between 13 and 29% and were correlated strongly with the total weight (R2 > 0.8) for the chest and abdomen protocols. CONCLUSIONS Big differences in absorbed doses are reported even for patients of similar age or same gender, when anatomical differences exist on internal organs of the body.
Collapse
Affiliation(s)
- Theodora Kostou
- University of Patras, Department of Medical Physics, Patras, Greece
| | | | | | - Slobodan Devic
- McGill University, Department of Medical Physics, Montreal, Canada
| | - Jan Seuntjens
- McGill University, Department of Medical Physics, Montreal, Canada
| | - George C Kagadis
- University of Patras, Department of Medical Physics, Patras, Greece.
| |
Collapse
|
59
|
Maxwell S, Fox R, McRobbie D, Bulsara M, Doust J, O’Leary P, Slavotinek J, Stubbs J, Moorin R. How have advances in CT dosimetry software impacted estimates of CT radiation dose and cancer incidence? A comparison of CT dosimetry software: Implications for past and future research. PLoS One 2019; 14:e0217816. [PMID: 31412037 PMCID: PMC6693687 DOI: 10.1371/journal.pone.0217816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/21/2019] [Indexed: 12/01/2022] Open
Abstract
Objective Organ radiation dose from a CT scan, calculated by CT dosimetry software, can be combined with cancer risk data to estimate cancer incidence resulting from CT exposure. We aim to determine to what extent the use of improved anatomical representation of the adult human body “phantom” in CT dosimetry software impacts estimates of radiation dose and cancer incidence, to inform comparison of past and future research. Methods We collected 20 adult cases for each of three CT protocols (abdomen/pelvis, chest and head) from each of five public hospitals (random sample) (January-April inclusive 2010) and three private clinics (self-report). Organ equivalent and effective dose were calculated using both ImPACT (mathematical phantom) and NCICT (voxelised phantom) software. Bland-Altman plots demonstrate agreement and Passing-Bablok regression reports systematic, proportional or random differences between results. We modelled the estimated lifetime attributable risk of cancer from a single exposure for each protocol, using age-sex specific risk-coefficients from the Biologic Effects of Ionizing Radiation VII report. Results For the majority of organs used in epidemiological studies of cancer incidence, the NCICT software (voxelised) provided higher dose estimates. Across the lifespan NCICT resulted in cancer estimates 2.9%-6.6% and 14.8%-16.3% higher in males and females (abdomen/pelvis) and 7.6%-19.7% and 12.9%-26.5% higher in males and females respectively (chest protocol). For the head protocol overall cancer estimates were lower for NCICT, but with greatest disparity, >30% at times. Conclusion When the results of previous studies estimating CT dose and cancer incidence are compared to more recent, or future, studies the dosimetry software must be considered. Any change in radiation dose or cancer risk may be attributable to the software and phantom used, rather than—or in addition to—changes in scanning practice. Studies using dosimetry software to estimate radiation dose should describe software comprehensively to facilitate comparison with past and future research.
Collapse
Affiliation(s)
- Susannah Maxwell
- Health Systems and Health Economics, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail:
| | - Richard Fox
- School of Physics, University of Western Australia, Perth, Western Australia, Australia
| | - Donald McRobbie
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia
- Faculty of Medicine, Imperial College, London, United Kingdom
| | - Max Bulsara
- Institute for Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia, Australia
- Centre for Health Services Research, School of Population Health, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jenny Doust
- Centre for Research in Evidence-Based Practice Faculty of Health Sciences and Medicine Bond University, Gold Coast, Queensland, Australia
| | - Peter O’Leary
- Health Systems and Health Economics, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- Obstetrics and Gynaecology Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, QE2 Medical Centre, Nedlands, Western Australia
| | - John Slavotinek
- SA Medical Imaging, SA Health and College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - John Stubbs
- CanSpeak Australia, Spring Hill, Queensland, Australia
| | - Rachael Moorin
- Health Systems and Health Economics, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- Centre for Health Services Research, School of Population Health, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
60
|
Abadi E, Harrawood B, Sharma S, Kapadia A, Segars WP, Samei E. DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1457-1465. [PMID: 30561344 PMCID: PMC6598436 DOI: 10.1109/tmi.2018.2886530] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purpose of this study was to develop a CT simulation platform that is: 1) compatible with voxel-based computational phantoms; 2) capable of modeling the geometry and physics of commercial CT scanners; and 3) computationally efficient. Such a simulation platform is designed to enable the virtual evaluation and optimization of CT protocols and parameters for achieving a targeted image quality while reducing radiation dose. Given a voxelized computational phantom and a parameter file describing the desired scanner and protocol, the developed platform DukeSim calculates projection images using a combination of ray-tracing and Monte Carlo techniques. DukeSim includes detailed models for the detector quantum efficiency, quantum and electronic noise, detector crosstalk, subsampling of the detector and focal spot areas, focal spot wobbling, and the bowtie filter. DukeSim was accelerated using GPU computing. The platform was validated using physical and computational versions of a phantom (Mercury phantom). Clinical and simulated CT scans of the phantom were acquired at multiple dose levels using a commercial CT scanner (Somatom Definition Flash; Siemens Healthcare). The real and simulated images were compared in terms of image contrast, noise magnitude, noise texture, and spatial resolution. The relative error between the clinical and simulated images was less than 1.4%, 0.5%, 2.6%, and 3%, for image contrast, noise magnitude, noise texture, and spatial resolution, respectively, demonstrating the high realism of DukeSim. The runtime, dependent on the imaging task and the hardware, was approximately 2-3 minutes per rotation in our study using a computer with 4 GPUs. DukeSim, when combined with realistic human phantoms, provides the necessary toolset with which to perform large-scale and realistic virtual clinical trials in a patient and scanner-specific manner.
Collapse
|
61
|
Vázquez-Bañuelos J, Campillo-Rivera GE, García-Duran Á, Rivera ER, Arteaga MV, Baltazar Raigosa A, Vega-Carrillo HR. Doses in eye lens, thyroid, and gonads, due to scattered radiation, during a CT radiodiagnosis study. Appl Radiat Isot 2019; 147:31-34. [PMID: 30798202 DOI: 10.1016/j.apradiso.2019.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
X-ray images used for radio-diagnosis are very useful to evaluate the progress of a treatment or to have a better diagnosis. However, during the interaction between the incoming X-ray beam and the body surface, part of the radiation is scattered out reaching other parts of the body delivering an undesirable dose. In this work the dose in eye lenses, thyroid, and gonads of a solid water phantom was measured using thermoluminescent dosimeters, while a Computer Tomography of the torso was obtained. With the measured absorbed dose the effective dose was calculated. Thus, the effective dose in the eye lens, thyroid, and gonads is approximately 57, 214 and 9 μSv respectively. The largest effective dose was on that area located nearest to the region where the radiation is scattered.
