51
|
Satoh K, Shimokawa H. Recent Advances in the Development of Cardiovascular Biomarkers. Arterioscler Thromb Vasc Biol 2019; 38:e61-e70. [PMID: 29695533 DOI: 10.1161/atvbaha.118.310226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
52
|
Carpinus turczaninowii Extract May Alleviate High Glucose-Induced Arterial Damage and Inflammation. Antioxidants (Basel) 2019; 8:antiox8060172. [PMID: 31212679 PMCID: PMC6616550 DOI: 10.3390/antiox8060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Hyperglycemia-induced oxidative stress triggers severe vascular damage and induces an inflammatory vascular state, and is, therefore, one of the main causes of atherosclerosis. Recently, interest in the natural compound Carpinus turczaninowii has increased because of its reported antioxidant and anti-inflammatory properties. We investigated whether a C. turczaninowii extract was capable of attenuating high glucose-induced inflammation and arterial damage using human aortic vascular smooth muscle cells (hASMCs). mRNA expression levels of proinflammatory response [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)], endoplasmic reticulum (ER) stress [CCAAT-enhancer-binding proteins (C/EBP) homologous protein (CHOP)], and adenosine monophosphate (AMP)-protein activated kinase α2 (AMPK α2)], and DNA damage [phosphorylated H2.AX (p-H2.AX)] were measured in hASMCs treated with the C. turczaninowii extracts (1 and 10 μg/mL) after being stimulated by high glucose (25 mM) or not. The C. turczaninowii extract attenuated the increased mRNA expression of IL-6, TNF-α, and CHOP in hASMCs under high glucose conditions. The expression levels of p-H2.AX and AMPK α2 induced by high glucose were also significantly decreased in response to treatment with the C. turczaninowii extract. In addition, 15 types of phenolic compounds including quercetin, myricitrin, and ellagic acid, which exhibit antioxidant and anti-inflammatory properties, were identified in the C. turczaninowii extract through ultra-performance liquid chromatography-quadrupole-time of flight (UPLC-Q-TOF) mass spectrometry. In conclusion, C. turczaninowii may alleviate high glucose-induced inflammation and arterial damage in hASMCs, and may have potential in the treatment of hyperglycemia-induced atherosclerosis.
Collapse
|
53
|
Inhibition of mitochondrial complex I activity attenuates neointimal hyperplasia by inhibiting smooth muscle cell proliferation and migration. Chem Biol Interact 2019; 304:73-82. [DOI: 10.1016/j.cbi.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
|
54
|
Li HY, Leu YL, Wu YC, Wang SH. Melatonin Inhibits in Vitro Smooth Muscle Cell Inflammation and Proliferation and Atherosclerosis in Apolipoprotein E-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1889-1901. [PMID: 30661353 DOI: 10.1021/acs.jafc.8b06217] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chronic inflammation and proliferation play important roles in atherosclerosis progression. This study aimed to identify the mechanisms responsible for the anti-inflammatory and antiproliferative effects of melatonin on tumor necrosis factor-α (TNF-α)- and platelet-derived growth factor-BB (PDGF-BB)-treated rat aortic smooth muscle cells (RASMCs). Melatonin reduced TNF-α-induced RASMC inflammation by decreasing vascular cell adhesion molecule-1 (VCAM-1) expression and nuclear factor-kappa B (NF-κB) P65 activity by inhibiting P38 mitogen-activated protein kinase phosphorylation ( P < 0.05). Additionally, melatonin inhibited PDGF-BB-induced RASMC proliferation by reducing mammalian target of rapamycin (mTOR) phosphorylation ( P < 0.05) but not migration in vitro. Melatonin also reduced TNF-α- and PDGF-BB-induced reactive oxygen species (ROS) production ( P < 0.05). Furthermore, melatonin treatment (prevention and treatment groups) significantly repressed high cholesterol diet-stimulated atherosclerotic lesions in vivo (19.59 ± 4.11%, 20.28 ± 5.63%, 32.26 ± 12.06%, respectively, P < 0.05). Taken together, the present study demonstrated that melatonin attenuated TNF-α-induced RASMC inflammation and PDGF-BB-induced RASMC proliferation in cells and reduced atherosclerotic lesions in mice. These results showed that melatonin has anti-inflammatory and antiproliferative properties and may be a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Hung-Yuan Li
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
| | - Yann-Lii Leu
- Center for Traditional Chinese Medicine , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Ya-Chieh Wu
- Department of Nursing , Ching-Kuo Institute of Management and Health , Keelung , Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology , College of Medicine, National Taiwan University , Taipei , Taiwan
| |
Collapse
|
55
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
56
|
Truong L, Zheng YM, Wang YX. Mitochondrial Rieske iron-sulfur protein in pulmonary artery smooth muscle: A key primary signaling molecule in pulmonary hypertension. Arch Biochem Biophys 2019; 664:68-75. [PMID: 30710505 DOI: 10.1016/j.abb.2019.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 12/17/2022]
Abstract
Rieske iron-sulfur protein (RISP) is a catalytic subunit of the complex III in the mitochondrial electron transport chain. Studies for years have revealed that RISP is essential for the generation of intracellular reactive oxygen species (ROS) via delicate signaling pathways associated with many important molecules such as protein kinase C-ε, NADPH oxidase, and ryanodine receptors. More significantly, mitochondrial RISP-mediated ROS production has been implicated in the development of hypoxic pulmonary vasoconstriction, leading to pulmonary hypertension, right heart failure, and death. Investigations have also shown the involvement of RISP in ROS-dependent cardiac ischemic/reperfusion injuries. Further research may provide novel and valuable information that can not only enhance our understanding of the functional roles of RISP and the underlying molecular mechanisms in the pulmonary vasculature and other systems, but also elucidate whether RISP targeting can act as preventative and restorative therapies against pulmonary hypertension, cardiac diseases, and other disorders.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
57
|
Reactive Oxygen Species from NADPH Oxidase and Mitochondria Participate in the Proliferation of Aortic Smooth Muscle Cells from a Model of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5835072. [PMID: 30671170 PMCID: PMC6323422 DOI: 10.1155/2018/5835072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
In metabolic diseases, the increased reactive oxygen species (ROS) represents one of the pathogenic mechanisms for vascular disease probably by promoting vascular smooth muscle cell (SMC) proliferation that contributes to the development of arterial remodeling and stenosis, hypertension, and atherosclerosis. Therefore, this work was undertaken to evaluate the participation of ROS from NADPH oxidase and mitochondria in the proliferation of SMCs from the aorta in a model of metabolic syndrome induced by sucrose feeding in rats. After 24 weeks, sucrose-fed (SF) rats develop hypertension, intra-abdominal obesity, hyperinsulinemia, and hyperleptinemia. In addition SMCs from SF rats had a higher growth rate and produce more ROS than control cells. The treatment of SMCs with DPI and apocynin to inhibit NADPH oxidase and with tempol to scavenge superoxide anion significantly blocked the proliferation of both SF and control cells suggesting the participation of NADPH oxidase as a source of superoxide anion. MitoTEMPO, which targets mitochondria within the cell, also significantly inhibited the proliferation of SMCs having a greater effect on cells from SF than from the control aorta. The higher rate of cell growth from the SF aorta is supported by the increased content of cyclophilin A and CD147, proteins involved in the mechanism of cell proliferation. In addition, caldesmon, α-actin, and phosphorylated myosin light chain, contractile phenotype proteins, were found significantly lower in SF cells in no confluent state and increased in confluent state but without difference between both cell types. Our results suggest that ROS from NADPH oxidase and mitochondria significantly participate in the difference found in the rate of cell growth between SF and control cells.
