51
|
Górska T, Chojnicka-Gittins B, Majczyński H, Zmysłowski W. Overground Locomotion after Incomplete Spinal Lesions in the Rat: Quantitative Gait Analysis. J Neurotrauma 2007; 24:1198-218. [PMID: 17610359 DOI: 10.1089/neu.2006.0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In rats with incomplete low thoracic spinal cord lesions of different extents, the basic indices of gait such as locomotor velocity, step and stance phase duration and the duty factor (i.e., the relative duration of the stance phase) during overground runway locomotion were analyzed using contact electrodes on each paw for data recording. In animals with lesions confined to the dorsal columns (DC), tested 3 weeks postsurgery, these gait indices were essentially unchanged compared to the preoperative period. After the same recovery period, rats with larger lesions, comprising the dorsal columns plus a major part of the dorsolateral funiculi (DL), showed a transient increase in the hindlimb stance phase duration and the duty factor. More extensive injuries, with additional damage to parts of the ventrolateral and ventral funiculi (VL), produced increments in the stance phase duration and duty factor much above that which would be expected from changes in step cycle duration due to slowing down of locomotion. These changes, which lasted for at least 3 months, were more conspicuous in animals with extensive spinal cord injuries and were due to an altered relationship between the stance phase and step cycle duration. It is suggested that the excessive increment in the hindlimb stance phase and the duty factor constitute a reliable indicator of impairment in locomotor movements, which is correlated with the extent of spinal cord injury.
Collapse
Affiliation(s)
- Teresa Górska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | |
Collapse
|
52
|
Kanagal SG, Muir GD. Bilateral dorsal funicular lesions alter sensorimotor behaviour in rats. Exp Neurol 2007; 205:513-24. [PMID: 17451687 DOI: 10.1016/j.expneurol.2007.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 02/26/2007] [Accepted: 03/12/2007] [Indexed: 01/19/2023]
Abstract
Spinal cord injury models often involve damage to the corticospinal tract (CST) because of the functional importance of this pathway in humans. In rats, the main component of the CST travels in the dorsal funiculus and cannot be damaged without concurrent damage to overlying sensory fibers. To distinguish deficits due to the loss of CST from those due to sensory fiber damage, we bilaterally axotomized ascending sensory fibers in dorsal columns without CST damage in one group of rats (ascending sensory pathways, ASP) and compared the results to a group with damage to ascending sensory fibers with CST damage (ASP+CST). We assessed the ability of rats to perform a skilled reaching task and to walk over a horizontal ladder. We also measured the forces exerted on the ground (ground reaction forces, GRF) and limb contact patterns produced during overground locomotion. After ASP lesions alone, endpoint measurements of reaching success and footslip errors on the ladder showed transitory impairments, although detailed analysis revealed persistent deficits in skilled forelimb movements. ASP+CST lesions caused persistent deficits in reaching success and ladder footslips throughout the 8-week post-surgical period. Measurement of GRFs and limb timing during overground locomotion revealed differences in both groups at 8 weeks post-surgery compared to pre-surgical values, but no differences between ASP and ASP+CST groups. These results emphasize the normal contribution of both ascending sensory axons and CST axons during skilled limb movements and support a role for ascending sensory information, but not descending CST input, during overground locomotion. These results also illustrate the value of using sensitive methods to reveal detailed behavioural changes after spinal injury.
Collapse
Affiliation(s)
- Srikanth G Kanagal
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan Saskatoon, Canada SK S7N 5B4.
| | | |
Collapse
|
53
|
Muir GD, Webb AA, Kanagal S, Taylor L. Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats. Eur J Neurosci 2007; 25:1501-10. [PMID: 17425576 DOI: 10.1111/j.1460-9568.2007.05411.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In experimental spinal injury studies, damage to the dorsal half of the spinal cord is common but the behavioural effects of damage to specific pathways in the dorsal cord have been less well investigated. We performed bilateral transection of the dorsolateral spinal funiculus (DLF) on 12 Long-Evans rats at the third cervical spinal segment. We quantified overground locomotion by measuring ground reaction forces, step timing and step distances as animals moved unrestrained. We also assessed skilled locomotion by measuring footslip errors made while the animals crossed horizontal ladders, and examined paw usage in a cylinder exploration task and during a skilled reaching task. Ground reaction forces revealed that rats with bilateral DLF lesions moved with a symmetrical gait, characterized mainly by altered forces exerted by the hindlimbs, delayed onset of hindlimb stance, and understepping of the hindlimbs relative to the forelimbs. These alterations in overground locomotion were subtle but were nevertheless consistent between animals and persisted throughout the 6-week recovery period. During ladder crossing, rats with DLF lesions made more footslip errors with the hindlimbs after surgery than before. Spontaneous forelimb usage during exploration was not affected by DLF axotomy but lesioned animals were less successful during skilled reaching. This is the first study which describes preferentially altered hindlimb use during overground locomotion after cervical DLF transections. We discuss these findings in relation to previous work and to the possible contributions of different ascending and descending pathways in the DLF to locomotion and skilled movements in rats.
