51
|
Jin ZH, Liu YL, Fan WT, Huang WH. Integrating Flexible Electrochemical Sensor into Microfluidic Chip for Simulating and Monitoring Vascular Mechanotransduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903204. [PMID: 31402582 DOI: 10.1002/smll.201903204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 05/20/2023]
Abstract
As an interface between the blood flow and vessel wall, endothelial cells (ECs) are exposed to hemodynamic forces, and the biochemical molecules released from ECs-blood flow interaction are important determinants of vascular homeostasis. Versatile microfluidic chips have been designed to simulate the biological and physiological parameters of the human vascular system, but in situ and real-time monitoring of the mechanical force-triggered signals during vascular mechanotransduction still remains a significant challenge. Here, such challenge is fulfilled for the first time, by preparation of a flexible and stretchable electrochemical sensor and its incorporation into a microfluidic vascular chip. This allows simulating of in vivo physiological and biomechanical parameters of blood vessels, and simultaneously monitoring the mechanically induced biochemical signals in real time. Specifically, the cyclic circumferential stretch that is actually exerted on endothelium but is hard to reproduce in vitro is successfully recapitulated, and nitric oxide signals under normal blood pressure, as well as reactive oxygen species signals under hypertensive states, are well documented. Here, the first integration of a flexible electrochemical sensor into a microfluidic chip is reported, therefore paving a way to evaluate in vitro organs by built-in flexible sensors.
Collapse
Affiliation(s)
- Zi-He Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
52
|
Shar JA, Brown KN, Keswani SG, Grande-Allen J, Sucosky P. Impact of Aortoseptal Angle Abnormalities and Discrete Subaortic Stenosis on Left-Ventricular Outflow Tract Hemodynamics: Preliminary Computational Assessment. Front Bioeng Biotechnol 2020; 8:114. [PMID: 32175314 PMCID: PMC7056880 DOI: 10.3389/fbioe.2020.00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is an obstruction of the left ventricular outflow tract (LVOT) due to the formation of a fibromuscular membrane upstream of the aortic valve. DSS is a major risk factor for aortic regurgitation (AR), which often persists after surgical resection of the membrane. While the etiology of DSS and secondary AR is largely unknown, the frequent association between DSS and aortoseptal angle (AoSA) abnormalities has supported the emergence of a mechanobiological pathway by which hemodynamic stress alterations on the septal wall could trigger a biological cascade leading to fibrosis and membrane formation. The resulting LVOT flow disturbances could activate the valve endothelium and contribute to AR. In an effort to assess this hypothetical mechano-etiology, this study aimed at isolating computationally the effects of AoSA abnormalities on septal wall shear stress (WSS), and the impact of DSS on LVOT hemodynamics. Two-dimensional computational fluid dynamics models featuring a normal AoSA (N-LV), a steep AoSA (S-LV), and a steep AoSA with a DSS lesion (DSS-LV) were designed to compute the flow in patient-specific left ventricles (LVs). Boundary conditions consisted of transient velocity profiles at the mitral inlet and LVOT outlet, and patient-specific LV wall motion. The deformation of the DSS lesion was computed using a two-way fluid-structure interaction modeling strategy. Turbulence was accounted for via implementation of the k-ω turbulence model. While the N-LV and S-LV models generated similar LVOT flow characteristics, the DSS-LV model resulted in an asymmetric LVOT jet-like structure, subaortic stenotic conditions (up to 2.4-fold increase in peak velocity, 45% reduction in effective jet diameter vs. N-LV/S-LV), increased vorticity (2.8-fold increase) and turbulence (5- and 3-order-of-magnitude increase in turbulent kinetic energy and Reynolds shear stress, respectively). The steep AoSA subjected the septal wall to a 23% and 69% overload in temporal shear magnitude and gradient, respectively, without any substantial change in oscillatory shear index. This study reveals the existence of WSS overloads on septal wall regions prone to DSS lesion formation in steep LVOTs, and the development of highly turbulent, stenotic and asymmetric flow in DSS LVOTs, which support a possible mechano etiology for DSS and secondary AR.
Collapse
Affiliation(s)
- Jason A. Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N. Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G. Keswani
- Division of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
53
|
Smith Q, Macklin B, Chan XY, Jones H, Trempel M, Yoder MC, Gerecht S. Differential HDAC6 Activity Modulates Ciliogenesis and Subsequent Mechanosensing of Endothelial Cells Derived from Pluripotent Stem Cells. Cell Rep 2020; 24:895-908.e6. [PMID: 30044986 DOI: 10.1016/j.celrep.2018.06.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
The role of primary cilia in mechanosensation is essential in endothelial cell (EC) shear responsiveness. Here, we find that venous, capillary, and progenitor ECs respond to shear stress in vitro in a cilia-dependent manner. We then demonstrate that primary cilia assembly in human induced pluripotent stem cell (hiPSC)-derived ECs varies between different cell lines with marginal influence of differentiation protocol. hiPSC-derived ECs lacking cilia do not align to shear stress, lack stress fiber assembly, have uncoordinated migration during wound closure in vitro, and have aberrant calcium influx upon shear exposure. Transcriptional analysis reveals variation in regulatory genes involved in ciliogenesis among different hiPSC-derived ECs. Moreover, inhibition of histone deacetylase 6 (HDAC6) activity in hiPSC-ECs lacking cilia rescues cilia formation and restores mechanical sensing. Taken together, these results show the importance of primary cilia in hiPSC-EC mechano-responsiveness and its modulation through HDAC6 activity varies among hiPSC-ECs.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bria Macklin
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hannah Jones
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Trempel
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mervin C Yoder
- Department of Pediatrics, Biochemistry, and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
54
|
Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and Uterine Blood Flow in Preeclampsia: The Role of Mechanosensing Piezo 1 Ion Channels. Am J Hypertens 2020; 33:1-9. [PMID: 31545339 PMCID: PMC7768673 DOI: 10.1093/ajh/hpz158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
There is a large increase in uterine arterial blood flow during normal pregnancy. Structural and cellular adjustments occur in the uterine vasculature during pregnancy to accommodate this increased blood flow through a complex adaptive process that is dependent on multiple coordinated and interactive influences and this process is known as "vascular remodeling." The etiology of preeclampsia involves aberrant placentation and vascular remodeling leading to reduced uteroplacental perfusion. The placental ischemia leads to development of hypertension and proteinuria in the mother, intrauterine growth restriction, and perinatal death in the fetus. However, the underlying source of the deficient vascular remodeling and the subsequent development of preeclampsia remain to be fully understood. Mechanoreceptors in the vascular system convert mechanical force (shear stress) to biochemical signals and feedback mechanisms. This review focuses on the Piezo 1 channel, a mechanosensitive channel that is sensitive to shear stress in the endothelium; it induces Ca2+ entry which is linked to endothelial nitric oxide synthase (eNOS) activation as the mechanoreceptor responsible for uterine vascular dilatation during pregnancy. Here we describe the downstream signaling pathways involved in this process and the possibility of a deficiency in expression of Piezo 1 in preeclampsia leading to the abnormal vascular dysfunction responsible for the pathophysiology of the disease. The Piezo 1 ion channel is expressed in the endothelium and vascular smooth muscle cells (VSMCs) of small-diameter arteries. It plays a role in the structural remodeling of arteries and is involved in mechanotransduction of hemodynamic shear stress by endothelial cells (ECs).