Collapse
|
58
|
Serum cyclophilin A concentrations and prognosis of acute intracerebral hemorrhage. Clin Chim Acta 2018; 486:162-167. [DOI: 10.1016/j.cca.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022]
|
59
|
The 90-day prognostic value of serum cyclophilin A in traumatic brain injury. Clin Chim Acta 2018; 484:258-264. [DOI: 10.1016/j.cca.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022]
|
60
|
Wall shear stress promotes intimal hyperplasia through the paracrine H 2O 2-mediated NOX-AKT-SVV axis. Life Sci 2018; 207:61-71. [PMID: 29847774 DOI: 10.1016/j.lfs.2018.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022]
Abstract
AIMS Oscillatory wall shear stress (WSS)-linked oxidative stress promotes intimal hyperplasia (IH) development, but the underlying mechanisms are not completely understood. MATERIALS AND METHODS We used an in vivo rabbit carotid arterial stenosis model representing different levels of WSS and found that WSS was increased at 1 month with 50% stenosis and was accompanied by VSMCs proliferation and interstitial collagen accumulation. Increased WSS promoted the expression of NOX, AKT, and survivin (SVV) and the proliferation/migration of VSMCs and reduced apoptosis. KEY FINDINGS Our in vitro study suggested that H2O2 promoted proliferation and migration while suppressing apoptosis in cultured human umbilical vascular endothelial cells. SIGNIFICANCE We demonstrated that the elevation of WSS promotes VSMC proliferation and migration through the H2O2-mediated NOX-AKT-SVV axis, thereby accelerating IH development.
Collapse
|
61
|
Radi ZA, Stewart ZS, O'Neil SP. Accidental and Programmed Cell Death in Investigative and Toxicologic Pathology. ACTA ACUST UNITED AC 2018; 76:e51. [PMID: 30040239 DOI: 10.1002/cptx.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular development and homeostasis are regulated via programmed cell death (PCD; apoptosis), which is a genetically regulated cellular process. Accidental cell death (ACD; necrosis) can be triggered by chemical, physical, or mechanical stress. Necrosis is the presence of dead tissues or cells in a living organism regardless of the initiating process and can be observed in infectious and non-infectious diseases and toxicities. This article describes tissue-based immunohistotechnical protocols used for assessing PCD and necrosis in formalin-fixed tissues obtained from preclinical species used in investigative and toxicologic pathology. Two commonly employed protocols for the identification of PCD and necrosis are described in this article: immunohistochemistry (IHC) for cleaved caspase 3, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL). TUNEL has been used to detect DNA fragmentation by labeling the terminal ends of nucleic acids in necrotic and apoptotic cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Zaher A Radi
- Drug Safety R&D, Pfizer Inc., Cambridge, Massachusetts
| | | | | |
Collapse
|
62
|
Metformin attenuates effects of cyclophilin A on macrophages, reduces lipid uptake and secretion of cytokines by repressing decreased AMPK activity. Clin Sci (Lond) 2018; 132:719-738. [PMID: 29382697 DOI: 10.1042/cs20171523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023]
Abstract
Growing evidence implicates cyclophilin A secreted by vascular wall cells and monocytes as a key mediator in atherosclerosis. Cyclophilin A in addition to its proliferative effects, during hyperglycemic conditions, increases lipid uptake in macrophages by increasing scavenger receptors on the cell's surface. It also promotes macrophage migration across endothelial cells and conversion of macrophages into foam cells. Given the known effects of metformin in reducing vascular complications of diabetes, we investigated the effect of metformin on cyclophilin A action in macrophages. Using an ex vivo model of cultured macrophages isolated from patients with type 2 diabetes with and without coronary artery disease (CAD), we measured the effect of metformin on cyclophilin A expression, lipid accumulation, expression of scavenger receptors, plasma cytokine levels and AMP-activated protein kinase (AMPK) activity in macrophages. In addition, the effects of metformin on migration of monocytes, reactive oxygen species (ROS) formation, lipid uptake in the presence of cyclophilin A inhibitors and comparison with pioglitazone were studied using THP-1 monocytes. Metformin reduced cyclophilin A expression in human monocyte-derived macrophages. Metformin also decreased the effects of cyclophilin A on macrophages such as oxidized low-density lipoprotein (oxLDL) uptake, scavenger receptor expression, ROS formation and secretion of inflammatory cytokines in high-glucose conditions. Metformin reversed cyclophilin A-induced decrease in AMPK-1α activity in macrophages. These effects of metformin were similar to those of cyclophilin A inhibitors. Metformin can thus function as a suppressor of pro-inflammatory effects of cyclophilin A in high-glucose conditions by attenuating its expression and repressing cyclophilin A-induced decrease in AMPK-1α activity in macrophages.
Collapse
|
63
|
Xue C, Sowden MP, Berk BC. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases. Arterioscler Thromb Vasc Biol 2018; 38:986-993. [PMID: 29599134 DOI: 10.1161/atvbaha.117.310661] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/20/2018] [Indexed: 01/13/2023]
Abstract
CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target.
Collapse
Affiliation(s)
- Chao Xue
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY
| | - Mark P Sowden
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY.
| |
Collapse
|
64
|
Wilson SJ, Miller MR, Newby DE. Effects of Diesel Exhaust on Cardiovascular Function and Oxidative Stress. Antioxid Redox Signal 2018; 28:819-836. [PMID: 28540736 DOI: 10.1089/ars.2017.7174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE Air pollution is a major global health concern with particulate matter (PM) being especially associated with increases in cardiovascular morbidity and mortality. Diesel exhaust emissions are a particularly rich source of the smallest sizes of PM ("fine" and "ultrafine") in urban environments, and it is these particles that are believed to be the most detrimental to cardiovascular health. Recent Advances: Controlled exposure studies to diesel exhaust in animals and man demonstrate alterations in blood pressure, heart rate, vascular tone, endothelial function, myocardial perfusion, thrombosis, atherogenesis, and plaque stability. Oxidative stress has emerged as a highly plausible pathobiological mechanism by which inhalation of diesel exhaust PM leads to multiple facets of cardiovascular dysfunction. CRITICAL ISSUES Diesel exhaust inhalation promotes oxidative stress in several biological compartments that can be directly associated with adverse cardiovascular effects. FUTURE DIRECTIONS Further studies with more sensitive and specific in vivo human markers of oxidative stress are required to determine if targeting oxidative stress pathways involved in the actions of diesel exhaust PM could be of therapeutic value. Antioxid. Redox Signal. 28, 819-836.
Collapse
Affiliation(s)
- Simon J Wilson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - Mark R Miller
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
65
|
Pisano C, Balistreri CR, Ricasoli A, Ruvolo G. Cardiovascular Disease in Ageing: An Overview on Thoracic Aortic Aneurysm as an Emerging Inflammatory Disease. Mediators Inflamm 2017; 2017:1274034. [PMID: 29203969 PMCID: PMC5674506 DOI: 10.1155/2017/1274034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Medial degeneration associated with thoracic aortic aneurysm and acute aortic dissection was originally described by Erdheim as a noninflammatory lesion related to the loss of smooth muscle cells and elastic fibre fragmentation in the media. Recent evidences propose the strong role of a chronic immune/inflammatory process in aneurysm evocation and progression. The coexistence of inflammatory cells with markers of apoptotic vascular cell death in the media of ascending aorta with aneurysms and type A dissections raises the possibility that activated T cells and macrophages may contribute to the elimination of smooth muscle cells and degradation of the matrix. On the other hand, several inflammatory pathways (including TGF-β, TLR-4 interferon-γ, chemokines, and interferon-γ) seem to be involved in the medial degeneration related to aged and dilated aorta. This is an overview on thoracic aortic aneurysm as an emerging inflammatory disease.
