51
|
Petkowski JJ, Bains W, Seager S. On the Potential of Silicon as a Building Block for Life. Life (Basel) 2020; 10:E84. [PMID: 32532048 PMCID: PMC7345352 DOI: 10.3390/life10060084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Despite more than one hundred years of work on organosilicon chemistry, the basis for the plausibility of silicon-based life has never been systematically addressed nor objectively reviewed. We provide a comprehensive assessment of the possibility of silicon-based biochemistry, based on a review of what is known and what has been modeled, even including speculative work. We assess whether or not silicon chemistry meets the requirements for chemical diversity and reactivity as compared to carbon. To expand the possibility of plausible silicon biochemistry, we explore silicon's chemical complexity in diverse solvents found in planetary environments, including water, cryosolvents, and sulfuric acid. In no environment is a life based primarily around silicon chemistry a plausible option. We find that in a water-rich environment silicon's chemical capacity is highly limited due to ubiquitous silica formation; silicon can likely only be used as a rare and specialized heteroatom. Cryosolvents (e.g., liquid N2) provide extremely low solubility of all molecules, including organosilicons. Sulfuric acid, surprisingly, appears to be able to support a much larger diversity of organosilicon chemistry than water.
Collapse
Affiliation(s)
- Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
| | - William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| |
Collapse
|
52
|
Abstract
Synthetic biology is a field of scientific research that applies engineering principles to living organisms and living systems. It is a field that is increasing in scope with respect to organisms engineered, practical outcomes, and systems integration. There is a commercial dimension as well, where living organisms are engineered as green technologies that could offer alternatives to industrial standards in the pharmaceutical and petroleum-based chemical industries. This review attempts to provide an introduction to this field as well as a consideration of important contributions that exemplify how synthetic biology may be commensurate or even disproportionate with the complexity of living systems. The engineerability of living systems remains a difficult task, yet advancements are reported at an ever-increasing pace.
Collapse
Affiliation(s)
- Martin M Hanczyc
- University of Trento, Department of Cellular, Computational, and Integrative Biology (CIBIO)
- University of New Mexico, Chemical and Biological Engineering.
| |
Collapse
|
53
|
Lutz JF. 100th Anniversary of Macromolecular Science Viewpoint: Toward Artificial Life-Supporting Macromolecules. ACS Macro Lett 2020; 9:185-189. [PMID: 35638671 DOI: 10.1021/acsmacrolett.9b00938] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Terrestrial Life is based on polymers. In all known living organisms, DNA stores genetic information, mutates, self-replicates, and guides the synthesis of messenger molecules. Although the function of nucleic acids is well-understood, the development of artificial macromolecular mimics remains very limited. Laboratory-synthesized nucleic acids still support Life, and some nucleic acids analogues exhibit biological functions. Yet, after hundred years of polymer science, no other type of Life-supporting macromolecule (i.e., non-nucleic acids) has ever been reported. In this context, the aim of the present viewpoint is to discuss important challenges that shall be addressed by polymer chemists to achieve artificial Life. Similarly to DNA, an artificial Life-supporting macromolecule shall store information, transfer information, and mutate. Many tools, such as sequence-defined polymer synthesis, polymer modification, supramolecular polymer chemistry, and dynamic chemistry, are already available to chemists to attain these properties. However, the design of artificial Life-supporting macromolecules is hindered by two main factors. First, the chemical search space is enormous, and it is difficult to predict promising structures, even with the help of combinatorial and chemoinformatic tools. Second, rational design is probably a limited approach to achieve macromolecules that shall be involved in nonequilibrium metabolic systems. Hence, a synergic combination of classical polymer chemistry with the more recent field of systems chemistry is probably the key toward the emergence of artificial Life-supporting macromolecules.
Collapse
Affiliation(s)
- Jean-François Lutz
- Université de Strasbourg, CNRS - UPR 22, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
54
|
Abstract
There has been considerable attention on how to detect life on other worlds by searching for biomolecules. However, there has been much less clarity as to when it becomes warranted to focus a mission on the search for life on another world. At a minimum, a life-detection mission should follow convincing evidence of (1) Liquid water of suitable salinity, past or present; (2) Carbon in the water; (3) Biologically available N in the water; (4) Biologically useful energy in the water; (5) Organic material that can possibly be of biological origin and a plausible strategy for sampling this material. Based on these prerequisites, the most promising targets for a life search are currently the plume of Enceladus and the subsurface of Mars-in equatorial lake bed sediments and in polar ice-cemented ground. Neither the surface of Europa nor the clouds of Venus meet the criteria listed here but may with further exploration.