Collapse
Affiliation(s)
- Gillian D Muir
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7N 5B4.
| | | | | | | |
Collapse
|
54
|
Onifer SM, Rabchevsky AG, Scheff SW. Rat Models of Traumatic Spinal Cord Injury to Assess Motor Recovery. ILAR J 2007; 48:385-95. [PMID: 17712224 DOI: 10.1093/ilar.48.4.385] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Devastating motor, sensory, and autonomic dysfunctions render long-term personal hardships to the survivors of traumatic spinal cord injury (SCI). The suffering also extends to the survivors' families and friends, who endure emotional, physical, and financial burdens in providing for necessary surgeries, care, and rehabilitation. After the primary mechanical SCI, there is a complex secondary injury cascade that leads to the progressive death of otherwise potentially viable axons and cells and that impairs endogenous recovery processes. Investigations of possible cures and of ways to alleviate the hardships of traumatic SCI include those of interventions that attenuate or overcome the secondary injury cascade, enhance the endogenous repair mechanisms, regenerate axons, replace lost cells, and rehabilitate. These investigations have led to the creation of laboratory animal models of the different types of traumatic human SCI and components of the secondary injury cascade. However, no particular model completely addresses all aspects of traumatic SCI. In this article, we describe adult rat SCI models and the motor, and in some cases sensory and autonomic, deficits that each produces. Importantly, as researchers in this area move toward clinical trials to alleviate the hardships of traumatic SCI, there is a need for standardized small and large animal SCI models as well as quantitative behavioral and electrophysiological assessments of their outcomes so that investigators testing various interventions can directly compare their results and correlate them with the molecular, biochemical, and histological alterations.
Collapse
Affiliation(s)
- Stephen M Onifer
- Spinal Cord and Brain Injury Research Center, Biomedical and Biological Sciences Research Building, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
55
|
McEwen ML, Springer JE. Quantification of Locomotor Recovery following Spinal Cord Contusion in Adult Rats. J Neurotrauma 2006; 23:1632-53. [PMID: 17115910 DOI: 10.1089/neu.2006.23.1632] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Injury to the spinal cord not only disrupts the functioning of spinal circuits at the site of the impact, but also limits sensorimotor function caudal to the level of the lesion. Ratings of gross locomotor skill are generally used to quantify locomotor recovery following spinal cord injury (SCI). The purpose of this study was to assess behavioral recovery following SCI with three tasks: (1) BBB ratings, (2) walking on a horizontal ladder, and (3) footprint analyses. Behavioral testing was conducted for 6 postoperative weeks, and then the spinal cords were processed for the amount of white matter spared. As expected, BBB ratings dramatically decreased and then improved during recovery. The number of hindlimb foot-faults on the horizontal ladder increased after injury and remained elevated during the recovery period. Footprint analyses revealed that sham-control rats used several different gaits to cross the runway. In contrast, the locomotor function of rats with a SCI was impaired throughout the postoperative period. Some locomotor parameters of the injured rats improved slightly (velocity, stride length, stride duration, stance duration), some did not change (interlimb coordination, swing duration, forelimb base of support, hindpaw angle), and others declined (hindlimb base of support) during the recovery period. Together, these results show that gross locomotor skill improved after SCI, while recovery of fine locomotor function was more limited. Multiple tests should be included in future experiments in order to assess gross and fine changes in sensorimotor function following SCI.