Collapse
Affiliation(s)
- Calogera Pisano
- Cardiac Surgery Unit, “P. Giaccone” University Hospital, Palermo, Italy
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Giovanni Ruvolo
- Cardiac Surgery Unit, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
66
|
Yang L, Zhu Q, Gong J, Xie M, Jiao T. CyPA and Emmprin play a role in peri-implantitis. Clin Implant Dent Relat Res 2017; 20:102-109. [PMID: 29057571 DOI: 10.1111/cid.12549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Qing Zhu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Jingjue Gong
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Ming Xie
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Ting Jiao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| |
Collapse
|
67
|
Abstract
Cyclophilin A (CyPA) is secreted from vascular smooth muscle cells, inflammatory cells, activated platelets, and cardiac fibroblasts in response to oxidative stress. Excessive and continuous activation of the RhoA/Rho-kinase system promotes the secretion of CyPA, resulting in the development of multiple cardiovascular diseases. Basigin (Bsg), a transmembrane glycoprotein that activates matrix metalloproteinases, is an extracellular receptor for CyPA that promotes cell proliferation and inflammation. Thus, the CyPA/Bsg system is potentially a novel therapeutic target for cardiovascular diseases. Importantly, plasma CyPA levels are increased in patients with coronary artery disease, abdominal aortic aneurysms, pulmonary hypertension, and heart failure. Moreover, plasma CyPA levels can predict all-cause death in patients with coronary artery disease and pulmonary hypertension. Additionally, plasma soluble Bsg levels are increased and predict all-cause death in patients with heart failure, suggesting that CyPA and Bsg are novel biomarkers for cardiovascular diseases. To discover further novel molecules targeting the CyPA/Bsg system, high-throughput screening of compounds found molecules that ameliorate the development of cardiovascular diseases. In addition to CyPA and Bsg, novel therapeutic targets and their inhibitors for patients with pulmonary arterial hypertension have been recently screened and identified. Ultimately, the final goal is to develop novel biomarkers and medications that will be useful for improving the prognosis and quality of life in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
68
|
Liu D, Wu M, Du Q, Ding Z, Qian M, Tong Z, Xu W, Zhang L, Chang H, Wang Y, Huang C, Lin D. The apolipoprotein A-I mimetic peptide, D-4F, restrains neointimal formation through heme oxygenase-1 up-regulation. J Cell Mol Med 2017; 21:3810-3820. [PMID: 28767201 PMCID: PMC5706511 DOI: 10.1111/jcmm.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
D‐4F, an apolipoprotein A‐I (apoA‐I) mimetic peptide, possesses distinctly anti‐atherogenic effects. However, the biological functions and mechanisms of D‐4F on the hyperplasia of vascular smooth muscle cells (VSMCs) remain unclear. This study aimed to determine its roles in the proliferation and migration of VSMCs. In vitro, D‐4F inhibited VSMC proliferation and migration induced by ox‐LDL in a dose‐dependent manner. D‐4F up‐regulated heme oxygenase‐1 (HO‐1) expression in VSMCs, and the PI3K/Akt/AMP‐activated protein kinase (AMPK) pathway was involved in these processes. HO‐1 down‐regulation with siRNA or inhibition with zinc protoporphyrin (Znpp) impaired the protective effects of D‐4F on the oxidative stress and the proliferation and migration of VSMCs. Moreover, down‐regulation of ATP‐binding cassette transporter A1 (ABCA1) abolished the activation of Akt and AMPK, the up‐regulation of HO‐1 and the anti‐oxidative effects of D‐4F. In vivo, D‐4F restrained neointimal formation and oxidative stress of carotid arteries in balloon‐injured Sprague Dawley rats. And inhibition of HO‐1 with Znpp decreased the inhibitory effects of D‐4F on neointimal formation and ROS production in arteries. In conclusion, D‐4F inhibited VSMC proliferation and migration in vitro and neointimal formation in vivo through HO‐1 up‐regulation, which provided a novel prophylactic and therapeutic strategy for anti‐restenosis of arteries.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Mengzhang Wu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Union Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qian Du
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Zhenzhen Ding
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Union Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mingming Qian
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Zijia Tong
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Union Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wenqi Xu
- High-field NMR Research Center, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Le Zhang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - He Chang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Yan Wang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Caihua Huang
- Department of Physical Education, Xiamen University of Technology, Xiamen, China
| | - Donghai Lin
- High-field NMR Research Center, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
69
|
Sadaghianloo N, Yamamoto K, Bai H, Tsuneki M, Protack CD, Hall MR, Declemy S, Hassen-Khodja R, Madri J, Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Ann Vasc Surg 2017; 41:225-234. [PMID: 28163173 PMCID: PMC5411319 DOI: 10.1016/j.avsg.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The poor clinical results that are frequently reported for arteriovenous fistulae (AVF) for hemodialysis are typically due to failure of AVF maturation. We hypothesized that early AVF maturation is associated with generation of reactive oxygen species and activation of the hypoxia-inducible factor-1 (HIF-1) pathway, potentially promoting neointimal hyperplasia. We tested this hypothesis using a previously reported mouse AVF model that recapitulates human AVF maturation. METHODS Aortocaval fistulae were created in C57Bl/6 mice and compared with sham-operated mice. AVFs or inferior vena cavas were analyzed using a microarray, Amplex Red for extracellular H2O2, quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting for HIF-1α and immunofluorescence for NOX-2, nitrotyrosine, heme oxygenase-1 (HO-1), and vascular endothelial growth factor (VEGF)-A. RESULTS Oxidative stress was higher in AVF than that in control veins, with more H2O2 (P = 0.007) and enhanced nitrotyrosine immunostaining (P = 0.005). Immunohistochemistry and immunoblot showed increased HIF-1α immunoreactivity in the AVF endothelium; HIF-1 targets NOX-2, HO-1 and VEGF-A were overexpressed in the AVF (P < 0.01). AVF expressed increased numbers of HIF-1α (P < 0.0001) and HO-1 (P < 0.0001) messenger RNA transcripts. CONCLUSIONS Oxidative stress increases in mouse AVF during early maturation, with increased expression of HIF-1α and its target genes NOX-2, HO-1, and VEGF-A. These results suggest that clinical strategies to improve AVF maturation could target the HIF-1 pathway.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France.
| | - Kota Yamamoto
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Masayuki Tsuneki
- National Cancer Center Research Institute, Tokyo, Japan; Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Clinton D Protack
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Michael R Hall
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Serge Declemy
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Réda Hassen-Khodja
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Joseph Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
70
|
Xue C, Sowden M, Berk BC. Extracellular Cyclophilin A, Especially Acetylated, Causes Pulmonary Hypertension by Stimulating Endothelial Apoptosis, Redox Stress, and Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1138-1146. [PMID: 28450293 DOI: 10.1161/atvbaha.117.309212] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Oxidative stress and inflammation play key roles in the development of pulmonary arterial hypertension (PAH). Cyclophilin A (CypA) is secreted in response to oxidative stress and promotes inflammation and cardiovascular disease. Endothelial cell (EC) dysfunction is an early event in the pathogenesis of PAH. We evaluated the role of extracellular CypA in PAH and compared the effects of acetylated CypA (AcK-CypA, increased by oxidative stress) and CypA on EC dysfunction. APPROACH AND RESULTS In transgenic mice that express high levels of CypA in EC specifically, a PAH phenotype was observed at 3 months including increased right ventricular systolic pressure, α-smooth muscle actin expression in small arterioles, and CD45-positive cells in the lungs. Mechanistic analysis using cultured mouse pulmonary microvascular EC and human pulmonary microvascular EC showed that extracellular CypA and AcK-CypA stimulated EC inflammatory signals: increased VCAM1 (vascular cell adhesion molecule 1) and ICAM1 (intercellular adhesion molecule 1), phosphorylation of p65, and degradation of IkB. Extracellular CypA and AcK-CypA increased EC apoptosis measured by TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining, Apo-ONE assay, and caspase 3 cleavage. Oxidative stress stimulated CypA and AcK-CypA secretion, which further promoted EC oxidative stress. AcK-CypA, compared with CypA, stimulated greater increases in apoptosis, inflammation, and oxidative stress. MM284, a specific inhibitor of extracellular CypA, attenuated EC apoptosis induced by CypA and AcK-CypA. CONCLUSIONS EC-derived CypA (especially AcK-CypA) causes PAH by a presumptive mechanism involving increased EC apoptosis, inflammation, and oxidative stress. Our results suggest that inhibiting secreted extracellular CypA is a novel therapeutic approach for PAH.