Collapse
Affiliation(s)
- Olufunke O Arishe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
55
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Machado MIP, Gomes AM, Rodrigues MF, Silva Pinto T, da Costa Fernandes CJ, Bezerra FJ, Zambuzzi WF. Cobalt-chromium-enriched medium ameliorates shear-stressed endothelial cell performance. J Trace Elem Med Biol 2019; 54:163-171. [PMID: 31109607 DOI: 10.1016/j.jtemb.2019.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is a relevant mechanism to be considered for the success of bone healing, even considering endosseous implantable devices, providing adequate delivery of substances necessaries for the cell viability and bone de novo deposition. Within of the repertory of metal-based implantable alloys, cobalt-chromium (CoCr) has emerged with very interesting properties for biomedical applications. Additionally, we have shown that released molecules from implants devices are able to modulate cells away and because that we hypothesized these released molecules might act on endothelial cells. In order to better address this issue, we investigated the effect of Co-Cr-enriched medium on endothelial cells (HUVECs), considering a biological model subjecting those cells to shear-stress to partially mimic the physiological environment and further allow investigating intracellular pathways responsible to drive cytoskeletal rearrangement, cell viability and extracellular matrix (ECM) remodeling processes. Considering the analysis of the metalloproteinases (MMPs) activities, our data indicates an intense ECM remodeling in response to CoCr-enriched medium suggesting some role on angiogenesis once ECM remodeling is prerequisite to cell growth. This was better addressed by revealing its involvement on modifying both mRNA expression and protein levels of members of the MAPK family. Additionally, the expression of CDK4 gene was modulated within the cell response to Co-Cr-enriched medium, while the modulation in the expression of P15 and P21 indicates an important regulatory mechanism required. Overall, our results demonstrate that trace of CoCr elements triggers decisive intracellular signaling in shear-stressed endothelial cells, suggesting influence on angiogenesis-related mechanism and they bring novel insights to explain the biological activity of CoCr as it has been emerged as interesting biomedical materials within the medical and dentistry fields.
Collapse
Affiliation(s)
- Mariana Issler Pinheiro Machado
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Anderson Moreira Gomes
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Marcel Ferreira Rodrigues
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Thais Silva Pinto
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Célio Júnior da Costa Fernandes
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Fábio J Bezerra
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Department of Chemistry and Biochemistry, Bioscience Institute, Sao Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil; Electron Microscopy Center, IBB, UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
57
|
Garten RS, Darling A, Weggen J, Decker K, Hogwood AC, Michael A, Imthurn B, Mcintyre A. Aerobic training and vascular protection: Insight from altered blood flow patterns. Exp Physiol 2019; 104:1420-1431. [PMID: 31127657 DOI: 10.1113/ep087576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
NEW FINDING What is the central question of this study? This study sought to determine whether prior upper limb aerobic training can attenuate the vascular dysfunction resulting from negative alteration of blood flow patterns. What is the main finding and its importance? We demonstrated that the microvasculature of young men with prior upper limb aerobic training (rowing) was equally susceptible to negatively altered blood flow patterns when compared with untrained control subjects. This finding reveals that aerobic training does not provide adequate protection against this type of vascular insult, highlighting the importance of reducing known vascular insults regardless of training status. ABSTRACT Acute alteration of blood flow patterns can substantially reduce blood vessel function and, if consistently repeated, may chronically reduce vascular health. Aerobic exercise training is associated with improved vascular health, but it is not well understood whether aerobic training-induced vascular adaptations provide protection against acute vascular insults. This study sought to determine whether prior upper limb aerobic training can attenuate the vascular dysfunction resulting from an acute vascular insult (increased retrograde/oscillatory shear). Ten young arm-trained (AT) men (rowers; 22 ± 1 years of age) and 10 untrained (UT) male control subjects (21 ± 3 years of age) were recruited for this study. Subjects completed two brachial artery (BA) flow-mediated dilatation (FMD) tests separated by an acute bout of subdiastolic cuff inflation (SDCI) of the distal forearm. Brachial artery dilatation (normalized for the shear stimulus) and reactive hyperaemia evaluated during the BA FMD test were used to determine conduit artery and microvascular function, respectively. Data were presented as mean values ± SD. The AT group reported significantly greater whole body (peak oxygen uptake; P = 0.01) and forearm aerobic capacity (P < 0.001). The SDCI intervention significantly increased retrograde (P < 0.001) and oscillatory shear (P < 0.001) in both groups. After the SDCI, microvascular function (post-cuff release hyperaemia), but not conduit artery function (shear-induced BA dilatation), was significantly reduced from pre-SDCI values (P = 0.001) independent of group. This study revealed that young men with prior upper limb aerobic training, when compared with untrained control subjects, were equally susceptible to the microvascular dysfunction associated with an acute increase in retrograde/oscillatory shear.
Collapse
Affiliation(s)
- Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashley Darling
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Kevin Decker
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Austin C Hogwood
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Austin Michael
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Brandon Imthurn
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Mcintyre
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
58
|
Gu X, Xie S, Hong D, Ding Y. An in vitro model of foam cell formation induced by a stretchable microfluidic device. Sci Rep 2019; 9:7461. [PMID: 31097769 PMCID: PMC6522483 DOI: 10.1038/s41598-019-43902-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Although a variety of animal models of atherosclerosis have been developed, these models are time-consuming and costly. Here, we describe an in vitro model to induce foam cell formation in the early stage of atherosclerosis. This model is based on a three-dimension co-culture system in a stretchable microfluidic device. An elastic membrane embedded in the microfluidic device is capable of delivering nonuniform strain to vascular smooth muscle cells, endothelial cells and monocytes adhering thereto, which are intended to mimic the biological environment of blood vessels. Under low-density lipoprotein and stretch treatment, foam cell formation was successfully induced in co-culture with changes in mRNA and protein expression of some related key factors. Subsequently, the model was used to assess the inhibitory effect of atorvastatin on foam cell formation. The results obtained indicate that atorvastatin has a significantly dose-dependent inhibition of foam cell formation, which can be explained by the changes in mRNA and protein expression of the related factors. In principle, the model can be used to study the role of different types of cells in the formation of foam cells, as well as the evaluation of anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Xiaoyang Gu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shijie Xie
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Dandan Hong
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
59
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
60
|
Miyata H, Shimizu K, Koseki H, Abekura Y, Kataoka H, Miyamoto S, Nozaki K, Narumiya S, Aoki T. Real-time Imaging of an Experimental Intracranial Aneurysm in Rats. Neurol Med Chir (Tokyo) 2018; 59:19-26. [PMID: 30555120 PMCID: PMC6350001 DOI: 10.2176/nmc.oa.2018-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subarachnoid hemorrhage due to rupture of a pre-existing intracranial aneurysm has quite a poor outcome in spite of intensive medical care. Hemodynamic stress loaded on intracranial arterial walls is considered as a trigger and a regulator of formation and progression of the disease, but how intracranial arterial walls or intracranial aneurysm walls behave under hemodynamic stress loading remains unclear. The purpose of this study was to visualize and analyze the wall motion of intracranial aneurysms to detect a pathological flow condition. We subjected a transgenic rat line, in which endothelial cells are specifically visualized by expression of a green fluorescent protein, to an intracranial aneurysm model and observed a real-time motion of intracranial arterial walls or intracranial aneurysm walls by a multiphoton laser confocal microscopy. The anterior cerebral artery–olfactory artery bifurcation was surgically exposed for the monitoring. First, we observed the proper flow-dependent physiological dilatation of a contralateral intracranial artery in response to increase of blood flow by one side of carotid ligation. Next, we observed intracranial aneurysm lesions induced in a rat model and confirmed that a wall motion of the dome was static, whereas that of the neck was more dynamic in response to pulsation of blood flow. We successfully monitored a real-time motion of intracranial aneurysm walls. Findings obtained from such a real-time imaging will provide us many insights especially about the correlation of mechanical force and the pathogenesis of the disease and greatly promote our understanding of the disease.
Collapse
Affiliation(s)
- Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Department of Neurosurgery, Shiga University of Medical Science.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center.,Department of Neurosurgery, Tokyo Women's Medical University Medical Center East
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Hiroharu Kataoka
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research, Medical Innovation Center, Kyoto University Graduate School of Medicine
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center.,Alliance Laboratory for Advanced Medical Research, Medical Innovation Center, Kyoto University Graduate School of Medicine
| |
Collapse
|
61
|
Gori T. Endothelial Function: A Short Guide for the Interventional Cardiologist. Int J Mol Sci 2018; 19:ijms19123838. [PMID: 30513819 PMCID: PMC6320818 DOI: 10.3390/ijms19123838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
An impaired function of the coronary endothelium is an important determinant of all stages of atherosclerosis, from initiation, to mediation of functional phenomena—such as spasm and plaque erosion, to atherothrombotic complications. Endothelial function is modified by therapies, including stent implantation. Finally, endothelial function changes over time, in response to physical stimuli and pharmocotherapies, and its assessment might provide information on how individual patients respond to specific therapies. In this review, we describe the role of the endothelium in the continuum of coronary atherosclerosis, from the perspective of the interventional cardiologist. In the first part, we review the current knowledge of the role of endothelial (dys)function on atherosclerotic plaque progression/instabilization and on the mechanisms of ischemia, in the absence of coronary artery stenosis. In the second part of this review, we describe the impact of coronary artery stenting on endothelial function, platelet aggregation, and inflammation.
