51
|
Guo SP, Chang HC, Lu LS, Liu DZ, Wang TJ. Activation of kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway by curcumin enhances the anti-oxidative capacity of corneal endothelial cells. Biomed Pharmacother 2021; 141:111834. [PMID: 34153850 DOI: 10.1016/j.biopha.2021.111834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/24/2023] Open
Abstract
Fuchs endothelial corneal dystrophy is one of the most common indications for corneal transplantation, and impaired anti-oxidative function is observed in corneal endothelial cells (CECs). Curcumin is well-known for its anti-oxidative property; but, no study has examined the effect of curcumin on anti-oxidative therapeutic roles in corneal endothelial disease. In our experiments, oxidative stress 0.25 mM tert-butyl hydroperoxide for 2 h was induced in immortalized human CECs pretreated with curcumin. Cell behavior and viability, reactive oxygen species production, and the protein expression of the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element (ARE) pathway were examined; the Keap1/Nrf2/ARE pathway is crucial anti-oxidative pathway of curcumin. The results showed that pretreatment with 12.5 μM curcumin significantly reduced the ROS production and improved the survival of CECs under oxidative stress. In addition, curcumin pretreatment significantly increased the expression of nuclear Nrf2, and the productions of superoxide dismutase 1 and heme oxygenase-1, which were the target anti-oxidative enzymes of the Keap1/Nrf2/ARE pathway. Our findings showed that curcumin enhanced the growth and differentiation of CECs under oxidative stress. The activation of Keap1/Nrf2/ARE pathway by curcumin was crucial for CECs to improve their anti-oxidative capacity.
Collapse
Affiliation(s)
- Siao-Pei Guo
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hua-Ching Chang
- Department of Dermatology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan; Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City 248, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110301, Taiwan.
| |
Collapse
|
52
|
Astaxanthin Relieves Busulfan-Induced Oxidative Apoptosis in Cultured Human Spermatogonial Stem Cells by Activating the Nrf-2/HO-1 pathway. Reprod Sci 2021; 29:374-394. [PMID: 34129218 DOI: 10.1007/s43032-021-00651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Many child cancer patients endure anticancer therapy containing alkylating agents before sexual maturity. Busulfan (BU), as an alkylating agent, is a chemotherapy drug, causing DNA damage and cytotoxicity in germ cells. In the present study, we aimed to investigate the protective effect of astaxanthin (AST), as a potent antioxidant and powerful reactive oxygen species (ROS) scavenger, on BU-induced toxicity in human spermatogonial stem cells. For this purpose, testes were obtained from four brain-dead donors. After tissue enzymatic digestions, testicular cells were cultured for 3 weeks for spermatogonial stem cell (SSC) isolation and purification. K562 cell line was cultured to survey the effect of AST on cancer treatment. The cultured SSCs and K562 cell line were finally treated with AST (10μM), BU (0.1nM), and AST+BU. The expression of NRF-2, HO-1, SOD2, SOD3, TP53, and apoptotic genes, including CASP9, CASP3, BCL2, and BAX, were assayed using real-time PCR. Moreover, ROS level in different groups and malondialdehyde level and total antioxidant capacity in cell contraction of SSCs were measured using ELISA. Data showed that AST significantly upregulated the expression of NRF-2 gene (P<0.001) and protein (P<0.005) and also significantly decreased the production of BU-induced ROS (P<0.001). AST activated the NRF-2/HO-1 pathway that could remarkably restrain BU-induced apoptosis in SSCs. Interestingly, AST upregulated the expression level of apoptosis genes in the K562 cell line. The results of this study indicated that AST reduces the side effects of BU on SSCs without interference with its chemotherapy effect on cancerous cells through modulation of the NRF-2/HO-1 and mitochondria-mediated apoptosis pathways.
Collapse
|
53
|
Pyeon DB, Lee SE, Yoon JW, Park HJ, Park CO, Kim SH, Oh SH, Lee DG, Kim EY, Park SP. The antioxidant dieckol reduces damage of oxidative stress-exposed porcine oocytes and enhances subsequent parthenotes embryo development. Mol Reprod Dev 2021; 88:349-361. [PMID: 33843103 DOI: 10.1002/mrd.23466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/24/2020] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of the antioxidant dieckol, a component of Ecklonia cava, on maturation and developmental competence of porcine oocytes exposed to oxidative stress in vitro. Oocytes were matured in in vitro maturation (IVM) medium containing various concentrations of dieckol. The blastocyst formation rate was highest in the 0.5 μM dieckol-treated (0.5 DEK) group. The reactive oxygen species level was decreased, and the level of glutathione and expression of antioxidant genes (NFE2L, SOD1, and SOD2) at metaphase II were increased in the 0.5 DEK group. Abnormal spindle organization and chromosome misalignment were prevented in the 0.5 DEK group. Expression of maternal markers (CCNB1 and MOS) and activity of p44/42 mitogen-activated protein kinase were increased in the 0.5 DEK group. After parthenogenetic activation, the total number of cells per blastocyst was increased and the percentage of apoptotic cells was decreased in the 0.5 DEK group. Expression of development-related genes (CX45, CDX2, POU5F1, and NANOG), antiapoptotic genes (BCL2L1 and BIRC5), and a proapoptotic gene (CASP3) were altered in the 0.5 DEK group. These results indicate that the antioxidant dieckol improves IVM and subsequent development of porcine oocytes and can be used to improve the quality of oocytes under peroxidation experimental conditions.
Collapse
Affiliation(s)
- Da-Bin Pyeon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - So-Hee Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Seung-Hwan Oh
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Do-Geon Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
- Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
- Mirae Cell Bio, Seoul, Korea
| |
Collapse
|
54
|
Xie Y, Mai CT, Zheng DC, He YF, Feng SL, Li YZ, Liu CX, Zhou H, Liu L. Wutou decoction ameliorates experimental rheumatoid arthritis via regulating NF-kB and Nrf2: Integrating efficacy-oriented compatibility of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153522. [PMID: 33799223 DOI: 10.1016/j.phymed.2021.153522] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Thousands of years of clinical application of Wutou decoction (WTD) support its reliable efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying molecular mechanism remains unclear, and the synergistic involvement of assistant herbs in WTD in enhancing the sovereign herb in treating RA is unknown. PURPOSE This study aimed to investigate the efficacy-oriented compatibility of five herbs in WTD and the underlying mechanisms. METHODS The anti-arthritic effects of WTD and the compatibilities of the five herbs in WTD were studied in vivo with adjuvant-induced arthritis (AIA) rat model and in vitro with LPS-induced RAW264.7 macrophage. Network pharmacology analysis was conducted to identify the dominant pathways involved in the anti-arthritis mechanisms of WTD and how the five herbs work synergistically. The results were further verified by in vivo and in vitro experiments. RESULTS Our data revealed that the five herbs in WTD exert synergistic anti-arthritic effects on RA. Moreover, Radix Aconite (AC) is the principal anti-inflammatory component in WTD according to the extent of therapeutic effects exerted on the AIA rats. In vivo and in vitro experiments demonstrated that WTD inhibited NF-κB phosphorylation and simultaneously increased the expression of Nrf2, which were the major pathways identified by the network pharmacology analysis. The major assistant component, Herba Ephedrae (EP), evidently inhibited NF-κB mediated inflammatory response. The other assistant component, Radix Astragali (AS), considerably enhanced the expression of Nrf2 when used alone or in combination with AC. These combinations improved the anti-arthritis effects on the AIA rats better than that of AC alone. Nevertheless, WTD always achieved the best effects than any combinations both in vivo and in vitro. CONCLUSION The ministerial herbs EP and AS intensify the anti-arthritic effects of AC by regulating the NF-κB-mediated inflammatory pathway and the Nrf2-mediated anti-oxidation pathway which are the major pathways of WTD for alleviating the symptoms of RA.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR); Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR); Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Yu-Fei He
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Sen-Lin Feng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Ya-Zhou Li
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, China
| | - Chang-Xiao Liu
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR); Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR); Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macau (SAR).
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR); Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR); Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macau (SAR).
| |
Collapse
|
55
|
Fischer M, Chander P, Kang H, Mellios N, Weick JP. Transcriptomic changes due to early, chronic intermittent alcohol exposure during forebrain development implicate WNT signaling, cell-type specification, and cortical regionalization as primary determinants of fetal alcohol syndrome. Alcohol Clin Exp Res 2021; 45:979-995. [PMID: 33682149 PMCID: PMC8643076 DOI: 10.1111/acer.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico HSC, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Autophagy Inflammation and Metabolism (AIM) Center, University of New Mexico HSC, Albuquerque, NM, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, NM, USA.,New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM, USA
| |
Collapse
|
56
|
Tavassolifar MJ, Changaei M, Salehi Z, Ghasemi F, Javidan M, Nicknam MH, Pourmand MR. Redox imbalance in Crohn's disease patients is modulated by Azathioprine. Redox Rep 2021; 26:80-84. [PMID: 33882797 PMCID: PMC8079067 DOI: 10.1080/13510002.2021.1915665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Crohn's disease (CD) is a chronic inflammatory disease without a specific cause. Inflammation in these patients can disturb the oxidants/antioxidants balance and results in oxidative stress that plays a destructive role. This study aimed to evaluate the gene expression of sod1, sod2, cat, nrf2 and gp91phox in CD patients before and after Azathioprine (Aza) consumption. Method Peripheral bloodmononuclear cells (PBMCs) were separated from CD patients (n= 15, mean age = 33.6 ± 1.8) before and after treatment with Aza and healthy controls (n= 15, mean age = 31.5 ± 1.2). The expression levels of sod1, sod2, cat, nrf2 and gp91phox were measured in byusing real-time qRT-PCR technique. Result The expression levels of gp91phox (P-value < 0.001), cat (P-value < 0.05), sod1 (P-value < 0.001), nrf2 (P-value < 0.001) were significantly increased compared to control group. Following treatment with Aza, the decreased expression levels of gp91phox (P-value < 0.05), cat (P-value < 0.05), sod1(P-value < 0.001) and nrf2 (P-value < 0.001) were observed in CD patients. Conclusion Overall, our results showed that prescription of Azathioprine can lead to the altered expression of redox system-related genes in patients with CD.
