51
|
Reichhardt C, Reichhardt CJO. Directional locking effects for active matter particles coupled to a periodic substrate. Phys Rev E 2020; 102:042616. [PMID: 33212736 DOI: 10.1103/physreve.102.042616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices moving over ordered substrates when the direction of the external drive is varied. Here we study the directional locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence of an external biasing force, we find that the active particle motion locks to various symmetry directions of the substrate when the run time between tumbles is large. The number of possible locking directions depends on the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles, the active particle only locks to the x, y, and 45^{∘} directions, while for smaller obstacles, the number of locking angles increases. Each locking angle satisfies θ=arctan(p/q), where p and q are integers, and the angle of motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions. When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run length is sufficiently large.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
52
|
Mäkinen T, Karppinen P, Ovaska M, Laurson L, Alava MJ. Propagating bands of plastic deformation in a metal alloy as critical avalanches. SCIENCE ADVANCES 2020; 6:6/41/eabc7350. [PMID: 33028532 PMCID: PMC7541064 DOI: 10.1126/sciadv.abc7350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The plastic deformation of metal alloys localizes in the Portevin-Le Chatelier effect in bands of different types, including propagating, or type "A" bands, usually characterized by their width and a typical propagation velocity. This plastic instability arises from collective dynamics of dislocations interacting with mobile solute atoms, but the resulting sensitivity to the strain rate lacks fundamental understanding. Here, we show, by using high-resolution imaging in tensile deformation experiments of an aluminum alloy, that the band velocities exhibit large fluctuations. Each band produces a velocity signal reminiscent of crackling noise bursts observed in numerous driven avalanching systems from propagating cracks in fracture to the Barkhausen effect in ferromagnets. The statistical features of these velocity bursts including their average shapes and size distributions obey predictions of a simple mean-field model of critical avalanche dynamics. Our results thus reveal a previously unknown paradigm of criticality in the localization of deformation.
Collapse
Affiliation(s)
- Tero Mäkinen
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland.
| | - Pasi Karppinen
- ProtoRhino Ltd, Betonimiehenkuja 5C, FI-02150 Espoo, Finland
| | - Markus Ovaska
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Mikko J Alava
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
- NOMATEN Centre of Excellence, National Centre of Nuclear Research, A. Soltana 7, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
53
|
Vanossi A, Bechinger C, Urbakh M. Structural lubricity in soft and hard matter systems. Nat Commun 2020; 11:4657. [PMID: 32938930 PMCID: PMC7495432 DOI: 10.1038/s41467-020-18429-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
Over the recent decades there has been tremendous progress in understanding and controlling friction between surfaces in relative motion. However the complex nature of the involved processes has forced most of this work to be of rather empirical nature. Two very distinctive physical systems, hard two-dimensional layered materials and soft microscopic systems, such as optically or topographically trapped colloids, have recently opened novel rationally designed lines of research in the field of tribology, leading to a number of new discoveries. Here, we provide an overview of these emerging directions of research, and discuss how the interplay between hard and soft matter promotes our understanding of frictional phenomena. Structural lubricity is one of the most interesting concepts in modern tribology, which promises to achieve ultra-low friction over a wide range of length-scales. Here the authors highlight novel research lines in this area achievable by combining theoretical and experimental efforts on hard two-dimensional materials and soft colloidal and cold ion systems.
Collapse
Affiliation(s)
- Andrea Vanossi
- CNR-IOM Democritos National Simulation Center, Trieste, Italy. .,International School for Advanced Studies (SISSA), Trieste, Italy.
| | | | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
54
|
Leyva SG, Stoop RL, Tierno P, Pagonabarraga I. Dynamics and clogging of colloidal monolayers magnetically driven through a heterogeneous landscape. SOFT MATTER 2020; 16:6985-6992. [PMID: 32672782 DOI: 10.1039/d0sm00904k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We combine experiments and numerical simulations to investigate the emergence of clogging in a system of interacting paramagnetic colloidal particles driven against a disordered landscape of larger obstacles. We consider a single aperture in a landscape of immobile silica particles which are irreversibly attached to the substrate. We use an external rotating magnetic field to generate a traveling wave potential which drives the magnetic particles against these obstacles at a constant and frequency tunable speed. Experimentally we find that the particles display an intermittent dynamics with power law distributions at high frequencies. We reproduce these results by using numerical simulations and show that clogging in our system arises at large frequency, when the particles desynchronize with the moving landscape. Further, we use the model to explore the hidden role of flexibility in the obstacle displacements and the effect of hydrodynamic interactions between the particles. We also consider numerically the situation of a straight wall and investigate the range of parameters where clogging emerges in such case. Our work provides a soft matter test-bed system to investigate the effect of clogging in driven microscale matter.
Collapse
Affiliation(s)
- Sergi Granados Leyva
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain.
| | | | | | | |
Collapse
|
55
|
Wu C, Cao T, Cao Y. Collective depinning of driven monolayer active colloidal particles with magnetic dipole and Mie-type interactions. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1718790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Cange Wu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Tingting Cao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yigang Cao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
56
|
Reichhardt C, Reichhardt CJO. Jamming, fragility and pinning phenomena in superconducting vortex systems. Sci Rep 2020; 10:11625. [PMID: 32669592 PMCID: PMC7363902 DOI: 10.1038/s41598-020-68417-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
We examine driven superconducting vortices interacting with quenched disorder under a sequence of perpendicular drive pulses. As a function of disorder strength, we find four types of behavior distinguished by the presence or absence of memory effects. The fragile and jammed states exhibit memory, while the elastic and pinning dominated regimes do not. In the fragile regime, the system organizes into a pinned state during the first pulse, flows during the second perpendicular pulse, and then returns to a pinned state during the third pulse which is parallel to the first pulse. This behavior is the hallmark of the fragility proposed for jamming in particulate matter. For stronger disorder, we observe a robust jamming state with memory where the system reaches a pinned or reduced flow state during the perpendicular drive pulse, similar to the shear jamming of granular systems. We show signatures of the different states in the spatial vortex configurations, and find that memory effects arise from coexisting elastic and pinned components of the vortex assembly. The sequential perpendicular driving protocol we propose for distinguishing fragile, jammed, and pinned phases should be general to the broader class of driven interacting particles in the presence of quenched disorder.