Collapse
Affiliation(s)
- Melanie L McEwen
- University of Kentucky Medical Center, Department of Physical Medicine and Rehabilitation, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
56
|
Ballermann M, Tse ADY, Misiaszek JE, Fouad K. Adaptations in the walking pattern of spinal cord injured rats. J Neurotrauma 2006; 23:897-907. [PMID: 16774474 DOI: 10.1089/neu.2006.23.897] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Walking ability is a measure of recovery used in many studies that test experimental strategies to treat injuries or diseases of the central nervous system (CNS) in animal models. A common measure in the rat animal model of thoracic spinal cord injury (SCI) is visual inspection and scoring of hind limb activity, which allows the documentation of movements associated with the recovery of locomotor function. In this study, we expand on previously documented visible changes in the locomotor pattern following SCI. The spontaneous recovery of locomotion in rats with thoracic SCIs of variable extent was evaluated using electromyographic (EMG) and kinematic analysis while rats walked on an elevated runway. Comparisons with pre-lesion walking sequences revealed changes in the kinematics and in the muscle activation pattern of various muscles, including enhanced fore limb extensor activity, possibly reflecting an increased contribution to propulsion, altered recruitment of back muscles inserting into the hip (possibly to support stepping movements), and elevated posture during stance, which may compensate for deficits in weight support. These changes were noted in spinal cord injured rats with varying degrees of impairment, including animals with no visually detectable deficit in open-field walking. In summary, the presented results demonstrate that spinal cord injured rats develop alternative locomotor patterns following SCI that cannot be discriminated by the use of qualitative visually based analysis, thus urging the use of quantitative outcome measures in assessing motor function after SCI.
Collapse
Affiliation(s)
- Mark Ballermann
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
57
|
Abstract
There are now numerous preclinical reports of various experimental treatments promoting some functional recovery after spinal cord injury. Surprisingly, perhaps, the mechanisms that underlie recovery have rarely been definitively established. Here, we critically evaluate the evidence that regeneration of damaged pathways or compensatory collateral sprouting can promote recovery. We also discuss several more speculative mechanisms that might putatively explain or confound some of the reported outcomes of experimental interventions.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- Neurorestoration Group, Wolfson Wing, Hodgkin Building, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | | |
Collapse
|
58
|
Vinit S, Gauthier P, Stamegna JC, Kastner A. High Cervical Lateral Spinal Cord Injury Results in Long-Term Ipsilateral Hemidiaphragm Paralysis. J Neurotrauma 2006; 23:1137-46. [PMID: 16866626 DOI: 10.1089/neu.2006.23.1137] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although axon regeneration is limited in the central nervous system, partial lesions of the spinal cord induce neuroplasticity processes that can lead to spontaneous functional improvement. To determine whether such compensatory mechanisms occur in the respiratory system, we analyzed the incidence of partial injury of the cervical spinal cord on diaphragm activity in adult rats. We show that a section of the lateral area of the C2 cervical spinal cord induces complete phrenic nerve inactivation and ipsilateral hemidiaphragm paralysis, whereas medial or dorsolateral sections had only a moderate effect on respiratory activity. In the case of lateral hemisection, activity of the ipsilateral phrenic nerve was partially restored after a lapse of 3 months. No spontaneous diaphragm recovery was observed, however, even after a lapse of several months in the case of hemisection or lateral section. Ipsilateral hemidiaphragm activity could however be restored after transection of the contralateral phrenic nerve, by activation of the "crossed phrenic phenomenon" (involving activation of previously latent respiratory contralateral pathways crossing the midline). These data suggest that the respiratory system develops important long-term plasticity processes at the level of phrenic motoneuron innervation. However, they do not by themselves allow substantial diaphragm recovery, underscoring the continued need for developing repair strategies. These studies also validates the use of the respiratory system as a model to evaluate the functional incidence of repair strategies not only after hemisection but also after more limited sectioning restricted to the lateral side of the cervical cord.
Collapse
Affiliation(s)
- Stéphane Vinit
- Laboratoire de Physiologie Neurovégétative, Université Paul Cézanne Aix-Marseille III, Marseille, France
| | | | | | | |
Collapse
|
59
|
Gensel JC, Tovar CA, Hamers FPT, Deibert RJ, Beattie MS, Bresnahan JC. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. J Neurotrauma 2006; 23:36-54. [PMID: 16430371 DOI: 10.1089/neu.2006.23.36] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most experimental studies of spinal cord injury (SCI) in rats damage the thoracic cord, with the consequent functional loss being due to interruption of long tracts connecting the caudal spinal cord to the rostral nervous system. Less work has been done evaluating injury to the cervical cord, even though it is the most common level of human SCI. In addition to the long tracts, the cervical spinal cord contains the sensory and motor neurons responsible for upper extremity function. The purpose of this study was to further develop a rat model of cervical spinal cord contusion injury using a modified NYU/MASCIS weight drop device. Mild (6.25 mm) and moderate (12.5 mm) C5 unilateral injuries were produced. Behavioral recovery was examined using a grooming test, a paw preference test, a walkway test (The Catwalk), and a horizontal ladder test. Histological outcome measures included sparing at the lesion epicenter, sparing throughout the extent of the lesion, quantification of myelin loss rostral and caudal to the lesion, and motor neuron counts. Compared to controls, animals receiving SCI exhibited injury severity-specific deficits in forelimb, locomotor, and hindlimb function persisting for 6-weeks post-SCI. Histological analysis revealed ipsilateral containment of the injury, and differentiation between groups on all measures except motor neuron counts. This model has many advantages: (1) minimal animal care requirements post-SCI, (2) within subject controls, (3) functional loss involves primarily the ipsilateral forelimb, and (4) it is a behavioral and histological model for both gray and white matter damage caused by contusive SCI.