Collapse
Affiliation(s)
- Joel Vázquez-Bañuelos
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, C. Ciprés 10, Fracc. La Peñuela, 98068, Zacatecas, Zac., Mexico
| | - Guillermo Eduardo Campillo-Rivera
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, C. Ciprés 10, Fracc. La Peñuela, 98068, Zacatecas, Zac., Mexico
| | - Ángel García-Duran
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, C. Ciprés 10, Fracc. La Peñuela, 98068, Zacatecas, Zac., Mexico
| | - Eric Reyes Rivera
- UNEME-Oncología, Av. Las Americas No. 8, Fracc. Campo Real, 98612, Guadalupe, Zac., Mexico
| | - Marcial Vásquez Arteaga
- Nuclear Physics Laboratory and Physics and Mathematics Postgraduate Unit, National University of Trujillo (UNT), Trujillo, Peru
| | - Antonio Baltazar Raigosa
- Programa de Doctorado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autonomía de Zacatecas, Av. López Velarde 801, Col. Centro, 98000, Zacatecas, Zac., Mexico
| | - Hector Rene Vega-Carrillo
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, C. Ciprés 10, Fracc. La Peñuela, 98068, Zacatecas, Zac., Mexico; Programa de Doctorado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autonomía de Zacatecas, Av. López Velarde 801, Col. Centro, 98000, Zacatecas, Zac., Mexico.
| |
Collapse
|
62
|
Huo W, Pi Y, Feng M, Qi Y, Gao Y, Caracappa PF, Chen Z, Xu XG. VirtualDose-IR: a cloud-based software for reporting organ doses in interventional radiology. Phys Med Biol 2019; 64:095012. [PMID: 30822765 PMCID: PMC7480071 DOI: 10.1088/1361-6560/ab0bd5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A cloud-based software, VirtualDose-IR (Virtual Phantoms Inc., Albany, New York, USA), designed to report organ doses and effective doses for a diverse patient population from interventional radiology (IR) procedures has been developed and tested. This software is based on a comprehensive database of Monte Carlo-generated organ dose built with a set of 21 anatomically realistic patient phantoms. The patient types included in this database are both male and female people with different ages reflecting reference adults, obese people with different BMIs and pregnant women at different gestational stages. Selectable parameters such as patient type, tube voltage, filtration thickness, beam direction, field size, and irradiation site are also considered in VirtualDose-IR. The software has been implemented using the 'Software as a Service (SaaS)' delivery concept permitting simultaneous multi-user, multi-platform access without requiring local installation. The patient doses resulting from different target sites and patient populations were reported using the VirtualDose-IR system. The patient doses under different source to surface distances (SSD) and beam angles calculated by VirtualDose-IR and Monte Carlo simulations were compared. For most organs, the dose differences between VirtualDose-IR results and Monte Carlo results were less than 0.3 mGy at 15 000 mGy * cm2 kerma-area product (KAP). The organ dose results were compared with measurement data previously reported in literatures. The doses to organs that were located within the irradiation field match closely with experimental measurement data. The differences in the effective dose values between calculated using VirtualDose-IR and those measured were less than 2.5%. The dose errors of most organs between VirtualDose-IR and literature results were less than 40%. These results validate the accuracy of organ doses reported by VirtualDose-IR. With the inclusion of pre-specified clinical IR examination parameters (such as beam direction, target location, field of view and beam quality) and the latest anatomically realistic patient phantoms in Monte Carlo simulations, VirtualDose-IR provides users with accurate dose information in order to systematically compare, evaluate, and optimize IR plans.
Collapse
Affiliation(s)
- Wanli Huo
- School of Physical Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
George Xu X. Innovations in Computer Technologies Have Impacted Radiation Dosimetry Through Anatomically Realistic Phantoms and Fast Monte Carlo Simulations. HEALTH PHYSICS 2019; 116:263-275. [PMID: 30585974 DOI: 10.1097/hp.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiological physics principles have not changed in the past 60 y when computer technologies advanced exponentially. The research field of anatomical modeling for the purpose of radiation dose calculations has experienced an explosion in activity in the past two decades. Such an exciting advancement is due to the feasibility of creating three-dimensional geometric details of the human anatomy from tomographic imaging and of performing Monte Carlo radiation transport simulations on increasingly fast and cheap personal computers. The advent of a new type of high-performance computing hardware in recent years-graphics processing units-has made it feasible to carry out time-consuming Monte Carlo calculations at near real-time speeds. This paper introduces the history of three generations of computational human phantoms (the stylized medical internal radiation dosimetry-type phantoms, the voxelized tomographic phantoms, and the boundary representation deformable phantoms) and new development of the graphics processing unit-based Monte Carlo radiation dose calculations. Examples are given for research projects performed by my students in applying computational phantoms and a new Monte Carlo code, ARCHER, to problems in radiation protection, imaging, and radiotherapy. Finally, the paper discusses challenges and future opportunities for research.
Collapse
Affiliation(s)
- X George Xu
- JEC 5049, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180
| |
Collapse
|
64
|
Lee C, Kuzmin GA, Bae J, Yao J, Mosher E, Folio LR. Automatic Mapping of CT Scan Locations on Computational Human Phantoms for Organ Dose Estimation. J Digit Imaging 2019; 32:175-182. [PMID: 30187315 PMCID: PMC6382640 DOI: 10.1007/s10278-018-0119-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
To develop an algorithm to automatically map CT scan locations of patients onto computational human phantoms to provide with patient-specific organ doses. We developed an algorithm that compares a two-dimensional skeletal mask generated from patient CTs with that of a whole body computational human phantom. The algorithm selected the scan locations showing the highest Dice Similarity Coefficient (DSC) calculated between the skeletal masks of a patient and a phantom. To test the performance of the algorithm, we randomly selected five sets of neck, chest, and abdominal CT images from the National Institutes of Health Clinical Center. We first automatically mapped scan locations of the CT images on a computational human phantom using our algorithm. We had several radiologists to manually map the same CT images on the phantom and compared the results with the automated mapping. Finally, organ doses for automated and manual mapping locations were calculated by an in-house CT dose calculator and compared to each other. The visual comparison showed excellent agreement between manual and automatic mapping locations for neck, chest, and abdomen-pelvis CTs. The difference in mapping locations averaged over the start and end in the five patients was less than 1 cm for all neck, chest, and AP scans: 0.9, 0.7, and 0.9 cm for neck, chest, and AP scans, respectively. Five cases out of ten in the neck scans show zero difference between the average manual and automatic mappings. Average of absolute dose differences between manual and automatic mappings was 2.3, 2.7, and 4.0% for neck, chest, and AP scans, respectively. The automatic mapping algorithm provided accurate scan locations and organ doses compared to manual mapping. The algorithm will be useful in cases requiring patient-specific organ dose for a large number of patients such as patient dose monitoring, clinical trials, and epidemiologic studies.