Collapse
Affiliation(s)
- Charles Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cynthia J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
57
|
Zhao L, Wang Z, Zhang X, Liang X, Xia J, Wu K, Zhou HA, Dong Y, Yu G, Wang KL, Liu X, Zhou Y, Jiang W. Topology-Dependent Brownian Gyromotion of a Single Skyrmion. PHYSICAL REVIEW LETTERS 2020; 125:027206. [PMID: 32701308 DOI: 10.1103/physrevlett.125.027206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Noninteracting particles exhibiting Brownian motion have been observed in many occasions of sciences, such as molecules suspended in liquids, optically trapped microbeads, and spin textures in magnetic materials. In particular, a detailed examination of Brownian motion of spin textures is important for designing thermally stable spintronic devices, which motivates the present study. In this Letter, through using temporally and spatially resolved polar magneto-optic Kerr effect microscopy, we have experimentally observed the thermal fluctuation-induced random walk of a single isolated Néel-type magnetic skyrmion in an interfacially asymmetric Ta/CoFeB/TaO_{x} multilayer. An intriguing topology-dependent Brownian gyromotion behavior of skyrmions has been identified. The onset of Brownian gyromotion of a single skyrmion induced by thermal effects, including a nonlinear temperature-dependent diffusion coefficient and topology-dependent gyromotion are further formulated based on the stochastic Thiele equation. The experimental and numerical demonstration of topology-dependent Brownian gyromotion of skyrmions can be useful for understanding the nonequilibrium magnetization dynamics and implementing spintronic devices.
Collapse
Affiliation(s)
- Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Zidong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Xichao Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jing Xia
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Keyu Wu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Heng-An Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yiqing Dong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang L Wang
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| |
Collapse
|
58
|
Yu JW, Rahbari SHE, Kawasaki T, Park H, Lee WB. Active microrheology of a bulk metallic glass. SCIENCE ADVANCES 2020; 6:eaba8766. [PMID: 32832632 PMCID: PMC7439307 DOI: 10.1126/sciadv.aba8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that might result in shear rejuvenation would require a prohibitively long relaxation time. Moreover, glass is well known to be heterogeneous, and a global perturbation would prevent exploration of local mechanical/transport properties. However, investigation based on a local probe, i.e., microrheology, may overcome these problems. Here, we establish active microrheology of a bulk metallic glass, via a probe particle driven into host medium glass. This technique is amenable to experimental investigations via nanoindentation tests. We provide distinct evidence of a strong relationship between the microscopic dynamics of the probe particle and the macroscopic properties of the host medium glass. These findings establish active microrheology as a promising technique for investigating the local properties of bulk metallic glass.
Collapse
Affiliation(s)
- Ji Woong Yu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - S. H. E. Rahbari
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Hyunggyu Park
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
59
|
Emergence of scale-free smectic rivers and critical depinning in emulsions driven through disorder. Proc Natl Acad Sci U S A 2020; 117:13914-13920. [PMID: 32513726 DOI: 10.1073/pnas.2000681117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the past 60 min, oil companies have extracted 6 trillion liters of oil from the ground, thereby giving a striking illustration of the impact of multiphase flows on the world economy. From a fundamental perspective, we largely understand the dynamics of interfaces separating immiscible fluids driven through heterogeneous environments. In stark contrast, the basic mechanisms ruling the transport of fragmented fluids, such as foams and emulsions, remain elusive with studies mostly limited to isolated droplets and bubbles. Here, we demonstrate that the mobilization of emulsion driven through model disordered media is a critical plastic depinning transition. To elucidate this collective dynamics, we track the trajectories of hundreds of thousands of microfluidic droplets advected through random lattices of pinning sites. Their dynamics reveals that macroscopic mobilization only requires the coordinated motion of small groups of particles and does not involve any large-scale avalanches. Criticality arises from the interplay between contact and hydrodynamic interaction, which channel seemingly erratic depinning events along smectic river networks correlated over system spanning scales. Beyond the specifics of emulsion transport, we close our article discussing the similarities and profound differences with the plastic depinning transitions of driven flux lines in high-T c superconductors, charged colloids, and grain transport in eroded sand beds.
Collapse
|
60
|
Cao X, Panizon E, Vanossi A, Manini N, Tosatti E, Bechinger C. Pile-up transmission and reflection of topological defects at grain boundaries in colloidal crystals. Nat Commun 2020; 11:3079. [PMID: 32555241 PMCID: PMC7300131 DOI: 10.1038/s41467-020-16870-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/04/2022] Open
Abstract
Crystalline solids typically contain large amounts of defects such as dislocations and interstitials. How they travel across grain boundaries (GBs) under external stress is crucial to understand the mechanical properties of polycrystalline materials. Here, we experimentally and theoretically investigate with single-particle resolution how the atomic structure of GBs affects the dynamics of interstitial defects driven across monolayer colloidal polycrystals. Owing to the complex inherent GB structure, we observe a rich dynamical behavior of defects near GBs. Below a critical driving force defects cannot cross GBs, resulting in their accumulation near these locations. Under certain conditions, defects are reflected at GBs, leading to their enrichment at specific regions within polycrystals. The channeling of defects within samples of specifically-designed GB structures opens up the possibility to design novel materials that are able to confine the spread of damage to certain regions.
Collapse
Affiliation(s)
- Xin Cao
- Fachbereich Physik, Universität Konstanz, 78464, Konstanz, Germany
| | - Emanuele Panizon
- Fachbereich Physik, Universität Konstanz, 78464, Konstanz, Germany
| | - Andrea Vanossi
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136, Trieste, Italy
| | - Nicola Manini
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
| | - Erio Tosatti
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136, Trieste, Italy
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | | |
Collapse
|
61
|
Holl C, Knol M, Pratzer M, Chico J, Fernandes IL, Lounis S, Morgenstern M. Probing the pinning strength of magnetic vortex cores with sub-nanometer resolution. Nat Commun 2020; 11:2833. [PMID: 32504062 PMCID: PMC7275073 DOI: 10.1038/s41467-020-16701-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022] Open
Abstract
Understanding interactions of magnetic textures with defects is crucial for applications such as racetrack memories or microwave generators. Such interactions appear on the few nanometer scale, where imaging has not yet been achieved with controlled external forces. Here, we establish a method determining such interactions via spin-polarized scanning tunneling microscopy in three-dimensional magnetic fields. We track a magnetic vortex core, pushed by the forces of the in-plane fields, and discover that the core (~ 104 Fe-atoms) gets successively pinned close to single atomic-scale defects. Reproducing the core path along several defects via parameter fit, we deduce the pinning potential as a mexican hat with short-range repulsive and long-range attractive part. The approach to deduce defect induced pinning potentials on the sub-nanometer scale is transferable to other non-collinear spin textures, eventually enabling an atomic scale design of defect configurations for guiding and reliable read-out in race-track type devices. Magnetic vortices such as skyrmions are promising for spintronic applications, however, little is known about the pinning effects strongly influencing their dynamics. Here, the authors map the interaction potential between defects and vortex cores down to the sub-nanometer scale enabling the better control of these magnetic textures.