Collapse
Affiliation(s)
- John C Gensel
- STAR Laboratories, Laboratory for Neural Repair, Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
60
|
Doperalski NJ, Fuller DD. Long-term facilitation of ipsilateral but not contralateral phrenic output after cervical spinal cord hemisection. Exp Neurol 2006; 200:74-81. [PMID: 16647702 DOI: 10.1016/j.expneurol.2006.01.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 01/23/2006] [Indexed: 11/19/2022]
Abstract
After chronic C2 spinal hemisection (C2HS), exposure to intermittent hypoxia (IH) evokes a persistent increase in phrenic output recorded ipsilateral to the injury (i.e., phrenic long-term facilitation, LTF; Golder and Mitchell, J. Neurosci. 25:2925-32, 2005). However, unilateral spinal cord injury induces compensatory increases in contralateral motoneuron activity that may reduce their capacity for further plasticity (i.e., a "ceiling effect"). We hypothesized that after chronic C2HS, LTF would be reduced in contralateral (vs. ipsilateral) phrenic output. Bilateral phrenic activity was recorded in three groups of anesthetized, paralyzed, vagotomized, and ventilated rats: uninjured, and 4 or 8 weeks following histologically verified C2HS. Baseline (BL) phrenic activity was established during normoxia and rats were then exposed to IH (5 x 3 min isocapnic hypoxia, 13-14% O2) followed by isocapnic normoxia; LTF was assessed 60-min post-IH. Uninjured animals showed an increase in inspiratory burst amplitude that was similar in the left (44 +/- 11%BL) and right phrenic nerves (39 +/- 13%BL). However, similar burst amplitude LTF did not occur in phrenic output recorded contralateral to C2HS at 4 (-10 +/- 7% BL) or 8 weeks post-C2HS (4 +/- 5% BL). In contrast, LTF of ipsilateral phrenic amplitude occurred at both 4 (44 +/- 11% BL) and 8 weeks post-C2HS (129 +/- 30% BL, P < 0.05). A persistent increase in phrenic burst frequency after IH (i.e., "frequency LTF") was observed in control (+9 +/- 3 burst/min, P < 0.05), but not C2HS rats. We conclude that compensatory responses to unilateral cervical spinal cord injury prevent the expression of LTF in contralateral phrenic motoneurons.
Collapse
Affiliation(s)
- N J Doperalski
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
61
|
Hendriks WTJ, Eggers R, Ruitenberg MJ, Blits B, Hamers FPT, Verhaagen J, Boer GJ. Profound Differences in Spontaneous Long-Term Functional Recovery after Defined Spinal Tract Lesions in the Rat. J Neurotrauma 2006; 23:18-35. [PMID: 16430370 DOI: 10.1089/neu.2006.23.18] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or the complete dorsal half of the spinal cord (Hx) at thoracic level T8. Functional recovery was monitored for 31 weeks. We found no recovery of consistent inter limb coordination in any experimental group over time using the BBB locomotor rating scale. Quantitative CatWalk analysis revealed significant differences between experimental groups for inter limb coordination (RI). RSTx and Hx animals showed a significant decrease in the RI, and only in the RSTx group did the RI improve from 6 weeks post-lesion onward. Significant differences between experimental groups in step sequence patterns and base of support were also observed. In the rope test all experimental groups had significantly higher error percentages compared to control animals. Tracing of the CST revealed enhanced collateral formation rostral to the lesion in the CSTx group, not in other groups. The results presented here show that locomotor function in all, but CSTx groups gradually improved over time. This is important for studies that employ pharmacological, cell-, and/or gene therapy- based interventions to improve axonal regeneration and functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- William T J Hendriks
- Department of Neuroregeneration, Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
62
|
Collazos-Castro JE, López-Dolado E, Nieto-Sampedro M. Locomotor Deficits and Adaptive Mechanisms after Thoracic Spinal Cord Contusion in the Adult Rat. J Neurotrauma 2006; 23:1-17. [PMID: 16430369 DOI: 10.1089/neu.2006.23.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rat is widely used for modeling human spinal cord injury (SCI) and paraplegia. However, quadruped animals adapt trunk, forelimb and hindlimb movements to compensate for deficits, improving their behavioral scores and complicating the interpretation of spontaneous and treatment-induced function recovery. The kinematics of locomotion was studied in rats, both normal and after SCI (T9 contusion), and variables indicative of hindlimb function were related to brain-spinal cord connections (BSCC) spared during lesioning. Normal animals showed forward velocities characteristic of fast walking. The hind paw was placed approximately three centimeters in front of the hip at the initial contact. Hip height decreased during the first third of hindlimb stance and increased later. Mild and moderate