Collapse
Affiliation(s)
- Tommaso Gori
- Kardiologie I, Zentrum für Kardiologie der Universitätsmedizin Mainz and DZHK Standort Rhein-Main, Langenbeckstr 1, 55131 Mainz, Germany.
| |
Collapse
|
62
|
Kim S, Zhang X, O'Buckley SC, Cooter M, Park JJ, Nackley AG. Acupuncture Resolves Persistent Pain and Neuroinflammation in a Mouse Model of Chronic Overlapping Pain Conditions. THE JOURNAL OF PAIN 2018; 19:1384.e1-1384.e14. [PMID: 29981376 PMCID: PMC6289709 DOI: 10.1016/j.jpain.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
Patients with chronic overlapping pain conditions have decreased levels of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. Consistent with clinical syndromes, we previously demonstrated that COMT inhibition in rodents produces persistent pain and heightened immune responses. Here, we sought to determine the efficacy of manual acupuncture in resolving persistent pain and neuroinflammation in the classic inbred C57BL/6 strain and the rapid-wound healing MRL/MpJ strain. Mice received subcutaneous osmotic minipumps to deliver the COMT inhibitor OR486 or vehicle for 13 days. On day 7 after pump implantation, acupuncture was performed at the Zusanli (ST36) point or a non-acupoint for 6 consecutive days. Behavioral responses to mechanical stimuli were measured throughout the experiment. Immunohistochemical analysis of spinal phosphorylated p38 mitogen-activated protein kinase, a marker of inflammation, and glial fibrillary acidic protein, a marker of astrogliosis, was performed on day 13. Results demonstrated that ST36, but not sham, acupuncture resolved mechanical hypersensitivity and reduced OR486-dependent increases in phosphorylated p38 and glial fibrillary acidic protein in both strains. The magnitude of the analgesic response was greater in MRL/MpJ mice. These findings indicate acupuncture as an effective treatment for persistent pain linked to abnormalities in catecholamine signaling and, furthermore, that analgesic efficacy may be influenced by genetic differences. PERSPECTIVE: Chronic overlapping pain conditions remain ineffectively managed by conventional pharmacotherapies. Here, we demonstrate that acupuncture alleviates persistent pain and neuroinflammation linked to heightened catecholaminergic tone. Mice with superior healing capacity exhibit greater analgesic efficacy. Findings indicate acupuncture as an effective treatment for chronic overlapping pain conditions and provide insight into treatment response variability.
Collapse
Affiliation(s)
- Seungtae Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sandra C O'Buckley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Jongbae J Park
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
63
|
Pinto TS, Fernandes CJDC, da Silva RA, Gomes AM, Vieira JCS, Padilha PDM, Zambuzzi WF. c‐Src kinase contributes on endothelial cells mechanotransduction in a heat shock protein 70‐dependent turnover manner. J Cell Physiol 2018; 234:11287-11303. [DOI: 10.1002/jcp.27787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Thaís Silva Pinto
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | | | - Rodrigo Augusto da Silva
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Anderson Moreira Gomes
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - José Cavalcante Souza Vieira
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Pedro de M. Padilha
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Willian F. Zambuzzi
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
- Electron Microscopy Center São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| |
Collapse
|
64
|
Avrahami I, Raz D, Bash O. Biomechanical Aspects of Closing Approaches in Postcarotid Endarterectomy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:4517652. [PMID: 30510592 PMCID: PMC6230422 DOI: 10.1155/2018/4517652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/25/2018] [Accepted: 09/17/2018] [Indexed: 11/30/2022]
Abstract
The carotid bifurcation tends to develop atherosclerotic stenoses which might interfere with cerebral blood supply. In cases of arterial blockage, the common clinical solution is to remove the plaque via carotid endarterectomy (CEA) surgery. Artery closure after surgery using primary closures along the cutting edge might lead to artery narrowing and restrict blood flow. An alternative approach is patch angioplasty which takes longer time and leads to more during-surgery complications. The present study uses numerical methods with fluid-structure interaction (FSI) to explore and compare the two solutions in terms of hemodynamics and stress and strain fields developed in the artery wall.
Collapse
Affiliation(s)
- Idit Avrahami
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel
| | - Dafna Raz
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel
| | - Oranit Bash
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel
| |
Collapse
|
65
|
Abstract
Vascular endothelial cells (ECs) maintain circulatory system homeostasis by changing their functions in response to changes in hemodynamic forces, including shear stress and stretching. However, it is unclear how ECs sense changes in shear stress and stretching and transduce these changes into intracellular biochemical signals. The plasma membranes of ECs have recently been shown to respond to shear stress and stretching differently by rapidly changing their lipid order, fluidity, and cholesterol content. Such changes in the membranes' physical properties trigger the activation of membrane receptors and cell responses specific to each type of force. Artificial lipid-bilayer membranes show similar changes in lipid order in response to shear stress and stretching, indicating that they are physical phenomena rather than biological reactions. These findings suggest that the plasma membranes of ECs act as mechanosensors; in response to mechanical forces, they first alter their physical properties, modifying the conformation and function of membrane proteins, which then activates downstream signaling pathways. This new appreciation of plasma membranes as mechanosensors could help to explain the distinctive features of mechanotransduction in ECs involving shear stress and stretching, which activate a variety of membrane proteins and multiple signal transduction pathways almost simultaneously.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo
| | - Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University
| |
Collapse
|
66
|
Baek KI, Ding Y, Chang CC, Chang M, Sevag Packard RR, Hsu JJ, Fei P, Hsiai TK. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:105-115. [PMID: 29752956 PMCID: PMC6226366 DOI: 10.1016/j.pbiomolbio.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Ding
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Megan Chang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| |
Collapse
|
67
|
Garten RS, Hogwood AC, Weggen JB, Fralin RC, LaRosa K, Lee D, Michael A, Scott M. Aerobic training status does not attenuate prolonged sitting-induced lower limb vascular dysfunction. Appl Physiol Nutr Metab 2018; 44:425-433. [PMID: 30257099 DOI: 10.1139/apnm-2018-0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study examined if the degree of aerobic training protects against the lower limb vascular dysfunction associated with a prolonged sitting bout. Ten young, aerobically trained (AT) and 10 young, untrained (UT) individuals completed a prolonged (3 h) sitting bout. Leg vascular function was measured prior to and at 1.5 and 3 h into the prolonged sitting bout using the passive leg movement (PLM) technique. PLM-induced hyperemia was significantly reduced from baseline at 1.5 and 3 h into the prolonged sitting bout in both groups when evaluated as peak change in leg blood flow from baseline (Δ LBF) (UT: 956 ± 140, 586 ± 80, and 599 ± 96 mL·min-1 at baseline, 1.5 h, and 3 h, respectively; AT: 955 ± 183, 789 ± 193, and 712 ± 131 mL·min-1 at baseline, 1.5 h, and 3 h, respectively) and LBF area under the curve (UT: 283 ± 73, 134 ± 31, and 164 ± 42 mL·min-1 at baseline, 1.5 h, and 3 h, respectively; AT: 336 ± 86, 242 ± 86, and 245 ± 73 mL·min-1 at baseline, 1.5 h, and 3 h, respectively), but no significant differences between groups were revealed. No significant correlations were observed when examining the relationship between maximal oxygen uptake (relative and absolute) and reductions in leg vascular function at 1.5 and 3 h into the prolonged sitting bout. This study revealed that aerobic training did not provide a protective effect against prolonged sitting-induced lower limb vascular dysfunction and further highlights the importance of reducing excessive sitting in all populations.