Collapse
Affiliation(s)
- Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Radiation Epidemiology Branch/DCEG/NCI/NIH, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Gleb A Kuzmin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinyong Bae
- Kansas City University of Medicine and Bioscience, Kansas City, KS, USA
| | - Jianhua Yao
- Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Mosher
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Les R Folio
- Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
65
|
Kainz W, Neufeld E, Bolch WE, Graff CG, Kim CH, Kuster N, Lloyd B, Morrison T, Segars P, Yeom YS, Zankl M, Xu XG, Tsui BMW. Advances in Computational Human Phantoms and Their Applications in Biomedical Engineering - A Topical Review. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:1-23. [PMID: 30740582 PMCID: PMC6362464 DOI: 10.1109/trpms.2018.2883437] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past decades, significant improvements have been made in the field of computational human phantoms (CHPs) and their applications in biomedical engineering. Their sophistication has dramatically increased. The very first CHPs were composed of simple geometric volumes, e.g., cylinders and spheres, while current CHPs have a high resolution, cover a substantial range of the patient population, have high anatomical accuracy, are poseable, morphable, and are augmented with various details to perform functionalized computations. Advances in imaging techniques and semi-automated segmentation tools allow fast and personalized development of CHPs. These advances open the door to quickly develop personalized CHPs, inherently including the disease of the patient. Because many of these CHPs are increasingly providing data for regulatory submissions of various medical devices, the validity, anatomical accuracy, and availability to cover the entire patient population is of utmost importance. The article is organized into two main sections: the first section reviews the different modeling techniques used to create CHPs, whereas the second section discusses various applications of CHPs in biomedical engineering. Each topic gives an overview, a brief history, recent developments, and an outlook into the future.
Collapse
Affiliation(s)
- Wolfgang Kainz
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 USA
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | | | - Christian G Graff
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 USA
| | | | - Niels Kuster
- Swiss Federal Institute of Technology, ETH Zürich, and the Foundation for Research on Information Technologies in Society (IT'IS), Zürich, Switzerland
| | - Bryn Lloyd
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Tina Morrison
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 USA
| | | | | | - Maria Zankl
- Helmholtz Zentrum München German Research Center for Environmental Health, Munich, Germany
| | - X George Xu
- Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
66
|
Lahham A, ALMasri H. ESTIMATION OF RADIATION DOSES FROM ABDOMINAL COMPUTED TOMOGRAPHY SCANS. RADIATION PROTECTION DOSIMETRY 2018; 182:235-240. [PMID: 29660098 DOI: 10.1093/rpd/ncy054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
A total of 120 adult female and male patients randomly selected from 10 hospitals in the West Bank and Gaza Strip were investigated for organ and effective doses from abdominal computed tomography scan. The organs considered in this study are liver, stomach and colon. Assessment of radiation doses was performed by using a commercially available Monte Carlo based software VirtualDose™ CT, a product of Virtual Phantoms, Inc. The software utilizes male and female tissue equivalent mathematical phantoms of all ages and sizes from new born up to morbidly obese patients. The corresponding phantom was selected for every patient according to patient's demographic parameters. Patient demographic data, scanning parameters and dose indicators (including patient body mass index (BMI), milliampere-second (mAs), X-ray tube kilovoltage (kVp), computed tomography dose index (CTDIvol), dose length product (DLP), manufacturer, name and type of operated CT scanner) were recorded for every examination. The collected parameters were used to calculate the organ and effective doses for every patient. The highest estimated patient organ doses were 25 mGy for liver, 20 mGy for stomach and 30 mGy for colon for a male patient with BMI of 30 kg/m2 and 90 kg of weight. This patient correspondent effective dose was 9 mSv. The average effective dose for the entire patient population was 5.5 mSv with a range between 2 and 10 mSv. The highest effective dose was found for a female patient with a BMI of 26.6 kg/m2, and 77 kg of weight. This patient correspondent organ doses were 14, 9 and 14 mGy for the liver, stomach and colon, respectively. The average organs doses per patient estimated for patients from all investigated hospitals were 13.1, 7.6 and 13.2 mGy for liver, stomach and colon, respectively. Both effective dose and organ doses increase with BMI and body weight. In general, the estimated radiation doses from abdominal CT examinations in this study are low and comparable with those published in the literature.
Collapse
Affiliation(s)
- Adnan Lahham
- Center For Radiation Science & Technology, Al-Quds University, East Jerusalem, Palestine
| | - Hussein ALMasri
- Center For Radiation Science & Technology, Al-Quds University, East Jerusalem, Palestine
- Medical Imaging Department, Al-Quds University, East Jerusalem, Palestine
| |
Collapse
|
67
|
|
68
|
Julien T, Al Masri A, Guérin L, Battini S, Maaloul F. 35 Calculation of organ doses for CT examination. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.09.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
69
|
Lazar AA, Schulte R, Faddegon B, Blakely EA, Roach M. Clinical trials involving carbon-ion radiation therapy and the path forward. Cancer 2018; 124:4467-4476. [PMID: 30307603 DOI: 10.1002/cncr.31662] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
To describe the international landscape of clinical trials in carbon-ion radiotherapy (CIRT), the authors reviewed the current status of 63 ongoing clinical trials (median, 47 participants) involving CIRT identified from the US clinicaltrials.gov trial registry and the World Health Organization International Clinical Trials Platform Registry. The objectives were to evaluate the potential for these trials to define the role of this modality in the treatment of specific cancer types and identify the major challenges and opportunities to advance this technology. A significant body of literature suggested the potential for advantageous dose distributions and, in preclinical biologic studies, the enhanced effectiveness for CIRT compared with photons and protons. In addition, clinical evidence from phase I/II trials, although limited, indicated the potential for CIRT to improve cancer outcomes. However, current high-level phase III randomized clinical trial evidence does not exist. Although there has been an increase in the number of trials investigating CIRT since 2010, and the number of countries and sites offering CIRT is slowly growing, this progress has excluded other countries. Several recommendations are proposed to study this modality to accelerate progress in the field, including: 1) increasing the number of multinational randomized clinical trials, 2) leveraging the existing CIRT facilities to launch larger multinational trials directed at common cancers combined with high-level quality assurance; and 3) developing more compact and less expensive next-generation treatment systems integrated with radiobiologic research and preclinical testing.