spinal cord contusions destroyed the gray matter and adjacent axons but spared the ventrolateral tracts to various degrees. Injured animals placed the hindpaw in a more caudal position than normal and showed reduced forward velocity and hip height. Knee extension was also impaired, and both hindlimb and forelimb steps were adapted to compensate for the deficits. BSCC was estimated by averaging the transverse area of white matter at the lesion epicenter and the percentage of brain neurons labeled after peroxidase injection into L2 and L3. Recovery of hindlimb motor function was proportional to the amount of BSCC. On average, injured animals retained 18% of BSSC and recovered 23% of hindlimb function. These findings show that kinematic analysis is a reliable tool for assessing locomotor deficits and compensations and suggest limited spontaneous motor plasticity after SCI.
Collapse
|
63
|
Collazos-Castro JE, Soto VM, Gutiérrez-Dávila M, Nieto-Sampedro M. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat. J Neurotrauma 2005; 22:544-58. [PMID: 15892600 DOI: 10.1089/neu.2005.22.544] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Information on the nature of deficits and adaptive mechanisms occurring after spinal cord injury is essential to the design of strategies for promoting functional recovery. Motor impairments and compensations were quantified by three-dimensional kinematic analysis in freely walking rats, 6 months after mild cervical (C7) or moderate lumbar (L2) spinal cord contusion. After C7 contusion, the animals showed reduced elbow extension and wrist movement, whereas reduced knee extension was the main impairment after L2 contusion. In both cases, the duration of the walking cycle increased and forward velocity was reduced due to a longer stance phase. Histology revealed reproducible lesions extending approximately to one spinal cord segment. In the transverse plane, the lesion involved the central gray matter and adjacent axons, including the dorsal corticospinal tract, but partially spared the ventrolateral tracts. Retrograde motoneuron tracing by nerve exposure to HRP or intramuscular injection of aminostilbamidine demonstrated that C7 contusion caused the loss of approximately 40% of triceps brachii motoneurons, whereas approximately 30% of quadriceps femoris motoneurons were lost after L2 contusion. These results demonstrate permanent deficits after incomplete lesions at the spinal cord enlargements and suggest that motoneuron loss contributes to their production.
Collapse
Affiliation(s)
- Jorge E Collazos-Castro
- Laboratorio de Reparación Neural, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Unidad Asociada al CSIC, Toledo, Spain.
| | | | | | | |
Collapse
|
64
|
Anderson KD, Gunawan A, Steward O. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: Relationship to the corticospinal tract. Exp Neurol 2005; 194:161-74. [PMID: 15899253 DOI: 10.1016/j.expneurol.2005.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 01/30/2005] [Accepted: 02/14/2005] [Indexed: 11/27/2022]
Abstract
Approximately 50% of human spinal cord injuries (SCI) are at the cervical level, resulting in impairments in motor function of the upper extremity. Even modest recovery of upper extremity function could have an enormous impact on quality of life for quadriplegics. Thus, there is a critical need to develop experimental models for cervical SCI and techniques to assess deficits and recovery of forelimb motor function. Here, we analyze forelimb and forepaw motor function in rats after a lateral hemisection at C5 and assessed the relationship between the functional impairments and the extent of damage to one descending motor system, the corticospinal tract (CST). Female Sprague-Dawley rats were trained on various behavioral tasks that require the forelimb, including a task that measures gripping ability by the hand (as measured by a grip strength meter, GSM), a food reaching task, and horizontal rope walking. After 8 weeks of post-injury testing, the distribution of the CST was evaluated by injecting BDA into the sensorimotor cortex either ipsi- or contralateral to the cervical lesion. Complete unilateral hemisection injuries eliminated the ability to grip and caused severe impairments in food retrieval by the forepaw ipsilateral to the lesion. There was no indication of recovery in either task. In cases in which hemisections spared white matter near the midline, there was some recovery of forelimb motor function over time. Assessment of rope climbing ability revealed permanent impairments in forelimb use and deficits in hindlimb use and trunk stability. Sensory testing using a dynamic plantar aesthesiometer revealed that there was no increase in touch sensitivity in the affected forelimb. For the cases in which both histological and behavioral data were available, spared forelimb motor function was greatest in rats in which there was sparing of the dorsal CST.