Collapse
Affiliation(s)
| | - Mostafa Changaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moslem Javidan
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
57
|
Lapehn S, Piorczynski TB, Hansen JM, Harris C. Spatiotemporal evaluation of the mouse embryonic redox environment and histiotrophic nutrition following treatment with valproic acid and 1,2-dithiole-3-thione during early organogenesis. Reprod Toxicol 2021; 101:81-92. [PMID: 33713778 PMCID: PMC8110175 DOI: 10.1016/j.reprotox.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Redox regulation during metazoan development ensures that coordinated metabolic reprogramming and developmental signaling are orchestrated with high fidelity in the hypoxic embryonic environment. Valproic acid (VPA), an anti-seizure medication, is known to increase markers of oxidation and also increase the risk of neural tube defects (NTDs) when taken during pregnancy. It is unknown, however, whether oxidation plays a direct role in failed neural tube closure (NTC). Spatial and temporal fluctuations in total glutathione (GSH) and total cysteine (Cys) redox steady states were seen during a 24 h period of CD-1 mouse organogenesis in untreated conceptuses and following exposure to VPA and the Nrf2 antioxidant pathway inducer, 1,2-dithiole-3-thione (D3T). Glutathione, glutathione disulfide (GSSG), and Cys, cystine (CySS) concentrations, measured in conceptal tissues (embryo/visceral yolk sac) and fluids (yolk sac fluid/amniotic fluid) showed that VPA did not cause extensive and prolonged oxidation during the period of NTC, but instead produced transient periods of oxidation, as assessed by GSH:GSSG redox potentials, which revealed oxidation in all four conceptal compartments at 4, 10, and 14 h, corresponding to the period of heartbeat activation and NTC. Other changes were tissue and time specific. VPA treatment also reduced total FITC-Ab clearance from the medium over 3 h, indicating potential disruption of nutritive amino acid supply. Overall, these results indicated that VPA's ability to affect cellular redox status may be limited to tissue-specific windows of sensitivity during the period of NTC. The safety evaluation of drugs used during pregnancy should consider time and tissue specific redox factors.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
58
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
59
|
Almeida-Toledano L, Andreu-Fernández V, Aras-López R, García-Algar Ó, Martínez L, Gómez-Roig MD. Epigallocatechin Gallate Ameliorates the Effects of Prenatal Alcohol Exposure in a Fetal Alcohol Spectrum Disorder-Like Mouse Model. Int J Mol Sci 2021; 22:ijms22020715. [PMID: 33450816 PMCID: PMC7828292 DOI: 10.3390/ijms22020715] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Fetal alcohol spectrum disorder is the main preventable cause of intellectual disability in the Western world. Although binge drinking is the most studied prenatal alcohol exposure pattern, other types of exposure, such as the Mediterranean, are common in specific geographic areas. In this study, we analyze the effects of prenatal alcohol exposure in binge and Mediterranean human drinking patterns on placenta and brain development in C57BL/6J mice. We also assess the impact of prenatal treatment with the epigallocatechin-3-gallate antioxidant in both groups. Study experimental groups for Mediterranean or binge patterns: (1) control; (2) ethanol; (3) ethanol + epigallocatechin-3-gallate. Brain and placental tissue were collected on gestational Day 19. The molecular pathways studied were fetal and placental growth, placental angiogenesis (VEGF-A, PLGF, VEGF-R), oxidative stress (Nrf2), and neurodevelopmental processes including maturation (NeuN, DCX), differentiation (GFAP) and neural plasticity (BDNF). Prenatal alcohol exposure resulted in fetal growth restriction and produced imbalances of placental angiogenic factors. Moreover, prenatal alcohol exposure increased oxidative stress and caused significant alterations in neuronal maturation and astrocyte differentiation. Epigallocatechin-3-gallate therapy ameliorated fetal growth restriction, attenuated alcohol-induced changes in placental angiogenic factors, and partially rescued neuronal nuclear antigen (NeuN), (doublecortin) DCX, and (glial fibrillary acidic protein) GFAP levels. Any alcohol consumption (Mediterranean or binge) during pregnancy may generate a fetal alcohol spectrum disorder phenotype and the consequences may be partially attenuated by a prenatal treatment with epigallocatechin-3-gallate.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
| | - Óscar García-Algar
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| |
Collapse
|
60
|
Fathi R, Akbari A, Nasiri K, Chardahcherik M. Ginger ( Zingiber officinale roscoe) extract could upregulate the renal expression of NRF2 and TNFα and prevents ethanol-induced toxicity in rat kidney. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:134-145. [PMID: 33907672 PMCID: PMC8051320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Ginger has protective effects on the kidney, however the molecular mechanism of this effect has not yet been fully elucidated. Therefore, this work studied molecular mechanisms of ginger effects on ethanol-induced kidney injury. MATERIALS AND METHODS Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control, ginger (1 g/kg/day ginger extract by oral gavage), ethanol (4 g/kg/day ethanol by oral gavage) and ginger-ethanol group and treated daily for 28 days. Kidney function, expression of nuclear factor erythroid 2-related factor 2 (NRF2) and tumor necrosis factor (TNF)-α genes and oxidative stress parameters in kidney tissue, were evaluated. Total phenolic content (TPC) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of ginger extract were also evaluated. RESULTS Hydroethanolic extract of ginger showed a good level of DPPH scavenging activity and TPC. In the ethanol group, serum level of urea, creatinine and uric acid and the expression of NRF2 and TNF-α significantly increased compared to control group, while co-treatment with ginger in ginger+ethanol group significantly ameliorated them compared to the ethanol group. Ethanol exposure significantly reduced the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) compared to the control values ,while the level of malondialdehyde (MDA) significantly increased. Ginger significantly ameliorated the level of MDA and activity of SOD, GPx and CAT in the ginger-ethanol group compared to the ethanol group. CONCLUSION The results showed that ginger's protective effects against ethanol renotoxicity were mediated via enhancing the NRF2 and TNF-α expression.
Collapse
Affiliation(s)
- Rozita Fathi
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran,Athletic Performance and Health Research Center, University of Mazandaran, Babolsar, Iran
| | - Abolfazl Akbari
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran,Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran,Corresponding Author: Tel: +989187610484, Fax: +9871322866940,
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Marjan Chardahcherik
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
61
|
Byun HY, Jang GN, Lee J, Hong MH, Shin H, Shin H. Stem cell spheroid engineering with osteoinductive and ROS scavenging nanofibers for bone regeneration. Biofabrication 2020; 13. [PMID: 33348326 DOI: 10.1088/1758-5090/abd56c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023]
Abstract
Stem cell spheroids have been widely investigated to accelerate bone tissue regeneartion. However, the directed differentiation of stem cells into osteoblastic lineage and the prevention of cells from damage by reactive oxygen species (ROS) remain challenge. Here, we developed osteoinductive and ROS scavenging extracellular matrix (ECM)-mimicking synthetic fibers based on epigallocatechin gallate (EGCG) coating. They were then utilized to fabricate engineered spheroids with human adipose-derived stem cells (hADSCs) for bone tissue regeneation. The EGCG-mineral fibers (EMF) effectively conferred osteoinductive and ROS scavenging signals on the hADSCs within spheroids, demonstrating relative upregulation of antioxidant genes (SOD-1 (25.8±2.1) and GPX-1 (3.3±0.1) and greater level of expression of osteogenic markers, RUNX2 (5.8±0.1) and OPN (5.9±0.1), compared to hADSCs in the spheroids without EMF. The in vitro overexpression of osteogenic genes from hADSCs was achieved from absence of osteogenic supplenments. Furthermore, in vivo transplantation of hADSCs spheroids with the EMF significantly promoted calvarial bone regeneration (48.39±9.24%) compared to that from defect only (17.38±6.63%), suggesting that the stem cell spheroid biofabrication system with our novel mineralization method described here is a promising tool for bone tissue regeneration.
