51
|
Fitzgerald S, Holland L, Ahmed W, Piechulla B, Fowler SJ, Morrin A. Volatilomes of human infection. Anal Bioanal Chem 2024; 416:37-53. [PMID: 37843549 PMCID: PMC10758372 DOI: 10.1007/s00216-023-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.
Collapse
Affiliation(s)
- Shane Fitzgerald
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Birgit Piechulla
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephen J Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Respiratory Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| |
Collapse
|
52
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
53
|
Jung AE, Davidson CN, Land CJ, Dash AI, Guess BT, Edmonds HS, Pitsch RL, Harshman SW. Impact of thermal desorption tubes on the variability of exhaled breath data. J Breath Res 2023; 18:016008. [PMID: 38096565 DOI: 10.1088/1752-7163/ad15a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability. The data illustrate that the Biomonitoring 5TD tubes have the highest number (23) and abundance of background contamination greater than 3x the mean noise when compared to Tenax TA (13) and empty tubes (9). Tentative identifications of the compounds in the background contamination experiment show that greater than 59% (16/27) of the compounds identified have been reported in the breath literature. The data illustrate the TD tube background abundance could account for more than 70% of the chromatographic signal from exhaled breath for these select compounds. Flow rate measurements of 200 Tenax TA and 200 Biomonitoring 5TD tubes show a large range in measured flow rates among the TD tubes (Tenax: 252.9-284.0 ml min-1, 5TD: 220.6-255.1 ml min-1). Finally, TD tubes of each type, Tenax TA and Biomonitoring 5TD, previously established to have high, medium, and low flow rates, show insignificant differences (p> 0.05) among the tubes of different flow rates, using both gas standards and an exhaled breath from a peppermint experiment. Collectively, these results establish overall background compounds attributed to each TD tube type tested. Additionally, while measured flow rate variability is present and plausibly impacts exhaled breath results, the data demonstrate no statistically significant difference was observed between tubes showing high, medium, and low flow rates from two separate sample types.
Collapse
Affiliation(s)
- Anne E Jung
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Christopher J Land
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Aubrianne I Dash
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Barlow T Guess
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Heidi S Edmonds
- United States Air Force Academy, 2304 Cadet Drive, United States Air Force Academy, CO 80840, United States of America
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Sean W Harshman
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| |
Collapse
|
54
|
Gallos IK, Tryfonopoulos D, Shani G, Amditis A, Haick H, Dionysiou DD. Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions. Diagnostics (Basel) 2023; 13:3673. [PMID: 38132257 PMCID: PMC10743128 DOI: 10.3390/diagnostics13243673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Early detection of colorectal cancer is crucial for improving outcomes and reducing mortality. While there is strong evidence of effectiveness, currently adopted screening methods present several shortcomings which negatively impact the detection of early stage carcinogenesis, including low uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an important research priority. Recent advancements in the field of breathomics, the study of breath composition and analysis, have paved the way for new avenues for non-invasive cancer detection and effective monitoring. Harnessing the utility of Volatile Organic Compounds in exhaled breath, breathomics has the potential to disrupt colorectal cancer screening practices. Our goal is to outline key research efforts in this area focusing on machine learning methods used for the analysis of breathomics data, highlight challenges involved in artificial intelligence application in this context, and suggest possible future directions which are currently considered within the framework of the European project ONCOSCREEN.
Collapse
Affiliation(s)
- Ioannis K. Gallos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Dimitrios Tryfonopoulos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Gidi Shani
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Angelos Amditis
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Hossam Haick
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Dimitra D. Dionysiou
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| |
Collapse
|
55
|
Myridakis A, Wen Q, Boshier PR, Parker AG, Belluomo I, Handakas E, Hanna GB. Global Urinary Volatolomics with (GC×)GC-TOF-MS. Anal Chem 2023; 95:17170-17176. [PMID: 37967208 PMCID: PMC10688225 DOI: 10.1021/acs.analchem.3c02523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Urinary volatolomics offers a noninvasive approach for disease detection and monitoring. Herein we present an improved methodology for global volatolomic profiling. Wide coverage was achieved by utilizing a multiphase sorbent for volatile organic compound (VOC) extraction. A single, midpolar column gas chromatography (GC) assay yielded substantially higher numbers of monitored VOCs compared to our previously reported single-sorbent method. Multidimensional GC (GC×GC) enhanced further biomarker discovery while data analysis was simplified by using a tile-based approach. At the same time, the required urine volume was reduced 5-fold from 2 to 0.4 mL. The applicability of the methodology was demonstrated in a pancreatic ductal adenocarcinoma cohort where previous findings were confirmed while a series of additional VOCs with diagnostic potential were discovered.
Collapse
Affiliation(s)
- Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- Centre
for Pollution Research & Policy, Environmental Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Qing Wen
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- Department
of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Piers R. Boshier
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Evangelos Handakas
- Medical
Research Council Centre for Environment and Health, School of Public
Health, Imperial College London, London W12 0BZ, United Kingdom
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| |
Collapse
|
56
|
Abu Bakar NH, Chiu HY, Urban PL. Mass Specthoscope: A Hand-held Extendable Probe for Localized Noninvasive Sampling of Skin Volatome for Online Analysis. Anal Chem 2023; 95:17143-17150. [PMID: 37935619 DOI: 10.1021/acs.analchem.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Human skin emits a unique set of volatile organic compounds (VOCs). These VOCs can be probed in order to obtain physiological information about the individuals. However, extracting the VOCs that emanate from human skin for analysis is troublesome and time-consuming. Therefore, we have developed "Mass Specthoscope"─a convenient tool for rapid sampling and detecting VOCs emitted by human skin. The hand-held probe with a pressurized tip and wireless button enables sampling VOCs from surfaces and their transfer to the atmospheric pressure chemical ionization source of quadrupole time-of-flight mass spectrometer. The system was characterized using chemical standards (acetone, benzaldehyde, sulcatone, α-pinene, and decanal). The limits of detection are in the range from 2.25 × 10-5 to 3.79 × 10-5 mol m-2. The system was initially tested by detecting VOCs emanating from porcine skin spiked with VOCs as well as unspiked fresh and spoiled ham. In the main test, the skin of nine healthy participants was probed with the Mass Specthoscope. The sampling regions included the armpit, forearm, and forehead. Numerous skin-related VOC signals were detected. In the final test, one participant ingested a fenugreek drink, and the participant's skin surface was probed using the Mass Specthoscope hourly during the 8 h period. The result revealed a gradual release of fenugreek-related VOCs from the skin. We believe that this analytical approach has the potential to be used in metabolomic studies and following further identification of disease biomarkers─also in noninvasive diagnostics.
Collapse
Affiliation(s)
- Noor Hidayat Abu Bakar
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Hsien-Yi Chiu
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S. Road, Taipei 100, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, 1 Jen Ai Road, Taipei 100, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
57
|
Stead Z, Capuano R, Di Natale C, Pain A. The volatilome signatures of Plasmodium falciparum parasites during the intraerythrocytic development cycle in vitro under exposure to artemisinin drug. Sci Rep 2023; 13:20167. [PMID: 37978324 PMCID: PMC10656521 DOI: 10.1038/s41598-023-46416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Volatile organic compounds (VOCs) comprise a diverse range of metabolites with high vapour pressure and low boiling points. Although they have received attention, they are a largely unexplored part of the metabolome. Previous studies have shown that malaria infections produce characteristic, definitive, and detectable volatile signatures. Many transcriptional and metabolic differences are observed at different stages of the parasite Intraerythrocytic Developmental Cycle (IDC) as well as when artemisinin-resistant parasites are put under drug pressure. This prompted our research to characterize whether these responses are reflected at a volatile level in malaria during the IDC stages using gas chromatography-mass spectrometry. We investigated whether the resistant P. falciparum parasites would produce their own characteristic volatilome profile compared to near-isogenic wild-type parasite in vitro; firstly at three different stages of the IDC and secondly in the presence or absence of artemisinin drug treatment. Finally, we explored the VOC profiles from two media environments (Human serum and Albumax) of recently lab-adapted field parasite isolates, from Southeast Asia and West/East Africa, compared to long-term lab-adapted parasites. Recognizable differences were observed between IDC stages, with schizonts having the largest difference between wild type and resistant parasites, and with cyclohexanol and 2,5,5-trimethylheptane only present for resistant schizonts. Artemisinin treatment had little effect on the resistant parasite VOC profile, whilst for the wild type parasites compounds ethylbenzene and nonanal were greatly affected. Lastly, differing culturing conditions had an observable impact on parasite VOC profile and clustering patterns of parasites were specific to geographic origin. The results presented here provide the foundation for future studies on VOC based characterization of P. falciparum strains differing in abilities to tolerate artemisinin.
Collapse
Affiliation(s)
- Zenaida Stead
- Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, KAUST, 239556900, Jeddah, Saudi Arabia
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy.