Collapse
Affiliation(s)
- Christian Holl
- II. Institute of Physics B and JARA-FIT, RWTH Aachen University, D-52074, Aachen, Germany
| | - Marvin Knol
- II. Institute of Physics B and JARA-FIT, RWTH Aachen University, D-52074, Aachen, Germany
| | - Marco Pratzer
- II. Institute of Physics B and JARA-FIT, RWTH Aachen University, D-52074, Aachen, Germany
| | - Jonathan Chico
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Imara Lima Fernandes
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Samir Lounis
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Markus Morgenstern
- II. Institute of Physics B and JARA-FIT, RWTH Aachen University, D-52074, Aachen, Germany.
| |
Collapse
|
62
|
Reichhardt C, Reichhardt CJO. Dynamics of Magnus-dominated particle clusters, collisions, pinning, and ratchets. Phys Rev E 2020; 101:062602. [PMID: 32688521 DOI: 10.1103/physreve.101.062602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Motivated by the recent work in skyrmions and active chiral matter systems, we examine pairs and small clusters of repulsively interacting point particles in the limit where the dynamics is dominated by the Magnus force. We find that particles with the same Magnus force can form stable pairs, triples, and higher ordered clusters or exhibit chaotic motion. For mixtures of particles with opposite Magnus force, particle pairs can combine to form translating dipoles. Under an applied drive, particles with the same Magnus force translate; however, particles with different or opposite Magnus force exhibit a drive-dependent decoupling transition. When the particles interact with a repulsive obstacle, they can form localized orbits with depinning or unwinding transitions under an applied drive. We examine the interaction of these particles with clusters or lines of obstacles and find that the particles can become trapped in orbits that encircle multiple obstacles. Under an ac drive, we observe a series of ratchet effects, including ratchet reversals, for particles interacting with a line of obstacles due to the formation of commensurate orbits. Finally, in assemblies of particles with mixed Magnus forces of the same sign, we find that the particles with the largest Magnus force become localized in the center of the cluster, while for mixtures with opposite Magnus forces, the motion is dominated by transient local pairs or clusters, where the translating pairs can be regarded as a form of active matter.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
63
|
Dynamical processes of interstitial diffusion in a two-dimensional colloidal crystal. Proc Natl Acad Sci U S A 2020; 117:13220-13226. [PMID: 32467163 DOI: 10.1073/pnas.1918097117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In two-dimensional (2D) solids, point defects, i.e., vacancies and interstitials, are bound states of topological defects of edge dislocations and disclinations. They are expected to play an important role in the thermodynamics of the system. Yet very little is known about the detailed dynamical processes of these defects. Two-dimensional colloidal crystals of submicrometer microspheres provide a convenient model solid system in which the microscopic dynamics of these defects can be studied in real time using video microscopy. Here we report a study of the dynamical processes of interstitials in a 2D colloidal crystal. The diffusion constants of both mono- and diinterstitials are measured and found to be significantly larger than those of vacancies. Diinterstitials are clearly slower than monointerstitials. We found that, by plotting the accumulative positions of five- and sevenfold disclinations relative to the center-of-mass position of the defect, a sixfold symmetric pattern emerges for monointerstitials. This is indicative of an equilibrium behavior that satisfies local detailed balance that the lattice remains elastic and can be thermally excited between lattice configurations reversibly. However, for diinterstitials the sixfold symmetry is not observed in the same time window, and the local lattice distortions are too severe to recover quickly. This observation suggests a possible route to creating local melting of a lattice (similarly one can create local melting by creating divacancies). This work opens up an avenue for microscopic studies of the dynamics of melting in colloidal model systems.
Collapse
|
64
|
Nunes AS, Velu SKP, Kasianiuk I, Kasyanyuk D, Callegari A, Volpe G, Telo da Gama MM, Volpe G, Araújo NAM. Ordering of binary colloidal crystals by random potentials. SOFT MATTER 2020; 16:4267-4273. [PMID: 32307474 DOI: 10.1039/d0sm00208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example, they underlie phenomena such as Anderson localization and hyperuniformity, and they are now being exploited to engineer novel materials. Here, we show experimentally that the density of structural defects in a 2D binary colloidal crystal can be engineered with a random potential. We generate the random potential using an optical speckle pattern, whose induced forces act strongly on one species of particles (strong particles) and weakly on the other (weak particles). Thus, the strong particles are more attracted to the randomly distributed local minima of the optical potential, leaving a trail of defects in the crystalline structure of the colloidal crystal. While, as expected, the crystalline ordering initially decreases with an increasing fraction of strong particles, the crystalline order is surprisingly recovered for sufficiently large fractions. We confirm our experimental results with particle-based simulations, which permit us to elucidate how this non-monotonic behavior results from the competition between the particle-potential and particle-particle interactions.