Collapse
Affiliation(s)
- Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Austin C Hogwood
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - R Carson Fralin
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Kathryn LaRosa
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - David Lee
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Austin Michael
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Matthew Scott
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| |
Collapse
|
68
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
69
|
Donaldson CJ, Lao KH, Zeng L. The salient role of microRNAs in atherogenesis. J Mol Cell Cardiol 2018; 122:98-113. [DOI: 10.1016/j.yjmcc.2018.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
70
|
miR-103 promotes endothelial maladaptation by targeting lncWDR59. Nat Commun 2018; 9:2645. [PMID: 29980665 PMCID: PMC6035258 DOI: 10.1038/s41467-018-05065-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/25/2018] [Indexed: 02/08/2023] Open
Abstract
Blood flow at arterial bifurcations and curvatures is naturally disturbed. Endothelial cells (ECs) fail to adapt to disturbed flow, which transcriptionally direct ECs toward a maladapted phenotype, characterized by chronic regeneration of injured ECs. MicroRNAs (miRNAs) can regulate EC maladaptation through targeting of protein-coding RNAs. However, long noncoding RNAs (lncRNAs), known epigenetic regulators of biological processes, can also be miRNA targets, but their contribution on EC maladaptation is unclear. Here we show that hyperlipidemia- and oxLDL-induced upregulation of miR-103 inhibits EC proliferation and promotes endothelial DNA damage through targeting of novel lncWDR59. MiR-103 impedes lncWDR59 interaction with Notch1-inhibitor Numb, therefore affecting Notch1-induced EC proliferation. Moreover, miR-103 increases the susceptibility of proliferating ECs to oxLDL-induced mitotic aberrations, characterized by an increased micronucleic formation and DNA damage accumulation, by affecting Notch1-related β-catenin co-activation. Collectively, these data indicate that miR-103 programs ECs toward a maladapted phenotype through targeting of lncWDR59, which may promote atherosclerosis. MicroRNAs play important roles in endothelial cells injury, proliferation and maladaptation by negatively regulating posttranscriptional gene expression. Here the authors uncover the role of the long non coding RNA lncWDR59, target of miR-103, in endothelial maladaptation.
Collapse
|
71
|
Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Sci Rep 2018; 8:9788. [PMID: 29955093 PMCID: PMC6023913 DOI: 10.1038/s41598-018-27948-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.
Collapse
|
72
|
Hotta K, Behnke BJ, Arjmandi B, Ghosh P, Chen B, Brooks R, Maraj JJ, Elam ML, Maher P, Kurien D, Churchill A, Sepulveda JL, Kabolowsky MB, Christou DD, Muller-Delp JM. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle. J Physiol 2018; 596:1903-1917. [PMID: 29623692 DOI: 10.1113/jp275459] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/19/2018] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. ABSTRACT Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day-1 , 5 days week-1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Engineering Science, University of Electro-communications, Tokyo, Japan
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University College of Human Ecology, Manhattan, KS, USA
| | - Bahram Arjmandi
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Bei Chen
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rachael Brooks
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Joshua J Maraj
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcus L Elam
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Patrick Maher
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daniel Kurien
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alexandra Churchill
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jaime L Sepulveda
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Max B Kabolowsky
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
73
|
Whole-Transcriptome Sequencing: a Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology. High Throughput 2018; 7:ht7010005. [PMID: 29485616 PMCID: PMC5876531 DOI: 10.3390/ht7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among applicable high-throughput techniques in cardiovascular biology, whole-transcriptome sequencing is of particular use. By utilizing RNA that is isolated from virtually all cells and tissues, the entire transcriptome can be evaluated. In comparison with other high-throughput approaches, RNA sequencing is characterized by a relatively low-cost and large data output, which permits a comprehensive analysis of spatiotemporal variation in the gene expression profile. Both shear stress and cyclic strain exert hemodynamic force upon the arterial endothelium and are considered to be crucial determinants of endothelial physiology. Laminar blood flow results in a high shear stress that promotes atheroresistant endothelial phenotype, while a turbulent, oscillatory flow yields a pathologically low shear stress that disturbs endothelial homeostasis, making respective arterial segments prone to atherosclerosis. Severe atherosclerosis significantly impairs blood supply to the organs and frequently requires bypass surgery or an arterial replacement surgery that requires tissue-engineered vascular grafts. To provide insight into patterns of gene expression in endothelial cells in native or bioartificial arteries under different biomechanical conditions, this article discusses applications of whole-transcriptome sequencing in endothelial mechanobiology and vascular tissue engineering.
Collapse
|
74
|
Endothelial cell monolayer-based microfluidic systems mimicking complex in vivo microenvironments for the study of leukocyte dynamics in inflamed blood vessels. Methods Cell Biol 2018; 146:23-42. [DOI: 10.1016/bs.mcb.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
75
|
Lee JH, Lee R, Hwang MH, Hamilton MT, Park Y. The effects of exercise on vascular endothelial function in type 2 diabetes: a systematic review and meta-analysis. Diabetol Metab Syndr 2018; 10:15. [PMID: 29541164 PMCID: PMC5840787 DOI: 10.1186/s13098-018-0316-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Vascular endothelial dysfunction induced by hyperglycemia and elevated insulin resistance is a potent risk factor for cardiovascular disease and likely contributes to multiple chronic disease complications associated with aging. The aim of this study was to systematically review and quantify the effects of exercise on endothelial function (EF) in type 2 diabetes (T2D). METHODS Five electronic databases were searched (until June 2017) for studies that met the following criteria: (i) randomized controlled trials; (ii) T2D aged ≥ 18 years; (iii) measured EF by brachial artery flow-mediated dilation (FMD); (iv) structured and supervised exercise intervention for ≥ 8 weeks. RESULTS Thirteen cohorts, selected from eight studies (306 patients, average age 59 years), met the inclusion criteria. Exercise training significantly increased FMD (mean ES = 0.41, 95% CI 0.21-0.62, P < 0.001). Low to moderate intensity subgroups and aerobic exercise (AE) subgroups significantly increased FMD more than moderate to high intensity subgroups and combined AE and resistance exercise subgroups respectively (P < 0.01, P < 0.05). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessments reported that quality of evidence for all outcomes was moderate except shear rate showing low. Egger's test showed no significant publication bias for all outcomes. CONCLUSION Our results suggest that in patients with T2D, lower intensity exercise has physiological meaningful effects on EF, in support of the emerging concept that the lower efforts of exercise are not necessarily less cardioprotective than higher intensity training.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- Laboratory of Human Physiology, Korea National Sport University, Seoul, Republic of Korea
| | - Ruda Lee
- Exercise & Cardiovascular Physiology Laboratory, Division of Health and Exercise Science, Incheon National University, Incheon, Republic of Korea
- Sport Science Institute, Incheon National University, Incheon, Republic of Korea
| | - Moon-Hyon Hwang
- Exercise & Cardiovascular Physiology Laboratory, Division of Health and Exercise Science, Incheon National University, Incheon, Republic of Korea
- Sport Science Institute, Incheon National University, Incheon, Republic of Korea
| | - Marc T. Hamilton
- Texas Obesity Research Center from the Division of Research, and Department of Health and Human Performance, University of Houston, Houston, TX USA
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman St, Houston, TX 77204-6015 USA
| |
Collapse
|
76
|
Gugliandolo E, Fusco R, Biundo F, D'Amico R, Benedetto F, Di Paola R, Cuzzocrea S. Palmitoylethanolamide and Polydatin combination reduces inflammation and oxidative stress in vascular injury. Pharmacol Res 2017; 123:83-92. [PMID: 28676456 DOI: 10.1016/j.phrs.2017.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023]
Abstract
Acute and chronic inflammation responses are important risk factors for vascular remodeling processes such as in atherosclerosis, arteriosclerosis and restenosis. Inflammation and oxidative stress in the intimal region after vascular damage are a key event in the development of neointimal hyperplasia. In this study, we used this model of vascular damage, which involves the complete ligature of the left carotid artery for 14days, to observe the role of N-palmitoylethanolamine in combination with Polydatin at the dose of 30mg/kg, on regulation of inflammatory process, and oxidative stress. Palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the N-acylethanolamine family, has anti-inflammatory and neuroprotective effects. However, PEA lacks direct capacity to prevent formation of free radicals. Polydatin (PLD) that is a natural precursor of resveratrol has antioxidant activity. Thus, the combination of PEA and PLD could have beneficial effects on inflammatory process and oxidative stress. This model shows that 14days after carotid artery ligation there is a significant structural change within the vessel, and that there is an important involvement of the inflammatory pathway in the progression of this disease. In this study we demonstrated that PEA/PLD combination treatment reduces vessel damage, adhesion molecules expression such as intercellular adhesion molecules-1(ICAM-1) and vascular cell adhesion molecules-1(V-CAM), proinflammatory cytokines production (Tumor Necrosis Factor alpha (TNF-α) and Interleukin 1 beta (IL-1β), the inducible nitric oxide synthase (iNOS) and Poly (ADP-ribose) polymerase (PAR), formation, Nuclear factor kappa-B expression and apoptosis (BAX, Fas-Ligand) activation. Our results clearly demonstrated that treatment with PEA/PLD 30mg/Kg is able to reduce vascular damage and attenuates the inflammatory process.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina 98166, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina 98166, Italy.