Collapse
Affiliation(s)
- Chao Xue
- From the Department of Pathology (C.X., B.C.B.) and Aab Cardiovascular Research Institute and Department of Medicine (C.X., M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| | - Mark Sowden
- From the Department of Pathology (C.X., B.C.B.) and Aab Cardiovascular Research Institute and Department of Medicine (C.X., M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- From the Department of Pathology (C.X., B.C.B.) and Aab Cardiovascular Research Institute and Department of Medicine (C.X., M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY.
| |
Collapse
|
71
|
Enhanced Rb/E2F and TSC/mTOR Pathways Induce Synergistic Inhibition in PDGF-Induced Proliferation in Vascular Smooth Muscle Cells. PLoS One 2017; 12:e0170036. [PMID: 28076433 PMCID: PMC5226788 DOI: 10.1371/journal.pone.0170036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/27/2016] [Indexed: 02/04/2023] Open
Abstract
Platelet-derived growth factor (PDGF) plays an essential role in proliferation of vascular smooth muscle cells (VSMCs). The Rb/E2F and TSC/mTOR pathways contribute to the proliferation of VSMCs, but its exact roles in PDGF-induced proliferation are unclear. In this study, we demonstrated the roles of Rb/E2F and TSC/mTOR pathways in PDGF-induced proliferation in VSMCs. We found that PDGF stimulates the activity of E2F and mTOR pathways, and knockdown of either Rb or TSC2 increases PDGF-induced proliferation in VSMCs. More interestingly, we revealed that enhancing both E2F and mTOR activity leads to synergistic inhibition of PDGF-induced proliferation in VSMCs. We further identified that the synergistic inhibition effect is caused by the induced oxidative stress. Summarily, these data suggest the important regulations of Rb/E2F and TSC/mTOR pathways in PDGF-induced proliferation in VSMCs, and also present a promising way to limit deregulated proliferation by PDGF induction in VSMCs.
Collapse
|
72
|
Zuo L, Chuang CC, Clark AD, Garrison DE, Kuhlman JL, Sypert DC. Reactive Oxygen Species in COPD-Related Vascular Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:399-411. [PMID: 29047102 DOI: 10.1007/978-3-319-63245-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) is a multifaceted process involving the alteration of pulmonary vasculature. Such vascular remodeling can be associated with inflammation, shear stress, and hypoxia-conditions commonly seen in patients with lung diseases. Particularly, the overproduction of reactive oxygen species (ROS) in the diseased lungs contributes greatly to pulmonary vascular remodeling. ROS play an important role in vascular homeostasis, yet excessive ROS can alter pulmonary vasculature and impair lung function, as implicated in COPD at all stages. Increased inflammatory cell infiltration and endothelial dysfunction both correspond to the severity of COPD. As a byproduct of vascular remodeling, pulmonary hypertension negatively affects the long-term survival rate of COPD patients. While there is currently no cure for COPD, several treatment options have focused on alleviating COPD symptoms. Interventions such as long-term oxygen therapy, endothelium-targeted treatment, and pharmacological therapies show promising results in improving the life span of COPD patients and attenuating the progression of pulmonary hypertension. In this chapter, we aim to discuss the contributing factors of pulmonary vascular remodeling in COPD with an emphasis on the ROS, as well as potential redox treatments for COPD-related vascular remodeling.
Collapse
Affiliation(s)
- Li Zuo
- Molecular Physiology and Rehabilitation Research Laboratory, Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Chia-Chen Chuang
- Molecular Physiology and Rehabilitation Research Laboratory, Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Alexander D Clark
- Molecular Physiology and Rehabilitation Research Laboratory, Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Davis E Garrison
- Molecular Physiology and Rehabilitation Research Laboratory, Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jamie L Kuhlman
- Molecular Physiology and Rehabilitation Research Laboratory, Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - David C Sypert
- Molecular Physiology and Rehabilitation Research Laboratory, Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
73
|
Sun ZJ, Zhu L, Lang JH, Wang Z, Liang S. Proteomic Analysis of the Uterosacral Ligament in Postmenopausal Women with and without Pelvic Organ Prolapse. Chin Med J (Engl) 2016; 128:3191-6. [PMID: 26612295 PMCID: PMC4794882 DOI: 10.4103/0366-6999.170262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) is a major health problem in adult women that involves many factors. No proteomic analysis has been conducted exclusively in POP patients. This study aimed to identify the differential expression of proteins that may be involved in POP by proteomic analysis. METHODS Samples of the uterosacral ligament (USL) were collected from five POP patients and five non-POP patients matched according to age, parity, and menopausal status and analyzed using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the mRNA expression of proteins that showed differential expression in the proteomic analyses. RESULTS Proteins differentially expressed between POP and non-POP patients were detected. Eight proteins that were down-regulated in the POP group were identified by MALDI-TOF-MS. These proteins included electron transfer flavoprotein, apolipoprotein A-I, actin, transgelin, cofilin-1, cyclophilin A, myosin, and galectin-1, and their expression was verified by qRT-PCR. CONCLUSION Using comparative proteomics, we identified eight differentially expressed proteins (including four cytoskeleton proteins and three proteins related to apoptosis) in the USL that may be involved in apoptosis associated with the tissue effects in POP pathophysiology.
Collapse
Affiliation(s)
| | - Lan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | |
Collapse
|
74
|
Yaoita N, Satoh K, Shimokawa H. Novel Therapeutic Targets of Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2016; 36:e97-e102. [DOI: 10.1161/atvbaha.116.308263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
75
|
Ramachandran S, Vinitha A, Kartha CC. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol 2016; 15:152. [PMID: 27809851 PMCID: PMC5094075 DOI: 10.1186/s12933-016-0467-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Background Vascular disease in diabetes is initiated by monocyte adhesion to vascular endothelium, transmigration and formation of foam cells. Increasing clinical evidence supports a role for the secretory protein, cyclophilin A in diabetic vascular disease. The means by which cyclophilin A contributes to vascular lesion development in diabetes is however largely unknown. Methods In this study we investigated using THP1 cells and human monocytes whether cyclophilin A under hyperglycemic conditions, functions in the inflammatory cascade as a chemoattractant and increases lipid uptake by formation of foam cells invitro. We developed an invitro model of monocytes cultured in 20 mm glucose (high glucose) equivalent to 360 mg/dL of plasma glucose levels. These monocytes were then differentiated into macrophages using PMA and subsequently transformed to lipid laden foam cells using oxidized low density lipoproteins in the presence and absence of cyclophilin A. This cellular model was used to study monocyte to macrophage differentiation, transmigration and foam cell formation. A similar cellular model using siRNA mediated transient elimination of the cyclophilin A gene as well as chemical inhibitors were used to further confirm the role of cyclophilin A in the differentiation and foam cell formation process. Results Cyclophilin A effectively increased migration of high glucose treated monocytes to the endothelial cell monolayer (p < 0.0001). In the presence of cyclophilin A, differentiated macrophages, when treated with oxLDL had a 36 percent increase in intracellular lipid accumulation (p = 0.01) when compared to cells treated with oxLDL alone. An increased flux of reactive oxygen species was also observed (p = 0.01). Inflammatory cytokines such as TNF-α, MCP-1 and cyclophilin A were significantly increased. Silencing cyclophilin A in THP-1 cells and human monocytes using siRNA or chemical inhibitor, TMN355 resulted in decrease in lipid uptake by 65–75% even after exposure to oxidized LDL. The expression of scavenger receptors expressed during differentiation process, CD36 and LOX-1 were decreased (p < 0.0001). Levels of extracellular cyclophilin A and other inflammatory cytokines such as TNF-α and MCP-1also significantly reduced. Conclusions Taken together, we describe here a possible cellular basis by which cyclophilin A may accelerate atherogenesis in diabetes mellitus. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0467-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.