Collapse
Affiliation(s)
- André S Nunes
- Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
We live in a research era marked by impressive new tools powering the scientific method to accelerate the discovery, prediction, and control of increasingly complex systems. In common with many disciplines and societal challenges and opportunities, materials and condensed matter sciences are beneficiaries. The volume and fidelity of experimental, computational, and visualization data available, and tools to rapidly interpret them, are remarkable. Conceptual frameworks, including multiscale, multiphysics modeling of this complexity, are fueled by the data and, in turn, guide directions for future experimental and computational strategies. In this spirit, I discuss the importance of competing interactions, length scales, and constraints as pervasive sources of spatiotemporal complexity. I use representative examples drawn from materials and condensed matter, including the important role of elasticity in some technologically important quantum materials. Expected final online publication date for the Annual Review of Materials Research, Volume 50 is July 1, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- A R Bishop
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;
| |
Collapse
|
66
|
McDermott D, Reichhardt CJO, Reichhardt C. Detecting depinning and nonequilibrium transitions with unsupervised machine learning. Phys Rev E 2020; 101:042101. [PMID: 32422707 DOI: 10.1103/physreve.101.042101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Using numerical simulations of a model disk system, we demonstrate that a machine learning generated order-parameter-like measure can detect depinning transitions and different dynamic flow phases in systems driven far from equilibrium. We specifically consider monodisperse passive disks with short range interactions undergoing a depinning phase transition when driven over quenched disorder. The machine learning derived order-parameter-like measure identifies the depinning transition as well as different dynamical regimes, such as the transition from a flowing liquid to a phase separated liquid-solid state that is not readily distinguished with traditional measures such as velocity-force curves or Voronoi tessellation. The order-parameter-like measure also shows markedly distinct behavior in the limit of high density where jamming effects occur. Our results should be general to the broad class of particle-based systems that exhibit depinning transitions and nonequilibrium phase transitions.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Pacific University, Forest Grove, Oregon 97116, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
67
|
Khali SS, Chakraborty D, Chaudhuri D. A structure-dynamics relationship in ratcheted colloids: resonance melting, dislocations, and defect clusters. SOFT MATTER 2020; 16:2552-2564. [PMID: 32077881 DOI: 10.1039/c9sm02238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We consider a two dimensional colloidal dispersion of soft-core particles driven by a one dimensional stochastic flashing ratchet that induces a time averaged directed particle current through the system. It undergoes a non-equilibrium melting transition as the directed current approaches a maximum associated with a resonance of the ratcheting frequency with the relaxation frequency of the system. We use extensive molecular dynamics simulations to present a detailed phase diagram in the ratcheting rate-mean density plane. With the help of a numerically calculated structure factor, solid and hexatic order parameters, and pair correlation functions, we show that the non-equilibrium melting is a continuous transition from a quasi-long range ordered solid to a hexatic phase. The transition is mediated by the unbinding of dislocations and formation of compact and string-like defect clusters.
Collapse
Affiliation(s)
- Shubhendu Shekhar Khali
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli-140306, Punjab, India.
| | | | | |
Collapse
|
68
|
Mali P, Šakota A, Tekić J, Radošević S, Pantić M, Pavkov-Hrvojević M. Complexity of Shapiro steps. Phys Rev E 2020; 101:032203. [PMID: 32289931 DOI: 10.1103/physreve.101.032203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 11/07/2022]
Abstract
We demonstrate, using the example of the dc+ac driven overdamped Frenkel-Kontorova model, that an easily calculable measure of complexity can be used for the examination of Shapiro steps in the presence of thermal noise. In real systems, thermal noise causes melting or even disappearance of Shapiro steps, which makes their analysis in the standard way from the response function difficult. Unlike in the conventional approach, here, by calculating the Kolmogorov complexity of certain areas in the response function, we were able to detect Shapiro steps, measure their size with the desired precision, and examine their temperature dependence. The aim of this work is to provide scientists, particularly experimentalists, with an unconventional, but practical and easy tool for examination of Shapiro steps in real systems.
Collapse
Affiliation(s)
- Petar Mali
- Department of Physics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Anđela Šakota
- Department of Physics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Jasmina Tekić
- "Vinča" Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics - 020, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Slobodan Radošević
- Department of Physics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Milan Pantić
- Department of Physics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Milica Pavkov-Hrvojević
- Department of Physics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| |
Collapse
|
69
|
Gruber M, Puertas AM, Fuchs M. Critical force in active microrheology. Phys Rev E 2020; 101:012612. [PMID: 32069683 DOI: 10.1103/physreve.101.012612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 11/07/2022]
Abstract
Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the untrapping or depinning of a tracer particle subject to an external force exceeding a threshold value in a glassy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model that allows analytical progress is presented first, and the full physical model is studied numerically next. This analysis yields a continuous dynamic transition with a critical power-law decay of the probe correlation functions with exponent -1/2. To compare with simulations with a limited duration, a finite-time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave-vector divergence of the critical amplitude. In addition, we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.
Collapse
Affiliation(s)
- M Gruber
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - A M Puertas
- Departamento de Física Aplicada, Universidad de Almería, 04.120 Almería, Spain
| | - M Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
70
|
Stoop RL, Straube AV, Johansen TH, Tierno P. Collective Directional Locking of Colloidal Monolayers on a Periodic Substrate. PHYSICAL REVIEW LETTERS 2020; 124:058002. [PMID: 32083892 DOI: 10.1103/physrevlett.124.058002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We investigate the directional locking effects that arise when a monolayer of paramagnetic colloidal particles is driven across a triangular lattice of magnetic bubbles. We use an external rotating magnetic field to generate a two-dimensional traveling wave ratchet forcing the transport of particles along a direction that intersects two crystallographic axes of the lattice. We find that, while single particles show no preferred direction, collective effects induce transversal current and directional locking at high density via a spontaneous symmetry breaking. The colloidal current may be polarized via an additional bias field that makes one transport direction energetically preferred.
Collapse
Affiliation(s)
- Ralph L Stoop
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arthur V Straube
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
- Group "Dynamics of Complex Materials", Zuse Institute Berlin, 14195 Berlin, Germany
| | - Tom H Johansen
- Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo, Norway
- Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
71
|
Reichhardt C, Reichhardt CJO. Plastic flow and the skyrmion Hall effect. Nat Commun 2020; 11:738. [PMID: 32029720 PMCID: PMC7005161 DOI: 10.1038/s41467-020-14587-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022] Open
Abstract
Skyrmions in chiral magnets are a particle-like texture that has been attracting growing interest due to their novel dynamics and possible applications. Here, we discuss the role of disorder and skyrmion-skyrmion interaction in governing their motion under an external drive.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
72
|
Hou Z, Zhang Q, Zhang X, Xu G, Xia J, Ding B, Li H, Zhang S, Batra NM, Costa PMFJ, Liu E, Wu G, Ezawa M, Liu X, Zhou Y, Zhang X, Wang W. Current-Induced Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904815. [PMID: 31746047 DOI: 10.1002/adma.201904815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Helicity indicates the in-plane magnetic-moment swirling direction of a skyrmionic configuration. The ability to reverse the helicity of a skyrmionic bubble via purely electrical means has been predicted in frustrated magnetic systems; however, it has been challenging to observe this experimentally. The current-driven helicity reversal of the skyrmionic bubble in a nanostructured frustrated Fe3 Sn2 magnet is experimentally demonstrated. The critical current density required to trigger the helicity reversal is 109 -1010 A m-2 , with a corresponding pulse-width varying from 1 µs to 100 ns. Computational simulations reveal that both the pinning effect and dipole-dipole interaction play a crucial role in the helicity reversal process.