Collapse
Affiliation(s)
- Ha Yeon Byun
- Department of Bioengineering, Hanyang University, 206, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea, Seoul, 04763, Korea (the Republic of)
| | - Gyu Nam Jang
- Department of Bioengineering, Hanyang University, 206, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea, Seoul, 04763, Korea (the Republic of)
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 206, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea, Seoul, 04763, Korea (the Republic of)
| | - Min-Ho Hong
- Energy Science, Sungkyunkwan University - Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Gyeonggi-do, 16419, Korea (the Republic of)
| | - Hyunjung Shin
- Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, 16419, Korea (the Republic of)
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea (the Republic of)
| |
Collapse
|
62
|
Lee H, Lee S, Kim S, Lee J, Ha J, Choi Y, Oh H, Kim Y, Lee Y, Lim DS, Kim S, Han YS, Choi KH, Yoon Y. Asymptomatic Clostridium perfringens Inhabitation in Intestine Can Cause Inflammation, Apoptosis, and Disorders in Brain. Foodborne Pathog Dis 2020; 17:52-65. [PMID: 31928429 DOI: 10.1089/fpd.2019.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clostridium perfringens (CP) is a foodborne pathogen. The bacterium can also inhabit human gut without symptoms of foodborne illness. However, the clinical symptoms of long-term inhabitation have not been known yet. Therefore, the objective of this study was to elucidate the relationship between intestinal CP and other internal organs. Phosphate-buffered saline (PBS) and CP were orally injected into 5-week-old (YOUNG) and 12-month-old C57BL6/J (ADULT) mice. Gene expression levels related to inflammation (tumor necrosis factor-α [TNF-α], interleukin [IL]-1β, and IL-6) and oxidative stress (superoxide dismutase [SOD]1, SOD2, SOD3, glutathione reductase [GSR], glutathione peroxidase [GPx]3, and catalase [CAT]) responses were evaluated in the brain, small intestine, and liver. In addition, apoptosis-related (BCL2-associated X [BAX]1 and high-mobility group box-1 [HMGB1]) and brain disorder-related genes (CCAAT-enhancer-binding protein [C/EBP]-β, C/EBPδ, C/EBP homologous protein [CHOP], and amyloid precursor protein [APP]) as brain damage markers were examined. The protein expressions in the brain were also measured. Gene expression levels of inflammation and oxidative stress responses were higher (p < 0.05) in brains of CP-YOUNG and CP-ADULT mice, compared with PBS-YOUNG and PBS-ADULT, and the gene expression levels were higher (p < 0.05) in brains of CP-ADULT mice than CP-YOUNG mice. Apoptosis-related (BAX1 and HMGB1) and brain disorder-related genes (C/EBPβ, C/EBPδ, CHOP, and APP) were higher (p < 0.05) in brains of CP-challenged mice, compared with PBS-challenged mice. Even oxidative stress response (GPx and SOD2), cell damage-related (HMGB1), and β-amyloid proteins were higher (p < 0.05) in brains of CP- than in PBS-challenged mice. C/EBP protein was higher (p < 0.05) in CP-YOUNG, compared with PBS-YOUNG mice. However, these clinical symptoms were not observed in small intestine and liver. These results indicate that although asymptomatic intestinal CP do not cause foodborne illness, their inhabitation may cause brain inflammation, oxidative stress, apoptosis, and cell damage, which may induce disorders, especially for the aged group.
Collapse
Affiliation(s)
- Heeyoung Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Jeeyeon Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Yukyung Choi
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea.,Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea.,Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yujin Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea.,Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yewon Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea.,Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - Saehun Kim
- Department of Food Bioscience, Korea University, Seoul, Korea
| | - Young Sil Han
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea.,Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
63
|
Nardi M, Baldelli S, Ciriolo MR, Costanzo P, Procopio A, Colica C. Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H 2O 2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules 2020; 25:E5472. [PMID: 33238414 PMCID: PMC7700591 DOI: 10.3390/molecules25225472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Oleuropein, a glycosylated secoiridoid present in olive leaves, is known to be an important antioxidant phenolic compound. We studied the antioxidant effect of low doses of oleuropein aglycone (3,4-DHPEA-EA) and oleuropein aglycone peracetylated (3,4-DHPEA-EA(P)) in murine C2C12 myocytes treated with hydrogen peroxide (H2O2). Both compounds were used at a concentration of 10 μM and were able to inhibit cell death induced by the H2O2 treatment, with 3,4-DHPEA-EA(P) being more. Under our experimental conditions, H2O2 efficiently induced the phosphorylated-active form of JNK and of its downstream target c-Jun. We demonstrated, by Western blot analysis, that 3,4-DHPEA-EA(P) was efficient in inhibiting the phospho-active form of JNK. This data suggests that the growth arrest and cell death of C2C12 proceeds via the JNK/c-Jun pathway. Moreover, we demonstrated that 3,4-DHPEA-EA(P) affects the myogenesis of C2C12 cells; because MyoD mRNA levels and the differentiation process are restored with 3,4-DHPEA-EA(P) after treatment. Overall, the results indicate that 3,4-DHPEA-EA(P) prevents ROS-mediated degenerative process by functioning as an efficient antioxidant.
Collapse
Affiliation(s)
- Monica Nardi
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Paola Costanzo
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Antonio Procopio
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy;
| |
Collapse
|
64
|
Lee WP, Li ML, Liu YT, Lee CM, Yao HT. Qing-Yu-Mu, an Herbal Formula, Reduces Hepatic Oxidative Stress in Rats Fed a High-Frying Oil Diet and Ameliorates Carbon Tetrachloride-Induced Liver Injury. J Med Food 2020; 24:77-88. [PMID: 33185481 DOI: 10.1089/jmf.2020.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Qing-Yu-Mu (QYM) is an herbal formula used to prevent and treat liver disease in Taiwan. In this study, the hepatoprotective effects of QYM were evaluated in two experimental models. First, rats were fed a high-frying oil (FO) diet containing 1.25% QYM for 5 weeks to investigate effects of QYM on hepatic oxidative stress and antioxidant enzyme activities. Then, protective effects of QYM on carbon tetrachloride (CCl4)-induced chronic liver injury were evaluated. Results show that QYM treatment reduced FO diet-induced hepatic lipid peroxidation and reactive oxygen species levels and increased glutathione (GSH) S-transferase activity. A higher reduced GSH/oxidized GSH (GSSG) ratio was observed after QYM treatment. Furthermore, QYM ameliorated CCl4-induced liver injury by reducing the activity of plasma alanine aminotransferase and histological lesions in the liver. QYM also increased the level of hepatic GSH and activities of GSH peroxidase and superoxide dismutase. Finally, chlorogenic acid, chrysophanol, and apigenin were found to be present in relative abundance in QYM. Results show that QYM may exhibit a hepatoprotective effect by reducing oxidative stress and increasing antioxidant activity in the liver.
Collapse
Affiliation(s)
- Wen-Pin Lee
- Japin Biotechnology Company, Taichung, Taiwan
| | - Mei-Ling Li
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yun-Ta Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
65
|
Sohel MMH, Salman MA, Ayvaz A. Cellular and Transcriptional Adaptation of Bovine Granulosa Cells Under Ethanol-Induced Stress In Vitro. Alcohol Alcohol 2020; 56:383-392. [PMID: 33150387 DOI: 10.1093/alcalc/agaa110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/16/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Granulosa cells (GCs) are the major cellular component in a follicular microenvironment and play an indispensable role in ovarian function. This study was conducted to investigate the effects of ethanol exposure on the cellular and transcriptional changes of ovarian GCs. METHODS For this purpose, bovine GCs were exposed to different concentrations of ethanol (0, 50, 100, 200, 500 and 1000) to mimic the effects of alcohol in in vitro. Subsequently, 100 and 1000 mM concentrations were discarded from further experiments, as 100 mM was not different from 50 mM, and 1000 mM was supertoxic to the cells. RESULTS The results showed that there was a gradual loss of cell viability with the increase of the ethanol concentration, i.e. lowest viability was observed at the highest concentration (1000 mM), which is further supported by cell proliferation assay. Mitochondrial activity decreased significantly at higher concentrations. The expression of NRF2 decreased significantly (P < 0.05) in ethanol-exposed cells compared with the cells in the control group at the 6-h time point, whereas the expression was increased in 500 mM concentration at the 24-h time point. The expression of antioxidant genes, downstream to Nrf2-pathway activation, showed that overall expression pattern similar to NRF2. CONCLUSION The result of this study prompted us to postulate that ethanol exposure decreases the ability of GCs to handle stress by downregulating the expression of genes involved in Nrf2-pathway.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey.,Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Turkey
| | | | - Abdurrahman Ayvaz
- Department of Biology, Faculty of Science, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
66
|
Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020; 12:cancers12102932. [PMID: 33053665 PMCID: PMC7599585 DOI: 10.3390/cancers12102932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the Keap1-Nrf2 pathway represents a powerful cell defense mechanism against a variety of toxic insults, its role in acute or chronic liver damage and tumor development is not completely understood. This review addresses how Nrf2 is involved in liver pathophysiology and critically discusses the contrasting results emerging from the literature. The aim of the present report is to stimulate further investigation on the role of Nrf2 that could lead to define the best strategies to therapeutically target this pathway. Abstract Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate. Another topic of uncertainty concerns the nature of the mechanisms of Nrf2 activation in hepatocarcinogenesis. Indeed, it remains unclear what is the main mechanism behind the sustained activation of the Keap1/Nrf2 pathway in hepatocarcinogenesis. This raises doubts about the best strategies to therapeutically target this pathway. In this review, we will analyze and discuss our present knowledge concerning the role of Nrf2 in hepatic physiology and pathology, including hepatocellular carcinoma. In particular, we will critically examine and discuss some findings originating from animal models that raise questions that still need to be adequately answered.
Collapse
|
67
|
Yuan F, Yun Y, Fan H, Li Y, Lu L, Liu J, Feng W, Chen SY. MicroRNA-135a Protects Against Ethanol-Induced Apoptosis in Neural Crest Cells and Craniofacial Defects in Zebrafish by Modulating the Siah1/p38/p53 Pathway. Front Cell Dev Biol 2020; 8:583959. [PMID: 33134300 PMCID: PMC7561719 DOI: 10.3389/fcell.2020.583959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in various biological processes, including apoptosis, by regulating gene expression. This study was designed to test the hypothesis that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in neural crest cells (NCCs) by upregulating Siah1 and activating the p38 mitogen-activated protein kinase (MAPK)/p53 pathway. We found that treatment with ethanol resulted in a significant decrease in miR-135a expression in both NCCs and zebrafish embryos. Ethanol-induced downregulation of miR-135a resulted in the upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and increased apoptosis in NCCs and zebrafish embryos. Ethanol exposure also resulted in growth retardation and developmental defects that are characteristic of fetal alcohol spectrum disorders (FASD) in zebrafish. Overexpression of miRNA-135a significantly reduced ethanol-induced upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and decreased ethanol-induced apoptosis in NCCs and zebrafish embryos. In addition, ethanol-induced growth retardation and craniofacial defects in zebrafish larvae were dramatically diminished by the microinjection of miRNA-135a mimics. These results demonstrated that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in NCCs by upregulating Siah1 and activating the p38 MAPK/p53 pathway and that the overexpression of miRNA-135a can protect against ethanol-induced apoptosis in NCCs and craniofacial defects in a zebrafish model of FASD.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yang Yun
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, China
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| |
Collapse
|
68
|
Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain. Brain Res 2020; 1748:147116. [PMID: 32919985 DOI: 10.1016/j.brainres.2020.147116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a medical condition that arises because of poor blood supply to the brain. Reperfusion being salvage to the brain further causes, exacerbation of tissue injury, known as reperfusion injury. Ischemic preconditioning (IPC) has been known to provide benefits against ischemia reperfusion (I/R) injury. Dopamine D2/D3 receptor mediated several pathways are also reported as mediators in the IPC mediated neuroprotection. This study investigates the possible involvement of D2/D3 receptor activation in IPC mediated neuroprotection in the I/R brain. Global cerebral ischemia/reperfusion (GCI/R) injury in swiss albino mice was induced by occluding the common carotid arteries for 17 min, followed by 24 h reperfusion. IPC was provided by giving 3 episodes of I/R prior to Ischemia (17 min). Morris water maze (MWM) was used to assess the spatial learning, memory and Rota rod, lateral push test as well as inclined beam test were conducted to assess the motor functions in animals. Cerebral oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, infarct size (% weight and % volume), and histopathological changes were also assessed. Haloperidol (0.05 mg/kg, i.p) was used to antagonize the effects of D2/D3 receptor activation. I/R animals showed reduction in memory, motor function, increase in cerebral oxidative stress, inflammation, AChE activity, infarct size and histopathological changes. Episodes of IPC prior to ischemia, attenuated the deleterious effects of I/R injury. Administration of haloperidol abolished the protective effects of IPC. Hence, it may be concluded that IPC mediated neuroprotection may involves dopamine D2/D3 receptor activation in mice.