Collapse
Affiliation(s)
- Kim D Anderson
- Department of Anatomy and Neurobiology, Reeve-Irvine Research Center, University of California at Irvine College of Medicine, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, USA
| | | | | |
Collapse
|
65
|
Poulton NP, Muir GD. Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-parkinsonian rats. Exp Neurol 2005; 193:181-97. [PMID: 15817277 DOI: 10.1016/j.expneurol.2004.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/19/2004] [Accepted: 12/06/2004] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether locomotor training could ameliorate neurochemical changes and behavioral deficits in the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. It has been recently demonstrated that forelimb motor training, or brief treadmill training, can attenuate dopamine loss and some deficits in forelimb usage in this animal model. Nevertheless, it is not known whether locomotor training could result in an amelioration of locomotor deficits. Rats were lesioned with 6-OHDA injected intracerebrally and randomly assigned to one of 3 groups: early treadmill trained, late treadmill trained and untrained. Animals in the early trained group underwent 2 x 20 min treadmill sessions daily for 30 days, beginning 24 h after 6-OHDA injection. Late trained animals underwent the same training regime beginning 7 days post-injection. All animals were assessed on their abilities to perform several behavioral tasks designed to test locomotor and forelimb movement abilities prior to 6-OHDA injection and at 3 and 6 weeks post-injection. Treadmill training resulted in the attenuation of dopamine depletion in the striatum compared to non-treadmill trained animals, as measured by in vivo apomorphine-induced rotations and post-mortem dopamine analysis. Nevertheless, treadmill training produced essentially no difference in behavioral deficits on most tests compared to untrained animals. We discuss the possible reasons for the discrepancies with previous studies, including differences in lesioning, training regimes and methods of behavioral assessment. We conclude that treadmill training does not ameliorate locomotor deficits in the 6-OHDA model of Parkinson's disease, even though this same training results in attenuation of dopamine loss in the striatum.
Collapse
Affiliation(s)
- Nadine P Poulton
- Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7N 5B4
| | | |
Collapse
|
66
|
Webb AA, Muir GD. Course of motor recovery following ventrolateral spinal cord injury in the rat. Behav Brain Res 2004; 155:55-65. [PMID: 15325779 DOI: 10.1016/j.bbr.2004.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine the importance of the pathways running in the ventrolateral spinal funiculus for overground locomotion in adult, freely behaving rats. Left-sided ventrolateral cervical spinal cord injury was performed in adult female Long-Evans rats. The behavioural abilities of these animals were analyzed at 2 days, and weekly for up to 5.5 weeks following spinal cord injury. Behavioural testing consisted of Von Frey filament testing, ladder walking, a paw usage task, and the assessment of ground reaction forces during unrestrained trotting. Animals with injury to the left ventrolateral cervical spinal cord did not develop enhanced sensitivity to pedal mechanical stimulation. At 2 days following injury, animals had impaired skilled locomotion as indicated by increased number of footslips during ladder walking. At 2 days, these animals also used both limbs together more often for support while rearing, while using the forelimb ipsilateral to the injury less than did uninjured animals. Ground reaction force determination revealed that animals tend to bear less weight on the forelimb and hindlimb ipsilateral to the spinal cord injury 2 days after injury. All animals recovered normal or near normal sensorimotor abilities although subtle asymmetries in ground reaction forces were detectable at 5.5 weeks following spinal cord injury. These results suggest that axons in the ventrolateral spinal funiculi contribute to limb movements during exploration and locomotion but their roles can be served by other pathways after ventrolateral spinal injury.