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy.
| | - Arnab Pain
- Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, KAUST, 239556900, Jeddah, Saudi Arabia.
| |
Collapse
|
58
|
Zhang H, Yang Y, Jiang Y, Zhang M, Xu Z, Wang X, Jiang J. Mass Spectrometry Analysis for Clinical Applications: A Review. Crit Rev Anal Chem 2023:1-20. [PMID: 37910438 DOI: 10.1080/10408347.2023.2274039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mass spectrometry (MS) has become an attractive analytical method in clinical analysis due to its comprehensive advantages of high sensitivity, high specificity and high throughput. Separation techniques coupled MS detection (e.g., LC-MS/MS) have shown unique advantages over immunoassay and have developed as golden criterion for many clinical applications. This review summarizes the characteristics and applications of MS, and emphasizes the high efficiency of MS in clinical research. In addition, this review also put forward further prospects for the future of mass spectrometry technology, including the introduction of miniature MS instruments, point-of-care detection and high-throughput analysis, to achieve better development of MS technology in various fields of clinical application. Moreover, as ambient ionization mass spectrometry (AIMS) requires little or no sample pretreatment and improves the flux of MS, this review also summarizes its potential applications in clinic.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| |
Collapse
|
59
|
Hou J, Liu X, Hou C, Huo D, Li J. A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds. Anal Bioanal Chem 2023; 415:6647-6661. [PMID: 37848579 DOI: 10.1007/s00216-023-04941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Detection of human-generated volatile organic compounds (VOCs) is a new pathway for assessing health. Herein, a polyvinylidene fluoride (PVDF)-based colorimetric sensor array was designed for detecting disease-related VOCs (DVOCs) within 15 min, using a complex of Cu metal-organic framework, graphene aerogel, and dyes as response materials. Fingermaps derived from 28 DVOCs were obtained for further data processing. Pattern recognition was successfully employed in the correct discrimination of 28 DVOCs in low (10 μM), medium (100 μM), and high (300 μM) concentrations. Importantly, the sensor array also presented excellent discrimination ability and application potential when detecting VOCs produced by human cancer and normal cells. In general, VOC acquisition is noninvasive and harmless, and the PVDF-based sensor arrays are simple and visual. Such advantages expand their further application potential.
Collapse
Affiliation(s)
- Jingzhou Hou
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Changjun Hou
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Danqun Huo
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
- Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Jiawei Li
- Three Gorges Hospital of Chongqing University, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, People's Republic of China.
| |
Collapse
|
60
|
Wüthrich C, Giannoukos S, Zenobi R. Elucidating the Role of Ion Suppression in Secondary Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2498-2507. [PMID: 37843816 PMCID: PMC10623576 DOI: 10.1021/jasms.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Ion suppression is a known matrix effect in electrospray ionization (ESI), ambient pressure chemical ionization (APCI), and desorption electrospray ionization (DESI), but its characterization in secondary electrospray ionization (SESI) is lacking. A thorough understanding of this effect is crucial for quantitative applications of SESI, such as breath analysis. In this study, gas standards were generated by using an evaporation-based system to assess the susceptibility and suppression potential of acetone, deuterated acetone, deuterated acetic acid, and pyridine. Gas-phase effects were found to dominate ion suppression, with pyridine exhibiting the most significant suppressive effect, which is potentially linked to its gas-phase basicity. The impact of increased acetone levels on the volatiles from exhaled breath condensate was also examined. In humid conditions, a noticeable decrease in intensity of approximately 30% was observed for several features at an acetone concentration of 1 ppm. Considering that this concentration is expected for breath analysis, it becomes crucial to account for this effect when SESI is utilized to quantitatively determine specific compounds.
Collapse
Affiliation(s)
- Cedric Wüthrich
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Stamatios Giannoukos
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
61
|
Modak AS. Why have only a handful of breath tests made the transition from R&D to clinical practice? J Breath Res 2023; 18:012001. [PMID: 37850653 DOI: 10.1088/1752-7163/acff7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Affiliation(s)
- Anil S Modak
- Independent Researcher, Mebane, NC 27302, United States of America
| |
Collapse
|
62
|
Gordon AR, Lundström JN, Kimball BA, Karshikoff B, Sorjonen K, Axelsson J, Lekander M, Olsson MJ. Human scent as a first-line defense against disease. Sci Rep 2023; 13:16709. [PMID: 37794120 PMCID: PMC10550911 DOI: 10.1038/s41598-023-43145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Individuals may have a different body odor, when they are sick compared to healthy. In the non-human animal literature, olfactory cues have been shown to predict avoidance of sick individuals. We tested whether the mere experimental activation of the innate immune system in healthy human individuals can make an individuals' body odor be perceived as more aversive (intense, unpleasant, and disgusting). Following an endotoxin injection (lipopolysaccharide; 0.6 ng/kg) that creates a transient systemic inflammation, individuals smelled more unpleasant compared to a placebo group (saline injection). Behavioral and chemical analyses of the body odor samples suggest that the volatile components of samples from "sick" individuals changed qualitatively rather than quantitatively. Our findings support the hypothesis that odor cues of inflammation in axillary sweat are detectable just a few hours after experimental activation of the innate immune system. As such, they may trigger behavioral avoidance, hence constituting a first line of defense against pathogens of infected conspecifics.
Collapse
Affiliation(s)
- Amy R Gordon
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
| | - Johan N Lundström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Lukt och smakmottagningen, Karolinska University Hospital, 141 86, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, 106 54, Stockholm, Sweden
| | | | - Bianka Karshikoff
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Department of Social Studies, University of Stavanger, 4021, Stavanger, Norway
| | - Kimmo Sorjonen
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
| | - John Axelsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 54, Stockholm, Sweden
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 54, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
63
|
Castillo JS, Bellantuono AJ, DeGennaro M. Quantifying Mosquito Attraction Behavior Using Olfactometry. Cold Spring Harb Protoc 2023; 2023:715-8. [PMID: 37024240 DOI: 10.1101/pdb.top107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
When blood feeding from human hosts, female mosquitoes can transmit life-threatening pathogens to humans, including dengue virus, chikungunya virus, and Zika virus. Olfaction is the primary sense mosquitoes use to locate and differentiate hosts and studying it can lead to new strategies to reduce the risk of disease. To effectively study host-seeking behavior in mosquitoes, a repeatable, quantitative assay that isolates olfaction from other cues is critical for interpreting mosquito behavior. Here, we contribute an overview of methods and best practices for the study of mosquito attraction (or lack thereof) by using olfactometry to quantify behavior. In the accompanying protocols, we present an olfactory-based behavioral assay using a uniport olfactometer that measures mosquito attraction rate to specific stimuli. We include construction details, setup of the uniport olfactometer, details of the behavioral assay, and data analysis guidelines, as well as how to prepare the mosquitoes before their introduction into the olfactometer. This uniport olfactometer behavioral assay is currently one of the most reliable methods to study mosquito attraction to a single olfactory stimulus.
Collapse
Affiliation(s)
- John S Castillo
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
64
|
Warli SM, Firsty NN, Velaro AJ, Tala ZZ. The Olfaction Ability of Medical Detection Canine to Detect Prostate Cancer From Urine Samples: Progress Captured in Systematic Review and Meta-Analysis. World J Oncol 2023; 14:358-370. [PMID: 37869239 PMCID: PMC10588501 DOI: 10.14740/wjon1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/29/2023] [Indexed: 10/24/2023] Open
Abstract
Background To date, early cancer detection is considered vital to reduce the global cancer burden through low-cost, but accurate screening modalities. The anatomical positioning of prostate cancer (PCa) created a potentially distinctive diagnostic method through the identification of volatile organic compounds (VOCs) in urine, which might be detectable not by humans but by canine species. This review aimed to capture the potential of the medical detection canine (MDC) to detect PCa by providing its diagnostic accuracy estimation on urine odor testing. Methods Databases, e.g., MEDLINE, Cochrane, ScienceDirect, and ProQuest, were searched to identify the studies. We focused on accessible original research, comparing the diagnostic utility of trained female MDC and histopathology examination as the gold standard for PCa diagnosis. The statistical analysis was performed in Meta-DiSc 1.4 and presented in diagnostic values, i.e., sensitivity (Sn), specificity (Sp), positive or negative likelihood ratio (LR+ or LR-), diagnostic odd ratio (DOR), and area under the curve (AUC) value, to conclude the Sn-Sp in a single outcome. Results Female German Shepherds were the most commonly utilized MDC from the five studies included in the final analysis. We estimate the pooled diagnostic value of eight different MDCs, with the findings as follows: Sn (0.95 (0.94 - 0.97)), Sp (0.92 (0.90 - 0.93)), LR+ (4.48 (1.90 - 10.58)), LR- (0.12 (0.01 - 1.42)), DOR (35.39 (2.90 - 432.53)), and an AUC value of 0.9232. Conclusions MDC's olfaction ability holds considerable potential on its diagnostic accuracies to distinguish the urine of PCa individuals by identifying its volatilome property.