Collapse
|
69
|
Hong M, Christ A, Christa A, Willnow TE, Krauss RS. Cdon mutation and fetal alcohol converge on Nodal signaling in a mouse model of holoprosencephaly. eLife 2020; 9:60351. [PMID: 32876567 PMCID: PMC7467722 DOI: 10.7554/elife.60351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Holoprosencephaly (HPE), a defect in midline patterning of the forebrain and midface, arises ~1 in 250 conceptions. It is associated with predisposing mutations in the Nodal and Hedgehog (HH) pathways, with penetrance and expressivity graded by genetic and environmental modifiers, via poorly understood mechanisms. CDON is a multifunctional co-receptor, including for the HH pathway. In mice, Cdon mutation synergizes with fetal alcohol exposure, producing HPE phenotypes closely resembling those seen in humans. We report here that, unexpectedly, Nodal signaling is a major point of synergistic interaction between Cdon mutation and fetal alcohol. Window-of-sensitivity, genetic, and in vitro findings are consistent with a model whereby brief exposure of Cdon mutant embryos to ethanol during gastrulation transiently and partially inhibits Nodal pathway activity, with consequent effects on midline patterning. These results illuminate mechanisms of gene-environment interaction in a multifactorial model of a common birth defect.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Annabel Christ
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany
| | - Anna Christa
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany
| | | | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
70
|
Caballero EP, Mariz-Ponte N, Rigazio CS, Santamaría MH, Corral RS. Honokiol attenuates oxidative stress-dependent heart dysfunction in chronic Chagas disease by targeting AMPK / NFE2L2 / SIRT3 signaling pathway. Free Radic Biol Med 2020; 156:113-124. [PMID: 32540353 DOI: 10.1016/j.freeradbiomed.2020.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenia Pérez Caballero
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, Santander, 39005, Spain
| | - Nilo Mariz-Ponte
- Instituto de Investigação Biomédica, Universidade de Coimbra, Coimbra, 3004517, Portugal
| | - Cristina S Rigazio
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP, CONICET-GCBA), Servicio de Parasitología-Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, 1425, Argentina
| | - Miguel H Santamaría
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, Santander, 39005, Spain
| | - Ricardo S Corral
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP, CONICET-GCBA), Servicio de Parasitología-Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, 1425, Argentina.
| |
Collapse
|
71
|
Bilge SS, Günaydin C, Önger ME, Bozkurt A, Avci B. Neuroprotective action of agmatine in rotenone-induced model of Parkinson's disease: Role of BDNF/cREB and ERK pathway. Behav Brain Res 2020; 392:112692. [PMID: 32479847 DOI: 10.1016/j.bbr.2020.112692] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
Abstract
Numerous studies have investigated the role of agmatine in the central nervous system and indicated neuroprotective properties. In addition to its potent antioxidant effects, agmatine is an endogenous neuromodulator and has wide spectrum molecular actions on different receptor subtypes (NMDA, Imidazoline 1-2, alpha-2 adrenoreceptor, 5-HT2a, 5-HT3) and cellular signaling pathways (MAPK, PKA, NO, BDNF). Although the neuroprotective effects of agmatine demonstrated in experimental Parkinson's disease model, the effects of agmatine with the aspect of neuroplasticity and possible signaling mechanisms behind agmatine actions have not been investigated. Herein, in this study, we investigated the role of the of agmatine on rotenone-induced Parkinson's disease model. Agmatine at the dose of 100 mg/kg i.p., was mitigated oxidative damage and alleviated motor impairments which were the results of the rotenone insult. Additionally, agmatine decreased neuronal loss, tyrosine hydroxylase immunoreactivity and increased cREB, BDNF and ERK1/2 expression in the striatum, which are crucial neuroplasticity elements of striatal integrity. Taken together, the present study expands the knowledge of molecular mechanisms behind neuroprotective actions of agmatine in Parkinson's disease, and as far as we have known, this is the first study to delineate agmatine treated activation of cellular pathways which are important elements in neuronal cell survival.
Collapse
Affiliation(s)
- S Sırrı Bilge
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey.
| | - Caner Günaydin
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey.
| | - M Emin Önger
- Ondokuz Mayıs University, School of Medicine, Department of Histology and Embryology, Samsun, Turkey.
| | - Ayhan Bozkurt
- Ondokuz Mayıs University, School of Medicine, Department of Physiology, Samsun, Turkey.
| | - Bahattin Avci
- Ondokuz Mayıs University, School of Medicine, Department of Biochemistry, Samsun, Turkey.
| |
Collapse
|
72
|
Wang F, Huang S, Xia H, Yao S. Specialized pro-resolving mediators: It's anti-oxidant stress role in multiple disease models. Mol Immunol 2020; 126:40-45. [PMID: 32750537 DOI: 10.1016/j.molimm.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress-related injury is a negative state caused by the imbalance between oxidation and antioxidant effects in the internal environment of the body. Oxidative stress has been confirmed to be an important factor in aging and a variety of diseases and the inhibition of inappropriate oxidative stress responses are important for maintaining normal physiological functions. Recently, considerable attention has been focused on specialized pro-resolving mediators(SPMs). SPMs are endogenous mediators derived from polyunsaturated fatty acids, which have multiple protective effects such as anti-inflammation, pro-resolution, and promoting tissue damage repair, etc. Moreover, the role of SPMs on oxidative stress has been extensively researched and provides a possible treatment method. In the current study, we review the positive role of SPMs in oxidative stress-related disease and outline the possible involved mechanism, thus providing the theoretical support for a better understanding of the roles of SPMs in oxidative stress and the theoretical basis for finding targets for the oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
73
|
Dabo AJ, Ezegbunam W, Wyman AE, Moon J, Railwah C, Lora A, Majka SM, Geraghty P, Foronjy RF. Targeting c-Src Reverses Accelerated GPX-1 mRNA Decay in Chronic Obstructive Pulmonary Disease Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 62:598-607. [PMID: 31801023 DOI: 10.1165/rcmb.2019-0177oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhanced expression of the cellular antioxidant glutathione peroxidase (GPX)-1 prevents cigarette smoke-induced lung inflammation and tissue destruction. Subjects with chronic obstructive pulmonary disease (COPD), however, have decreased airway GPX-1 levels, rendering them more susceptible to disease onset and progression. The mechanisms that downregulate GPX-1 in the airway epithelium in COPD remain unknown. To ascertain these factors, analyses were conducted using human airway epithelial cells isolated from healthy subjects and human subjects with COPD and lung tissue from control and cigarette smoke-exposed A/J mice. Tyrosine phosphorylation modifies GPX-1 expression and cigarette smoke activates the tyrosine kinase c-Src. Therefore, studies were conducted to evaluate the role of c-Src on GPX-1 levels in COPD. These studies identified accelerated GPX-1 mRNA decay in COPD airway epithelial cells. Targeting the tyrosine kinase c-Src with siRNA inhibited GPX-1 mRNA degradation and restored GPX-1 protein levels in human airway epithelial cells. In contrast, silencing the tyrosine kinase c-Abl, or the transcriptional activator Nrf2, had no effect on GPX-1 mRNA stability. The chemical inhibitors for c-Src (saracatinib and dasanitib) restored GPX-1 mRNA levels and GPX-1 activity in COPD airway cells in vitro. Similarly, saracatinib prevented the loss of lung Gpx-1 expression in response to chronic smoke exposure in vivo. Thus, this study establishes that the decreased GPX-1 expression that occurs in COPD lungs is at least partially due to accelerated mRNA decay. Furthermore, these findings show that targeting c-Src represents a potential therapeutic approach to augment GPX-1 responses and counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Anne E Wyman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jane Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Christopher Railwah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Alnardo Lora
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Susan M Majka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Robert F Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| |
Collapse
|
74
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
75
|
The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127:110234. [PMID: 32559855 DOI: 10.1016/j.biopha.2020.110234] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol derived from grapes, berries, red wine, peanuts amongst other fruits and nuts. Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer of resveratrol have been demonstrated by preclinical and clinical research. A possibility is that these therapeutical effects are associated with modulation of the Nrf2 signaling pathway in the following way: resveratrol may potentiate Nrf2 signaling through blockage of Keap1, by means of changing the Nrf2 mediators, its expression and its nuclear translocation. This article reviews the evidence of the Nrf2 modulating hypothesis as a possible molecular mechanism underlying the medicinal properties of resveratrol.