Collapse
Affiliation(s)
- Ann A Lazar
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco (UCSF), San Francisco, California.,Department of Epidemiology and Biostatistics, UCSF, San Francisco, California
| | - Reinhard Schulte
- Department of Radiation Oncology, UCSF, San Francisco, California.,Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Bruce Faddegon
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Eleanor A Blakely
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mack Roach
- Department of Radiation Oncology, UCSF, San Francisco, California
| |
Collapse
|
70
|
Dedulle A, Fitousi N, Zhang G, Jacobs J, Bosmans H. Two-step validation of a Monte Carlo dosimetry framework for general radiology. Phys Med 2018; 53:72-79. [PMID: 30241757 DOI: 10.1016/j.ejmp.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022] Open
Abstract
The Monte Carlo technique is considered gold standard when it comes to patient-specific dosimetry. Any newly developed Monte Carlo simulation framework, however, has to be carefully calibrated and validated prior to its use. For many researchers this is a tedious work. We propose a two-step validation procedure for our newly built Monte Carlo framework and provide all input data to make it feasible for future related application by the wider community. The validation was at first performed by benchmarking against simulation data available in literature. The American Association of Physicists in Medicine (AAPM) report of task group 195 (case 2) was considered most appropriate for our application. Secondly, the framework was calibrated and validated against experimental measurements for trunk X-ray imaging protocols using a water phantom. The dose results obtained from all simulations and measurements were compared. Our Monte Carlo framework proved to agree with literature data, by showing a maximal difference below 4% to the AAPM report. The mean difference with the water phantom measurements was around 7%. The statistical uncertainty for clinical applications of the dosimetry model is expected to be within 10%. This makes it reliable for clinical dose calculations in general radiology. Input data and the described procedure allow for the validation of other Monte Carlo frameworks.
Collapse
Affiliation(s)
- An Dedulle
- Qaelum NV, Gaston Geenslaan 9, 3001 Leuven, Belgium; University of Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, 3000 Leuven, Belgium.
| | - Niki Fitousi
- Qaelum NV, Gaston Geenslaan 9, 3001 Leuven, Belgium.
| | - Guozhi Zhang
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jurgen Jacobs
- Qaelum NV, Gaston Geenslaan 9, 3001 Leuven, Belgium.
| | - Hilde Bosmans
- University of Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, 3000 Leuven, Belgium; Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
71
|
Lahham A, ALMasri H, Kameel S. ESTIMATION OF FEMALE RADIATION DOSES AND BREAST CANCER RISK FROM CHEST CT EXAMINATIONS. RADIATION PROTECTION DOSIMETRY 2018; 179:303-309. [PMID: 29237054 DOI: 10.1093/rpd/ncx283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Breast organ doses, effective doses and lifetime attributable risk (LAR) of breast cancer from chest CT scans are presented for 200 female patients surveyed from 10 hospitals in the West Bank and Gaza Strip, Palestine. Patient data were collected and organized in a database from May to November 2016. Data include age (15-80 years), weight, height, and calculated body mass index. Exposure data were also recorded for every examination. Exposure data includes milliampere-second (mAs), X-ray tube kilovoltage (kVp), computed tomography dose index, dose length product, manufacturer, name and type of operated CT scanner. Organ and effective doses were evaluated using a web-based commercially available Monte Carlo software: VirtualDose™CT, a product of Virtual Phantoms, Inc. The software utilizes male and female tissue equivalent phantoms of all ages and sizes including pregnant patients. The corresponding phantom was selected for every patient according to patient's tomographic parameters. Calculated organ doses were used to estimate the LAR of breast cancer according to BEIR VII Phase 2 report. It was found that radiation doses resulting from the same exam vary widely between different hospitals, depending on the parameters used and the type of scanner. For all patients, the breast organ dose ranged from 6.5 to 28 mGy per examination, with an average breast organ dose of 15 mGy. The effective dose from chest CT scan per examination ranged from 3 to 14.7 mSv with an average of 7 mSv. For younger females (15-29 years), the LAR of breast cancer risk was estimated to be around 0.05%. For older female patients (60-79 years), the risk was ~0.001%. It was found that LAR decreases remarkably with patient's age. Values obtained in this study vary between hospitals, they are generally low and consistent with other studies reported worldwide.
Collapse
Affiliation(s)
- Adnan Lahham
- Center for Radiation Science & Technology, Al-Quds University, East Jerusalem, Palestine
| | - Hussein ALMasri
- Center for Radiation Science & Technology, Al-Quds University, East Jerusalem, Palestine
- Medical Imaging Department, Al-Quds University, East Jerusalem, Palestine
| | - Saleh Kameel
- Center for Radiation Science & Technology, Al-Quds University, East Jerusalem, Palestine
| |
Collapse
|
72
|
Pi Y, Liu T, Xu XG. DEVELOPMENT OF A SET OF MESH-BASED AND AGE-DEPENDENT CHINESE PHANTOMS AND APPLICATION FOR CT DOSE CALCULATIONS. RADIATION PROTECTION DOSIMETRY 2018; 179:370-382. [PMID: 29340629 DOI: 10.1093/rpd/ncx296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Phantoms for organ dose calculations are essential in radiation protection dosimetry. This article describes the development of a set of mesh-based and age-dependent phantoms for Chinese populations using reference data recommended by the Chinese government and by the International Atomic Energy Agency (IAEA). Existing mesh-based RPI adult male (RPI-AM) and RPI adult female (RPI-AF) phantoms were deformed to form new phantoms according to anatomical data for the height and weight of Chinese individuals of 5 years old male, 5 years old female, 10 years old male, 10 years old female,15 years old male, 15 years old female, adult male and adult female-named USTC-5 M, USTC-5F, USTC-10M, USTC-10F, USTC-15M, USTC-15F, USTC-AM and USTC-AF, respectively. Following procedures to ensure the accuracy, more than 120 organs/tissues in each model were adjusted to match the Chinese reference parameters and the mass errors were within 0.5%. To demonstrate the usefulness, these new set of phantoms were combined with a fully validated model of the GE LightSpeed Pro 16 multi-detector computed tomography (MDCT) scanner and the GPU-based ARCHER Monte Carlo code to compute organ doses from CT examinations. Organ doses for adult models were then compared with the data of RPI-AM and RPI-AF under the same conditions. The absorbed doses and the effective doses of RPI phantoms are found to be lower than these of the USTC adult phantoms whose body sizes are smaller. Comparisons for the doses among different ages and genders were also made. It was found that teenagers receive more radiation doses than adults do. Such Chinese-specific phantoms are clearly better suited in organ dose studies for the Chinese individuals than phantoms designed for western populations. As already demonstrated, data derived from age-specific Chinese phantoms can help CT operators and designers to optimize image quality and doses.