Collapse
Affiliation(s)
- Syah Mirsya Warli
- Department of Urology, Universitas Sumatera Utara Hospital, Universitas Sumatera Utara, Medan, Indonesia
- Division of Urology, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara-Haji Adam Malik General Hospital, Medan, Indonesia
| | - Naufal Nandita Firsty
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adrian Joshua Velaro
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
65
|
Ungkulpasvich U, Hatakeyama H, Hirotsu T, di Luccio E. Pancreatic Cancer and Detection Methods. Biomedicines 2023; 11:2557. [PMID: 37760999 PMCID: PMC10526344 DOI: 10.3390/biomedicines11092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.
Collapse
Affiliation(s)
| | | | | | - Eric di Luccio
- Hirotsu Bioscience Inc., 22F The New Otani Garden Court, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (U.U.); (H.H.); (T.H.)
| |
Collapse
|
66
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231188147. [PMID: 37669015 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
67
|
Oliva G, Fiorillo AS, Islam SK, Pullano SA. Detection of Propionic Acids Trapped in Thin Zeolite Layer Using Thermal Desorption Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7352. [PMID: 37687805 PMCID: PMC10490041 DOI: 10.3390/s23177352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Volatile organic compounds (VOCs) have recently received considerable attention for the analysis and monitoring of different biochemical processes in biological systems such as humans, plants, and microorganisms. The advantage of using VOCs to gather information about a specific process is that they can be extracted using different types of samples, even at low concentrations. Therefore, VOC levels represent the fingerprints of specific biochemical processes. The aim of this work was to develop a sensor based on a photoionization detector (PID) and a zeolite layer, used as an alternative analytic separation technique for the analysis of VOCs. The identification of VOCs occurred through the evaluation of the emissive profile during the thermal desorption phase, using a stainless-steel chamber for analysis. Emission profiles were evaluated using a double exponential mathematical model, which fit well if compared with the physical system, describing both the evaporation and diffusion processes. The results showed that the zeolite layer was selective for propionic acid molecules if compared to succinic acid molecules, showing linear behavior even at low concentrations. The process to define the optimal adsorption time between the propionic acid molecules was performed in the range of 5 to 60 min, followed by a thermal desorption process at 100 °C. An investigation of the relationship between the evaporation and diffusion rates showed that the maximum concentration of detected propionic acid molecules occurred in 15 min. Other analyses were performed to study how the concentration of VOCs depended on the desorption temperature and the volume of the analysis chamber. For this purpose, tests were performed using three analysis chambers with volumes of 25 × 10-6, 50 × 10-6, and 150 × 10-6 m3 at three different desorption temperatures of 20 °C, 50 °C, and 100 °C, respectively. The results demonstrated that the evaporation rate of the VOCs increased rapidly with an increasing temperature, while the diffusion rate remained almost constant and was characterized by a slow decay time. The diffusion ratio increased when using a chamber with a larger volume. These results highlight the capabilities of this alternative technique for VOC analysis, even for samples with low concentrations. The coupling of a zeolite layer and a PID improves the detection selectivity in portable devices, demonstrating the feasibility of extending its use to a wide range of new applications.
Collapse
Affiliation(s)
- Giuseppe Oliva
- Biomedical Applications Technologies & Sensors (BATS) Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Antonino S. Fiorillo
- Biomedical Applications Technologies & Sensors (BATS) Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Syed Kamrul Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA;
| | - Salvatore A. Pullano
- Biomedical Applications Technologies & Sensors (BATS) Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
68
|
Costello BDL, Wieczorek MN, Drabinska N. Editorial: The use of volatile compounds analysis for the assessment of food and beverage quality. Front Nutr 2023; 10:1250634. [PMID: 37554702 PMCID: PMC10406127 DOI: 10.3389/fnut.2023.1250634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Ben de Lacy Costello
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Martyna N. Wieczorek
- Food Volatilomics and Sensomics Group, Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Natalia Drabinska
- Food Volatilomics and Sensomics Group, Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
69
|
Liu Y, Ge D, Zhou J, Chu Y, Zheng X, Ke L, Li P, Lu Y, Zou X, Xia L, Liu Y, Huang C, Shen C, Chu Y. HS-SPME-GC-MS Untargeted Analysis of Normal Rat Organs Ex Vivo: Differential VOC Discrimination and Fingerprint VOC Identification. Anal Chem 2023. [PMID: 37392185 DOI: 10.1021/acs.analchem.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The investigation of volatile organic compounds (VOCs) in human metabolites has been a topic of interest as it holds the potential for the development of non-invasive technologies to screen for organ lesions in vivo. However, it remains unclear whether VOCs differ among healthy organs. Consequently, a study was conducted to analyze VOCs in ex vivo organ tissues obtained from 16 Wistar rats, comprising 12 different organs. The VOCs released from each organ tissue were detected by the headspace-solid phase microextraction-gas chromatography-mass spectrometry technique. In the untargeted analysis of 147 chromatographic peaks, the differential volatiles of rat organs were explored based on the Mann-Whitney U test and fold change (FC > 2.0) compared with other organs. It was found that there were differential VOCs in seven organs. A discussion on the possible metabolic pathways and related biomarkers of organ differential VOCs was conducted. Based on the orthogonal partial least squares discriminant analysis and receiver operating characteristic curve, we found that differential VOCs in the liver, cecum, spleen, and kidney can be used as the unique identification of the corresponding organ. In this study, differential VOCs of organs in rats were systematically reported for the first time. Profiles of VOCs produced by healthy organs can serve as a reference or baseline that may indicate the presence of disease or abnormalities in the organ's function. Differential VOCs can be used as the fingerprint of organs, and future integration with metabolic research may contribute to the development of healthcare.
Collapse
Affiliation(s)
- Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiangxue Zheng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Li Ke
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Pan Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yawei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
70
|
Weber IC, Oosthuizen DN, Mohammad RW, Mayhew CA, Pratsinis SE, Güntner AT. Dynamic Breath Limonene Sensing at High Selectivity. ACS Sens 2023. [PMID: 37377394 DOI: 10.1021/acssensors.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Liver diseases (e.g., cirrhosis, cancer) cause more than two million deaths per year worldwide. This is partly attributed to late diagnosis and insufficient screening techniques. A promising biomarker for noninvasive and inexpensive liver disease screening is breath limonene that can indicate a deficiency of the cytochrome P450 liver enzymes. Here, we introduce a compact and low-cost detector for dynamic and selective breath limonene sensing. It comprises a chemoresistive sensor based on Si/WO3 nanoparticles pre-screened by a packed bed Tenax separation column at room temperature. We demonstrate selective limonene detection down to 20 parts per billion over up to three orders of magnitude higher concentrated acetone, ethanol, hydrogen, methanol, and 2-propanol in gas mixtures, as well as robustness to 10-90% relative humidity. Most importantly, this detector recognizes the individual breath limonene dynamics of four healthy volunteers following the ingestion (swallowing or chewing) of a limonene capsule. Limonene release and subsequent metabolization are monitored from breath measurements in real time and in excellent agreement (R2 = 0.98) with high-resolution proton transfer reaction mass spectrometry. This study demonstrates the potential of the detector as a simple-to-use and noninvasive device for the routine monitoring of limonene levels in exhaled breath to facilitate early diagnosis of liver dysfunction.
Collapse
Affiliation(s)
- Ines C Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich (USZ) and University of Zürich (UZH), CH-8091 Zürich, Switzerland
| | - Dina N Oosthuizen
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Rawan W Mohammad
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Chris A Mayhew
- Institute for Breath Research, Universität Innsbruck, Innsbruck A-6020, Austria
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Andreas T Güntner
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich (USZ) and University of Zürich (UZH), CH-8091 Zürich, Switzerland
- Human-centered Sensor Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
71
|
Giraldo D, Rankin-Turner S, Corver A, Tauxe GM, Gao AL, Jackson DM, Simubali L, Book C, Stevenson JC, Thuma PE, McCoy RC, Gordus A, Mburu MM, Simulundu E, McMeniman CJ. Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr Biol 2023; 33:2367-2382.e7. [PMID: 37209680 PMCID: PMC10824255 DOI: 10.1016/j.cub.2023.04.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
The African malaria mosquito Anopheles gambiae exhibits a strong innate drive to seek out humans in its sensory environment, classically entering homes to land on human skin in the hours flanking midnight. To gain insight into the role that olfactory cues emanating from the human body play in generating this epidemiologically important behavior, we developed a large-scale multi-choice preference assay in Zambia with infrared motion vision under semi-field conditions. We determined that An. gambiae prefers to land on arrayed visual targets warmed to human skin temperature during the nighttime when they are baited with carbon dioxide (CO2) emissions reflective of a large human over background air, body odor from one human over CO2, and the scent of one sleeping human over another. Applying integrative whole body volatilomics to multiple humans tested simultaneously in competition in a six-choice assay, we reveal high attractiveness is associated with whole body odor profiles from humans with increased relative abundances of the volatile carboxylic acids butyric acid, isobutryic acid, and isovaleric acid, and the skin microbe-generated methyl ketone acetoin. Conversely, those least preferred had whole body odor that was depleted of carboxylic acids among other compounds and enriched with the monoterpenoid eucalyptol. Across expansive spatial scales, heated targets without CO2 or whole body odor were minimally or not attractive at all to An. gambiae. These results indicate that human scent acts critically to guide thermotaxis and host selection by this prolific malaria vector as it navigates towards humans, yielding intrinsic heterogeneity in human biting risk.