| | - Anandan Vinitha
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | |
Collapse
|
76
|
Schumann M, Ihling CH, Prell E, Schierhorn A, Sinz A, Fischer G, Schiene-Fischer C, Malešević M. Identification of low abundance cyclophilins in human plasma. Proteomics 2016; 16:2815-2826. [PMID: 27586231 DOI: 10.1002/pmic.201600221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022]
Abstract
Cylophilins (Cyps) belong to the ubiquitously distributed enzyme class of peptidyl prolyl cis/trans isomerases (EC5.2.1.8), which are foldases capable of accelerating slow steps in the refolding of denatured proteins. At least 20 different Cyp isoenzymes are broadly distributed among all organs and cellular compartments in humans. Extracellularly localized Cyps came into the scientific focus recently because of their involvement in the control of inflammatory diseases, as well as viral and bacterial infections. However, detailed insights into Cyp functions are often hampered by the lack of sensitive detection methods. We present an improved method for affinity purification and detection of Cyp in biotic samples in this manuscript. The procedure takes advantage of two novel cyclosporine A derivatives. Derivative 1 was used to capture Cyps from the sample while derivative 2 was applied for selective release from the affinity matrix. Using this approach, eight different Cyp (CypA, CypB, CypC, Cyp40 (PPID), CypE, CypD (PPIF), CypH, and CypL1) were unambiguously detected in healthy human blood plasma. Moreover, extracellular CypA was found to be partially modified by Nε acetylation on residues Lys44, Lys133, Lys155, as well as Nα acetylation at the N-terminal Val residue. Nα acetylation of Ser2 residue was also found for Cyp40.
Collapse
Affiliation(s)
- Michael Schumann
- Department of Enzymology, Institute of Biochemistry und Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Erik Prell
- Branch Office Halle, Max-Planck Institute for Biophysical Chemistry, Göttingen, Halle, Germany
| | - Angelika Schierhorn
- Department of Enzymology, Institute of Biochemistry und Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Gunter Fischer
- Branch Office Halle, Max-Planck Institute for Biophysical Chemistry, Göttingen, Halle, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Institute of Biochemistry und Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Miroslav Malešević
- Department of Enzymology, Institute of Biochemistry und Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
77
|
Damián-Zamacona S, Toledo-Ibelles P, Ibarra-Abundis MZ, Uribe-Figueroa L, Hernández-Lemus E, Macedo-Alcibia KP, Delgado–Coello B, Mas-Oliva J, Reyes-Grajeda JP. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells. PLoS One 2016; 11:e0163924. [PMID: 27727291 PMCID: PMC5058556 DOI: 10.1371/journal.pone.0163924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/17/2016] [Indexed: 01/03/2023] Open
Abstract
Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and metabolic pathways in atherosclerosis is strengthen by the fact that gene expression patterns obtained when hVSMC are incubated for a long period of time in the presence of nLDL, correspond very much the same as when cells are incubated for a short period of time in the presence of chemically modified oxLDL. Our results indicate that under physiological conditions and directly related to specific environmental conditions, LDL particles most probably suffer chemical modifications that initially serve as an alert signal to overcome a harmful stimulus that with time might get transformed to a pathological pattern and therefore consolidate a pathological condition.
Collapse
Affiliation(s)
| | - Paola Toledo-Ibelles
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | | - Blanca Delgado–Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
- * E-mail: (JPRG); (JMO)
| | | |
Collapse
|
78
|
Jain M, Zellweger M, Frobert A, Valentin J, van den Bergh H, Wagnières G, Cook S, Giraud MN. Intra-Arterial Drug and Light Delivery for Photodynamic Therapy Using Visudyne®: Implication for Atherosclerotic Plaque Treatment. Front Physiol 2016; 7:400. [PMID: 27672369 PMCID: PMC5018500 DOI: 10.3389/fphys.2016.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Photodynamic therapy (PDT), which is based on the activation of photosensitizers with light, can be used to reduce plaque burden. We hypothesized that intra-arterial photosensitizer administration and photo-activation will lead to high and rapid accumulation within the plaque with reduced systemic adverse effects. Thus, this "intra-arterial" PDT would be expected to have less side effects and due to the short time involved would be compatible with percutaneous coronary interventions. AIM We characterized the dose-dependent uptake and efficacy of intra-arterial PDT using Liposomal Verteporfin (Visudyne®), efficient for cancer-PDT but not tested before for PDT of atherosclerosis. METHODS AND RESULTS Visudyne® (100, 200, and 500 ng/ml) was perfused for 5-30 min in atherosclerotic aorta isolated from ApoE(-/-) mice. The fluorescence Intensity (FI) after 15 min of Visudyne® perfusion increased with doses of 100 (FI-5.5 ± 1.8), 200 (FI-31.9 ± 1.9) or 500 ng/ml (FI-42.9 ± 1.2). Visudyne® (500 ng/ml) uptake also increased with the administration time from 5 min (FI-9.8 ± 2.5) to 10 min (FI-23.3 ± 3.0) and 15 min (FI-42.9 ± 3.4) before reaching saturation at 30 min (FI-39.3 ± 2.4) contact. Intra-arterial PDT (Fluence: 100 and 200 J/cm(2), irradiance-334 mW/cm(2)) was applied immediately after Visudyne® perfusion (500 ng/ml for 15 min) using a cylindrical light diffuser coupled to a diode laser (690 nm). PDT led to an increase of ROS (Dihydroethidium; FI-6.9 ± 1.8, 25.3 ± 5.5, 43.4 ± 13.9) and apoptotic cells (TUNEL; 2.5 ± 1.6, 41.3 ± 15.3, 58.9 ± 6%), mainly plaque macrophages (immunostaining; 0.3 ± 0.2, 37.6 ± 6.4, 45.3 ± 5.4%) respectively without laser irradiation, or at 100 and 200 J/cm(2). Limited apoptosis was observed in the medial wall (0.5 ± 0.2, 8.5 ± 4.7, 15.3 ± 12.7%). Finally, Visudyne®-PDT was found to be associated with reduced vessel functionality (Myogram). CONCLUSION We demonstrated that sufficient accumulation of Visudyne® within plaque could be achieved in short-time and therefore validated the feasibility of local intravascular administration of photosensitizer. Intra-arterial Visudyne®-PDT preferentially affected plaque macrophages and may therefore alter the dynamic progression of plaque development.
Collapse
Affiliation(s)
- Manish Jain
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Matthieu Zellweger
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Aurélien Frobert
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Jérémy Valentin
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Hubert van den Bergh
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Georges Wagnières
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Stéphane Cook
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| |
Collapse
|
79
|
Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2483163. [PMID: 27668035 PMCID: PMC5030421 DOI: 10.1155/2016/2483163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.