Collapse
Affiliation(s)
- Yifei Pi
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China
| | - Tianyu Liu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - X George Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
73
|
Guberina N, Suntharalingam S, Naßenstein K, Forsting M, Theysohn J, Wetter A, Ringelstein A. Verification of organ doses calculated by a dose monitoring software tool based on Monte Carlo Simulation in thoracic CT protocols. Acta Radiol 2018; 59:322-326. [PMID: 28618854 DOI: 10.1177/0284185117716199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The importance of monitoring of the radiation dose received by the human body during computed tomography (CT) examinations is not negligible. Several dose-monitoring software tools emerged in order to monitor and control dose distribution during CT examinations. Some software tools incorporate Monte Carlo Simulation (MCS) and allow calculation of effective dose and organ dose apart from standard dose descriptors. Purpose To verify the results of a dose-monitoring software tool based on MCS in assessment of effective and organ doses in thoracic CT protocols. Material and Methods Phantom measurements were performed with thermoluminescent dosimeters (TLD LiF:Mg,Ti) using two different thoracic CT protocols of the clinical routine: (I) standard CT thorax (CTT); and (II) CTT with high-pitch mode, P = 3.2. Radiation doses estimated with MCS and measured with TLDs were compared. Results Inter-modality comparison showed an excellent correlation between MCS-simulated and TLD-measured doses ((I) after localizer correction r = 0.81; (II) r = 0.87). The following effective and organ doses were determined: (I) (a) effective dose = MCS 1.2 mSv, TLD 1.3 mSv; (b) thyroid gland = MCS 2.8 mGy, TLD 2.5 mGy; (c) thymus = MCS 3.1 mGy, TLD 2.5 mGy; (d) bone marrow = MCS 0.8 mGy, TLD 0.9 mGy; (e) breast = MCS 2.5 mGy, TLD 2.2 mGy; (f) lung = MCS 2.8 mGy, TLD 2.7 mGy; (II) (a) effective dose = MCS 0.6 mSv, TLD 0.7 mSv; (b) thyroid gland = MCS 1.4 mGy, TLD 1.8 mGy; (c) thymus = MCS 1.4 mGy, TLD 1.8 mGy; (d) bone marrow = MCS 0.4 mGy, TLD 0.5 mGy; (e) breast = MCS 1.1 mGy, TLD 1.1 mGy; (f) lung = MCS 1.2 mGy, TLD 1.3 mGy. Conclusion Overall, in thoracic CT protocols, organ doses simulated by the dose-monitoring software tool were coherent to those measured by TLDs. Despite some challenges, the dose-monitoring software was capable of an accurate dose calculation.
Collapse
Affiliation(s)
- Nika Guberina
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | | | - Kai Naßenstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Jens Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Axel Wetter
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Adrian Ringelstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| |
Collapse
|
74
|
Mahmood U, Horvat N, Horvat JV, Ryan D, Gao Y, Carollo G, DeOcampo R, Do RK, Katz S, Gerst S, Schmidtlein CR, Dauer L, Erdi Y, Mannelli L. Rapid switching kVp dual energy CT: Value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. Eur J Radiol 2018; 102:102-108. [PMID: 29685522 DOI: 10.1016/j.ejrad.2018.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/13/2018] [Accepted: 02/14/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE Clinical applications of dual energy computed tomography (DECT) have been widely reported; however, the importance of the different image reconstructions and radiation organ dose remains a relevant area of investigation, particularly considering the different commercially available DECT equipment. Therefore, the purpose of this study was to assess the image reliability and compare the information content between several image reconstructions in a rapid-switching DECT (rsDECT), and assess radiation organ dose between rsDECT and conventional single-energy computed tomography (SECT) exams. MATERIALS AND METHODS This Institutional Review Board-approved retrospective study included 98 consecutive patients who had a history of liver cancer and underwent multiphasic liver CT exams with rsDECT applied during the late arterial phase between June 2015 and December 2015. Virtual monochromatic 70 keV, material density images (MDI) iodine (-water) and virtual unenhanced (VUE) images were generated. Radiation dose analysis was performed in a subset of 44 patients who had also undergone a multiphasic SECT examination within 6 months of the rsDECT. Four board-certified abdominal radiologists reviewed 24-25 patients each, and a fifth radiologist re-evaluated all the scans to reach a consensus. The following imaging aspects were assessed by the radiologists: (a) attenuation measurements were made in the liver and spleen in VUE and true unenhanced (TUE) images; (b) subjective evaluation for lesion detection and conspicuity on MDI iodine (-water)/VUE images compared with the virtual monochromatic images/TUE images; and (c) overall image quality using a five-point Likert scale. The radiation dose analyses were evaluated in the subset of 44 patients regarding the following parameters: CTDIvol, dose length product, patient's effective diameter and organ dose using a Monte Carlo-based software, VirtualDose™ (Virtual Phantoms, Inc.) to 21 organs. RESULTS On average, image noise on the TUE images was 49% higher within the liver (p < 0.0001) and 48% higher within the spleen (p < 0.0001). CT numbers for the spleen were significantly higher on VUE images (p < 0.0001). Twenty-eight lesions in 24/98 (24.5%) patients were not observed on the VUE images. The conspicuity of vascular anatomy was considered better on MDI iodine (-water) Images 26.5% of patients. Using the Likert scale, the rsDECT image quality was considered to be satisfactory. Considering the subset of 44 patients with recent SECT, the organ dose was, on average, 37.4% less with rsDECT. As the patient's effective diameter decreased, the differences in dose between the rsDECT and SECT increased, with the total average organ dose being less by 65.1% when rsDECT was used. CONCLUSION VUE images in the population had lower image noise than TUE images; however, a few small and hyperdense findings were not characterized on VUE images. Delineation of vascular anatomy was considered better in around a quarter of patients on MDI iodine (-water) images. Finally, radiation dose, particularly organ dose, was found to be lower with rsDECT, especially in smaller patients.