Collapse
Affiliation(s)
- Diego Giraldo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Abel Corver
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Genevieve M Tauxe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anne L Gao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dorian M Jackson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Christopher Book
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Macha Research Trust, Choma District, PO Box 630166, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Macha Research Trust, Choma District, PO Box 630166, Zambia
| | - Philip E Thuma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Macha Research Trust, Choma District, PO Box 630166, Zambia
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
72
|
Ketchanji Mougang YC, Endale Mangamba LM, Capuano R, Ciccacci F, Catini A, Paolesse R, Mbatchou Ngahane HB, Palombi L, Di Natale C. On-Field Test of Tuberculosis Diagnosis through Exhaled Breath Analysis with a Gas Sensor Array. BIOSENSORS 2023; 13:bios13050570. [PMID: 37232931 DOI: 10.3390/bios13050570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Tuberculosis (TB) is among the more frequent causes of death in many countries. For pulmonary TB, early diagnosis greatly increases the efficiency of therapies. Although highly sensitive tests based on nucleic acid amplification tests (NAATs) and loop-mediated isothermal amplification (TB-LAMP) are available, smear microscopy is still the most widespread diagnostics method in most low-middle-income countries, and the true positive rate of smear microscopy is lower than 65%. Thus, there is a need to increase the performance of low-cost diagnosis. For many years, the use of sensors to analyze the exhaled volatile organic compounds (VOCs) has been proposed as a promising alternative for the diagnosis of several diseases, including tuberculosis. In this paper, the diagnostic properties of an electronic nose (EN) based on sensor technology previously used to identify tuberculosis have been tested on-field in a Cameroon hospital. The EN analyzed the breath of a cohort of subjects including pulmonary TB patients (46), healthy controls (38), and TB suspects (16). Machine learning analysis of the sensor array data allows for the identification of the pulmonary TB group with respect to healthy controls with 88% accuracy, 90.8% sensitivity, 85.7% specificity, and 0.88 AUC. The model trained with TB and healthy controls maintains its performance when it is applied to symptomatic TB suspects with a negative TB-LAMP. These results encourage the investigation of electronic noses as an effective diagnostic method for future inclusion in clinical practice.
Collapse
Affiliation(s)
| | - Laurent-Mireille Endale Mangamba
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Carrefour Ange Raphael, Douala P.O. Box 4035, Cameroon
- Center for Respiratory Diseases, Douala Laquintinie Hospital, Avenue du Jamot, Douala P.O. Box 4035, Cameroon
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
- Interdepartmental Centre for Volatilomics "A D'Amico", University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
| | - Fausto Ciccacci
- UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
- Interdepartmental Centre for Volatilomics "A D'Amico", University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
| | - Roberto Paolesse
- Interdepartmental Centre for Volatilomics "A D'Amico", University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
- Department of Chemical Science and Technology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy
| | - Hugo Bertrand Mbatchou Ngahane
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Carrefour Ange Raphael, Douala P.O. Box 4035, Cameroon
- Internal Medicine Service, Douala General Hospital, Douala P.O. Box 4856, Cameroon
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Viale Montpellier 1, 00133 Roma, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
- Interdepartmental Centre for Volatilomics "A D'Amico", University of Rome Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
| |
Collapse
|
73
|
Biological studies with comprehensive 2D-GC-HRMS screening: Exploring the human sweat volatilome. Talanta 2023; 257:124333. [PMID: 36801554 DOI: 10.1016/j.talanta.2023.124333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 participants, including field blanks (80 samples). These samples have been collected in a Horizon 2020 project to investigate the capacity of body odour to communicate emotion and influence social behaviour. We used dynamic headspace extraction, which allows comprehensive extraction with high preconcentration capability, and has to date only been used for a few biological applications. We were able to detect a set of 326 compounds from a diverse range of chemical classes (278 identified compounds, 39 class unknowns, and 9 true unknowns). Unlike partitioning-based extraction methods, the developed method detects semi-polar (log P < 2) nitrogen and oxygen-containing compounds. However, it is unable to detect certain acids due to the pH conditions of unmodified sweat samples. We believe that our framework will open up the possibility of efficiently using GCxGC-HRMS for large-sample studies in a wide range of applications such as biological and environmental studies.
Collapse
|
74
|
Issitt T, Reilly M, Sweeney ST, Brackenbury WJ, Redeker KR. GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 breast cancer cell line. Front Mol Biosci 2023; 10:1178269. [PMID: 37251079 PMCID: PMC10210155 DOI: 10.3389/fmolb.2023.1178269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hypoxia in disease describes persistent low oxygen conditions, observed in a range of pathologies, including cancer. In the discovery of biomarkers in biological models, pathophysiological traits present a source of translatable metabolic products for the diagnosis of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose disease, however accurate volatile biomarker discovery is required to target reliable biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions in the system was successfully validated over this time period. Targeted and untargeted gas chromatography mass spectrometry approaches revealed four significantly altered volatile organic compounds when compared to control cells. Three compounds were actively consumed by cells: methyl chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This work presents a novel methodology for identification of volatile metabolisms under controlled gas conditions with novel observations of volatile metabolisms by breast cancer cells.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Matthew Reilly
- Department of Biology, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J. Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
75
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
76
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
77
|
Pelling M, Chandrapalan S, West E, Arasaradnam RP. A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers (Basel) 2023; 15:2308. [PMID: 37190235 PMCID: PMC10136496 DOI: 10.3390/cancers15082308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hepatobiliary cancers are notoriously difficult to detect, frequently leading to diagnosis in later stages of disease when curative treatment is not an option. The currently used biomarkers such as AFP (alpha-fetoprotein) and CA19.9 lack sensitivity and specificity. Hence, there is an unmet need for an alternative biomarker. AIM To evaluate the diagnostic accuracy of volatile organic compounds (VOCs) for the detection of hepatobiliary and pancreatic cancers. METHODS A systematic review of VOCs' use in the detection of hepatobiliary and pancreatic cancers was performed. A meta-analysis was performed using the software R. Heterogeneity was explored through meta-regression analysis. RESULTS A total of 18 studies looking at 2296 patients were evaluated. Pooled sensitivity and specificity of VOCs for the detection of hepatobiliary and pancreatic cancer were 0.79 (95% CI, 0.72-0.85) and 0.81 (97.5% CI, 0.76-0.85), respectively. The area under the curve was 0.86. Meta-regression analysis showed that the sample media used contributed to heterogeneity. Bile-based VOCs showed the highest precision values, although urine and breath are preferred for their feasibility. CONCLUSIONS Volatile organic compounds have the potential to be used as an adjunct tool to aid in the early diagnosis of hepatobiliary cancers.
Collapse
Affiliation(s)
- Melina Pelling
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | | - Emily West
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ramesh P. Arasaradnam
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Gastroenterology, University Hospital of Coventry and Warwickshire, Coventry CV2 2DX, UK
- Health, Biological & Experimental Sciences, University of Coventry, Coventry CV1 5FB, UK
- School of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
78
|
Mao P, Li H, Yu Z. A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:3673. [PMID: 37050733 PMCID: PMC10099362 DOI: 10.3390/s23073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The early detection of fatal diseases is crucial for medical diagnostics and treatment, both of which benefit the individual and society. Portable devices, such as thermometers and blood pressure monitors, and large instruments, such as computed tomography (CT) and X-ray scanners, have already been implemented to collect health-related information. However, collecting health information using conventional medical equipment at home or in a hospital can be inefficient and can potentially affect the timeliness of treatment. Therefore, on-time vital signal collection via healthcare monitoring has received increasing attention. As the largest organ of the human body, skin delivers significant signals reflecting our health condition; thus, receiving vital signals directly from the skin offers the opportunity for accessible and versatile non-invasive monitoring. In particular, emerging flexible and stretchable electronics demonstrate the capability of skin-like devices for on-time and continuous long-term health monitoring. Compared to traditional electronic devices, this type of device has better mechanical properties, such as skin conformal attachment, and maintains compatible detectability. This review divides the health information that can be obtained from skin using the sensor aspect's input energy forms into five categories: thermoelectrical signals, neural electrical signals, photoelectrical signals, electrochemical signals, and mechanical pressure signals. We then summarize current skin-wearable health monitoring devices and provide outlooks on future development.