Collapse
|
80
|
Abstract
Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
81
|
Perrucci GL, Straino S, Corlianò M, Scopece A, Napolitano M, Berk BC, Lombardi F, Pompilio G, Capogrossi MC, Nigro P. Cyclophilin A modulates bone marrow-derived CD117+ cells and enhances ischemia-induced angiogenesis via the SDF-1/CXCR4 axis. Int J Cardiol 2016; 212:324-35. [DOI: 10.1016/j.ijcard.2016.03.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/21/2022]
|
82
|
Zhou Y, Zhang MJ, Li BH, Chen L, Pi Y, Yin YW, Long CY, Wang X, Sun MJ, Chen X, Gao CY, Li JC, Zhang LL. PPARγ Inhibits VSMC Proliferation and Migration via Attenuating Oxidative Stress through Upregulating UCP2. PLoS One 2016; 11:e0154720. [PMID: 27144886 PMCID: PMC4856345 DOI: 10.1371/journal.pone.0154720] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/18/2016] [Indexed: 01/20/2023] Open
Abstract
Increasing evidence showed that abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are common event in the pathophysiology of many vascular diseases, including atherosclerosis and restenosis after angioplasty. Among the underlying mechanisms, oxidative stress is one of the principal contributors to the proliferation and migration of VSMCs. Oxidative stress occurs as a result of persistent production of reactive oxygen species (ROS). Recently, the protective effects of peroxisome proliferator-activated receptor γ (PPARγ) against oxidative stress/ROS in other cell types provide new insights to inhibit the suggests that PPARγ may regulate VSMCs function. However, it remains unclear whether activation of PPARγ can attenuate oxidative stress and further inhibit VSMC proliferation and migration. In this study, we therefore investigated the effect of PPARγ on inhibiting VSMC oxidative stress and the capability of proliferation and migration, and the potential role of mitochondrial uncoupling protein 2 (UCP2) in oxidative stress. It was found that platelet derived growth factor-BB (PDGF-BB) induced VSMC proliferation and migration as well as ROS production; PPARγ inhibited PDGF-BB-induced VSMC proliferation, migration and oxidative stress; PPARγ activation upregulated UCP2 expression in VSMCs; PPARγ inhibited PDGF-BB-induced ROS in VSMCs by upregulating UCP2 expression; PPARγ ameliorated injury-induced oxidative stress and intimal hyperplasia (IH) in UCP2-dependent manner. In conclusion, our study provides evidence that activation of PPARγ can attenuate ROS and VSMC proliferation and migration by upregulating UCP2 expression, and thus inhibit IH following carotid injury. These findings suggest PPARγ may represent a prospective target for the prevention and treatment of IH-associated vascular diseases.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Ming-Jie Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Bing-Hu Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Lei Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yan-Wei Yin
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Chun-Yan Long
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xu Wang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Meng-Jiao Sun
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xue Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Chang-Yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Jing-Cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
- * E-mail: (L-LZ); (J-CL)
| | - Li-Li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
- * E-mail: (L-LZ); (J-CL)
| |
Collapse
|
83
|
Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology). J Cardiovasc Pharmacol 2016; 65:412-8. [PMID: 25162437 DOI: 10.1097/fjc.0000000000000159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Collapse
|
84
|
The GTPase ARF6 Controls ROS Production to Mediate Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation. PLoS One 2016; 11:e0148097. [PMID: 26824355 PMCID: PMC4732744 DOI: 10.1371/journal.pone.0148097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
High reactive oxygen species (ROS) levels and enhanced vascular smooth muscle cells (VSMC) proliferation are observed in numerous cardiovascular diseases. The mechanisms by which hormones such as angiotensin II (Ang II) acts to promote these cellular responses remain poorly understood. We have previously shown that the ADP-ribosylation factor 6 (ARF6), a molecular switch that coordinates intracellular signaling events can be activated by the Ang II receptor (AT1R). Whether this small GTP-binding protein controls the signaling events leading to ROS production and therefore Ang II-dependent VSMC proliferation, remains however unknown. Here, we demonstrate that in rat aortic VSMC, Ang II stimulation led to the subsequent activation of ARF6 and Rac1, a key regulator of NADPH oxidase activity. Using RNA interference, we showed that ARF6 is essential for ROS generation since in conditions where this GTPase was knocked down, Ang II could no longer promote superoxide anion production. In addition to regulating Rac1 activity, ARF6 also controlled expression of the NADPH oxidase 1 (Nox 1) as well as the ability of the EGFR to become transactivated. Finally, ARF6 also controlled MAPK (Erk1/2, p38 and Jnk) activation, a key pathway of VSMC proliferation. Altogether, our findings demonstrate that Ang II promotes activation of ARF6 to controls ROS production by regulating Rac1 activation and Nox1 expression. In turn, increased ROS acts to activate the MAPK pathway. These signaling events represent a new molecular mechanism by which Ang II can promote proliferation of VSMC.
Collapse
|
85
|
van Lith R, Wang X, Ameer G. Biodegradable Elastomers with Antioxidant and Retinoid-like Properties. ACS Biomater Sci Eng 2016; 2:268-277. [PMID: 27347559 DOI: 10.1021/acsbiomaterials.5b00534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intimal hyperplasia (IH) is a type of scarring that involves complex pathophysiological responses of the vasculature to injury, including overproliferation and migration of vascular smooth muscle cells (VSMCs), adventitial fibroblasts, and the activation of macrophages. The objective of this research was to develop a biodegradable polymer with intrinsic properties that would combat the cellular processes that contribute to IH. Citric acid, 1,8-octanediol, and all-trans retinoic acid (atRA) were incorporated into a polyester network via a condensation reaction to form the thermoset poly(1,8-octamethylene-citrate-co-retinate) (POCR). POCR was chemically characterized and assessed for the presence of antioxidant and retinoidlike properties. HNMR and ATR-FTIR confirmed the incorporation of atRA into the backbone of the polymer network. POCR was able to scavenge radicals and inhibit lipid peroxidation. The proliferation and migration of vascular smooth muscle cells cultured on POCR were inhibited, whereas endothelial cell proliferation and migration were not. These results are consistent with the biological effects of atRA. These results are the first to demonstrate the synthesis of a polymer with intrinsic antirestenotic properties for potential use in the fabrication of vascular devices such as stents and vascular grafts.
Collapse
Affiliation(s)
- Robert van Lith
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuesong Wang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208, United States
| | - Guillermo Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208, United States; Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States; Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, Illinois 60611, United States; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
86
|
PPIA rs6850: A > G single-nucleotide polymorphism is associated with raised plasma cyclophilin A levels in patients with coronary artery disease. Mol Cell Biochem 2015; 412:259-68. [DOI: 10.1007/s11010-015-2632-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
|
87
|
Abstract
Vascular homeostasis is regulated by complex interactions between many vascular cell components, including endothelial cells, vascular smooth muscle cells (VSMCs), adventitial inflammatory cells, and autonomic nervous system. The balance between oxidant and antioxidant systems determines intracellular redox status, and their imbalance can cause oxidative stress. Excessive oxidative stress is one of the important stimuli that induce cellular damage and dysregulation of vascular cell components, leading to vascular diseases through multiple pathways. Cyclophilin A (CyPA) is one of the causative proteins that mediate oxidative stress-induced cardiovascular dysfunction. CyPA was initially discovered as the intracellular receptor of the immunosuppressive drug cyclosporine 30 years ago. However, recent studies have established that CyPA is secreted from vascular cell components, such as endothelial cells and VSMCs. Extracellular CyPA augments the development of cardiovascular diseases. CyPA secretion is regulated by Rho-kinase, which contributes to the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. We recently reported that plasma CyPA levels are significantly higher in patients with coronary artery disease, which is associated with increased numbers of stenotic coronary arteries and the need for coronary intervention in such patients. Furthermore, we showed that the vascular erythropoietin (Epo)/Epo receptor system plays an important role in production of nitric oxide and maintenance of vascular redox state and homeostasis, with a potential mechanistic link to the Rho-kinase-CyPA pathway. In this article, I review the data on the protective role of the vascular Epo/Epo receptor system and discuss the roles of the CyPA/Rho-kinase system in cardiovascular diseases.