Collapse
Affiliation(s)
- Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Joao Vicente Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Davinia Ryan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yiming Gao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Gabriella Carollo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Rommel DeOcampo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Seth Katz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Scott Gerst
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Lawrence Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Lorenzo Mannelli
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
75
|
Gao Y, Quinn B, Pandit-Taskar N, Behr G, Mahmood U, Long D, Xu XG, St Germain J, Dauer LT. Patient-specific organ and effective dose estimates in pediatric oncology computed tomography. Phys Med 2018; 45:146-155. [PMID: 29472080 PMCID: PMC5828028 DOI: 10.1016/j.ejmp.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Estimate organ and effective doses from computed tomography scans of pediatric oncologic patients using patient-specific information. MATERIALS AND METHODS With IRB approval patient-specific scan parameters and patient size obtained from DICOM images and vendor-provided dose monitoring application were obtained for a cross-sectional study of 1250 pediatric patients from 0 through 20 y-olds who underwent head, chest, abdomen-pelvis, or chest-abdomen-pelvis CT scans. Patients were categorized by age. Organ doses and effective doses were estimated using VirtualDose™ CT based on patient-specific information, tube current modulation (TCM), and age-specific realistic phantoms. CTDIvol, DLP, and dose results were compared with those reported in the literature. RESULTS CTDIvol and DLP varied widely as patient size varied. The 75th percentiles of CTDIvol and DLP were no greater than in the literature with the exception of head scans of 16-20 y-olds and of abdomen-pelvis scans of larger patients. Eye lens dose from a head scan was up to 69 mGy. Mean organ doses agreed with other studies at maximal difference of 38% for chest and 41% for abdomen-pelvis scans. Mean effective dose was generally higher for older patients. The highest effective doses were estimated for the 16-20 y-olds as: head 3.3 mSv, chest 4.1 mSv, abdomen-pelvis 10.0 mSv, chest-abdomen-pelvis 14.0 mSv. CONCLUSION Patient-specific organ and effective doses have been estimated for pediatric oncologic patients from <1 through 20 y-olds. The effect of TCM was successfully accounted for in the estimates. Output parameters varied with patient size. CTDIvol and DLP results are useful for future protocol optimization.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Brian Quinn
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Gerald Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Daniel Long
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - X George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jean St Germain
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
76
|
Fitousi N. Patient dose monitoring systems: A new way of managing patient dose and quality in the radiology department. Phys Med 2017; 44:212-221. [DOI: 10.1016/j.ejmp.2017.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 11/28/2022] Open
|
77
|
Huo W, Feng M, Pi Y, Chen Z, Gao Y, Xu XG. Monte Carlo calculations for reporting patient organ doses from interventional radiology. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201715304016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
78
|
Abadi E, Sanders J, Samei E. Patient-specific quantification of image quality: An automated technique for measuring the distribution of organ Hounsfield units in clinical chest CT images. Med Phys 2017; 44:4736-4746. [DOI: 10.1002/mp.12438] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ehsan Abadi
- Department of Electrical and Computer Engineering; Carl E. Ravin Advanced Imaging Laboratories; Clinical Imaging Physics Group; Duke University; 2424 Erwin Rd Suite 302 Durham NC 27705 USA
| | - Jeremiah Sanders
- Clinical Imaging Physics Group; Medical Physics Graduate Program; Carl E. Ravin Advanced Imaging Laboratories; Duke University; 2424 Erwin Rd Suite 302 Durham NC 27705 USA
| | - Ehsan Samei
- Clinical Imaging Physics Group; Medical Physics Graduate Program; Carl E. Ravin Advanced Imaging Laboratories; Departments of Radiology, Physics, Biomedical Engineering, and Electrical and Computer Engineering; Duke University; 2424 Erwin Rd Suite 302 Durham NC 27705 USA
| |
Collapse
|
79
|
Cros M, Joemai RMS, Geleijns J, Molina D, Salvadó M. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms. ACTA ACUST UNITED AC 2017; 62:6304-6321. [DOI: 10.1088/1361-6560/aa77ea] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
80
|
Thyroid neoplasms: incidental findings on extent of disease evaluation CT for other pediatric malignancies. J Pediatr Surg 2017; 52:938-943. [PMID: 28347527 PMCID: PMC5466891 DOI: 10.1016/j.jpedsurg.2017.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 11/23/2022]
Abstract
PURPOSE We performed a retrospective analysis to evaluate the risk of thyroid cancer in incidental thyroid nodules (ITNs) discovered on CT in patients with a history of pediatric cancer. METHODS With IRB approval we reviewed the records of pediatric oncology patients age ≤21y with newly detected thyroid nodules on surveillance CT of the neck, chest, chest/abdomen/pelvis, or PET/CT performed between April 2008 and March 2015. Patients with <6months of follow-up after incidental findings, a history of primary thyroid malignancy, or incomplete records were excluded. RESULTS The final cohort (N=68) included 35 females and 33 males (mean age 16.0±4.3[SD] years) with a mean follow-up time of 3.7±1.9[SD] years after CT detection of ITN(s). Twenty patients (29.4%) received a follow-up thyroid ultrasound, eleven (16.2%) of whom underwent fine needle aspiration (FNA) for cytopathologic diagnosis. Among these, six (8.8%) underwent thyroid resection, with final pathology demonstrating papillary carcinoma in five (7.4%) and benign pathology in one. CONCLUSIONS Despite the low incidence of thyroid nodules and low risk of thyroid malignancy in the general pediatric population, we found a significant rate of malignancy in CT-detected ITNs in our pediatric oncology patients, and recommend ultrasound and FNA of these nodules in this high-risk population. LEVEL OF EVIDENCE Level IV, retrospective study with no comparison group.