| | - Flavia Biundo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina 98166, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina 98166, Italy.
| | - Filippo Benedetto
- Department of Vascular and Thoracic Surgery, University of Messina, Messina, Italy.
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina 98166, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina 98166, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, USA.
| |
Collapse
|
77
|
Nakajima H, Mochizuki N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 2017; 16:1893-1901. [PMID: 28820314 DOI: 10.1080/15384101.2017.1364324] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Blood flow provides endothelial cells (ECs) lining the inside of blood vessels with mechanical stimuli as well as humoral stimuli. Fluid shear stress, the frictional force between flowing blood and ECs, is recognized as an essential mechanical cue for vascular growth, remodeling, and homeostasis. ECs differentially respond to distinct flow patterns. High laminar shear flow leads to inhibition of cell cycle progression and stabilizes vessels, whereas low shear flow or disturbed flow leads to increased turnover of ECs and inflammatory responses of ECs prone to atherogenic. These differences of EC responses dependent on flow pattern are mainly ascribed to distinct patterns of gene expression. In this review, we highlight flow pattern-dependent transcriptional regulation in ECs by focusing on KLF2 and NFκB, major transcription factors responding to laminar flow and disturbed flow, respectively. Moreover, we introduce roles of a new flow-responsive transcriptional co-regulator, YAP, in blood vessel maintenance and discuss how these transcriptional regulators are spatiotemporally regulated by flow and then regulate EC functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Naoki Mochizuki
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan.,b AMED-CREST. National Cerebral and Cardiovascular Center , Suita , Osaka , Japan
| |
Collapse
|
78
|
Mahajan KD, Nabar GM, Xue W, Anghelina M, Moldovan NI, Chalmers JJ, Winter JO. Mechanotransduction Effects on Endothelial Cell Proliferation via CD31 and VEGFR2: Implications for Immunomagnetic Separation. Biotechnol J 2017; 12. [PMID: 28731527 DOI: 10.1002/biot.201600750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/09/2017] [Indexed: 12/21/2022]
Abstract
Immunomagnetic separation is used to isolate circulating endothelial cells (ECs) and endothelial progenitor cells (EPCs) for diagnostics and tissue engineering. However, potentially detrimental changes in cell properties have been observed post-separation. Here, the effect of mechanical force, which is naturally applied during immunomagnetic separation, on proliferation of human umbilical vein endothelial cells (HUVEC), kinase insert domain-positive receptor (KDR) cells, and peripheral blood mononuclear cells (PBMCs). Cells are exposed to CD31 or Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) targeted MACSi beads at varying bead to cell ratios and compared to free antibody and unconjugated beads. A vertical magnetic gradient is applied to static 2D cultures, and a magnetic cell sorter is used to analyze cells in dynamic flow. No significant difference in EC proliferation is observed for controls or VEGFR2-targeting beads, whereas CD31-conjugated beads increase proliferation in a dose dependent manner in static 2-D cultures. This effect occurs in the absence of magnetic field, but is more pronounced with magnetic force. After flow sorting, similar increases in proliferation are seen for CD31 targeting beads. Thus, the effects of targeting antibody and magnetic force applied should be considered when designing immunomagnetic separation protocols for ECs.
Collapse
Affiliation(s)
- Kalpesh D Mahajan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, USA
| | - Gauri M Nabar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, USA
| | - Wei Xue
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, USA
| | - Mirela Anghelina
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Nicanor I Moldovan
- Departments of Biomedical Engineering & Ophthalmology, Indiana University-Purdue University, CIndianapolis, IN, USA
| | - Jeffrey J Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, USA
| | - Jessica O Winter
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
79
|
Zhang J, Chu LF, Hou Z, Schwartz MP, Hacker T, Vickerman V, Swanson S, Leng N, Nguyen BK, Elwell A, Bolin J, Brown ME, Stewart R, Burlingham WJ, Murphy WL, Thomson JA. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proc Natl Acad Sci U S A 2017; 114:E6072-E6078. [PMID: 28696312 PMCID: PMC5544294 DOI: 10.1073/pnas.1702295114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Zhonggang Hou
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy Hacker
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI 53705
| | - Vernella Vickerman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Scott Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Ning Leng
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
- Biostatistics, Genentech, San Francisco, CA 94080
| | - Bao Kim Nguyen
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Angela Elwell
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Matthew E Brown
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - William J Burlingham
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, 53705
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715;
- Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93117
| |
Collapse
|
80
|
Abdalrahman T, Dubuis L, Green J, Davies N, Franz T. Cellular mechanosensitivity to substrate stiffness decreases with increasing dissimilarity to cell stiffness. Biomech Model Mechanobiol 2017; 16:2063-2075. [PMID: 28733924 DOI: 10.1007/s10237-017-0938-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus [Formula: see text] on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of [Formula: see text], were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and [Formula: see text]140 KPa and (2) [Formula: see text], 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35[Formula: see text], 0.235[Formula: see text] and 0.6[Formula: see text]) than for FA attachment (0.0952[Formula: see text], 0.0472[Formula: see text] and 0.05[Formula: see text]). For increasing [Formula: see text], the largest maximum principal strain was 4.4[Formula: see text], 5[Formula: see text], 5.3[Formula: see text] and 5.3[Formula: see text] in the membrane, 9.5[Formula: see text], 1.1[Formula: see text], 1.2[Formula: see text] and 1.2[Formula: see text] in the cytosol, and 4.5[Formula: see text], 5.3[Formula: see text], 5.7[Formula: see text] and 5.7[Formula: see text] in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.
Collapse
Affiliation(s)
- Tamer Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Laura Dubuis
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Jason Green
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Neil Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa. .,Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| |
Collapse
|
81
|
Vieceli Dalla Sega F, Aquila G, Fortini F, Vaccarezza M, Secchiero P, Rizzo P, Campo G. Context-dependent function of ROS in the vascular endothelium: The role of the Notch pathway and shear stress. Biofactors 2017; 43:475-485. [PMID: 28419584 DOI: 10.1002/biof.1359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) act as signal molecules in several biological processes whereas excessive, unregulated, ROS production contributes to the development of pathological conditions including endothelial dysfunction and atherosclerosis. The maintenance of a healthy endothelium depends on many factors and on their reciprocal interactions; in this framework, the Notch pathway and shear stress (SS) play two lead roles. Recently, evidence of a crosstalk between ROS, Notch, and SS, is emerging. The aim of this review is to describe the way ROS interact with the Notch pathway and SS protecting from-or promoting-the development of endothelial dysfunction. © 2017 BioFactors, 43(4):475-485, 2017.