Collapse
Affiliation(s)
- Pengsu Mao
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Haoran Li
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
79
|
Acem I, van Praag VM, Mostert CQ, van der Wal RJ, Neijenhuis RM, Verhoef C, Grünhagen DJ, van de Sande MA. Noninvasive detection of soft tissue sarcoma using volatile organic compounds in exhaled breath: a pilot study. Future Oncol 2023; 19:697-704. [PMID: 37129048 DOI: 10.2217/fon-2022-1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Aim: The aim of this pilot study was to assess whether an electronic nose can detect patients with soft tissue sarcoma (STS) based on volatile organic compound profiles in exhaled breath. Patients & methods: In this cross-sectional pilot study, patients with primary STS and healthy controls, matched on sex and age, were included for breath analysis. Machine learning techniques were used to develop the best-fitting model. Results: Fifty-nine breath samples were collected (29 STS and 30 control) from March 2018 to March 2022. The final model yielded a c-statistic of 0.85 with a sensitivity of 83% and specificity of 60%. Conclusion: This study suggests that exhaled volatile organic compound analysis could serve as a noninvasive diagnostic biomarker for the detection of STS with a good performance.
Collapse
Affiliation(s)
- Ibtissam Acem
- Department of Surgical Oncology & Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015, GD, The Netherlands
- Department of Orthopedic Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Veroniek M van Praag
- Department of Orthopedic Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Cassidy Qb Mostert
- Department of Orthopedic Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Robert Jp van der Wal
- Department of Orthopedic Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Ralph Ml Neijenhuis
- Department of Orthopedic Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology & Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015, GD, The Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology & Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015, GD, The Netherlands
| | - Michiel Aj van de Sande
- Department of Orthopedic Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| |
Collapse
|
80
|
Oosthuizen DN, Weber IC. A Strategy to Enhance Humidity Robustness of p‐Type CuO Sensors for Breath Acetone Quantification. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Dina N. Oosthuizen
- Particle Technology Laboratory Department of Mechanical & Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Ines C. Weber
- Particle Technology Laboratory Department of Mechanical & Process Engineering ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetes, and Clinical Nutrition University Hospital Zurich CH-8091 Zurich Switzerland
| |
Collapse
|
81
|
Cabanas-Garrido EC, Ledesma-Escobar CA, Priego-Capote F. Use of surgical masks for sampling in the determination of volatile organic compounds. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
82
|
Haertl T, Owsienko D, Schwinn L, Hirsch C, Eskofier BM, Lang R, Wirtz S, Loos HM. Exploring the interrelationship between the skin microbiome and skin volatiles: A pilot study. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Unravelling the interplay between a human’s microbiome and physiology is a relevant task for understanding the principles underlying human health and disease. With regard to human chemical communication, it is of interest to elucidate the role of the microbiome in shaping or generating volatiles emitted from the human body. In this study, we characterized the microbiome and volatile organic compounds (VOCs) sampled from the neck and axilla of ten participants (five male, five female) on two sampling days, by applying different methodological approaches. Volatiles emitted from the respective skin site were collected for 20 min using textile sampling material and analyzed on two analytical columns with varying polarity of the stationary phase. Microbiome samples were analyzed by a culture approach coupled with MALDI-TOF-MS analysis and a 16S ribosomal RNA gene (16S RNA) sequencing approach. Statistical and advanced data analysis methods revealed that classification of body sites was possible by using VOC and microbiome data sets. Higher classification accuracy was achieved by combination of both data pools. Cutibacterium, Staphylococcus, Micrococcus, Streptococcus, Lawsonella, Anaerococcus, and Corynebacterium species were found to contribute to classification of the body sites by the microbiome. Alkanes, esters, ethers, ketones, aldehydes and cyclic structures were used by the classifier when VOC data were considered. The interdisciplinary methodological platform developed here will enable further investigations of skin microbiome and skin VOCs alterations in physiological and pathological conditions.
Collapse
|
83
|
GC-MS Techniques Investigating Potential Biomarkers of Dying in the Last Weeks with Lung Cancer. Int J Mol Sci 2023; 24:ijms24021591. [PMID: 36675106 PMCID: PMC9867309 DOI: 10.3390/ijms24021591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Predicting when a patient with advanced cancer is dying is a challenge and currently no prognostic test is available. We hypothesised that a dying process from cancer is associated with metabolic changes and specifically with changes in volatile organic compounds (VOCs). We analysed urine from patients with lung cancer in the last weeks of life by headspace gas chromatography mass spectrometry. Urine was acidified or alkalinised before analysis. VOC changes in the last weeks of life were identified using univariate, multivariate and linear regression analysis; 12 VOCs increased (11 from the acid dataset, 2 from the alkali dataset) and 25 VOCs decreased (23 from the acid dataset and 3 from the alkali dataset). A Cox Lasso prediction model using 8 VOCs predicted dying with an AUC of 0.77, 0.78 and 0.85 at 30, 20 and 10 days and stratified patients into a low (median 10 days), medium (median 50 days) or high risk of survival. Our data supports the hypothesis there are specific metabolic changes associated with the dying. The VOCs identified are potential biomarkers of dying in lung cancer and could be used as a tool to provide additional prognostic information to inform expert clinician judgement and subsequent decision making.
Collapse
|
84
|
Wen Q, Myridakis A, Boshier PR, Zuffa S, Belluomo I, Parker AG, Chin ST, Hakim S, Markar SR, Hanna GB. A Complete Pipeline for Untargeted Urinary Volatolomic Profiling with Sorptive Extraction and Dual Polar and Nonpolar Column Methodologies Coupled with Gas Chromatography Time-of-Flight Mass Spectrometry. Anal Chem 2023; 95:758-765. [PMID: 36602225 PMCID: PMC9850407 DOI: 10.1021/acs.analchem.2c02873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Volatolomics offers an opportunity for noninvasive detection and monitoring of human disease. While gas chromatography-mass spectrometry (GC-MS) remains the technique of choice for analyzing volatile organic compounds (VOCs), barriers to wider adoption in clinical practice still exist, including: sample preparation and introduction techniques, VOC extraction, throughput, volatolome coverage, biological interpretation, and quality control (QC). Therefore, we developed a complete pipeline for untargeted urinary volatolomic profiling. We optimized a novel extraction technique using HiSorb sorptive extraction, which exhibited high analytical performance and throughput. We achieved a broader VOC coverage by using HiSorb coupled with a set of complementary chromatographic methods and time-of-flight mass spectrometry. Furthermore, we developed a data preprocessing strategy by evaluating internal standard normalization, batch correction, and we adopted strict QC measures including removal of nonlinearly responding, irreproducible, or contaminated metabolic features, ensuring the acquisition of high-quality data. The applicability of this pipeline was evaluated in a clinical cohort consisting of pancreatic ductal adenocarcinoma (PDAC) patients (n = 28) and controls (n = 33), identifying four urinary candidate biomarkers (2-pentanone, hexanal, 3-hexanone, and p-cymene), which can successfully discriminate the cancer and noncancer subjects. This study presents an optimized, high-throughput, and quality-controlled pipeline for untargeted urinary volatolomic profiling. Use of the pipeline to discriminate PDAC from control subjects provides proof of principal of its clinical utility and potential for application in future biomarker discovery studies.
Collapse
Affiliation(s)
- Qing Wen
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Piers R. Boshier
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Simone Zuffa
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Sung-Tong Chin
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Stephanie Hakim
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Sheraz R. Markar
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom,Nuffield
Department of Surgical Sciences, University
of Oxford, Oxford OX3 9DU, United Kingdom
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom,
| |
Collapse
|
85
|
Streckenbach B, Sakas J, Perkins N, Kohler M, Moeller A, Zenobi R. A gas-phase standard delivery system for direct breath analysis. J Breath Res 2022; 17. [PMID: 36579824 DOI: 10.1088/1752-7163/acab79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Applications for direct breath analysis by mass spectrometry (MS) are rapidly expanding. One of the more recent mass spectrometry-based approaches is secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). Despite increasing usage, the SESI methodology still lacks standardization procedures for quality control and absolute quantification. In this study, we designed and evaluated a custom-built standard delivery system tailored for direct breath analysis. The system enables the simultaneous introduction of multiple gas-phase standard compounds into ambient MS setups in the lower parts-per-million (ppm) to parts-per-billion (ppb) range. To best mimic exhaled breath, the gas flow can be heated (37 °C-40 °C) and humidified (up to 98% relative humidity). Inter-laboratory comparison of the system included various SESI-HRMS setups, i.e. an Orbitrap and a quadrupole time-of-flight mass spectrometer (QTOF), and using both single- as well as multi-component standards. This revealed highly stable and reproducible performances with between-run variation <19% and within-run variation <20%. Independent calibration runs demonstrated high accuracy (96%-111%) and precision (>95%) for the single-compound standard acetone, while compound-specific performances were obtained for the multi-component standard. Similarly, the sensitivity varied for different compounds within the multi-component standard across all SESI-Orbitrap and -QTOF setups, yielding limits of detections from 3.1 ppb (forp-xylene) to 0.05 ppb (for 1,8-cineol). Routinely applying the standard system throughout several weeks, allowed us to monitor instrument stability and to identify technical outliers in exhaled breath measurements. Such routine deployment of standards would significantly improve data quality and comparability, which is especially important in longitudinal and multi-center studies. Furthermore, performance validation of the system demonstrated its suitability for reliable absolute quantification while it illustrated compound-dependent behavior for SESI.