Collapse
Affiliation(s)
- Aubrey A Webb
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Sask., Canada S7N 5B4.
| | | |
Collapse
|
67
|
Portiansky EL, Barbeito CG, Goya RG, Gimeno EJ, Zuccolilli GO. Morphometry of cervical segments grey matter in the male rat spinal cord. J Neurosci Methods 2004; 139:217-29. [PMID: 15488235 DOI: 10.1016/j.jneumeth.2004.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 04/30/2004] [Accepted: 04/30/2004] [Indexed: 11/17/2022]
Abstract
The cervical portion of the spinal cord is an area frequently affected by alterations of medical and veterinary importance. Since there is scarce quantitative anatomical data on this region, we undertook a morphometric study of the grey matter of all segments of the rat cervical spinal cord of male rats in order to generate reference patterns to be used in future experimental studies. Using image analysis software, the total spinal cord length and grey and white matter area of each segment was recorded. The morphometric characteristics of the neurones populating the laminae of the grey matter of the cervical segments was also recorded. Neurones were classified into small, medium and large sizes for each lamina and statistically compared. The present data fill an anatomical information gap by providing quantitative data about the normal anatomical features of the rat cervical cord. The anatomical data found could be used to better understand the physiological relevance of that region in the rat.
Collapse
Affiliation(s)
- Enrique Leo Portiansky
- School of Veterinary Sciences, Institute of Pathology, National University of La Plata (UNLP), Calle 60 y 118, CC 296, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
68
|
Abstract
Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences.
Collapse
Affiliation(s)
- Paul J Reier
- College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
69
|
Cellular transplantation strategies for spinal cord injury and translational neurobiology. Neurotherapeutics 2004. [DOI: 10.1007/bf03206629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
70
|
Webb AA, Jeffery ND, Olby NJ, Muir GD. Behavioural analysis of the efficacy of treatments for injuries to the spinal cord in animals. Vet Rec 2004; 155:225-30. [PMID: 15384503 DOI: 10.1136/vr.155.8.225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There have been very few clinical trials evaluating therapies for naturally occurring spinal cord injury in dogs and cats. This review describes the methods suitable for evaluating the behavioural recovery of animals with spinal cord injuries, in either a clinical or a laboratory setting. A list of commonly used methods for evaluating behavioural recovery in animals is provided, both in the clinical and laboratory setting; the tests, their limitations and benefits and specific recommendations for their use are also discussed in more depth.
Collapse
Affiliation(s)
- A A Webb
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | | | | | | |
Collapse
|
71
|
Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol 2004; 184:114-30. [PMID: 14637085 DOI: 10.1016/s0014-4886(03)00398-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Delivery of neurotrophic factors in acute models of spinal cord injury in adult rats can rescue axotomized neurons, promote axonal growth, and partially restore function. The extent to which repair and recovery of function can be achieved after chronic injury has received less attention. In the companion paper we show that transplanting fibroblasts genetically modified to produce neurotrophic factors into chronic (6-week) hemisection injuries results in sprouting, partial neuroprotection, but only limited regeneration. Here we describe functional consequences of this treatment using a series of behavioral tests. Adult rats received a complete unilateral C3/C4 hemisection and recovery from the injury was assessed over 5 weeks. At 6 weeks postoperative, the experimental group received grafts of a combination of fibroblasts modified to secrete BDNF or NT-3. The operated control groups received grafts of either gelfoam or gelfoam with fibroblasts expressing GFP into the lesion site. Behavioral recovery in the three groups was assessed over the next 10 weeks. Severe deficits with no recovery in any of the groups were observed in several tests (BBB, limb preference, narrow beam, horizontal rope test) that measure primarily motor function. Recovery was observed in the grid test, a measure of sensorimotor function, and the von Frey test, a measure of response to mechanical stimulation, but there were no differences between the operated control or experimental groups. Both groups also showed recovery from heat-induced hyperalgesia, with the experimental group exhibiting greater recovery than the operated control groups. In this test, delivery of neurotrophic factors from transplanted fibroblasts does not worsen responses to nociceptive stimuli and in fact appears to reduce hypersensitivity. Our data also demonstrate that additional damage to the spinal cord upon placement of a graft further compromises behavioral recovery for locomotor and postural function. Additional therapeutic interventions will be necessary to provide greater levels of recovery after chronic injuries.