Collapse
Affiliation(s)
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA) Center, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, (RA), Italy
| | - Gianluca Campo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria S. Anna, Cona, (FE), Italy
| |
Collapse
|
82
|
Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro
model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 2017; 37:1359-1369. [PMID: 28383141 DOI: 10.1002/jat.3470] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Yiwei Zhou
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| |
Collapse
|
83
|
Taylor MS, Choi CS, Bayazid L, Glosemeyer KE, Baker CCP, Weber DS. Changes in vascular reactivity and endothelial Ca 2+ dynamics with chronic low flow. Microcirculation 2017; 24:10.1111/micc.12354. [PMID: 28106317 PMCID: PMC5404954 DOI: 10.1111/micc.12354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Disruption of blood flow promotes endothelial dysfunction and predisposes vessels to remodeling and atherosclerosis. Recent findings suggest that spatial and temporal tuning of local Ca2+ signals along the endothelium is vital to vascular function. In this study, we examined whether chronic flow disruption causes alteration of dynamic endothelial Ca2+ signal patterning associated with changes in vascular structure and function. For these studies, we performed surgical PL of the left carotid arteries of mice to establish chronic low flow for 2 weeks; right carotid arteries remained open and served as controls (C). Histological sections showed substantial remodeling of PL compared to C arteries, including formation of neointima. Isometric force measurements revealed increased PE-induced contractions and decreased KCl-induced contractions in PL vs C arteries. Endothelium-dependent vasorelaxation in response to ACh; 10-8 to 10-5 mol/L) was significantly impaired in PL vs C vessels. Evaluation of endothelial Ca2+ using confocal imaging and custom analysis exposed distinct impairment of Ca2+ dynamics in PL arteries, characterized by reduction in active sites and truncation of events, corresponding to attenuated vasorelaxation. Our findings suggest that endothelial dysfunction in developing vascular disease may be characterized by distinct shifts in the spatial and temporal patterns of localized Ca2+ signals.
Collapse
Affiliation(s)
- Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Leith Bayazid
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Katherine E Glosemeyer
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Calvin C P Baker
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - David S Weber
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
84
|
Golzan SM, Goozee K, Georgevsky D, Avolio A, Chatterjee P, Shen K, Gupta V, Chung R, Savage G, Orr CF, Martins RN, Graham SL. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:13. [PMID: 28253913 PMCID: PMC5335799 DOI: 10.1186/s13195-017-0239-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Retinal imaging may serve as an alternative approach to monitor brain pathology in Alzheimer's disease (AD). In this study, we investigated the association between retinal vascular and structural changes and cerebral amyloid-β (Aβ) plaque load in an elderly cohort. METHODS We studied a total of 101 participants, including 73 elderly subjects (79 ± 5 years, 22 male) with no clinical diagnosis of AD but reporting some subjective memory change and an additional 28 subjects (70 ± 9 years, 16 male) with clinically established AD. Following a complete dilated ocular examination, the amplitude of retinal vascular pulsations and dynamic response, retinal nerve fibre layer thickness and retinal ganglion cell layer (RGCL) thickness were determined in all patients. Systemic blood pressure and carotid-to-femoral pulse wave velocity were measured. The elderly cohort also underwent magnetic resonance imaging and 18F-florbetaben (FBB)-positron emission tomographic amyloid imaging to measure neocortical Aβ standardised uptake value ratio (SUVR), and this was used to characterise a 'preclinical' group (SUVR >1.4). RESULTS The mean FBB neocortical SUVR was 1.35 ± 0.3. The amplitude of retinal venous pulsations correlated negatively with the neocortical Aβ scores (p < 0.001), whereas the amplitude of retinal arterial pulsations correlated positively with neocortical Aβ scores (p < 0.01). RGCL thickness was significantly lower in the clinical AD group (p < 0.05). CONCLUSIONS The correlation between retinal vascular changes and Aβ plaque load supports the possibility of a vascular component to AD. Dynamic retinal vascular parameters may provide an additional inexpensive tool to aid in the preclinical assessment of AD.
Collapse
Affiliation(s)
- S Mojtaba Golzan
- Vision Science Group, Graduate School of Health (Orthoptics Discipline), University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia. .,Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Kathryn Goozee
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, 2113, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Anglican Retirement Village, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
| | - Dana Georgevsky
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alberto Avolio
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Pratishtha Chatterjee
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, 2113, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kaikai Shen
- Australian e-Health Research Centre, CSIRO Health and Biosecurity, Herston, QLD, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Carolyn F Orr
- Macquarie Neurology, Macquarie University, Sydney, NSW, Australia
| | - Ralph N Martins
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, 2113, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
85
|
High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System. Sci Rep 2017; 7:39975. [PMID: 28054593 PMCID: PMC5215453 DOI: 10.1038/srep39975] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/29/2016] [Indexed: 01/24/2023] Open
Abstract
Circulating tumor cells (CTCs) are the primary targets of cancer treatment as they cause distal metastasis. However, how CTCs response to exercise-induced high shear stress is largely unknown. To study the effects of hemodynamic microenvironment on CTCs, we designed a microfluidic circulatory system that produces exercise relevant shear stresses. We explore the effects of shear stresses on breast cancer cells with different metastatic abilities, cancer cells of ovarian, lung and leukemic origin. Three major findings were obtained. 1) High shear stress of 60 dynes/cm2 achievable during intensive exercise killed more CTCs than low shear stress of 15 dynes/cm2 present in human arteries at the resting state. 2) High shear stress caused necrosis in over 90% of CTCs within the first 4 h of circulation. More importantly, the CTCs that survived the first 4 h-circulation, underwent apoptosis during 16-24 h of post-circulation incubation. 3) Prolonged high shear stress treatment effectively reduced the viability of highly metastatic and drug resistant breast cancer cells. As high shear stress had much less damaging effects on leukemic cells mimicking the white blood cells, we propose that intensive exercise may be a good strategy for generating high shear stress that can destroy CTCs and prevent cancer metastasis.
Collapse
|
86
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
87
|
Gu S, Tian B, Chen W, Zhou Y. Biomaterial Surface Can Modify HUVEC Morphology and Inflammatory Response by Regulating MicroRNA Expression. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbm.2017.512002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Wang D, Liu M, Gu S, Zhou Y, Li S. Microtopography Attenuates Endothelial Cell Proliferation by Regulating MicroRNAs. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.83013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
89
|
Han D, Starikov A, Ó Hartaigh B, Gransar H, Kolli KK, Lee JH, Rizvi A, Baskaran L, Schulman-Marcus J, Lin FY, Min JK. Relationship Between Endothelial Wall Shear Stress and High-Risk Atherosclerotic Plaque Characteristics for Identification of Coronary Lesions That Cause Ischemia: A Direct Comparison With Fractional Flow Reserve. J Am Heart Assoc 2016; 5:e004186. [PMID: 27993831 PMCID: PMC5210401 DOI: 10.1161/jaha.116.004186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Wall shear stress (WSS) is an established predictor of coronary atherosclerosis progression. Prior studies have reported that high WSS has been associated with high-risk atherosclerotic plaque characteristics (APCs). WSS and APCs are quantifiable by coronary computed tomography angiography, but the relationship of coronary lesion ischemia-evaluated by fractional flow reserve-to WSS and APCs has not been examined. METHODS AND RESULTS WSS measures were obtained from 100 evaluable patients who underwent coronary computed tomography angiography and invasive coronary angiography with fractional flow reserve. Patients were categorized according to tertiles of mean WSS values defined as low, intermediate, and high. Coronary ischemia was defined as fractional flow reserve ≤0.80. Stenosis severity was determined by minimal luminal diameter. APCs were defined as positive remodeling, low attenuation plaque, and spotty calcification. The likelihood of having positive remodeling and low-attenuation plaque was greater in the high WSS group compared with the low WSS group after adjusting for minimal luminal diameter (odds ratio for positive remodeling: 2.54, 95% CI 1.12-5.77; odds ratio for low-attenuation plaque: 2.68, 95% CI 1.02-7.06; both P<0.05). No significant relationship was observed between WSS and fractional flow reserve when adjusting for either minimal luminal diameter or APCs. WSS displayed no incremental benefit above stenosis severity and APCs for detecting lesions that caused ischemia (area under the curve for stenosis and APCs: 0.87, 95% CI 0.81-0.93; area under the curve for stenosis, APCs, and WSS: 0.88, 95% CI 0.82-0.93; P=0.30 for difference). CONCLUSIONS High WSS is associated with APCs independent of stenosis severity. WSS provided no added value beyond stenosis severity and APCs for detecting lesions with significant ischemia.