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
88
|
Suvorava T, Nagy N, Pick S, Lieven O, Rüther U, Dao VTV, Fischer JW, Weber M, Kojda G. Impact of eNOS-Dependent Oxidative Stress on Endothelial Function and Neointima Formation. Antioxid Redox Signal 2015; 23:711-23. [PMID: 25764009 PMCID: PMC4580305 DOI: 10.1089/ars.2014.6059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
AIMS Vascular oxidative stress generated by endothelial NO synthase (eNOS) was observed in experimental and clinical cardiovascular disease, but its relative importance for vascular pathologies is unclear. We investigated the impact of eNOS-dependent vascular oxidative stress on endothelial function and on neointimal hyperplasia. RESULTS A dimer-destabilized mutant of bovine eNOS where cysteine 101 was replaced by alanine was cloned and introduced into an eNOS-deficient mouse strain (eNOS-KO) in an endothelial-specific manner. Destabilization of mutant eNOS in cells and eNOS-KO was confirmed by the reduced dimer/monomer ratio. Purified mutant eNOS and transfected cells generated less citrulline and NO, respectively, while superoxide generation was enhanced. In eNOS-KO, introduction of mutant eNOS caused a 2.3-3.7-fold increase in superoxide and peroxynitrite formation in the aorta and myocardium. This was completely blunted by an NOS inhibitor. Nevertheless, expression of mutant eNOS in eNOS-KO completely restored maximal aortic endothelium-dependent relaxation to acetylcholine. Neointimal hyperplasia induced by carotid binding was much larger in eNOS-KO than in mutant eNOS-KO and C57BL/6, while the latter strains showed comparable hyperplasia. Likewise, vascular remodeling was blunted in eNOS-KO only. INNOVATION Our results provide the first in vivo evidence that eNOS-dependent oxidative stress is unlikely to be an initial cause of impaired endothelium-dependent vasodilation and/or a pathologic factor promoting intimal hyperplasia. These findings highlight the importance of other sources of vascular oxidative stress in cardiovascular disease. CONCLUSION eNOS-dependent oxidative stress is unlikely to induce functional vascular damage as long as concomitant generation of NO is preserved. This underlines the importance of current and new therapeutic strategies in improving endothelial NO generation.
Collapse
Affiliation(s)
- Tatsiana Suvorava
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadine Nagy
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie Pick
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Oliver Lieven
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thao-Vi Dao
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens W. Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina Weber
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Georg Kojda
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
89
|
Cyclophilin A/Cluster of Differentiation 147 Interactions Participate in Early Brain Injury After Subarachnoid Hemorrhage in Rats. Crit Care Med 2015; 43:e369-81. [DOI: 10.1097/ccm.0000000000001146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
90
|
Shimokawa H, Satoh K. 2015 ATVB Plenary Lecture: translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2015; 35:1756-69. [PMID: 26069233 DOI: 10.1161/atvbaha.115.305353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
Rho-kinase (ROCKs) is an important downstream effector of the small GTP-binding protein Ras homolog gene family member A. There are 2 isoforms of ROCK, ROCK1 and ROCK2, and they have different functions in several vascular components. The Ras homolog gene family member A/ROCK pathway plays an important role in various fundamental cellular functions, including contraction, motility, proliferation, and apoptosis, whereas its excessive activity is involved in the pathogenesis of cardiovascular diseases. For the past 20 years, a series of translational research studies have demonstrated the important roles of ROCK in the pathogenesis of cardiovascular diseases. At the molecular and cellular levels, ROCK upregulates several molecules related to inflammation, thrombosis, and fibrosis. In animal experiments, ROCK plays an important role in the pathogenesis of vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, and heart failure. Finally, at the human level, ROCK is substantially involved in the pathogenesis of coronary vasospasm, angina pectoris, hypertension, pulmonary hypertension, and heart failure. Furthermore, ROCK activity in circulating leukocytes is a useful biomarker for the assessment of disease severity and therapeutic responses in vasospastic angina, heart failure, and pulmonary hypertension. In addition to fasudil, many other ROCK inhibitors are currently under development for various indications. Thus, the ROCK pathway is an important novel therapeutic target in cardiovascular medicine.
Collapse
MESH Headings
- Animals
- Cardiovascular Agents/therapeutic use
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/enzymology
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Molecular Targeted Therapy
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
- Translational Research, Biomedical
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
91
|
Takanashi S, Nochi T, Abe M, Itaya N, Urakawa M, Sato K, Zhuang T, Umemura S, Hayashi T, Kiku Y, Kitazawa H, Rose MT, Watanabe K, Aso H. Extracellular cyclophilin A possesses chemotaxic activity in cattle. Vet Res 2015; 46:80. [PMID: 26163364 PMCID: PMC4498507 DOI: 10.1186/s13567-015-0212-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/10/2015] [Indexed: 11/10/2022] Open
Abstract
Cyclophilin A (CyPA) was originally discovered in bovine thymocytes as a cytosolic binding protein of the immunosuppressive drug cyclosporine A. Recent studies have revealed that in mice and humans, CyPA is secreted from cells in injured or infected tissues and plays a role in recruiting inflammatory cells in those tissues. Here we found that in cattle abundant level of extracellular CyPA was observed in tissues with inflammation. To aid in investigating the role of extracellular CyPA in cattle, we generated recombinant bovine CyPA (rbCyPA) and tested its biological activity as an inflammatory mediator. When bovine peripheral blood cells were treated with rbCyPA in vitro, we observed that rbCyPA reacts with the membranous surface of granulocytes, monocytes and lymphocytes. Chemotaxis analysis showed that the granulocytes migrate toward rbCyPA and the migration is inhibited by pre-treatment with an anti-bovine CyPA antibody. These results indicate that, as for mice and humans, extracellular CyPA possesses chemotactic activity to recruit inflammatory cells (e.g., granulocytes) in cattle, and could thus be a potential therapeutic target for the treatment of inflammation.
Collapse
Affiliation(s)
- Satoru Takanashi
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Tomonori Nochi
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Miku Abe
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Nanami Itaya
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Megumi Urakawa
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Katsuyoshi Sato
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Tao Zhuang
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Saori Umemura
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Tomohito Hayashi
- National Agriculture and Food Research Organization, National Institute of Animal Health, Hokkaido, 062-0045, Japan.
| | - Yoshio Kiku
- National Agriculture and Food Research Organization, National Institute of Animal Health, Hokkaido, 062-0045, Japan.
| | - Haruki Kitazawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Michael T Rose
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cardiganshire, SY23 3DA, UK.
| | - Kouichi Watanabe
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Hisashi Aso
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan. .,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| |
Collapse
|
92
|
Perrucci GL, Gowran A, Zanobini M, Capogrossi MC, Pompilio G, Nigro P. Peptidyl-prolyl isomerases: a full cast of critical actors in cardiovascular diseases. Cardiovasc Res 2015; 106:353-64. [DOI: 10.1093/cvr/cvv096] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/30/2015] [Indexed: 12/28/2022] Open
|
93
|
Pereira YCL, do Nascimento GC, Iyomasa DM, Iyomasa MM. Muscle characterization of reactive oxygen species in oral diseases. Acta Odontol Scand 2015; 73:81-6. [PMID: 25205230 DOI: 10.3109/00016357.2014.954267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE AND OBJECTIVE Reactive Oxygen Species (ROS) are oxygen-derived molecules that are unstable and highly reactive. They are important signaling mediators of biological processes. In contrast, excessive ROS generation, defective oxidant scavenging or both have been implicated in the pathogenesis of several conditions. This biological paradox of ROS function contributes to the integrity of cells and tissues. So, the aim of this review was examined for published literature related to 'reactive oxygen species and dentistry and muscle'. MATERIALS AND METHODS A PubMed search was performed by using the following key words: 'reactive oxygen species and dentistry and muscle'. RESULTS Involvement of ROS in pathologic conditions can be highlighted in oral diseases like periodontitis, orofacial pain, temporomandibular disorders and oral cancer. Also, several studies have correlated the increase in ROS production with the initiation of the muscle fatigue process and the process of muscle injury. However, studies evaluating the relation of ROS and orofacial muscles, which can prove very important to understand the fatigue muscle in this region during oral movements, have not yet been conducted. CONCLUSIONS It is concluded that the data on skeletal muscles, especially those of mastication, are not commonly published in this data source; therefore, further studies in this field are strongly recommended.