Collapse
Affiliation(s)
- Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Justinas Sakas
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.,EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine, University Children's Hospital Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
86
|
Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database. Biol Proced Online 2022; 24:20. [PMID: 36456991 PMCID: PMC9714113 DOI: 10.1186/s12575-022-00184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
- Oncology Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| |
Collapse
|
87
|
Zhang JD, Le MN, Hill KJ, Cooper AA, Stuetz RM, Donald WA. Identifying robust and reliable volatile organic compounds in human sebum for biomarker discovery. Anal Chim Acta 2022; 1233:340506. [DOI: 10.1016/j.aca.2022.340506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
88
|
Cheng HR, van Vorstenbosch RW, Pachen DM, Meulen LW, Straathof JWA, Dallinga JW, Jonkers DM, Masclee AA, van Schooten FJ, Mujagic Z, Smolinska A. Detecting Colorectal Adenomas and Cancer Using Volatile Organic Compounds in Exhaled Breath: A Proof-of-Principle Study to Improve Screening. Clin Transl Gastroenterol 2022; 13:e00518. [PMID: 35981245 PMCID: PMC10476860 DOI: 10.14309/ctg.0000000000000518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Early detection of colorectal cancer (CRC) by screening programs is crucial because survival rates worsen at advanced stages. However, the currently used screening method, the fecal immunochemical test (FIT), suffers from a high number of false-positives and is insensitive for detecting advanced adenomas (AAs), resulting in false-negatives for these premalignant lesions. Therefore, more accurate, noninvasive screening tools are needed. In this study, the utility of analyzing volatile organic compounds (VOCs) in exhaled breath in a FIT-positive population to detect the presence of colorectal neoplasia was studied. METHODS In this multicenter prospective study, breath samples were collected from 382 FIT-positive patients with subsequent colonoscopy participating in the national Dutch bowel screening program (n = 84 negative controls, n = 130 non-AAs, n = 138 AAs, and n = 30 CRCs). Precolonoscopy exhaled VOCs were analyzed using thermal desorption-gas chromatography-mass spectrometry, and the data were preprocessed and analyzed using machine learning techniques. RESULTS Using 10 discriminatory VOCs, AAs could be distinguished from negative controls with a sensitivity and specificity of 79% and 70%, respectively. Based on this biomarker profile, CRC and AA combined could be discriminated from controls with a sensitivity and specificity of 77% and 70%, respectively, and CRC alone could be discriminated from controls with a sensitivity and specificity of 80% and 70%, respectively. Moreover, the feasibility to discriminate non-AAs from controls and AAs was shown. DISCUSSION VOCs in exhaled breath can detect the presence of AAs and CRC in a CRC screening population and may improve CRC screening in the future.
Collapse
Affiliation(s)
- Hao Ran Cheng
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- Department of Gastroenterology and Hepatology, Máxima Medical Center, Veldhoven, the Netherlands;
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands;
| | - Robert W.R. van Vorstenbosch
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Daniëlle M. Pachen
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Lonne W.T. Meulen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands;
| | - Jan Willem A. Straathof
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- Department of Gastroenterology and Hepatology, Máxima Medical Center, Veldhoven, the Netherlands;
| | - Jan W. Dallinga
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Daisy M.A.E. Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Ad A.M. Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Frederik-Jan van Schooten
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Zlatan Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Agnieszka Smolinska
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
89
|
Haug H, Klein L, Sauerwald T, Poelke B, Beauchamp J, Roloff A. Sampling Volatile Organic Compound Emissions from Consumer Products: A Review. Crit Rev Anal Chem 2022; 54:1895-1916. [PMID: 36306209 DOI: 10.1080/10408347.2022.2136484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Volatile organic compounds (VOCs) are common constituents of many consumer products. Although many VOCs are generally considered harmless at low concentrations, some compound classes represent substances of concern in relation to human (inhalation) exposure and can elicit adverse health effects, especially when concentrations build up, such as in indoor settings. Determining VOC emissions from consumer products, such as toys, utensils or decorative articles, is of utmost importance to enable the assessment of inhalation exposure under real-world scenarios with respect to consumer safety. Due to the diverse sizes and shapes of such products, as well as their differing uses, a one-size-fits-all approach for measuring VOC emissions is not possible, thus, sampling procedures must be chosen carefully to best suit the sample under investigation. This review outlines the different sampling approaches for characterizing VOC emissions from consumer products, including headspace and emission test chamber methods. The advantages and disadvantages of each sampling technique are discussed in relation to their time and cost efficiency, as well as their suitability to realistically assess VOC inhalation exposures.
Collapse
Affiliation(s)
- Helen Haug
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Erlangen, Germany
| | - Luise Klein
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tilman Sauerwald
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Birte Poelke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
90
|
Zanella D, Henin A, Mascrez S, Stefanuto P, Franchina FA, Focant J, Purcaro G. Comprehensive two-dimensional gas chromatographic platforms comparison for exhaled breath metabolites analysis. J Sep Sci 2022; 45:3542-3555. [PMID: 35853166 PMCID: PMC9804543 DOI: 10.1002/jssc.202200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/05/2023]
Abstract
The high potential of exhaled breath for disease diagnosis has been highlighted in numerous studies. However, exhaled breath analysis is suffering from a lack of standardized sampling and analysis procedures, impacting the robustness of inter-laboratory results, and thus hampering proper external validation. The aim of this work was to verify compliance and validate the performance of two different comprehensive two-dimensional gas chromatography coupled to mass spectrometry platforms in different laboratories by monitoring probe metabolites in exhaled breath following the Peppermint Initiative guidelines. An initial assessment of the exhaled breath sampling conditions was performed, selecting the most suitable sampling bag material and volume. Then, a single sampling was performed using Tedlar bags, followed by the trapping of the volatile organic compounds into thermal desorption tubes for the subsequent analysis using two different analytical platforms. The thermal desorption tubes were first analyzed by a (cryogenically modulated) comprehensive two-dimensional gas chromatography system coupled to high-resolution time-of-flight mass spectrometry. The desorption was performed in split mode and the split part was recollected in the same tube and further analyzed by a different (flow modulated) comprehensive two-dimensional gas chromatography system with a parallel detection, specifically using a quadrupole mass spectrometer and a vacuum ultraviolet detector. Both the comprehensive two-dimensional gas chromatography platforms enabled the longitudinal tracking of the peppermint oil metabolites in exhaled breath. The increased sensitivity of comprehensive two-dimensional gas chromatography enabled to successfully monitor over a 6.5 h period a total of 10 target compounds, namely α-pinene, camphene, β-pinene, limonene, cymene, eucalyptol, menthofuran, menthone, isomenthone, and neomenthol.
Collapse
Affiliation(s)
- Delphine Zanella
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Adèle Henin
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Steven Mascrez
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Pierre‐Hugues Stefanuto
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Flavio Antonio Franchina
- Department of Chemistry, Pharmaceutical, and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Jean‐François Focant
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | | |
Collapse
|
91
|
The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis. Metabolites 2022; 12:metabo12090824. [PMID: 36144228 PMCID: PMC9504915 DOI: 10.3390/metabo12090824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of volatile organic compounds (VOCs) can provide important clinical information (entirely non-invasively); however, the exact extent to which VOCs from human skin can be signatures of health and disease is unknown. This systematic review summarises the published literature concerning the methodology, application, and volatile profiles of skin VOC studies. An online literature search was conducted in accordance with the preferred reporting items for systematic reviews and meta-analysis, to identify human skin VOC studies using untargeted mass spectrometry (MS) methods. The principal outcome was chemically verified VOCs detected from the skin. Each VOC was cross-referenced using the CAS number against the Human Metabolome and KEGG databases to evaluate biological origins. A total of 29 studies identified 822 skin VOCs from 935 participants. Skin VOCs were commonly sampled from the hand (n = 9) or forearm (n = 7) using an absorbent patch (n = 15) with analysis by gas chromatography MS (n = 23). Twenty-two studies profiled the skin VOCs of healthy subjects, demonstrating a volatolome consisting of aldehydes (18%), carboxylic acids (12%), alkanes (12%), fatty alcohols (9%), ketones (7%), benzenes and derivatives (6%), alkenes (2%), and menthane monoterpenoids (2%). Of the VOCs identified, 13% had putative endogenous origins, 46% had tentative exogenous origins, and 40% were metabolites from mixed metabolic pathways. This review has comprehensively profiled the human skin volatolome, demonstrating the presence of a distinct VOC signature of healthy skin, which can be used as a reference for future researchers seeking to unlock the clinical potential of skin volatolomics. As significant proportions of identified VOCs have putative exogenous origins, strategies to minimise their presence through methodological refinements and identifying confounding compounds are discussed.