Collapse
Affiliation(s)
- Zhipeng Hou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Institute for Advanced Materials, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Qiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xichao Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Guizhou Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Xia
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Bei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Senfu Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nitin M Batra
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro M F J Costa
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Enke Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangheng Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Motohiko Ezawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wenhong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
73
|
Critical behavior near the reversible-irreversible transition in periodically driven vortices under random local shear. Sci Rep 2019; 9:16447. [PMID: 31712623 PMCID: PMC6848189 DOI: 10.1038/s41598-019-51060-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022] Open
Abstract
When many-particle (vortex) assemblies with disordered distribution are subjected to a periodic shear with a small amplitude \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{d}}$$\end{document}d, the particles gradually self-organize to avoid next collisions and transform into an organized configuration. We can detect it from the time-dependent voltage \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{V}}{\boldsymbol{(}}{\boldsymbol{t}}{\boldsymbol{)}}$$\end{document}V(t) (average velocity) that increases towards a steady-state value. For small \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{d}}$$\end{document}d, the particles settle into a reversible state where all the particles return to their initial position after each shear cycle, while they reach an irreversible state for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{d}}$$\end{document}d above a threshold \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{d}}}_{{\boldsymbol{c}}}$$\end{document}dc. Here, we investigate the general phenomenon of a reversible-irreversible transition (RIT) using periodically driven vortices in a strip-shaped amorphous film with random pinning that causes local shear, as a function of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{d}}$$\end{document}d. By measuring \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{V}}{\boldsymbol{(}}{\boldsymbol{t}}{\boldsymbol{)}}$$\end{document}V(t), we observe a critical behavior of RIT, not only on the irreversible side, but also on the reversible side of the transition, which is the first under random local shear. The relaxation time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{d}}{\boldsymbol{)}}$$\end{document}τ(d) to reach either the reversible or irreversible state shows a power-law divergence at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{d}}}_{{\boldsymbol{c}}}$$\end{document}dc. The critical exponent is determined with higher accuracy and is, within errors, in agreement with the value expected for an absorbing phase transition in the two-dimensional directed-percolation universality class. As \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{d}}$$\end{document}d is decreased down to the intervortex spacing in the reversible regime, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{d}}{\boldsymbol{)}}$$\end{document}τ(d) deviates downward from the power-law relation, reflecting the suppression of intervortex collisions. We also suggest the possibility of a narrow smectic-flow regime, which is predicted to intervene between fully reversible and irreversible flow.
Collapse
|
74
|
Li W, Wang K, Reichhardt C, Reichhardt CJO, Murillo MS, Feng Y. Depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate. Phys Rev E 2019; 100:033207. [PMID: 31639889 DOI: 10.1103/physreve.100.033207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 11/07/2022]
Abstract
We investigate the depinning dynamics of two-dimensional dusty plasmas driven over one-dimensional periodic substrates using Langevin dynamical simulations. We find that, for a specific range of substrate strengths, as the external driving force increases from zero, there are three different states, which are the pinned, the disordered plastic flow, and the moving ordered states, respectively. These three states are clearly observed using different diagnostics, including the collective drift velocity, static structural measures, the particle trajectories, the mean-squared displacements, and the kinetic temperature. We compare the observed depinning dynamics here with the depinning dynamics in other systems.
Collapse
Affiliation(s)
- W Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - K Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
75
|
Nagase T, Komatsu M, So YG, Ishida T, Yoshida H, Kawaguchi Y, Tanaka Y, Saitoh K, Ikarashi N, Kuwahara M, Nagao M. Smectic Liquid-Crystalline Structure of Skyrmions in Chiral Magnet Co_{8.5}Zn_{7.5}Mn_{4}(110) Thin Film. PHYSICAL REVIEW LETTERS 2019; 123:137203. [PMID: 31697552 DOI: 10.1103/physrevlett.123.137203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/10/2023]
Abstract
The organizing of magnetic skyrmions shows several forms similar to atomic arrays of solid states. Using Lorentz transmission electron microscopy, we report the first direct observation of a stable liquid-crystalline structure of skyrmions in chiral magnet Co_{8.5}Zn_{7.5}Mn_{4}(110) thin film, caused by magnetic anisotropy and chiral surface twist. Elongated skyrmions are oriented and periodically arranged only in the ⟨110⟩ directions, whereas they exhibit short-range order along the ⟨001⟩ directions, indicating a smectic skyrmion state. In addition, skyrmions possess anisotropic interaction with an opposite sign depending on the crystal orientation, in contrast to existing isotropic interaction.
Collapse
Affiliation(s)
- T Nagase
- Department of Electrical, Electronic Engineering and Information Engineering, School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - M Komatsu
- Department of Materials Science, Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan
| | - Y G So
- Department of Materials Science, Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan
| | - T Ishida
- Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
| | - H Yoshida
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - Y Kawaguchi
- Department of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Y Tanaka
- Department of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - K Saitoh
- Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
| | - N Ikarashi
- Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - M Kuwahara
- Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
| | - M Nagao
- Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
76
|
Liu C, De Luca A, Rosso A, Talon L. Darcy's Law for Yield Stress Fluids. PHYSICAL REVIEW LETTERS 2019; 122:245502. [PMID: 31322393 DOI: 10.1103/physrevlett.122.245502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/10/2023]
Abstract
Predicting the flow of non-Newtonian fluids in a porous structure is still a challenging issue due to the interplay between the microscopic disorder and the nonlinear rheology. In this Letter, we study the case of a yield stress fluid in a two-dimensional structure. Thanks to an efficient optimization algorithm, we show that the system undergoes a continuous phase transition in the behavior of the flow, controlled by the applied pressure difference. In analogy with studies of plastic depinning of vortex lattices in high-T_{c} superconductors, we characterize the nonlinearity of the flow curve and relate it to the change in the geometry of the open channels. In particular, close to the transition, a universal scale-free distribution of the channel length is observed and explained theoretically via a mapping to the Kardar-Parisi-Zhang equation.