Collapse
Affiliation(s)
- Donghee Han
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Anna Starikov
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Bríain Ó Hartaigh
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Heidi Gransar
- Department of Imaging, Cedars Sinai Medical Center, Los Angeles, CA
| | - Kranthi K Kolli
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Ji Hyun Lee
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Asim Rizvi
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Lohendran Baskaran
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Joshua Schulman-Marcus
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - Fay Y Lin
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| | - James K Min
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY
| |
Collapse
|
90
|
Abstract
SIGNIFICANCE Forces are important in the cardiovascular system, acting as regulators of vascular physiology and pathology. Residing at the blood vessel interface, cells (endothelial cell, EC) are constantly exposed to vascular forces, including shear stress. Shear stress is the frictional force exerted by blood flow, and its patterns differ based on vessel geometry and type. These patterns range from uniform laminar flow to nonuniform disturbed flow. Although ECs sense and differentially respond to flow patterns unique to their microenvironment, the mechanisms underlying endothelial mechanosensing remain incompletely understood. RECENT ADVANCES A large body of work suggests that ECs possess many mechanosensors that decorate their apical, junctional, and basal surfaces. These potential mechanosensors sense blood flow, translating physical force into biochemical signaling events. CRITICAL ISSUES Understanding the mechanisms by which proposed mechanosensors sense and respond to shear stress requires an integrative approach. It is also critical to understand the role of these mechanosensors not only during embryonic development but also in the different vascular beds in the adult. Possible cross talk and integration of mechanosensing via the various mechanosensors remain a challenge. FUTURE DIRECTIONS Determination of the hierarchy of endothelial mechanosensors is critical for future work, as is determination of the extent to which mechanosensors work together to achieve force-dependent signaling. The role and primary sensors of shear stress during development also remain an open question. Finally, integrative approaches must be used to determine absolute mechanosensory function of potential mechanosensors. Antioxid. Redox Signal. 25, 373-388.
Collapse
Affiliation(s)
- Chris Givens
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina
| | - Ellie Tzima
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina.,2 Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics , Oxford, United Kingdom
| |
Collapse
|
91
|
Zeiger AS, Liu FD, Durham JT, Jagielska A, Mahmoodian R, Van Vliet KJ, Herman IM. Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting. Phys Biol 2016; 13:046006. [PMID: 27526677 DOI: 10.1088/1478-3975/13/4/046006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.
Collapse
Affiliation(s)
- A S Zeiger
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. BioSystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore 138602
| | | | | | | | | | | | | |
Collapse
|
92
|
Neves JA, Neves JA, Oliveira RDCM. Biomarcadores de função endotelial em doenças cardiovasculares: hipertensão. J Vasc Bras 2016; 15:224-233. [PMID: 29930594 PMCID: PMC5829760 DOI: 10.1590/1677-5449.000316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022] Open
Abstract
A incidência de hipertensão arterial sistêmica está aumentando mundialmente. Sua prevenção baseia-se na identificação dos hipertensos. Atualmente, biomarcadores são utilizados com fins de diagnosticar, estratificar e prognosticar doenças. Neste estudo, objetivou-se revisar artigos dos últimos cinco anos relacionados a biomarcadores nas doenças cardiovasculares. Pesquisaram-se dados de PubMed, SciELO, Science Direct e MEDLINE, mediante as palavras-chave: hipertensão arterial, biomarcadores cardiovasculares, óxido nítrico, função endotelial e dimetilarginina assimétrica. Os estudos levantados mostram que as doenças cardiovasculares possuem uma etiologia complexa. Neste artigo, evidenciaram-se interações entre o óxido nítrico e a dimetilarginina assimétrica na regulação, no metabolismo e na determinação dos níveis intracelulares, e reviram-se outros biomarcadores relacionados à hipertensão. Alguns estudos indicam os biomarcadores como uma ferramenta útil na predição de eventos cardíacos, e outros reportam que eles contribuem pouco para a avaliação. A seleção e combinação desses pode ser uma alternativa para validar o uso dos biomarcadores devido à pouca especificidade existente para diagnosticar a hipertensão.
Collapse
Affiliation(s)
- Josynaria Araújo Neves
- Universidade Federal do Piauí – UFPI, Núcleo de Pesquisa em Plantas Medicinais – NPPM, Teresina, PI, Brasil.
| | - Josyanne Araújo Neves
- Universidade Federal do Piauí – UFPI, Núcleo de Pesquisa em Plantas Medicinais – NPPM, Teresina, PI, Brasil.
| | | |
Collapse
|
93
|
Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis 2016; 7:e2248. [PMID: 27253412 PMCID: PMC5143375 DOI: 10.1038/cddis.2016.145] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is one of the most common vascular disorders. Endothelial cell (EC) dysfunction and vascular smooth muscle cell (VSMC) proliferation contributes to the development of atherosclerosis. Long non-coding RNAs (lncRNAs) have been implicated in several biological processes and human diseases. Here we show that lncRNA-RNCR3 is expressed in ECs and VSMCs. RNCR3 expression is significantly upregulated in mouse and human aortic atherosclerotic lesions, and cultured ECs and VSMCs upon ox-LDL treatment in vitro. RNCR3 knockdown accelerates the development of atherosclerosis, aggravates hypercholesterolemia and inflammatory factor releases, and decreases EC and VSMC proliferation in vivo. RNCR3 knockdown also reduces the proliferation and migration, and accelerates apoptosis development of EC and VSMC in vitro. RNCR3 acts as a ceRNA, and forms a feedback loop with Kruppel-like factor 2 and miR-185-5p to regulate cell function. This study reveals that RNCR3 has an atheroprotective role in atherosclerosis, and its intervention is a promising strategy for treating atherosclerosis-related vascular dysfunction.
Collapse
|
94
|
Schober A, Weber C. Mechanisms of MicroRNAs in Atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:583-616. [DOI: 10.1146/annurev-pathol-012615-044135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| |
Collapse
|
95
|
Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis 2016; 248:97-109. [PMID: 26994427 PMCID: PMC6478391 DOI: 10.1016/j.atherosclerosis.2016.03.007] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is an interface between the blood stream and the vessel wall. Changes in this single cell layer of the artery wall are believed of primary importance in the pathogenesis of vascular disease/atherosclerosis. The endothelium responds to humoral, neural and especially hemodynamic stimuli and regulates platelet function, inflammatory responses, vascular smooth muscle cell growth and migration, in addition to modulating vascular tone by synthesizing and releasing vasoactive substances. Compromised endothelial function contributes to the pathogenesis of cardiovascular disease; endothelial 'dysfunction' is associated with risk factors, correlates with disease progression, and predicts cardiovascular events. Therapies for atherosclerosis have been developed, therefore, that are directed towards improving endothelial function.