Collapse
|
92
|
Exhaled Aldehydes as Biomarkers for Lung Diseases: A Narrative Review. Molecules 2022; 27:molecules27165258. [PMID: 36014494 PMCID: PMC9415864 DOI: 10.3390/molecules27165258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Breath analysis provides great potential as a fast and non-invasive diagnostic tool for several diseases. Straight-chain aliphatic aldehydes were repeatedly detected in the breath of patients suffering from lung diseases using a variety of methods, such as mass spectrometry, ion mobility spectrometry, or electro-chemical sensors. Several studies found increased concentrations of exhaled aldehydes in patients suffering from lung cancer, inflammatory and infectious lung diseases, and mechanical lung injury. This article reviews the origin of exhaled straight-chain aliphatic aldehydes, available detection methods, and studies that found increased aldehyde exhalation in lung diseases.
Collapse
|
93
|
Wüthrich C, De Figueiredo M, Burton-Pimentel KJ, Vergères G, Wahl F, Zenobi R, Giannoukos S. Breath response following a nutritional challenge monitored by secondary electrospray ionization high-resolution mass spectrometry. J Breath Res 2022; 16. [PMID: 35961293 DOI: 10.1088/1752-7163/ac894e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022]
Abstract
On-line breath analysis using secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS) is a sensitive method for biomarker discovery. The strengths of this technology have already been demonstrated in the clinical environment. For the first time, this study demonstrates the application of SESI-HRMS in the field of nutritional science using a standardized nutritional intervention, consisting of a high-energy shake (950 kcal, 8% protein, 35% sugar and 57% fat). Eleven subjects underwent the intervention on three separate days and their exhaled breath was monitored up to six hours postprandially. In addition, sampling was performed during equivalent fasting conditions for selected subjects. To estimate the impact of inter- and intra-individual variability, analysis of variance simultaneous component analysis (ASCA) was conducted, revealing that the inter-individual variability accounted for 30 % of the data variation. To distinguish the effect of the intervention from fasting conditions, partial least squares discriminant analysis was performed. Candidate compound annotation was performed with pathway analysis and collision-induced dissociation (CID) experiments. Pathway analysis highlighted, among others, features associated with the metabolism of linoleate, butanoate and amino sugars. Tentative compounds annotated through CID measurements include fatty acids, amino acids, and amino acid derivatives, some of them likely derived from nutrients by the gut microbiome (e.g. propanoate, indoles), as well as organic acids from the Krebs cycle. Time-series clustering showed an overlap of observed kinetic trends with those reported previously in blood plasma.
Collapse
Affiliation(s)
- Cedric Wüthrich
- ETH Zurich Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 3, Zurich, Zürich, 8093, SWITZERLAND
| | | | | | - Guy Vergères
- Agroscope, Schwarzenburgstrasse 161, Bern, Bern, 3003, SWITZERLAND
| | - Fabian Wahl
- Agroscope, Schwarzenburgstrasse 161, Bern, Bern, 3003, SWITZERLAND
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zürich, HCI E 325, CH - 8093, Zurich, Zurich, 8092, SWITZERLAND
| | - Stamatios Giannoukos
- ETH Zurich Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 3, Zurich, 8093, SWITZERLAND
| |
Collapse
|
94
|
Gasparri R, Capuano R, Guaglio A, Caminiti V, Canini F, Catini A, Sedda G, Paolesse R, Di Natale C, Spaggiari L. Volatolomic urinary profile analysis for diagnosis of the early stage of lung cancer. J Breath Res 2022; 16. [PMID: 35952625 DOI: 10.1088/1752-7163/ac88ec] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Nowadays in clinical practice there is a pressing need for potential biomarkers that can identify lung cancer at early stage before becoming symptomatic or detectable by conventional means. Several researchers have independently pointed out that the volatile organic compounds (VOCs) profile can be considered as a lung cancer fingerprint useful for diagnosis. In particular, 16% of volatiles contributing to the human volatilome are found in urine, which is therefore an ideal sample medium. Its analysis through non-invasive, relatively low-cost and straightforward techniques could offer great potential for the early diagnosis of lung cancer. In this study, urinary VOCs were analysed with a gas chromatography-ion mobility spectrometer (GC-IMS) and an electronic nose (e-nose) made by a matrix of twelve quartz microbalances (QMBs) complemented by a photoionization detector (PID). This clinical prospective study involved 127 individuals, divided into two groups: 46 with lung cancer stage I-II-III confirmed by computerized tomography (CT) or positron emission tomography-(PET) imaging techniques and histology (biopsy), and 81 healthy controls. Both instruments provided a multivariate signal which, after being analysed by a machine learning algorithm, identified eight VOCs that could distinguish lung cancer patients from healthy ones. The eight VOCs are 2-pentanone, 2-hexenal, 2-hexen-1-ol, hept-4-en-2-ol, 2-heptanone, 3-octen-2-one, 4-methylpentanol, 4-methyl-octane. Results show that GC-IMS identifies lung cancer with respect to the control group with a diagnostic accuracy of 88%. Sensitivity resulted as being 85%, and specificity was 90% - Area Under the Receiver Operating Characteristics (AUROC): 0.91. The contribution made by the e-nose was also important, even though the results were slightly less sensitive with an accuracy of 71.6%. Moreover, of the eight VOCs identified as potential biomarkers, five VOCs had a high sensitivity (p≤ 0.06) for early stage (stage I) lung cancer.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, Istituto Europeo di Oncologia, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Rosamaria Capuano
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alessandra Guaglio
- General toracic surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Milano, Lombardia, 20141, ITALY
| | - Valentina Caminiti
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Federico Canini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alexandro Catini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Giulia Sedda
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Roberto Paolesse
- Department of Chemical Science and Technology, Via della Ricerca Scientifica, University of Rome 'Tor Vergata', Rome, Rome, 00133, ITALY
| | - Corrado Di Natale
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Lorenzo Spaggiari
- Division of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, Milano, Lombardia, 20141, ITALY
| |
Collapse
|
95
|
Pham YL, Beauchamp J, Clement A, Wiegandt F, Holz O. 3D-printed mouthpiece adapter for sampling exhaled breath in medical applications. 3D Print Med 2022; 8:27. [PMID: 35943600 PMCID: PMC9364600 DOI: 10.1186/s41205-022-00150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
The growing use of 3D printing in the biomedical sciences demonstrates its utility for a wide range of research and healthcare applications, including its potential implementation in the discipline of breath analysis to overcome current limitations and substantial costs of commercial breath sampling interfaces. This technical note reports on the design and construction of a 3D-printed mouthpiece adapter for sampling exhaled breath using the commercial respiration collector for in-vitro analysis (ReCIVA) device. The paper presents the design and digital workflow transition of the adapter and its fabrication from three commercial resins (Surgical Guide, Tough v5, and BioMed Clear) using a Formlabs Form 3B stereolithography (SLA) printer. The use of the mouthpiece adapter in conjunction with a pulmonary function filter is appraised in comparison to the conventional commercial silicon facemask sampling interface. Besides its lower cost - investment cost of the printing equipment notwithstanding - the 3D-printed adapter has several benefits, including ensuring breath sampling via the mouth, reducing the likelihood of direct contact of the patient with the breath sampling tubes, and being autoclaveable to enable the repeated use of a single adapter, thereby reducing waste and associated environmental burden compared to current one-way disposable facemasks. The novel adapter for breath sampling presented in this technical note represents an additional field of application for 3D printing that further demonstrates its widespread applicability in biomedicine.