Collapse
Affiliation(s)
- J S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Webb AA, Gowribai K, Muir GD. Fischer (F-344) rats have different morphology, sensorimotor and locomotor abilities compared to Lewis, Long-Evans, Sprague-Dawley and Wistar rats. Behav Brain Res 2003; 144:143-56. [PMID: 12946605 DOI: 10.1016/s0166-4328(03)00076-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Locomotor and/or sensory behaviour is commonly evaluated in laboratory rats in the field of neuroscience. Many strains of rats, however, have been propagated through intensive breeding programs. With any breeding program, traits are selected purposefully or inadvertently. We set out to investigate whether differences in morphology, sensory or motor behaviours exist using five age-matched strains of laboratory rats. Personal observations of morphological differences between different strains of rats led us to hypothesize that Fischer rats were dissimilar to the other strains in each of the parameters investigated. Evaluation of morphology involved measuring long-bone lengths and body weights of each strain. Motor skills were evaluated by measuring paw preferences while rearing, abduction of the distal portion of hindlimbs during locomotion, footfalls through a horizontal ladder during locomotion, and ground reaction forces generated during trotting. Sensory ability was assessed by von Frey testing. Fischer rats had shorter long-bone lengths, weighed less, and had significantly abducted distal portion of their hindlimbs during locomotion compared to the other strains. Lewis and Sprague-Dawley rats were less sensitive to mechanical pedal stimulation compared to Fischer rats. While rearing, all strains of rats tended to use individual forelimbs 25% of the time for each right and left limbs, and both forelimbs together 50% of the time. There were no significant differences in the number of footfalls during the ladder task. Ground reaction force determination revealed that Fischer and Sprague-Dawley rats bore more weight on their hindlimbs compared to forelimbs during locomotion, Long-Evans and Lewis rats bore more weight on their forelimbs compared to their hindlimbs, while Wistar rats distributed weight evenly between forelimbs and hindlimbs during trotting. We conclude that morphologic, sensory and motor differences exist between the five strains of laboratory rats examined and several of these differences are most pronounced in the Fischer strain.
Collapse
Affiliation(s)
- Aubrey A Webb
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4.
| | | | | |
Collapse
|
73
|
Webb AA, Muir GD. Unilateral dorsal column and rubrospinal tract injuries affect overground locomotion in the unrestrained rat. Eur J Neurosci 2003; 18:412-22. [PMID: 12887423 DOI: 10.1046/j.1460-9568.2003.02768.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to determine the importance of the rubrospinal pathway and the ascending components of the dorsal column for overground locomotion in adult, unrestrained rats. The dorsal column (excluding the corticospinal tract), the rubrospinal tract or both were damaged unilaterally in rats at the level of the upper cervical spinal cord. Behavioural analysis consisted of skilled locomotion (an evaluation of footslips during ladder walking), a paw usage task and the assessment of ground reaction forces during unrestrained locomotion. All lesioned animals used the forepaw ipsilateral to the lesions less while rearing. Animals with dorsal column injuries used the forelimb contralateral to the spinal injury significantly more while rearing compared with uninjured animals. All lesioned animals produced more footfalls while crossing the ladder compared with uninjured animals. All injuries, regardless of the pathway affected, resulted in significant alterations in body weight support and reduced braking forces from the forelimb ipsilateral to the injury during overground locomotion. Animals typically bore less weight on the hindlimb ipsilateral to the lesion compared with the hindlimb contralateral to the spinal injury. Taken together with previously published work, our data indicate that the rubrospinal and dorsal column pathways are important for forelimb support while rearing and for skilled locomotion. Additionally, the ascending dorsal column pathways and the rubrospinal tract play a role during flat surface overground locomotion and combined damage to these pathways does not alter the acquired gait.
Collapse
Affiliation(s)
- Aubrey A Webb
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
74
|
Respiratory motor recovery after unilateral spinal cord injury: eliminating crossed phrenic activity decreases tidal volume and increases contralateral respiratory motor output. J Neurosci 2003. [PMID: 12657710 DOI: 10.1523/jneurosci.23-06-02494.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was measured in anesthetized C2 hemisected rats at 2 months after injury with an intact ipsilateral phrenic nerve, or with ipsilateral phrenicotomy performed at the time of the SCI (i.e., crossed phrenic pathways rendered ineffective) (dual injury). Ipsilateral phrenicotomy did not alter the rapid shallow eupneic breathing pattern in C2 injured rats. However, the ability to generate large inspiratory volumes after either vagotomy or during augmented breaths was impaired if crossed phrenic activity was abolished. We also investigated whether compensatory plasticity in contralateral motoneurons would be affected by eliminating crossed phrenic activity. Thus, contralateral phrenic motor output was recorded in anesthetized, vagotomized, and mechanically ventilated rats with dual injury during chemoreceptor stimulation. Hypercapnia, hypoxia, and asphyxia increased contralateral phrenic burst amplitude in the dual injury group more than in rats with SCI alone. Dual injury rats also had elevated baseline burst frequency. Together, these results demonstrate a functional role of crossed phrenic activity after SCI. Moreover, by preventing ipsilateral phrenic motor recovery in rats with unilateral SCI, segmental and supraspinal changes could be induced in contralateral respiratory motor output beyond that seen with SCI alone.
Collapse
|