Collapse
|
94
|
Staiculescu MC, Foote C, Meininger GA, Martinez-Lemus LA. The role of reactive oxygen species in microvascular remodeling. Int J Mol Sci 2014; 15:23792-835. [PMID: 25535075 PMCID: PMC4284792 DOI: 10.3390/ijms151223792] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Christopher Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
95
|
Gérard N, Chanson-Rollé A, Rock E, Brachet P. Proteomic analysis identifies cytoskeleton-interacting proteins as major downstream targets of altered folate status in the aorta of adult rat. Mol Nutr Food Res 2014; 58:2307-19. [PMID: 25266508 DOI: 10.1002/mnfr.201400317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/14/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022]
Abstract
SCOPE Mild folate deficiency and subsequently elevated plasma level of homocysteine are associated with an increased risk for vascular diseases in adults. Conversely, high intakes of folic acid (FA) may have beneficial effects on vascular function, presumably in part through homocysteine lowering. However, these effects have not yet been translated in terms of prevention or treatment of vascular pathologies. Besides, the complex biologic perturbation induced by variations of the folate supply is still not fully deciphered. We thus carried out a proteomic analysis of the aorta of adult rats after a dietary FA depletion or supplementation. METHODS AND RESULTS Nine month-old rats were fed a FA-depleted, FA-supplemented or control diet for 8 weeks. Total proteins from adventitia-free aortas were separated by 2DE and differentially expressed proteins were identified by MS. FA depletion or supplementation resulted in significantly changed abundance of 29 spots (p < 0.05), of which 20 proteins were identified. Bioinformatic analysis revealed that most of these proteins are involved in cytoskeleton-related processes important to cell function/maintenance, assembly/organization, and movement. CONCLUSION Our proteomic study supports that expression of proteins essential to vascular structure and, presumably, function is modulated by high intake as well as deprivation of FA.
Collapse
Affiliation(s)
- Nicolas Gérard
- Human Nutrition Unit, UMR 1019, National Institute for Agronomic Research, University of Auvergne, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
96
|
Yan J, Li Y, Wang Z, Liang Y, Yuan W, Wang C. Effects of OX40–OX40 ligand interaction on the levels of ROS and Cyclophilin A in C57BL/6J mice atherogenesis. Int J Cardiol 2014; 176:405-12. [DOI: 10.1016/j.ijcard.2014.07.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/05/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
|
97
|
Kim HC, Al-Mahrouki A, Gorjizadeh A, Sadeghi-Naini A, Karshafian R, Czarnota GJ. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement. PLoS One 2014; 9:e102343. [PMID: 25051356 PMCID: PMC4106764 DOI: 10.1371/journal.pone.0102343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/17/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz) ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID) mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy) to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy). In parallel, in situ end-labelling (ISEL) staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.
Collapse
Affiliation(s)
- Hyunjung Christina Kim
- Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Azza Al-Mahrouki
- Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alborz Gorjizadeh
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Ali Sadeghi-Naini
- Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Gregory J. Czarnota
- Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
98
|
Abstract
Small GTPases are key signal transducers from extracellular stimuli to the nucleus that regulate a variety of cellular responses, including changes in gene expression and cell adhesion and migration. Accumulating data have demonstrated that abnormal activation of these small GTPases plays a critical role in the atherosclerosis characterized by vascular abnormalities, especially endothelial dysfunction and inflammation. Here, we discuss the linkage between small GTPases, inflammation, and atherogenesis. First, small GTPases affect gene expression of inflammatory cytokines through proinflammatory signaling pathways, such as nuclear factor-κB, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, interlukin-8, and monocyte chemoattractant protein-1. Then, these molecules regulate the vascular inflammation through cell adhesion and migration. In turn, small GTPases are also regulated by extracellular stimuli, such as L-selectin, thrombin, oxidized phospholipids, and interleukins. Thus, these inflammatory cytokines generate a vicious cycle for small GTPases and inflammatory responses in the atherogenesis.
Collapse
|
99
|
Maslinic acid protects vascular smooth muscle cells from oxidative stress through Akt/Nrf2/HO-1 pathway. Mol Cell Biochem 2014; 390:61-7. [PMID: 24553817 DOI: 10.1007/s11010-013-1956-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/19/2013] [Indexed: 01/09/2023]
Abstract
Maslinic acid (MA) is a natural triterpenoid widely distributed in edible and medicinal plants and has been demonstrated to possess bioactivity. However, its effect on vascular smooth muscle cells (VSMC) has not been explored yet. In this study, we found that heme oxygenase-1 (HO-1) expression was increased in VSMCs treated with MA. Furthermore, MA was found to induce Akt activation in a dose- and time-dependent manner. Wortmannin suppression of Akt was able to abolish HO-1 upregulation in VSMCs, suggesting the requirement of Akt activation for MA effect on HO-1. Further investigation indicated that Akt activation resulted in the elevated expression of Nrf2, a HO-1 promoter, in MA-treated VMSCs. Finally, we found that MA was able to protect VSMCs from oxidative stress induced by H2O2. Blocking the activation of Akt/Nrf2/HO-1 was able to compromise the protective effect of MA on VSMCs. Collectively, we provided evidence that MA protected VMSCs from oxidative stress through Akt/Nrf2/HO-1 pathway.
Collapse
|
100
|
Ramachandran S, Venugopal A, Kutty VR, A V, G D, Chitrasree V, Mullassari A, Pratapchandran NS, Santosh KR, Pillai MR, Kartha CC. Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease. Cardiovasc Diabetol 2014; 13:38. [PMID: 24502618 PMCID: PMC3922405 DOI: 10.1186/1475-2840-13-38] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 11/30/2022] Open
Abstract
Aims/hypothesis Cyclophilin A, an immunophilin is secreted from human monocytes activated by high glucose. Given its role as an inflammatory mediator of vascular tissue damage associated with inflammation and oxidative stress, we examined plasma levels of cyclophilin A in normal healthy volunteers and patients with type 2 diabetes (DM), with or without coronary artery disease (CAD). Methods Study subjects comprised of 212 patients with DM and CAD,101 patients with diabetes, 122 patients with CAD and 121 normal healthy volunteers. Diabetes was assessed by HbA1c levels while coronary artery disease was established by a positive treadmill test and/or coronary angiography. Plasma cyclophilin A was measured using a cyclophilin A ELISA Kit. Relationship of plasma cyclophilin A levels with blood markers of type 2 diabetes, blood lipid levels and medication for diabetes and coronary artery disease were also explored. Results Plasma Cyclophilin levels were higher in diabetes patients with or without CAD compared to normal subjects (P < 0.001). Age, fasting blood sugar levels and HbA1C levels were positively associated with increased plasma cyclophilin. Patients using metformin had reduced levels of plasma cyclophilin (p < 0.001).Serum levels of total cholesterol, LDL cholesterol and triglycerides had no significant association with plasma cyclophilin levels. In patients with increased serum CRP levels, plasma cyclophilin A was also elevated (p = 0.016). Prevalence odds for DM, DM + CAD and CAD are higher in those with high cyclophilin values, compared to those with lower values, after adjusting for age and sex, indicating strong association of high cyclophilin values with diabetes and vascular disease. Conclusions/interpretations Our study demonstrates that patients with type 2 diabetes have higher circulating levels of cyclophilin A than the normal population. Plasma cyclophilin levels were increased in patients with diabetes and coronary artery disease suggesting a role of this protein in accelerating vascular disease in type 2 diabetes. Considering the evidence that Cyclophilin A is an inflammatory mediator in atherogenesis, the mechanistic role of cyclophilin A in diabetic vascular disease progression deserves detailed investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - C C Kartha
- Cardiovascular Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.
| |
Collapse
|