Collapse
Affiliation(s)
- Y Lan Pham
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany.,Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Jonathan Beauchamp
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany
| | - Alexander Clement
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Felix Wiegandt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Olaf Holz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Feodor-Lynen-Str. 15, 30625, Hannover, Germany. .,Member of the German Centre of Lung Research DZL (BREATH), Hannover, Germany.
| |
Collapse
|
96
|
Ligor T, Adamczyk P, Kowalkowski T, Ratiu IA, Wenda-Piesik A, Buszewski B. Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection. Molecules 2022; 27:5023. [PMID: 35956972 PMCID: PMC9370153 DOI: 10.3390/molecules27155023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer is one of most common types of cancer diagnosed in the genitourinary tract. Typical tests are costly and characterized by low sensitivity, which contributes to a growing interest in volatile biomarkers. Head space solid phase microextraction (SPME) was applied for the extraction of volatile organic compounds from urine samples, and gas chromatography time of flight mass spectrometry (GC×GC TOF MS) was used for the separation and detection of urinary volatiles. A cohort of 40 adult patients with bladder cancer and 57 healthy persons was recruited. Different VOC profiles were obtained for urine samples taken from each group. Twelvecompounds were found only in the samples from theBC group.The proposed candidate biomarkers are butyrolactone; 2-methoxyphenol; 3-methoxy-5-methylphenol; 1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one; nootkatone and 1-(2,6,6-trimethyl-1-cyclohexenyl)-2-buten-1-one.Since most of the studies published in the field are proving the potential of VOCs detected in urine samples for the screening and discrimination of patients with bladder cancer from healthy, but rarely presenting the identity of proposed biomarkers, our study represents a novel approach.
Collapse
Affiliation(s)
- Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Przemysław Adamczyk
- Department of General and Oncologic Urology, Nicolaus Copernicus Hospital in Torun, 87-100 Toruń, Poland
| | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Ileana Andreea Ratiu
- “Raluca Ripan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele, RO-400239 Cluj-Napoca, Romania
| | - Anna Wenda-Piesik
- Department of Agronomics, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
97
|
Longo V, Forleo A, Radogna AV, Siciliano P, Notari T, Pappalardo S, Piscopo M, Montano L, Capone S. A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119119. [PMID: 35341815 DOI: 10.1016/j.envpol.2022.119119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 05/04/2023]
Abstract
Two areas in central-southern Italy Land of Fires in Campania and Valley of Sacco river in Lazio are known to be contaminated sites, the first due to illegal fly-tipping and toxic fires, and the second due to an intensive industrial exploitation done by no-scruple companies and crooked public administration offices with dramatic consequences for environment and resident people. The work is intended to contribute to Human BioMonitoring (HBM) studies conducted in these areas on healthy young male population by a semiconductor gas sensor array trained by SPME-GC/MS. Human semen, blood and urine were investigated. The fingerprinting of the Volatile Organic Compounds (VOCs) by a gas sensors system allowed to discriminate the different contamination of the two areas and was able to predict the chemical concentration of several VOCs identified by GC/MS.
Collapse
Affiliation(s)
- Valentina Longo
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Angiola Forleo
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Antonio Vincenzo Radogna
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy; Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Pietro Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Tiziana Notari
- Reproductive Medicine Unit of Check Up Polydiagnostic Center, Salerno, Italy
| | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), Italy "Oliveto Citra Hospital", Salerno, Italy; PhD Program in Evolutionary Biology and Ecology, Un. of Rome Tor Vergata, Rome, Italy
| | - Simonetta Capone
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy.
| |
Collapse
|
98
|
Yang H, Mou Y, Hu B. Diagnostic Ability of Volatile Organic Compounds in Digestive Cancer: A Systematic Review With Meta-Analysis. Clin Med Insights Oncol 2022; 16:11795549221105027. [PMID: 35754925 PMCID: PMC9218909 DOI: 10.1177/11795549221105027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Volatile organic compounds (VOCs) have been involved in cancer diagnosis via breath, urine, and feces. We aimed to assess the diagnostic ability of VOCs on digestive cancers. Methods: We systematically reviewed prospective clinical trials evaluating VOCs’ diagnostic ability on esophageal, gastric, colorectal, hepatic, and pancreatic cancer (PC). Databases including PubMed and Ovid-Medline were searched. Results: A total of 35 trials with 5314 patient-times qualified for inclusion. The pooled sensitivity of VOCs diagnosing gastroesophageal cancer from healthy controls is 0.89 (95% confidence interval [CI]: 0.82-0.94), the pooled specificity is 0.890 (95% CI: 0.84-0.93), and area under the curve (AUC) of the summary receiver operating characteristic curve is 0.95 (95% CI: 0.93-0.95). The pooled sensitivity of VOCs diagnosing colorectal cancer from heathy controls is 0.92 (95% CI: 0.85-0.96), the pooled specificity is 0.88 (95% CI: 0.77-0.94), and the AUC is 0.96 (95% CI: 0.94-0.97). The pooled sensitivity of VOCs distinguishing gastrointestinal (GI) cancer from precancerous lesions is 0.84 (95% CI: 0.67-0.92), the pooled specificity is 0.74 (95% CI: 0.43-0.91), and the AUC is 0.87 (95% CI: 0.84-0.89). The pooled sensitivity of VOCs diagnosing hepatocellular carcinoma is 0.68 (95% CI: 0.52-0.81), the pooled specificity is 0.81 (95% CI: 0.47-0.96), and the AUC is 0.78 (95% CI: 0.74-0.81). The pooled sensitivity of VOCs diagnosing PC is 0.88 (95% CI: 0.80-0.93), the pooled specificity is 0.82 (95% CI: 0.62-0.93), and the AUC is 0.92 (95% CI: 0.89-0.94). Conclusions: Volatile organic compounds have potential role in diagnosing GI cancer with comparatively high sensitivity, specificity, and AUC (PROSPERO registration number: CRD42021260039).
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
99
|
Rothbart N, Stanley V, Koczulla R, Jarosch I, Holz O, Schmalz K, Hübers HW. Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS. J Breath Res 2022; 16. [PMID: 35688126 DOI: 10.1088/1752-7163/ac77aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
The analysis of human breath is a very active area of research, driven by the vision of a fast, easy, and non-invasive tool for medical diagnoses at the point of care. Millimeter-wave gas spectroscopy (MMWGS) is a novel, well-suited technique for this application as it provides high sensitivity, specificity and selectivity. Most of all, it offers the perspective of compact low-cost systems to be used in doctors' offices or hospitals. In this work, we demonstrate the analysis of breath samples acquired in a medical environment using MMWGS and evaluate validity, reliability, as well as limitations and perspectives of the method. To this end, we investigated 28 duplicate samples from chronic obstructive lung disease patients and compared the results to gas chromatography-mass spectrometry (GC-MS). The quantification of the data was conducted using a calibration-free fit model, which describes the data precisely and delivers absolute quantities. For ethanol, acetone, and acetonitrile, the results agree well with the GC-MS measurements and are as reliable as GC-MS. The duplicate samples deviate from the mean values by only 6% to 18%. Detection limits of MMWGS depend strongly on the molecular species. For example, acetonitrile can be traced down to 1.8 × 10-12mol by the MMWGS system, which is comparable to the GC-MS system. We observed correlations of abundances between formaldehyde and acetaldehyde as well as between acetonitrile and acetaldehyde, which demonstrates the potential of MMWGS for breath research.
Collapse
Affiliation(s)
- Nick Rothbart
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victoria Stanley
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rembert Koczulla
- Schön Klinik Berchtesgadener Land, Research Institute for Pulmonary Rehabilitation, Schönau am Königssee, Germany.,Philipps-University of Marburg, Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Inga Jarosch
- Schön Klinik Berchtesgadener Land, Research Institute for Pulmonary Rehabilitation, Schönau am Königssee, Germany.,Philipps-University of Marburg, Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Olaf Holz
- Fraunhofer ITEM, German Center for Lung Research (BREATH, DZL), Clinical Airway Research, Hannover, Germany
| | - Klaus Schmalz
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder), Germany
| | - Heinz-Wilhelm Hübers
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
100
|
Issitt T, Sweeney ST, Brackenbury WJ, Redeker KR. Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites 2022; 12:599. [PMID: 35888722 PMCID: PMC9315489 DOI: 10.3390/metabo12070599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Volatile compounds, abundant in breath, can be used to accurately diagnose and monitor a range of medical conditions. This offers a noninvasive, low-cost approach with screening applications; however, the uptake of this diagnostic approach has been limited by conflicting published outcomes. Most published reports rely on large scale screening of the public, at single time points and without reference to ambient air. Here, we present a novel approach to volatile sampling from cellular headspace and mouse breath that incorporates multi-time-point analysis and ambient air subtraction revealing compound flux as an effective proxy of active metabolism. This approach to investigating breath volatiles offers a new avenue for disease biomarker discovery and diagnosis. Using gas chromatography mass spectrometry (GC/MS), we focus on low molecular weight, metabolic substrate/by-product compounds and demonstrate that this noninvasive technique is sensitive (reproducible at ~1 µg cellular protein, or ~500,000 cells) and capable of precisely determining cell type, status and treatment. Isolated cellular models represent components of larger mammalian systems, and we show that stress- and pathology-indicative compounds are detectable in mice, supporting further investigation using this methodology as a tool to identify volatile targets in human patients.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sean T. Sweeney
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - William J. Brackenbury
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Kelly R. Redeker
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
| |
Collapse
|