Collapse
|
76
|
Panieri E, Telkoparan-Akillilar P, Suzen S, Saso L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules 2020; 10:biom10050791. [PMID: 32443774 PMCID: PMC7277620 DOI: 10.3390/biom10050791] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic reprogramming is closely interrelated with the regulation of redox homeostasis, suggesting that the disruption of NRF2 signaling might represent a valid therapeutic strategy against a variety of solid and hematologic cancers. These aspects will be the focus of the present review.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.P.); (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
| | - Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Balgat, Ankara, Turkey;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.P.); (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
| |
Collapse
|
77
|
Chen YT, Ou Yang WT, Juang HH, Chen CL, Chen HW, Tsui KH, Chang YH, Tsai CH, Hsueh C, Liao WC. Proteomic characterization of arsenic and cadmium exposure in bladder cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8578. [PMID: 31499585 DOI: 10.1002/rcm.8578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/22/2023]
Abstract
RATIONALE Accumulating evidence has linked prolonged exposure to heavy metals to cancer occurrence in the urinary system. However, the specific biological mechanisms responsible for the association of heavy metals with the unusually high incidence of upper tract urothelial carcinoma in Taiwan are complex and incompletely understood. METHODS To elucidate the specific biological mechanism and identify molecular indicators of the unusually high association of upper tract urothelial carcinoma with heavy metal exposure, protein expression following the treatment of T24 human bladder carcinoma and RT4 human bladder papilloma cell line models with arsenic (As) and cadmium (Cd) was studied. Proteomic changes in these cell models were integrated with data from a human bladder cancer (BLCA) tissue proteome to identify possible protein indicators of heavy metal exposure. RESULTS After mass spectrometry based proteomic analysis and verification by Western blotting procedures, we identified 66 proteins that were up-regulated and 92 proteins that were down-regulated in RT4 cell extracts after treatment with As or Cd. Some 52 proteins were up-regulated and 136 proteins were down-regulated in T24 cell extracts after treatment with Cd. We further confirmed that down-expression of the PML (promyelocytic leukemia) protein was sustained for at least 75 days after exposure of bladder cells to As. Dysregulation of these cellular proteins by As was associated with three biological pathways. Immunohistochemical analyses of paraffin-embedded BLCA tissue slides confirmed that PML protein expression was decreased in BLCA tumor cells compared with adjacent noncancerous epithelial cells. CONCLUSIONS These data suggest that PML may play an important role in the pathogenesis of BLCA and may be an indicator of heavy metal exposure in bladder cells.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wei-Ting Ou Yang
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Wei Chen
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Han Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen Hsueh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
78
|
Hansen JM, Jones DP, Harris C. The Redox Theory of Development. Antioxid Redox Signal 2020; 32:715-740. [PMID: 31891515 PMCID: PMC7047088 DOI: 10.1089/ars.2019.7976] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: The geological record shows that as atmospheric O2 levels increased, it concomitantly coincided with the evolution of metazoans. More complex, higher organisms contain a more cysteine-rich proteome, potentially as a means to regulate homeostatic responses in a more O2-rich environment. Regulation of redox-sensitive processes to control development is likely to be evolutionarily conserved. Recent Advances: During early embryonic development, the conceptus is exposed to varying levels of O2. Oxygen and redox-sensitive elements can be regulated to promote normal development, defined as changes to cellular mass, morphology, biochemistry, and function, suggesting that O2 is a developmental morphogen. During periods of O2 fluctuation, embryos are "reprogrammed," on the genomic and metabolic levels. Reprogramming imparts changes to particular redox couples (nodes) that would support specific post-translational modifications (PTMs), targeting the cysteine proteome to regulate protein function and development. Critical Issues: Major developmental events such as stem cell expansion, proliferation, differentiation, migration, and cell fate decisions are controlled through oxidative PTMs of cysteine-based redox nodes. As such, timely coordinated redox regulation of these events yields normal developmental outcomes and viable species reproduction. Disruption of normal redox signaling can produce adverse developmental outcomes. Future Directions: Furthering our understanding of the redox-sensitive processes/pathways, the nature of the regulatory PTMs involved in development and periods of activation/sensitivity to specific developmental pathways would greatly support the theory of redox regulation of development, and would also provide rationale and direction to more fully comprehend poor developmental outcomes, such as dysmorphogenesis, functional deficits, and preterm embryonic death.
Collapse
Affiliation(s)
- Jason M. Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Craig Harris
- Toxicology Program, Department of Environmental Sciences, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
79
|
Matsumaru D, Motohashi H. From germ cells to neonates: the beginning of life and the KEAP1-NRF2 system. J Biochem 2020; 167:133-138. [PMID: 31518425 DOI: 10.1093/jb/mvz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
The Kelch-like ECH-associated protein 1(KEAP1)-NF-E2-related factor 2 (NRF2) system is one of the most studied environmental stress response systems. In the presence of oxidative and electrophilic insults, the thiols of cysteine residues in KEAP1 are modified, and subsequently stabilized NRF2 activates its target genes that are involved in detoxification and cytoprotection. A myriad of recent studies has revealed the broad range of contributions of the KEAP1-NRF2 system to physiological and pathological processes. However, its functions during gametic and embryonic development are still open for investigation. Although oxidative stress is harmful for embryos, Nrf2-/- mice do not show any apparent morphological abnormalities during development, probably because of the compensatory antioxidant functions of NF-E2-related factor 1 (NRF1). It can also be considered that the antioxidant system is essential for protecting germ cells during reproduction. The maturation processes of germ cells in both sexes are affected by Nrf2 mutation. Hence, in this review, we focus on the stress response system related to reproduction and embryonic development through the functions of the KEAP1-NRF2 system.
Collapse
Affiliation(s)
- Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
80
|
Fresta CG, Fidilio A, Lazzarino G, Musso N, Grasso M, Merlo S, Amorini AM, Bucolo C, Tavazzi B, Lazzarino G, Lunte SM, Caraci F, Caruso G. Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine. Int J Mol Sci 2020; 21:ijms21030776. [PMID: 31991717 PMCID: PMC7038063 DOI: 10.3390/ijms21030776] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).
Collapse
Affiliation(s)
- Claudia G. Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
| | - Giacomo Lazzarino
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy;
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
- Correspondence: (G.L.); (G.C.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
- Correspondence: (G.L.); (G.C.)
| |
Collapse
|
81
|
The anti-carcinogenesis properties of erianin in the modulation of oxidative stress-mediated apoptosis and immune response in liver cancer. Aging (Albany NY) 2019; 11:10284-10300. [PMID: 31754081 PMCID: PMC6914393 DOI: 10.18632/aging.102456] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
In this study, erianin was found to reduce the viability of cancer cells, inhibit their proliferation and migration, induce G2/M phase arrest, enhance cancer cell apoptosis, promote an increase in levels of intracellular reactive oxygen species and a decrease in mitochondrial membrane potential, and regulate the expression levels of anti- and pro-apoptosis-related proteins in HepG2 and SMMC-7721 cells. Erianin inhibited tumor growth in HepG2- and SMMC-7721-xenograft tumor nude mouse models, reduced the expression levels of anti-apoptosis proteins and enhanced the expression levels of pro-apoptosis proteins in tumor tissues. Erianin inhibited tumor growth in immunosuppressed BALB/c mice bearing heterotopic tumors. Among 111 types of cytokines detected in proteome profiling of tumor tissues, erianin substantially influenced levels of 38 types of cytokines in HepG2-xenografted tumors and of 15 types of cytokines in SMMC-7721-xenografted tumors, most of which are related to immune functions. Erianin strongly affected the serum levels of cytokines, and regulated the activation of nuclear factor-kappa B (NF-κB), and the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in spleen. The anti-liver cancer properties of erianin were found to be related mostly to its modulation of oxidative stress-mediated mitochondrial apoptosis and immune response.
Collapse
|
82
|
Shanmugam S, Patel D, Wolpert JM, Keshvani C, Liu X, Bergeson SE, Kidambi S, Mahimainathan L, Henderson GI, Narasimhan M. Ethanol Impairs NRF2/Antioxidant and Growth Signaling in the Intact Placenta In Vivo and in Human Trophoblasts. Biomolecules 2019; 9:E669. [PMID: 31671572 PMCID: PMC6921053 DOI: 10.3390/biom9110669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
NRF2 is a redox-sensitive transcription factor that depending on the duration or magnitude of the stress, either translocates to the nucleus (beneficial) or is degraded in the cytosol (harmful). However, the role of NRF2-based mechanism(s) under ethanol (E)-induced developmental toxicity in the placental context remains unknown. Here, we used a rat prenatal model of maternal alcohol stress consisting of intermittent ethanol vapor (IEV) daily from GD11 to GD20 with a 6 h ON/18 h OFF in a vapor chamber and in vitro placental model consisting of HTR-8 trophoblasts exposed to 86 mM of E for either 24 h or 48 h. The role of NRF2 was evaluated through the NRF2-transactivation reporter assay, qRT-PCR, and Western blotting for NRF2 and cell growth-promoting protein, and cell proliferation assay. In utero and in vitro E decreased the nuclear NRF2 content and diminished its transactivation ability along with dysregulation of the proliferation indices, PCNA, CYCLIN-D1, and p21. This was associated with a ~50% reduction in cell proliferation in vitro in trophoblasts. Interestingly, this was found to be partially rescued by ectopic Nrf2 overexpression. These results indicate that ethanol-induced dysregulation of NRF2 coordinately regulates PCNA/CYCLIN-D1/p21 involving growth network, at least partially to set a stage for placental perturbations.