Collapse
Affiliation(s)
- Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
96
|
Sorokin AV, Kotani K, Bushueva OY, Polonikov AV. Antioxidant-related gene polymorphisms associated with the cardio-ankle vascular index in young Russians. Cardiol Young 2016; 26:677-682. [PMID: 26081749 DOI: 10.1017/s104795111500102x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cardio-ankle vascular index is a measure of arterial stiffness, whereas oxidative stress underlies arterial pathology. This study aimed to investigate the association between the cardio-ankle vascular index and antioxidant-related gene polymorphisms in young Russians. A total of 89 patients (mean age, 21.6 years) were examined by the cardio-ankle vascular index and for 15 gene polymorphisms related to antioxidant enzymes including FMO3 (flavin-containing monooxygenase 3), GPX1 (glutathione peroxidase 1), and GPX4 (glutathione peroxidase 4). A higher cardio-ankle vascular index level was detected in carriers with the KK-genotype of FMO3 polymorphism rs2266782 than in those without (mean levels: 6.2 versus 5.6, respectively, p<0.05). Similarly, a higher cardio-ankle vascular index level was seen in carriers with the CC-genotype of GPX4 polymorphism rs713041 than in those without (6.0 versus 5.5, respectively, p<0.05). We did not observe significant associations between the cardio-ankle vascular index levels and the other gene polymorphisms. Although carriers with the LL-genotype of GPX1 polymorphism rs1050450 showed a higher diastolic blood pressure level than those without, the polymorphism did not affect the cardio-ankle vascular index level. This study showed a significant association between rs2266782 and rs713041 polymorphisms and arterial stiffness, as measured by the cardio-ankle vascular index, in young Russians. The pathways utilised by antioxidant enzymes may be responsible for early arterial stiffening in the Russian population.
Collapse
Affiliation(s)
- Alexander V Sorokin
- 1Department of Internal Medicine,Kursk State Medical University,Kursk,Russia
| | - Kazuhiko Kotani
- 2Department of Clinical Laboratory Medicine,Jichi Medical University,Tochigi,Japan
| | - Olga Y Bushueva
- 3Department of Biology, Medical Genetics and Ecology,Kursk State Medical University,Kursk,Russia
| | - Alexey V Polonikov
- 3Department of Biology, Medical Genetics and Ecology,Kursk State Medical University,Kursk,Russia
| |
Collapse
|
97
|
Abstract
Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair.
Collapse
|
98
|
Velasco V, Gruenthal M, Zusstone E, Thomas JMD, Berson RE, Keynton RS, Williams SJ. An orbital shear platform for real-time, in vitro endothelium characterization. Biotechnol Bioeng 2016; 113:1336-44. [PMID: 26615057 DOI: 10.1002/bit.25893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/29/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
Abstract
Electrical impedance techniques have been used to characterize endothelium morphology, permeability, and motility in vitro. However, these impedance platforms have been limited to either static endothelium studies and/or induced laminar fluid flow at a constant, single shear stress value. In this work, we present a microfabricated impedance sensor for real-time, in vitro characterization of human umbilical vein endothelial cells (HUVECs) undergoing oscillatory hydrodynamic shear. Oscillatory shear was applied with an orbital shaker and the electrical impedance was measured by a microfabricated impedance chip with discrete electrodes positioned at radial locations of 0, 2.5, 5.0, 7.5, 10.0, and 12.5 mm from the center of the chip. Depending on their radial position within the circular orbital platform, HUVECs were exposed to shear values ranging between 0.6 and 6.71 dyne/cm(2) (according to numerical simulations) for 22 h. Impedance spectra were fit to an equivalent circuit model and the trans-endothelial resistance and monolayer's capacitance were extracted. Results demonstrated that, compared to measurements acquired before the onset of shear, cells at the center of the platform that experienced low steady shear stress (∼2.2 dyne/cm(2) ) had an average change in trans-endothelial resistance of 6.99 ± 4.06% and 1.78 ± 2.40% change in cell capacitance after 22 hours of shear exposure; cells near the periphery of the well (r = 12.5 mm) experienced transient shears (2.5-6.7 dyne/cm(2) ) and exhibited a greater change in trans-endothelial resistance (24.2 ± 10.8%) and cell capacitance (4.57 ± 5.39%). This study, demonstrates that the orbital shear platform provides a simple system that can capture and quantify the real-time cellular morphology as a result of induced shear stress. The orbital shear platform presented in this work, compared to traditional laminar platforms, subjects cells to more physiologically relevant oscillatory shear as well as exposes the sample to several shear values simultaneously. Biotechnol. Bioeng. 2016;113: 1336-1344. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanessa Velasco
- Department of Mechanical Engineering, University of Louisville, Louisville, 40292, Kentucky
| | - Mark Gruenthal
- Department of Mechanical Engineering, University of Louisville, Louisville, 40292, Kentucky
| | - Esther Zusstone
- School of Nursing, University of Louisville, Louisville, Kentucky
| | - Jonathan M D Thomas
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky
| | - R Eric Berson
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky
| | - Robert S Keynton
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Stuart J Williams
- Department of Mechanical Engineering, University of Louisville, Louisville, 40292, Kentucky.
| |
Collapse
|
99
|
Wang J, Fan B, Wei Y, Suo X, Ding Y. A simple multi-well stretching device to induce inflammatory responses of vascular endothelial cells. LAB ON A CHIP 2016; 16:360-367. [PMID: 26669969 DOI: 10.1039/c5lc01416f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We herein introduce a novel multi-well stretching device that is made of three polydimethylsiloxane layers, consisting of a top hole-punched layer, middle thin membrane, and bottom patterned layer. It is the first time that such a simple device has been used to supply axisymmetric and nonuniform strains to cells cultured on well bottoms that are stretchable. These mechanical stimuli can somewhat mimic the stretching at the bending sites of blood vessels, where the strains are complicated. In this device, nonuniform strain is given to cells through the deformation of a membrane from a flat surface to a spherical cap during the injection of a certain volume of water into the chamber between the middle membrane and bottom layer. EA.hy926 cells (a human umbilical vein endothelial cell line) were seeded on the well bottoms and exposed to axisymmetric strain under a 5, 10, 15, and 20% degree of deformation of the membrane. The cellular responses were characterized in terms of cell morphology, cell viability, and expression of inflammatory mRNAs and proteins. With increasing the degree of deformation, the cells exhibited an inclination toward detachment and apoptosis; meanwhile the expression of inflammatory mRNAs and proteins, such as MCP-1, IL-8, IL-6 and ICAM-1, showed a significant increment. The obtained results demonstrate that the inflammatory responses of EA.hy926 cells can be induced by increasing the magnitude of the strain. This simple device provides a useful tool for in vitro investigation of the inflammatory mechanisms related to vascular diseases.
Collapse
Affiliation(s)
- Jiasheng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Beiyuan Fan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanchen Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingmei Suo
- School of information engineering, Minzu University of China, Beijing, 100081, China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
100
|
Franzoni M, Cattaneo I, Ene-Iordache B, Oldani A, Righettini P, Remuzzi A. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers. Cytotechnology 2016; 68:1885-96. [PMID: 26754843 DOI: 10.1007/s10616-015-9941-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022] Open
Abstract
Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the vessel wall, are deeply affected by the nature of wall shear stress waveforms. To investigate the in vitro effects of these stimuli, we developed a compact, programmable, real-time operated system based on cone-and-plate geometry, that can be used within a standard cell incubator. To verify the capability to replicate realistic shear stress waveforms, we calculated both analytically and numerically to what extent the system is able to correctly deliver the stimuli defined by the user at plate level. Our results indicate that for radii greater than 25 mm, the shear stress is almost uniform and directly proportional to cone rotation velocity. We further established that using a threshold of 10 Hz of wall shear stress waveform frequency components, oscillating flow conditions can be reproduced on cell monolayer surface. Finally, we verified the capability of the system to perform long-term flow exposure experiments ensuring sterility and cell culture viability on human umbilical vein endothelial cells exposed to unidirectional and oscillating shear stress. In conclusion, the system we developed is a highly dynamic, easy to handle, and able to generate pulsatile and unsteady oscillating wall shear stress waveforms. This system can be used to investigate the effects of realistic stimulations on endothelial cells, similar to those exerted in vivo by blood flow.
Collapse
Affiliation(s)
- Marco Franzoni
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| | - Irene Cattaneo
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| | - Bogdan Ene-Iordache
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| | - Alberto Oldani
- Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 4, 24144, Dalmine, BG, Italy
| | - Paolo Righettini
- Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 4, 24144, Dalmine, BG, Italy
| | - Andrea Remuzzi
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy. .,Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 4, 24144, Dalmine, BG, Italy.
| |
Collapse
|