Collapse
Affiliation(s)
- Chen Liu
- FAST, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Andrea De Luca
- Theoretical Physics, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Alberto Rosso
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Laurent Talon
- FAST, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
77
|
McDermott D, Yang Y, Reichhardt CJO, Reichhardt C. Dynamic phases, stratification, laning, and pattern formation for driven bidisperse disk systems in the presence of quenched disorder. Phys Rev E 2019; 99:042601. [PMID: 31108701 DOI: 10.1103/physreve.99.042601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/07/2022]
Abstract
Using numerical simulations, we examine the dynamics of driven two-dimensional bidisperse disks flowing over quenched disorder. The system exhibits a series of distinct dynamical phases as a function of applied driving force and packing fraction, including a phase-separated state as well as a smectic state with liquid-like or polycrystalline features. At low driving forces, we find a clogged phase with an isotropic density distribution, while at intermediate driving forces the disks separate into bands of high and low densities with either liquid-like or polycrystalline structure in the high-density bands. In addition to the density phase separation, we find that in some cases there is a fractionation of the disk species, particularly when the disk size ratio is large. The species phase-separated regimes form a variety of patterns such as large disks separated by chains of smaller disks. Our results show that the formation of laning states can be enhanced by tuning the ratio of disk radius of the two species, due to the clumping of small disks in the interstitial regions between the large disks. This system could be experimentally realized using sterically interacting colloidal particles suspended in a viscous fluid driven over random pinning arrays or granular matter suspended in fluid moving over a random landscape.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.,Department of Physics, Pacific University, Forest Grove, Oregon 97116, USA
| | - Y Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.,School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
78
|
Recent Developments in the Field of the Metal-Insulator Transition in Two Dimensions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We review the latest developments in the field of the metal-insulator transition in strongly-correlated two-dimensional electron systems. Particular attention is given to recent discoveries of a sliding quantum electron solid and interaction-induced spectrum flattening at the Fermi level in high-quality silicon-based structures.
Collapse
|
79
|
Reichhardt C, Reichhardt CJO. Thermal creep and the skyrmion Hall angle in driven skyrmion crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:07LT01. [PMID: 30524098 DOI: 10.1088/1361-648x/aaefd7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We numerically examine thermal effects on the skyrmion Hall angle for driven skyrmions interacting with quenched disorder. We identify a creep regime in which motion occurs via intermittent jumps between pinned and flowing states. Here the skyrmion Hall angle is zero since the skyrmions have time to relax into equilibrium positions in the pinning sites, eliminating the side-jump motion induced by the Magnus force. At higher drives we find a crossover to a viscous flow regime where the skyrmion Hall angle is finite and increases with increasing drive or temperature. Our results are in agreement with recent experiments which also show a regime of finite skyrmion velocity with zero skyrmion Hall angle crossing over to a viscous flow regime with a skyrmion Hall angle that increases with drive.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | | |
Collapse
|
80
|
Reichhardt CJO, Reichhardt C. Disordering, clustering, and laning transitions in particle systems with dispersion in the Magnus term. Phys Rev E 2019; 99:012606. [PMID: 30780381 DOI: 10.1103/physreve.99.012606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/07/2022]
Abstract
We numerically examine a two-dimensional system of repulsively interacting particles with dynamics that are governed by both a damping term and a Magnus term. The magnitude of the Magnus term has one value for half of the particles and a different value for the other half of the particles. In the absence of a driving force, the particles form a triangular lattice, while when a driving force is applied, we find that there is a critical drive above which a Magnus-induced disordering transition can occur even if the difference in the Magnus term between the two particle species is as small as one percent. The transition arises due to the different Hall angles of the two species, which causes their motion to decouple at the critical drive. At higher drives, the disordered state can undergo both species and density phase separation into a density-modulated stripe that is oriented perpendicular to the driving direction. We observe several additional phases that occur as a function of drive and Magnus force disparity, including a variety of density-modulated diagonal-laned phases. In general, we find a much richer variety of states compared to systems of oppositely driven overdamped Yukawa particles. We discuss the implications of our work for skyrmion systems, where we predict that even for small skyrmion dispersities, a drive-induced disordering transition can occur along with clustering phases and pattern-forming states.
Collapse
Affiliation(s)
- C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
81
|
Reichhardt C, Reichhardt CJO. Reversibility, pattern formation, and edge transport in active chiral and passive disk mixtures. J Chem Phys 2019; 150:064905. [DOI: 10.1063/1.5085209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- C. Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C. J. O. Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
82
|
Estellés-Duart F, Ortuño M, Somoza AM, Vinokur VM, Gurevich A. Current-driven production of vortex-antivortex pairs in planar Josephson junction arrays and phase cracks in long-range order. Sci Rep 2018; 8:15460. [PMID: 30337558 PMCID: PMC6193993 DOI: 10.1038/s41598-018-33467-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 11/27/2022] Open
Abstract
Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically a dynamic instability of moving vortices in planar arrays of Josephson junctions. We show that a single vortex driven by sufficiently strong current becomes unstable and destroys superconductivity by triggering a chain reaction of self-replicating vortex-antivortex pairs forming linear of branching expanding patterns. This process can be described in terms of propagating phase cracks in long-range order with far-reaching implications for dynamic systems of interacting spins and atoms hosting magnetic vortices and dislocations.
Collapse
Affiliation(s)
| | - Miguel Ortuño
- Universidad de Murcia, Departamento de Física-CIOyN, Murcia, 30071, Spain
| | - Andrés M Somoza
- Universidad de Murcia, Departamento de Física-CIOyN, Murcia, 30071, Spain
| | - Valerii M Vinokur
- Argonne National Laboratory, Materials Science Division, Chicago, IL, 60637, USA.,Univeristy of Chicago, Computation Institute, Chicago, IL, 60637, USA
| | - Alex Gurevich
- Old Dominion University, Department of Physics, Norfolk, VA, 23529, USA
| |
Collapse
|
83
|
Reichhardt C, Reichhardt CJO. Controlled Fluidization, Mobility, and Clogging in Obstacle Arrays Using Periodic Perturbations. PHYSICAL REVIEW LETTERS 2018; 121:068001. [PMID: 30141675 DOI: 10.1103/physrevlett.121.068001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 06/08/2023]
Abstract
We show that the clogging susceptibility and flow of particles moving through a random obstacle array can be controlled with a transverse or longitudinal ac drive. The flow rate can vary over several orders of magnitude, and we find both an optimal frequency and an optimal amplitude of driving that maximizes the flow. For dense arrays, at low ac frequencies, a heterogeneous creeping clogged phase appears in which rearrangements between different clogged configurations occur. At intermediate frequencies, a high-mobility fluidized state forms, and, at high frequencies, the system reenters a heterogeneous frozen clogged state. These results provide a technique for optimizing flow through heterogeneous media that could also serve as the basis for a particle separation method.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
84
|
Péter H, Libál A, Reichhardt C, Reichhardt CJO. Crossover from Jamming to Clogging Behaviours in Heterogeneous Environments. Sci Rep 2018; 8:10252. [PMID: 29980708 PMCID: PMC6035199 DOI: 10.1038/s41598-018-28256-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Jamming describes a transition from a flowing or liquid state to a solid or rigid state in a loose assembly of particles such as grains or bubbles. In contrast, clogging describes the ceasing of the flow of particulate matter through a bottleneck. It is not clear how to distinguish jamming from clogging, nor is it known whether they are distinct phenomena or fundamentally the same. We examine an assembly of disks moving through a random obstacle array and identify a transition from clogging to jamming behavior as the disk density increases. The clogging transition has characteristics of an absorbing phase transition, with the disks evolving into a heterogeneous phase-separated clogged state after a critical diverging transient time. In contrast, jamming is a rapid process in which the disks form a homogeneous motionless packing, with a rigidity length scale that diverges as the jamming density is approached.