Collapse
Affiliation(s)
- Sambantham Shanmugam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - John M Wolpert
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Caezaan Keshvani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Xiaobo Liu
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Srivatsan Kidambi
- Department of Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA.
| | - Lenin Mahimainathan
- Department Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - George I Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| |
Collapse
|
83
|
Park S, Shin MG, Kim JR, Park SY. Beta-lapachone attenuates immobilization-induced skeletal muscle atrophy in mice. Exp Gerontol 2019; 126:110711. [PMID: 31454520 DOI: 10.1016/j.exger.2019.110711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle atrophy reduces quality of life and increases morbidity and mortality in patients with chronic conditions. Oxidative stress is a key factor contributing to skeletal muscle atrophy by altering both protein synthesis and protein degradation pathways. Beta-lapachone (Beta-L) is known to act as a pro-oxidant in cancer cells but suppresses oxidative stress in normal cells and tissues. In the present study, we examined whether Beta-L (100 mg/kg body weight) prevents immobilization-induced skeletal muscle atrophy in male C57BL/6N mice. Skeletal muscle atrophy was induced by immobilization of left hindlimbs for two weeks, and right hindlimbs were used as controls. The muscle weights of gastrocnemius (0.132 ± 0.003 g vs. 0.115 ± 0.003 g in Beta-L and SLS, respectively, p < 0.01) and tibialis anterior (0.043 ± 0.001 vs. 0.027 ± 0.002 in Beta-L and SLS, respectively, p < 0.001) were significantly heavier in Beta-L-treated mice than that in SLS-treated mice in immobilization group, which was accompanied by improved skeletal muscle function as tested by treadmill exhaustion and grip strength test. Immobilization increased H2O2 levels, while Beta-L treatment normalized such levels (1.6 ± 0.16 μM vs. 2.7 ± 0.44 μM in Beta-L and vehicle, respectively, p < 0.05). Oxidative stress makers were also normalized by Beta-L treatment. Protein synthesis signaling pathways were unaltered in the case of both immobilization and Beta-L treatment. However, protein catabolic, ubiquitin-proteasomal, and autophagy-lysosomal pathways were stimulated by immobilization and were normalized by Beta-L treatment. Upregulation of transforming growth factor β and Smad 2/3 after immobilization was significantly diminished by Beta-L treatment. These results suggest that Beta-L attenuates the loss of muscle weight and function induced by immobilization through suppression of oxidative stress.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
84
|
Jia Z, Wang H, Feng Z, Zhang S, Wang L, Zhang J, Liu Q, Zhao X, Feng D, Feng X. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:168-178. [PMID: 31082581 DOI: 10.1016/j.ecoenv.2019.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute for bisphenol A, is a chemical component of plastics for industrial production. There is evidence that BHPF exerts an antioestrogenic effect on mice, induces endometrial atrophy and leads to adverse pregnancy outcomes. However, the effects of BHPF on oocyte maturation and ovary development as well as its possible mechanisms remain unclear. The objective of this study was to investigate the toxicity and mechanism of BHPF exposure in mouse oocytes in vitro and in vivo. Our results showed that BHPF could inhibit the maturation of oocytes in vitro by reducing the protein level of p-MAPK and destroying the meiotic spindle. We found that in vitro, BHPF-treated oocytes showed increased ROS levels, DNA damage, mitochondrial dysfunction, and expression of apoptosis- and autophagy-related genes, such as Bax, cleaved-caspase 3, LC 3 and Atg 12. In addition, in vivo experiments showed that BHPF exposure could induce the expression of oxidative stress genes (Cat, Gpx 3 and Sod 2) and apoptosis genes (Bax, Bcl-2 and Cleaved-caspase 3) and increase the number of atresia follicles in the ovaries. Our data showed that BHPF exposure affected the first polar body extrusion of oocytes, increased oxidative stress, destroyed spindle assembly, caused DNA damage, altered mitochondrial membrane potentials, induced apoptosis and autophagy, and affected ovarian development.
Collapse
Affiliation(s)
- Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China; College of Life Science, Shandong Normal University, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, Jinan, 250014, China
| | - Hongyu Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Zeyang Feng
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300 071, China
| | - Shaozhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Lining Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Jingwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Qianqian Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300 071, China.
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China.
| |
Collapse
|
85
|
N-Acetylcysteine prevents the decreases in cardiac collagen I/III ratio and systolic function in neonatal mice with prenatal alcohol exposure. Toxicol Lett 2019; 315:87-95. [PMID: 31425726 DOI: 10.1016/j.toxlet.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022]
Abstract
Prenatal alcohol exposure (PAE) is often associated with congenital heart defects, most commonly septal, valvular, and great vessel defects. However, there have been no known studies on whether PAE affects the resulting fibroblast population after development, and whether this has any consequences in the postnatal period. Our previous study focused on the effects of PAE on the postnatal fibroblast population, which translated into changes in cardiac extracellular matrix (ECM) composition and cardiac function in the neonatal heart. Moreover, our lab has previously demonstrated that alcohol-induced fibrosis is mediated by oxidative stress mechanisms in adult rat hearts following chronic alcohol exposure. Thus, we hypothesize that PAE alters cardiac ECM composition that persists into the postnatal period, leading to cardiac dysfunction, and these effects are prevented by antioxidant treatment. To investigate these effects, pregnant mice were intraperitoneally injected with 2.9 g EtOH/kg body weight on gestation days 6.75 and 7.25. Controls were injected with vehicle saline. Randomly selected dams in both groups were then treated with 100 mg/kg body weight of the antioxidant N-acetylcysteine (NAC) immediately after EtOH or vehicle administration. Left ventricular (LV) chamber dimension and function were assessed in sedated animals on neonatal day 5 using echocardiography. Ejection fraction decreased in the PAE group. NAC treatment prevented this depression of systolic function in PAE neonates. Hearts were analyzed for expression of fibroblast activation markers. Alpha smooth muscle actin (α-SMA) increased in PAE neonatal hearts, and this increase was prevented by NAC treatment. In PAE pups, collagen I decreased, but collagen III expression increased compared to saline animals; the overall collagen I/III ratio significantly decreased. When PAE mice were treated with NAC, collagen I/III ratio did not change. Overall, our data demonstrate that prenatal alcohol exposure produces changes in collagen subtype in neonatal cardiac ECM and a decline in systolic function, and these adverse effects were prevented by NAC treatment.
Collapse
|
86
|
Effect of oophorosalpingo-hysterectomy on serum antioxidant enzymes in female dogs. Sci Rep 2019; 9:9674. [PMID: 31273281 PMCID: PMC6609779 DOI: 10.1038/s41598-019-46204-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
There are few studies evaluating the oxidant-antioxidant status after oophorosalpingohysterectomy (OSH) in female dogs. Here we determined the effect of OSH on antioxidant enzymes in serum, and quantified morphological changes in subcutaneous adipocytes. Lateral OSH was performed in 12 female dogs. The concentration of 17β-estradiol (17β-E2), the activities of extracellular superoxide dismutase (SOD-ec), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) were determined. Glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (LPO), total antioxidant capacity (TAC), carbonylation and vitamin C were measured in serum. Subcutaneous adipose tissue was obtained to determine morphological changes and cell number, under basal conditions and six months after OSH. The SOD-ec, GPx and GST activities increased significantly (p ≤ 0.05), LPO, carbonylation and GSSG also increased. GSH and vitamin C decreased (p = 0.03). 17β-E2 tended to decrease six months after OSH. Hypertrophy of subcutaneous adipocytes was observed after OSH from the first month and was accentuated after six months (p = 0.001). The results suggest that 17β-E2 decreases after OSH and alters the antioxidant enzyme activities in serum thus, redox balance is altered. These changes are associated with an increase in body weight and hypertrophy of subcutaneous adipose tissue.
Collapse
|
87
|
Sakul A, Ozansoy M, Elibol B, Ayla Ş, Günal MY, Yozgat Y, Başağa H, Şahin K, Kazancioğlu R, Kiliç Ü. Squalene attenuates the oxidative stress and activates AKT/mTOR pathway against cisplatin-induced kidney damage in mice. Turk J Biol 2019; 43:179-188. [PMID: 31320816 PMCID: PMC6620038 DOI: 10.3906/biy-1902-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The clinical use of cisplatin, which is a first-line anticancer agent, is highly restricted due to its adverse effects on kidneys that lead to nephrotoxicity. Therefore, some potential reno-protective substances have been used in combination with cisplatin to cope with nephrotoxicity. Due to its high antitumor activity and oxygen-carrying capacity, we investigated the molecular effects of squalene against cisplatin-induced oxidative stress and kidney damage in mice. Single dose of cisplatin (7 mg/kg) was given to male Balb/c mice. Squalene (100 mg/kg/day) was administered orogastrically to mice for 10 days. Following sacrification, molecular alterations were investigated as analysis of the levels of oxidative stress index (OSI), inflammatory cytokines and cell survival-related proteins in addition to histopathological examinations in mice kidney tissue. The level OSI and Interferon-gamma (IFN-γ) decreased in the cisplatin and squalene cotreated mice compared to cisplatin-treated mice. Squalene treatment also increased the activation of protein kinase B (AKT). Furthermore, cisplatin-induced inactivation of mammalian target of rapamycin (mTOR) and histopathological damages were reversed by squalene. It may be suggested that squalene ameliorated the cisplatin-induced histopathological damages in the kidney through activation of AKT/mTOR signaling pathway by regulating the balance of the redox system due to its antioxidative effect.