Collapse
|
81
|
Kobayashi M, Asada Y, Matsubara K, Suzuki S, Matsunaga Y, Haba T, Kawaguchi A, Daioku T, Toyama H, Kato R. Dose Estimating Application Software Modification: Additional Function of a Size-Specific Effective Dose Calculator and Auto Exposure Control. RADIATION PROTECTION DOSIMETRY 2017; 174:535-540. [PMID: 27590470 DOI: 10.1093/rpd/ncw241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Adequate dose management during computed tomography is important. In the present study, the dosimetric application software ImPACT was added to a functional calculator of the size-specific dose estimate and was part of the scan settings for the auto exposure control (AEC) technique. This study aimed to assess the practicality and accuracy of the modified ImPACT software for dose estimation. We compared the conversion factors identified by the software with the values reported by the American Association of Physicists in Medicine Task Group 204, and we noted similar results. Moreover, doses were calculated with the AEC technique and a fixed-tube current of 200 mA for the chest-pelvis region. The modified ImPACT software could estimate each organ dose, which was based on the modulated tube current. The ability to perform beneficial modifications indicates the flexibility of the ImPACT software. The ImPACT software can be further modified for estimation of other doses.
Collapse
Affiliation(s)
- Masanao Kobayashi
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasuki Asada
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Kosuke Matsubara
- Graduate School of Medical Sciences, Division of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shouichi Suzuki
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yuta Matsunaga
- Department of Imaging, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | - Tomonobu Haba
- Department of Radiology, Fujita Health University Hospital, Tokoake, Japan
| | - Ai Kawaguchi
- Department of Radiology, Toyota Memorial Hospital , Toyota, Japan
| | - Tomihiko Daioku
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryoichi Kato
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
82
|
Carver DE, Kost SD, Fraser ND, Segars WP, Pickens DR, Price RR, Stabin MG. Realistic phantoms to characterize dosimetry in pediatric CT. Pediatr Radiol 2017; 47:691-700. [PMID: 28283725 PMCID: PMC5420344 DOI: 10.1007/s00247-017-3805-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/07/2016] [Accepted: 02/10/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND The estimation of organ doses and effective doses for children receiving CT examinations is of high interest. Newer, more realistic anthropomorphic body models can provide information on individual organ doses and improved estimates of effective dose. MATERIALS AND METHODS Previously developed body models representing 50th-percentile individuals at reference ages (newborn, 1, 5, 10 and 15 years) were modified to represent 10th, 25th, 75th and 90th height percentiles for both genders and an expanded range of ages (3, 8 and 13 years). We calculated doses for 80 pediatric reference phantoms from simulated chest-abdomen-pelvis exams on a model of a Philips Brilliance 64 CT scanner. Individual organ and effective doses were normalized to dose-length product (DLP) and fit as a function of body diameter. RESULTS We calculated organ and effective doses for 80 reference phantoms and plotted them against body diameter. The data were well fit with an exponential function. We found DLP-normalized organ dose to correlate strongly with body diameter (R2>0.95 for most organs). Similarly, we found a very strong correlation with body diameter for DLP-normalized effective dose (R2>0.99). Our results were compared to other studies and we found average agreement of approximately 10%. CONCLUSION We provide organ and effective doses for a total of 80 reference phantoms representing normal-stature children ranging in age and body size. This information will be valuable in replacing the types of vendor-reported doses available. These data will also permit the recording and tracking of individual patient doses. Moreover, this comprehensive dose database will facilitate patient matching and the ability to predict patient-individualized dose prior to examination.
Collapse
Affiliation(s)
- Diana E Carver
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA.
| | - Susan D Kost
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Nicholas D Fraser
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - W Paul Segars
- Carl E. Ravin Advanced Imaging Laboratories, Duke University, Hock Plaza Suite 302, 2424 Erwin Road, Durham, NC, 27705, USA
| | - David R Pickens
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Ronald R Price
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Michael G Stabin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA
| |
Collapse
|
83
|
Gao Y, Quinn B, Mahmood U, Long D, Erdi Y, St. Germain J, Pandit-Taskar N, Xu XG, Bolch WE, Dauer LT. A comparison of pediatric and adult CT organ dose estimation methods. BMC Med Imaging 2017; 17:28. [PMID: 28446130 PMCID: PMC5406971 DOI: 10.1186/s12880-017-0199-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/11/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Computed Tomography (CT) contributes up to 50% of the medical exposure to the United States population. Children are considered to be at higher risk of developing radiation-induced tumors due to the young age of exposure and increased tissue radiosensitivity. Organ dose estimation is essential for pediatric and adult patient cancer risk assessment. The objective of this study is to validate the VirtualDose software in comparison to currently available software and methods for pediatric and adult CT organ dose estimation. METHODS Five age groups of pediatric patients and adult patients were simulated by three organ dose estimators. Head, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans were simulated, and doses to organs both inside and outside the scan range were compared. For adults, VirtualDose was compared against ImPACT and CT-Expo. For pediatric patients, VirtualDose was compared to CT-Expo and compared to size-based methods from literature. Pediatric to adult effective dose ratios were also calculated with VirtualDose, and were compared with the ranges of effective dose ratios provided in ImPACT. RESULTS In-field organs see less than 60% difference in dose between dose estimators. For organs outside scan range or distributed organs, a five times' difference can occur. VirtualDose agrees with the size-based methods within 20% difference for the organs investigated. Between VirtualDose and ImPACT, the pediatric to adult ratios for effective dose are compared, and less than 21% difference is observed for chest scan while more than 40% difference is observed for head-neck scan and abdomen-pelvis scan. For pediatric patients, 2 cm scan range change can lead to a five times dose difference in partially scanned organs. CONCLUSIONS VirtualDose is validated against CT-Expo and ImPACT with relatively small discrepancies in dose for organs inside scan range, while large discrepancies in dose are observed for organs outside scan range. Patient-specific organ dose estimation is possible using the size-based methods, and VirtualDose agrees with size-based method for the organs investigated. Careful range selection for CT protocols is necessary for organ dose optimization for pediatric and adult patients.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
| | - Brian Quinn
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
| | - Daniel Long
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
| | - Jean St. Germain
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - X. George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Wesley E. Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Lawrence T. Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 84, New York, NY 10065 USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
84
|
Liang B, Gao Y, Chen Z, Xu XG. Evaluation of Effective Dose from CT Scans for Overweight and Obese Adult Patients Using the VirtualDose Software. RADIATION PROTECTION DOSIMETRY 2017; 174:216-225. [PMID: 27242344 PMCID: PMC7462054 DOI: 10.1093/rpd/ncw119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 06/01/2023]
Abstract
This paper evaluates effective dose (ED) of overweight and obese patients who undergo body computed tomography (CT) examinations. ED calculations were based on tissue weight factors in the International Commission on Radiological Protection Publication 103 (ICRP 103). ED per unit dose length product (DLP) are reported as a function of the tube voltage, body mass index (BMI) of patient. The VirtualDose software was used to calculate ED for male and female obese phantoms representing normal weight, overweight, obese 1, obese 2 and obese 3 patients. Five anatomic regions (chest, abdomen, pelvis, abdomen/pelvis and chest/abdomen/pelvis) were investigated for each phantom. The conversion factors were computed from the DLP, and then compared with data previously reported by other groups. It was observed that tube voltage and BMI are the major factors that influence conversion factors of obese patients, and that ED computed using ICRP 103 tissue weight factors were 24% higher for a CT chest examination and 21% lower for a CT pelvis examination than the ED using ICRP 60 factors. For body CT scans, increasing the tube voltage from 80 to 140 kVp would increase the conversion factors by as much as 19-54% depending on the patient's BMI. Conversion factor of female patients was ~7% higher than the factors of male patients. DLP and conversion factors were used to estimate ED, where conversion factors depended on tube voltage, sex, BMI and tissue weight factors. With increasing number of obese individuals, using size-dependence conversion factors will improve accuracy, in estimating patient radiation dose.