Collapse
Affiliation(s)
- H Péter
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj, 400084, Romania
| | - A Libál
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj, 400084, Romania
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
85
|
Reichhardt CJO, Reichhardt C. Clogging and transport of driven particles in asymmetric funnel arrays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:244005. [PMID: 29722678 DOI: 10.1088/1361-648x/aac247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.
Collapse
Affiliation(s)
- C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | | |
Collapse
|
86
|
Reichhardt C, Reichhardt CJO. Clogging and depinning of ballistic active matter systems in disordered media. Phys Rev E 2018; 97:052613. [PMID: 29906960 DOI: 10.1103/physreve.97.052613] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/08/2023]
Abstract
We numerically examine ballistic active disks driven through a random obstacle array. Formation of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for passive disks. As a function of obstacle density, we identify several distinct phases including a depinned fluctuating cluster state, a pinned single-cluster or jammed state, a pinned multicluster state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold changes as a function of disk or obstacle density and find a crossover from a collectively pinned cluster state to a disordered plastic depinning transition as a function of increasing obstacle density. We compare this to the behavior of nonballistic active particles and show that as we vary the activity from completely passive to completely ballistic, a clogged phase-separated state appears in both the active and passive limits, while for intermediate activity, a readily flowing liquid state appears and there is an optimal activity level that maximizes the flux through the sample.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
87
|
Abstract
Soil is apparently solid as it moves downhill at glacial speeds, but can also liquefy from rain or earthquakes. This behavior is actually similar to that of glass, which creeps very slowly at low temperatures but becomes a liquid at higher temperatures. We develop a discrete granular-physics hillslope model, which shows that the similarities between soil and glass are more than skin deep. Despite the geologic and climatic complexity of natural environments, the shapes and erosion rates of hillsides over geologic timescales appear to be governed by generic dynamics characteristic of disordered and amorphous materials. Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales.
Collapse
|
88
|
Díaz SA, Reichhardt C, Arovas DP, Saxena A, Reichhardt CJO. Avalanches and Criticality in Driven Magnetic Skyrmions. PHYSICAL REVIEW LETTERS 2018; 120:117203. [PMID: 29601757 DOI: 10.1103/physrevlett.120.117203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 06/08/2023]
Abstract
We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient.
Collapse
Affiliation(s)
- S A Díaz
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D P Arovas
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - A Saxena
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
89
|
Reichhardt C, Reichhardt CJO. Velocity force curves, laning, and jamming for oppositely driven disk systems. SOFT MATTER 2018; 14:490-498. [PMID: 29214253 DOI: 10.1039/c7sm02162c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using simulations we examine a two-dimensional disk system in which two disk species are driven in opposite directions. We measure the average velocity of one of the species versus the applied driving force and identify four phases as function of drive and disk density: a jammed state, a completely phase separated state, a continuously mixing phase, and a laning phase. The transitions between these phases are correlated with jumps in the velocity-force curves that are similar to the behavior observed at dynamical phase transitions in driven particle systems with quenched disorder such as vortices in type-II superconductors. In some cases the transitions between phases are associated with negative differential mobility in which the average absolute velocity of either species decreases with increasing drive. We also consider the situation where the drive is applied to only one species as well as systems in which both species are driven in the same direction with different drive amplitudes. We show that the phases are robust against the addition of thermal fluctuations. Finally, we discuss how the transitions we observe could be related to absorbing phase transitions where a system in a phase separated or laning regime organizes to a state in which contacts between the disks no longer occur and dynamical fluctuations are lost.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | |
Collapse
|
90
|
Khajehpour Tadavani S, Yethiraj A. Tunable hydrodynamics: a field-frequency phase diagram of a non-equilibrium order-to-disorder transition. SOFT MATTER 2017; 13:7412-7424. [PMID: 28960017 DOI: 10.1039/c7sm01145h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present experiments on a model system consisting of dielectric (silicone oil) drops in a "leaky dielectric" (castor oil) carrier fluid that exhibits dynamic non-equilibrium phases as a function of the amplitude and frequency of an external AC electric field. At high frequencies, the dielectric drops are pinned to a periodic lattice by dielectrophoretic forces induced by a patterned bottom electrode. Beginning with this state of imposed order, we examine the processes that take this system from order to disorder, with decreasing frequency corresponding to an increase in the range of the hydrodynamic forces. We find two kinds of disorder, shape- and translational disorder, that occur in frequency-amplitude space. We also find regimes where drop breakup is dominant, and where order/disorder of large drops can be probed without significant drop breakup. With decreasing frequency (i.e., increasing hydrodynamic coupling between drops) and on timescales from seconds to minutes, the drops exhibit motion that resembles Brownian motion of particles in a crystal, with an effective temperature that increases with the strength of the electrohydrodynamic driving force. In this limit, the system behaves like a thermal system and the lattice is seen to melt at an effective Lindemann parameter of Leff ∼ 0.08. This non-equilibrium thermodynamics, probed on timescales from seconds to minutes, likely arises from the pseudo-random velocity fields in the carrier fluid, as evidenced by the fractional, t3/2, super-diffusive tracer dynamics at shorter timescales.
Collapse
|
91
|
Bag B, Shaw G, Banerjee SS, Majumdar S, Sood AK, Grover AK. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state. Sci Rep 2017; 7:5531. [PMID: 28717176 PMCID: PMC5514132 DOI: 10.1038/s41598-017-05191-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
Under the influence of a constant drive the moving vortex state in 2H-NbS2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].