Collapse
Affiliation(s)
- Arzu Sakul
- Department of Medical Pharmacology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Mehmet Ozansoy
- Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Şule Ayla
- Department of Histology and Embryology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Mehmet Yalçın Günal
- Department of Physiology, Alanya Alaaddin Keykubat University School of Medicine, Antalya, Turkey
| | - Yasemin Yozgat
- Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - Hüveyda Başağa
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Rümeyza Kazancioğlu
- Department of Nephrology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Ülkan Kiliç
- Department of Nephrology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| |
Collapse
|
88
|
Disubstituted Dithiolethione ACDT Exerts Neuroprotective Effects Against 6-Hydroxydopamine-Induced Oxidative Stress in SH-SY5Y Cells. Neurochem Res 2019; 44:1878-1892. [DOI: 10.1007/s11064-019-02823-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
|
89
|
Manoharan B, Bobby Z, Dorairajan G, Jacob SE, Gladwin V, Vinayagam V, Packirisamy RM. Increased placental expressions of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes in gestational diabetes: Protective mechanisms against the placental oxidative stress? Eur J Obstet Gynecol Reprod Biol 2019; 238:78-85. [PMID: 31121342 DOI: 10.1016/j.ejogrb.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Gestational diabetes mellitus is associated with increased oxidative stress. Oxidative stress may contribute to the risk for pregnancy pathologies associated with gestational diabetes mellitus. In this study we investigated the expression of placental nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzymes of gestational diabetes mellitus and healthy pregnant women and correlated them with the maternal and cord plasma as well as placental tissue oxidative stress parameters. STUDY DESIGN A cross sectional study was carried out in a South Indian Tamil population. Forty healthy pregnant women and forty gestational diabetes mellitus patients in the gestational age of 32 ± 4weeks were recruited. Maternal plasma, cord plasma and placental oxidative stress parameters were measured. Placental expression of Nrf2, phospho Nrf2, catalase and superoxide dismutase 1(SOD1) were analyzed by western blotting and immunohistochemistry. RESULTS Placental expression of Nrf2, catalase and SOD1 were found to be significantly higher in gestational diabetes mellitus. The maternal plasma, cord plasma and placental tissue oxidative stress parameters, total antioxidant status (TAS) levels were significantly lower; whereas MDA (malondialdehyde) and MDA/TAS levels were significantly higher in gestational diabetes mellitus. Placental Nrf2 expression correlated positively with the placental catalase expression and negatively with placental TAS levels in both groups. CONCLUSION Maternal, fetal and placental oxidative stress was observed in gestational diabetes mellitus. The gestational diabetic placenta had an increased Nrf2 protein expression. The activated placental Nrf2/ antioxidant response element (ARE) pathway might have led to an increased expression of antioxidant enzymes SOD1 and catalase. This may be viewed as a protective mechanism in placenta from the further onslaught of oxidative stress.
Collapse
Affiliation(s)
- Balachandiran Manoharan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605 006, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605 006, India.
| | - Gowri Dorairajan
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sajini Elizabeth Jacob
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Victorraj Gladwin
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vickneshwaran Vinayagam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605 006, India
| | - Rajaa Muthu Packirisamy
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605 006, India
| |
Collapse
|
90
|
Use of Primary Mouse Embryonic Fibroblasts in Developmental Toxicity Assessments. Methods Mol Biol 2019. [PMID: 31069665 DOI: 10.1007/978-1-4939-9182-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Mouse embryonic fibroblasts (MEFs) are commonly collected as a means to maintain the culture and growth of embryonic stem cells (ESCs). However, their utility can extend well beyond their use exclusively in ESC culture. With collection from various transgenic mouse models, use of MEFs may serve as a more simplistic means to reconstitute in vivo/in utero toxicological assessments in an in vitro format for evaluation of function of specific proteins during toxic insults. The ease of collection, rapid growth kinetics, and large-scale expansion to perform multiple, high-throughput experiments are just some of the advantages of MEF use. Here, we describe procedures for successful MEF isolation and culture. As an example of MEF utility, we use MEFs collected form wild-type (WT) and Nrf2 knockout mice. After collection, MEFs were pretreated with the Nrf2 activator, dithiol-3-thione (D3T; 10 μM) for 12 h, and then treated with either hydrogen peroxide (0-2000 μM) or mercury (0-100 μM) for another 24 h. Viability was measured via MTT assay after 24 h of treatment.
Collapse
|
91
|
Al-Awaida WJ, Zihlif MA, Al-Ameer HJ, Sharab A, Akash M, Aburubaiha ZA, Fattash IA, Imraish A, Ali KH. The effect of green tea consumption on the expression of antioxidant- and inflammation-related genes induced by nicotine. J Food Biochem 2019; 43:e12874. [PMID: 31353688 DOI: 10.1111/jfbc.12874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
The aim of this study is to investigate the protective effect of green tea (GT) against the toxicity of nicotine. BALB/c mice were divided into four groups. Group I received food and water intake ad libidium, Group II received GT solution at a dose of 1 ml/kg body weight orally twice a day via gastric gavage, Group III was injected intraperitoneally with nicotine (2.5 mg/kg) once per day for 4 weeks, and Group IV received both nicotine and GT; GT was introduced using gastric gavage 1 hr before and 1 hr after the nicotine injection. The administration of nicotine altered the cellular antioxidant defense system by inducing inflammation and damage in the tissues of liver, lungs, and kidneys. In addition, nicotine treatment significantly enhanced the expression antioxidant- and inflammation-related genes. There were significant improvements when the nicotine-exposed mice treated with GT. PRACTICAL APPLICATIONS: In this study, it is revealed that the administration of nicotine altered the cellular antioxidant defense system by inducing inflammation manifested by the infiltration of inflammatory cells and damage seen in liver, lungs, and kidneys. GT contributed to the reduction of toxicity of nicotine, probably mediated by free radicals, through downregulation of nicotine-induced upregulated antioxidant- and inflammation-related genes. Never the less, further in depth investigation on characterization of the active constituents of GT responsible for their effect seen here and the mechanism that contributes to the effects seen in this reports is highly demanded. Furthermore, GT extract could be considered as a dietary supplement for the reduction of nicotine toxicity among cigarette smoker.
Collapse
Affiliation(s)
- Wajdy J Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Malek A Zihlif
- Faculty of Medicine, Department of Pharmacology, The University of Jordan, Amman, Jordan
| | - Hamzeh J Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Ahmad Sharab
- Faculty of Medicine, Department of Pharmacology, The University of Jordan, Amman, Jordan
| | - Muhanad Akash
- Faculty of Agriculture, Department of Horticulture and Crop Science, The University of Jordan, Amman, Jordan
| | - Zaid A Aburubaiha
- Faculty of Health Sciences, Department of Medical Laboratories, American University of Madaba, Madaba, Jordan
| | - Isam A Fattash
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Amer Imraish
- Faculty of Science, Department of Biology, The University of Jordan, Amman, Jordan
| | - Khedhir H Ali
- Faculty of Health Sciences, Department of Medical Laboratories, American University of Madaba, Madaba, Jordan
| |
Collapse
|
92
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
93
|
Xu D, Xu M, Jeong S, Qian Y, Wu H, Xia Q, Kong X. The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2019; 9:1428. [PMID: 30670963 PMCID: PMC6331455 DOI: 10.3389/fphar.2018.01428] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation are the most important pathogenic events in the development and progression of liver diseases. Nuclear erythroid 2-related factor 2 (Nrf2) is the master regulator of the cellular protection via induction of anti-inflammatory, antioxidant, and cyto-protective genes expression. Multiple studies have shown that activation or suppression of this transcriptional factor significantly affect progression of liver diseases. Comprehensive understanding the roles of Nrf2 activation/expression and the outcomes of its activators/inhibitors are indispensable for defining the mechanisms and therapeutic strategies against liver diseases. In this current review, we discussed recent advances in the function and principal mechanisms by regulating Nrf2 in liver diseases, including acute liver failure, hepatic ischemia-reperfusion injury (IRI), alcoholic liver disease (ALD), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Qian
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
94
|
Sun J, Fu J, Zhong Y, Li L, Chen C, Wang X, Wang L, Hou Y, Wang H, Zhao R, Zhang X, Yamamoto M, Xu Y, Pi J. NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice. Food Chem Toxicol 2018; 121:495-503. [PMID: 30248482 DOI: 10.1016/j.fct.2018.09.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Abstract
Binge alcohol drinking is an important health concern and well-known risk factor for the development of numerous disorders. Oxidative stress plays a critical role in the pathogenesis of acute alcoholism. Nuclear factor erythroid 2 like 2 (NRF2) is a master regulator of cellular adaptive response to oxidative insults. However, the role of NRF2 in acute alcoholism and associated pathologies remains unclear. We found that Nrf2-knockout (Nrf2-KO) mice had exaggerated hypoglycemia and hypothermia and increased mortality compared to wildtype mice after binge ethanol exposure. This phenotype was partially rescued by providing warm environment and/or glucose administration. Acute high dose of alcohol exposure resulted in substantially worsened liver and pancreatic injuries in Nrf2-KO mice. Importantly, deficiency of Nrf2 allowed severe pancreatitis and pancreatic β-cell injury with increased insulin secretion and/or leaking during binge ethanol exposure, which contributed to hypoglycemia. In contrast, a clinically used NRF2 activator dimethyl fumarate (DMF) protected against hypoglycemia and lethality induced by acute ethanol exposure. Furthermore, Nrf2-KO mice likely had defective hepatic acetaldehyde metabolism. Taken together, NRF2 plays an important protective role against acute binge alcohol-induced hepatic and pancreatic damage, which may be partially attributable to its primary regulating role in antioxidant response and impact on ethanol metabolism.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yang Zhong
- Department of Chemistry, School of Fundamental Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xiaolei Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Linlin Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xixuan Zhang
- Department of Chemistry, School of Fundamental Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
95
|
Hwang HJ, Jung TW, Kim JW, Kim JA, Lee YB, Hong SH, Roh E, Choi KM, Baik SH, Yoo HJ. Protectin DX prevents H 2O 2-mediated oxidative stress in vascular endothelial cells via an AMPK-dependent mechanism. Cell Signal 2018; 53:14-21. [PMID: 30244170 DOI: 10.1016/j.cellsig.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/20/2023]
Abstract
Protectin DX (PDX), which is a novel regulator of 5' adenosine monophosphate-activated protein kinase (AMPK), has recently gained attention for its ability to improve several metabolic diseases. However, the function of PDX in vascular endothelial cells remains unclear. To confirm the protective effects of PDX on endothelial oxidative stress, human umbilical vein endothelial cells (HUVECs) were treated with hydroperoxide (H2O2) and PDX. PDX treatment significantly increased the level of AMPK phosphorylation, and this elevation was attenuated after treatment with G-protein coupled receptor 120 (GPR120) antagonist or GPR120 knockdown. Expressions and activities of antioxidant proteins, including catalase and superoxide dismutase 2 (SOD2), were elevated by PDX and were inhibited by treatment with AMPK inhibitor or with GPR120 antagonist. Production of H2O2-induced reactive oxygen species (ROS), the Bax/Bcl-2 ratio, and the loss of mitochondrial membrane potential were all reversed by PDX, leading to improved cell viability and reduced release of lactate dehydrogenase (LDH). Using flow cytometry, we also found that PDX significantly reduced the H2O2-induced apoptotic population of cells. These protective effects of PDX were all reversed after treatment with AMPK inhibitor or GRP120 antagonist. These results show that the PDX-AMPK axis has a protective role against H2O2-induced oxidative stress in vascular endothelial cells.