Collapse
Affiliation(s)
- Baohui Liang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui Province, P.R. China
- Department of Medical Imaging, BengBu Medical College, Bengbu, Anhui Province, P.R. China
| | - Yiming Gao
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Zhi Chen
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui Province, P.R. China
| | - X. George Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui Province, P.R. China
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
85
|
Schmidt TG, Wang AS, Coradi T, Haas B, Star-Lack J. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm. J Med Imaging (Bellingham) 2016; 3:043502. [PMID: 27921070 DOI: 10.1117/1.jmi.3.4.043502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/04/2016] [Indexed: 11/14/2022] Open
Abstract
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Collapse
Affiliation(s)
- Taly Gilat Schmidt
- Marquette University , Department of Biomedical Engineering, PO Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Adam S Wang
- Varian Medical Systems , 3120 Hansen Way, Palo Alto, California 94304, United States
| | - Thomas Coradi
- Varian Medical Systems , 3120 Hansen Way, Palo Alto, California 94304, United States
| | - Benjamin Haas
- Varian Medical Systems , 3120 Hansen Way, Palo Alto, California 94304, United States
| | - Josh Star-Lack
- Varian Medical Systems , 3120 Hansen Way, Palo Alto, California 94304, United States
| |
Collapse
|
86
|
Guberina N, Suntharalingam S, Naßenstein K, Forsting M, Theysohn J, Wetter A, Ringelstein A. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans. Neuroradiology 2016; 58:955-959. [PMID: 27438801 DOI: 10.1007/s00234-016-1722-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. METHODS In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. RESULTS Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. CONCLUSION The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use.
Collapse
Affiliation(s)
- Nika Guberina
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Saravanabavaan Suntharalingam
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Kai Naßenstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jens Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Axel Wetter
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Adrian Ringelstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
87
|
Liu D, Khong PL, Gao Y, Mahmood U, Quinn B, St Germain J, Xu XG, Dauer LT. Radiation Dosimetry of Whole-Body Dual-Tracer 18F-FDG and 11C-Acetate PET/CT for Hepatocellular Carcinoma. J Nucl Med 2016; 57:907-12. [PMID: 26823568 PMCID: PMC5556938 DOI: 10.2967/jnumed.115.165944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Combined whole-body dual-tracer ((18)F-FDG and (11)C-acetate) PET/CT is increasingly used for staging hepatocellular carcinoma, with only limited studies investigating the radiation dosimetry data of these scans. The aim of the study was to characterize the radiation dosimetry of combined whole-body dual-tracer PET/CT protocols. METHODS Consecutive adult patients with hepatocellular carcinoma who underwent whole-body dual-tracer PET/CT scans were retrospectively reviewed with institutional review board approval. OLINDA/EXM 1.1 was used to estimate patient-specific internal dose exposure in each organ. Biokinetic models for (18)F-FDG and (11)C-acetate as provided by ICRP (International Commission on Radiological Protection) publication 106 were used. Standard reference phantoms were modified to more closely represent patient-specific organ mass. With patient-specific parameters, organ equivalent doses from each CT series were estimated using VirtualDose. Dosimetry capabilities for tube current modulation protocols were applied by integrating with the latest anatomic realistic models. Effective dose was calculated using ICRP publication 103 tissue-weighting coefficients for adult male and female, respectively. RESULTS Fourteen scans were evaluated (12 men, 2 women; mean age ± SD, 60 ± 19.48 y). The patient-specific effective dose from (18)F-FDG and (11)C-acetate was 6.08 ± 1.49 and 1.56 ± 0.47 mSv, respectively, for male patients and 6.62 ± 1.38 and 1.79 ± 0.12 mSV, respectively, for female patients. The patient-specific effective dose of the CT component, which comprised 2 noncontrast whole-body scans, to male and female patients was 21.20 ± 8.94 and 14.79 ± 3.35 mSv, respectively. Thus, the total effective doses of the combined whole-body dual-tracer PET/CT studies for male and female patients were 28.84 ± 10.18 and 23.19 ± 4.61 mSv, respectively. CONCLUSION Patient-specific parameters allow for more accurate estimation of organ equivalent doses. Considering the substantial radiation dose incurred, judicious medical justification is required with every whole-body dual-tracer PET/CT referral. Although radiation risks may have less impact for the population with cancer because of their reduced life expectancy, the information is of interest and relevant for both justification, to evaluate risk/benefit, and protocol optimization.
Collapse
Affiliation(s)
- Dan Liu
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiming Gao
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Brian Quinn
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jean St Germain
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - X George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
88
|
Padole A, Deedar Ali Khawaja R, Otrakji A, Zhang D, Liu B, Xu XG, Kalra MK. Comparison of Measured and Estimated CT Organ Doses for Modulated and Fixed Tube Current:: A Human Cadaver Study. Acad Radiol 2016; 23:634-42. [PMID: 26852248 DOI: 10.1016/j.acra.2015.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). MATERIALS AND METHODS With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). RESULTS Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). CONCLUSIONS The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning.
Collapse
|
89
|
Geng C, Moteabbed M, Seco J, Gao Y, George Xu X, Ramos-Méndez J, Faddegon B, Paganetti H. Dose assessment for the fetus considering scattered and secondary radiation from photon and proton therapy when treating a brain tumor of the mother. Phys Med Biol 2015; 61:683-95. [DOI: 10.1088/0031-9155/61/2/683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|