Collapse
Affiliation(s)
- Biplab Bag
- Department of Physics, Indian Institute of Technology, Kanpur, 208016, India
| | - Gorky Shaw
- Department of Physics, Indian Institute of Technology, Kanpur, 208016, India
- Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Universitè de Liège, Sart Tilman, B-4000, Belgium
| | - S S Banerjee
- Department of Physics, Indian Institute of Technology, Kanpur, 208016, India.
| | - Sayantan Majumdar
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
- James Franck Institute, The University of Chicago, Chicago, Illinois, 60637, USA
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India.
| | - A K Grover
- Department of Physics, Panjab University, Chandigarh, 160014, India.
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Researc, Mumbai, 400005, India.
| |
Collapse
|
92
|
Brazda T, July C, Bechinger C. Experimental observation of Shapiro-steps in colloidal monolayers driven across time-dependent substrate potentials. SOFT MATTER 2017; 13:4024-4028. [PMID: 28488723 DOI: 10.1039/c7sm00393e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We experimentally study the motion of a colloidal monolayer which is driven across a commensurate substrate potential whose amplitude is periodically modulated in time. In addition to a significant reduction of the static friction force compared to an unmodulated substrate, we observe a Shapiro step structure in the force dependence of the mean particle velocity which is explained by the dynamical mode locking between the particle motion and the substrate modulation. In this regime, the entire crystal moves in a stick-slip fashion similar to what is observed when a single point contact is driven across a periodic surface. Contrary to numerical simulations, where typically a large number of Shapiro steps is found, only a single step is observed in our experiments. This is explained by the formation of kinks which weaken the synchronization between adjacent particles.
Collapse
Affiliation(s)
- T Brazda
- 12. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
93
|
Yang Y, McDermott D, Reichhardt CJO, Reichhardt C. Dynamic phases, clustering, and chain formation for driven disk systems in the presence of quenched disorder. Phys Rev E 2017; 95:042902. [PMID: 28505834 DOI: 10.1103/physreve.95.042902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 06/07/2023]
Abstract
We numerically examine the dynamic phases and pattern formation of two-dimensional monodisperse repulsive disks driven over random quenched disorder. We show that there is a series of distinct dynamic regimes as a function of increasing drive, including a clogged or pile-up phase near depinning, a homogeneous disordered flow state, and a dynamically phase separated regime consisting of high-density crystalline regions surrounded by a low density of disordered disks. At the highest drives the disks arrange into one-dimensional moving chains. The phase separated regime has parallels with the phase separation observed in active matter systems, but arises from a distinct mechanism consisting of the combination of nonequilibrium fluctuations with density-dependent mobility. We discuss the pronounced differences between this system and previous studies of driven particles with longer-range repulsive interactions moving over random substrates, such as superconducting vortices or electron crystals, where dynamical phase separation and distinct one-dimensional moving chains are not observed. Our results should be generic to a broad class of systems in which the particle-particle interactions are short ranged, such as sterically interacting colloids or Yukawa particles with strong screening driven over random pinning arrays, superconducting vortices in the limit of small penetration depths, or quasi-two-dimensional granular matter flowing over rough landscapes.
Collapse
Affiliation(s)
- Y Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA
| | - D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
94
|
Eley S, Miura M, Maiorov B, Civale L. Universal lower limit on vortex creep in superconductors. NATURE MATERIALS 2017; 16:409-413. [PMID: 28191897 DOI: 10.1038/nmat4840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu3O7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu3O7-δ. Here, we report very slow creep in BaFe 2(As0.67P0.33)2 films, and propose the existence of a universal minimum realizable S ∼ Gi1/2(T/Tc) (Tc is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.
Collapse
Affiliation(s)
- S Eley
- Condensed Matter and Magnet Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M Miura
- Graduate School of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - B Maiorov
- Condensed Matter and Magnet Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L Civale
- Condensed Matter and Magnet Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
95
|
Nguyen HT, Reichhardt C, Reichhardt CJO. Clogging and jamming transitions in periodic obstacle arrays. Phys Rev E 2017; 95:030902. [PMID: 28415252 DOI: 10.1103/physreve.95.030902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 06/07/2023]
Abstract
We numerically examine clogging transitions for bidisperse disks flowing through a two-dimensional periodic obstacle array. We show that clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase-separated jammed state where the disks form dense connected clusters. The probability for clogging to occur during a fixed time increases with increasing particle packing and obstacle number. For driving at different angles with respect to the symmetry direction of the obstacle array, we show that certain directions have a higher clogging susceptibility. It is also possible to have a size-specific clogging transition in which one disk size becomes completely immobile while the other disk size continues to flow.
Collapse
Affiliation(s)
- H T Nguyen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
96
|
Sándor C, Libál A, Reichhardt C, Olson Reichhardt CJ. Dynamic phases of active matter systems with quenched disorder. Phys Rev E 2017; 95:032606. [PMID: 28415221 DOI: 10.1103/physreve.95.032606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions with the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.
Collapse
Affiliation(s)
- Cs Sándor
- Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj 400084, Romania
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A Libál
- Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj 400084, Romania
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J Olson Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
97
|
Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State. CRYSTALS 2017. [DOI: 10.3390/cryst7020042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
98
|
Scale-free channeling patterns near the onset of erosion of sheared granular beds. Proc Natl Acad Sci U S A 2016; 113:11788-11793. [PMID: 27708163 DOI: 10.1073/pnas.1609023113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erosion shapes our landscape and occurs when a sufficient shear stress is exerted by a fluid on a sedimented layer. What controls erosion at a microscopic level remains debated, especially near the threshold forcing where it stops. Here we study, experimentally, the collective dynamics of the moving particles, using a setup where the system spontaneously evolves toward the erosion onset. We find that the spatial organization of the erosion flux is heterogeneous in space and occurs along channels of local flux σ whose distribution displays scaling near threshold and follows [Formula: see text], where J is the mean erosion flux. Channels are strongly correlated in the direction of forcing but not in the transverse direction. We show that these results quantitatively agree with a model where the dynamics is governed by the competition of disorder (which channels mobile particles) and particle interactions (which reduces channeling). These observations support that, for laminar flows, erosion is a dynamical phase transition that shares similarity with the plastic depinning transition occurring in dirty superconductors. The methodology we introduce here could be applied to probe these systems as well.
Collapse
|