Collapse
Affiliation(s)
- Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joo Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - You Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - So Hyeon Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
96
|
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018; 359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea; College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
97
|
Son DH, Yang DJ, Sun JS, Kim SK, Kang N, Kang JY, Choi YH, Lee JH, Moh SH, Shin DM, Kim KW. A Novel Peptide, Nicotinyl⁻Isoleucine⁻Valine⁻Histidine (NA⁻IVH), Promotes Antioxidant Gene Expression and Wound Healing in HaCaT Cells. Mar Drugs 2018; 16:md16080262. [PMID: 30071627 PMCID: PMC6117656 DOI: 10.3390/md16080262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide (NA), a water-soluble vitamin B3, has been shown to exert cellular-protective effects against reactive oxygen species (ROS). In order to improve the cellular-protective effects of NA, we synthesized a novel compound, nicotinyl–isoleucine–valine–histidine (NA–IVH), by combining NA with jellyfish peptides’ IVH. In the present study, we examined the cellular-protective effects of the novel synthetic nicotinyl-peptide, NA–IVH. We found that NA–IVH enhances the radical scavenging activity with a robust increase of the nuclear factor (erythroid-derived 2)-like factor (Nrf2) expression in human HaCaT keratinocytes. In addition, NA–IVH protected the cells from hydrogen peroxide (H2O2)-induced cell death. Interestingly, NA–IVH exhibited an improved wound-healing effect in a high glucose condition, possibly through the regulation of reactive oxygen species (ROS). Collectively, our results imply that a novel nicotinyl-peptide, NA–IVH, has a wound-healing effect in a hyperglycemic condition, possibly by modulating excessive ROS.
Collapse
Affiliation(s)
- Dong Hwee Son
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Dong Joo Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Ji Su Sun
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Seul Ki Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Namju Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jung Yun Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Yun-Hee Choi
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jeong Hun Lee
- Anti-Aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Korea.
| | - Sang Hyun Moh
- Anti-Aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Korea.
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
98
|
Timme-Laragy AR, Hahn ME, Hansen JM, Rastogi A, Roy MA. Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Semin Cell Dev Biol 2018; 80:17-28. [PMID: 28927759 PMCID: PMC5650060 DOI: 10.1016/j.semcdb.2017.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate embryonic development requires specific signaling events that regulate cell proliferation and differentiation to occur at the correct place and the correct time in order to build a healthy embryo. Signaling pathways are sensitive to perturbations of the endogenous redox state, and are also susceptible to modulation by reactive species and antioxidant defenses, contributing to a spectrum of passive vs. active effects that can affect redox signaling and redox stress. Here we take a multi-level, integrative approach to discuss the importance of redox status for vertebrate developmental signaling pathways and cell fate decisions, with a focus on glutathione/glutathione disulfide, thioredoxin, and cysteine/cystine redox potentials and the implications for protein function in development. We present a tissue-specific example of the important role that reactive species play in pancreatic development and metabolic regulation. We discuss NFE2L2 (also known as NRF2) and related proteins, their roles in redox signaling, and their regulation of glutathione during development. Finally, we provide examples of xenobiotic compounds that disrupt redox signaling in the context of vertebrate embryonic development. Collectively, this review provides a systems-level perspective on the innate and inducible antioxidant defenses, as well as their roles in maintaining redox balance during chemical exposures that occur in critical windows of development.
Collapse
Affiliation(s)
- Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
99
|
Segatto ALA, Diesel JF, Loreto ELS, da Rocha JBT. De novo transcriptome assembly of the lobster cockroach Nauphoeta cinerea (Blaberidae). Genet Mol Biol 2018; 41:713-721. [PMID: 30043835 PMCID: PMC6136372 DOI: 10.1590/1678-4685-gmb-2017-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
The use of Drosophila as a scientific model is well established, but the use of cockroaches as experimental organisms has been increasing, mainly in toxicology research. Nauphoeta cinerea is one of the species that has been studied, and among its advantages is its easy laboratory maintenance. However, a limited amount of genetic data about N. cinerea is available, impeding gene identification and expression analyses, genetic manipulation, and a deeper understanding of its functional biology. Here we describe the N. cinerea fat body and head transcriptome, in order to provide a database of genetic sequences to better understand the metabolic role of these tissues, and describe detoxification and stress response genes. After removing low-quality sequences, we obtained 62,121 transcripts, of which more than 50% had a length of 604 pb. The assembled sequences were annotated according to their genes ontology (GO). We identified 367 genes related to stress and detoxification; among these, the more frequent were p450 genes. The results presented here are the first large-scale sequencing of N. cinerea and will facilitate the genetic understanding of the species' biochemistry processes in future works.
Collapse
Affiliation(s)
- Ana Lúcia Anversa Segatto
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José Francisco Diesel
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
100
|
Lei P, Zhao W, Pang B, Yang X, Li BL, Ren M, Shan YJ. Broccoli Sprout Extract Alleviates Alcohol-Induced Oxidative Stress and Endoplasmic Reticulum Stress in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5574-5580. [PMID: 29730925 DOI: 10.1021/acs.jafc.8b01653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The potential efficacy of sulforaphane in protecting alcohol-induced hepatic injury in vivo and its underlying mechanism were investigated. Male C57BL/6 mice were orally administrated with broccoli sprout extract (BSE) containing sulforaphane [7.6, 25.2, and 50.4 mg/kg of body weight (bw)] once a day for 14 days. At the 13th day, mice were challenged with alcohol (5 g/kg of bw) every 12 h for 3 times, which increased malondialdehyde (MDA) levels (4.44 ± 1.24 nmol/mg of protein, p < 0.01) in the liver. Our results showed that low-, medium-, and high-dose BSE markedly reversed the decrease of antioxidant capacity through enhancing glutathione (GSH) (2.07 ± 0.31 mg/g of protein, p < 0.05; 2.31 ± 0.32 mg/g of protein, p < 0.01; and 2.46 ± 0.21 mg/g of protein, p < 0.01), superoxide dismutase (SOD) (483.20 ± 62.76 units/mg of protein; 500.81 ± 49.82 units/mg of protein, p < 0.05; and 605.00 ± < 64.32 units/mg of protein, p < 0.01), glutathione peroxidase (GSH-Px) (318 ± 60.74 units/mg of protein; 400.67 ± 72.47 units/mg of protein, p < 0.01; and 394.72 ± 62.97 units/mg of protein, p < 0.01), and glutathione S-transferase (GST) (31.84 ± 6.34 units/mg of protein, p < 0.05; 30.34 ± 6.40 units/mg of protein, p < 0.05; and 38.08 ± 7.05 units/mg of protein, p < 0.01) in the liver. The protective actions are also associated activation of phase 2 enzymes via nuclear erythoriod-2-related factor 2 (Nrf2). The endoplasmic reticulum (ER)-stress-specific proteins, such as glucose-regulated protein 78 (GRP78), activating transcription factor 6, and protein kinase RNA (PKR)-like ER kinase (PERK), were also significantly attenuated by BSE. These results indicate that BSE protects the liver against alcohol challenge via upregulating antioxidant capacity and downregulating ER stress.
Collapse
Affiliation(s)
- Peng Lei
- Department of Food Science and Engineering , Harbin Institute of Technology , 92 Xidazhi Street , Harbin , Heilongjiang 150001 , People's Republic of China
| | - Wei Zhao
- Department of Food Science and Engineering , Harbin Institute of Technology , 92 Xidazhi Street , Harbin , Heilongjiang 150001 , People's Republic of China
| | - Bo Pang
- Department of Food Science and Engineering , Harbin Institute of Technology , 92 Xidazhi Street , Harbin , Heilongjiang 150001 , People's Republic of China
| | - Xiuli Yang
- Department of Food Science and Engineering , Harbin Institute of Technology , 92 Xidazhi Street , Harbin , Heilongjiang 150001 , People's Republic of China
| | - Bao-Long Li
- Center for Drug Safety Evaluation , Heilongjiang University of Chinese Medicine , 24 Heping Road , Harbin , Heilongjiang 150040 , People's Republic of China
- Post-Doctoral Research Center in Pharmacy , Harbin Medical University , 94 Baojian Road , Harbin , Heilongjiang 150086 , People's Republic of China
| | - Minghua Ren
- Department of Urinary Surgery , The First Affiliated Hospital of Harbin Medical University , 23 Youzheng Street , Harbin , Heilongjiang 150001 , People's Republic of China
| | - Yu-Juan Shan
- Department of Food Science and Engineering , Harbin Institute of Technology , 92 Xidazhi Street , Harbin , Heilongjiang 150001 , People's Republic of China
| |
Collapse
|