Collapse
|
55
|
Affiliation(s)
- Jean‐François Lutz
- Université de Strasbourg, CNRSInstitut Charles Sadron, UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
56
|
Affiliation(s)
- Karin Moelling
- Inst for Medical MicrobiologyUniversity Zürich Gloriastr 30 8006 Zürich Switzerland
- Max Planck Institute for Molecular Genetics Ihnestr 73 14195 Berlin Germany
| |
Collapse
|
57
|
Huck J, Kosikova T, Philp D. Compositional Persistence in a Multicyclic Network of Synthetic Replicators. J Am Chem Soc 2019; 141:13905-13913. [PMID: 31403776 DOI: 10.1021/jacs.9b06697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The emergence of collections of simple chemical entities that create self-sustaining reaction networks, embedding replication and catalysis, is cited as a potential mechanism for the appearance on the early Earth of systems that satisfy minimal definitions of life. In this work, a functional reaction network that creates and maintains a set of privileged replicator structures through auto- and cross-catalyzed reaction cycles is created from the pairwise combinations of four reagents. We show that the addition of individual preformed templates to this network, representing instructions to synthesize a specific replicator, induces changes in the output composition of the system that represent a network-level response. Further, we establish through sets of serial transfer experiments that the catalytic connections that exist between the four replicators in this network and the system-level behavior thereby encoded impose limits on the compositional variability that can be induced by repeated exposure to instructional inputs, in the form of preformed templates, to the system. The origin of this persistence is traced through kinetic simulations to the properties and inter-relationships between the critical ternary complexes formed by the auto- and crosscatalytic templates. These results demonstrate that in an environment where there is no continuous selection pressure the network connectivity, described by the catalytic relationships and system-level interactions between the replicators, is persistent, thereby limiting the ability of this network to adapt and evolve.
Collapse
Affiliation(s)
- Jürgen Huck
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| |
Collapse
|
58
|
Vitas M, Dobovišek A. Towards a General Definition of Life. ORIGINS LIFE EVOL B 2019; 49:77-88. [PMID: 31222432 DOI: 10.1007/s11084-019-09578-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023]
Abstract
A new definition of life is proposed and discussed in the present article. It is formulated by modifying and extending NASA's working definition of life, which postulates that life is a "self-sustaining chemical system capable of Darwinian evolution". The new definition includes a thermodynamical aspect of life as a far from equilibrium system and considers the flow of information from the environment to the living system. In our derivation of the definition of life we have assumed the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. The new proposed definition of life is independent of the mode of evolution, regardless of whether Lamarckian or Darwinian evolution operated at the origins of life and throughout evolutionary history. The new definition of life presented herein is formulated in a minimal manner and it is general enough that it does not distinguish between individual (metabolic) network and the collective (ecological) one. The newly proposed definition of life may be of interest for astrobiology, research into the origins of life or for efforts to produce synthetic or artificial life, and it furthermore may also have implications in the cognitive and computer sciences.
Collapse
Affiliation(s)
- Marko Vitas
- , Laze pri Borovnici 38, 1353 Borovnica, Slovenia.
| | - Andrej Dobovišek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 6b, 2000, Maribor, Slovenia
| |
Collapse
|
59
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
60
|
Leyva Y, Martin O, Perez N, Suarez-Lezcano J, Fundora-Pozo M. The optimal size of protocells from simple entropic considerations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:277-283. [PMID: 30899982 DOI: 10.1007/s00249-019-01359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 03/12/2019] [Indexed: 01/29/2023]
Abstract
Potential constraints on protocell size are developed from simple entropic considerations. To do that, two new different indexes as measures of their structural and dynamic order were developed and applied to an elemental model of the heterotrophic protocell. According to our results, cell size should be a key factor determining the potential of these primitive systems to evolve and consequently to support life. Our analyses also suggest that the size of the optimal vesicles could be constrained to have radii in the interval [Formula: see text], where the two extreme limits [Formula: see text] and [Formula: see text] represent the states of maximum structural order (largest accumulation of substrate inside the vesicle) and the maximum flux of entropy production, respectively. According to the above criteria, the size of the optimum vesicles falls, approximately, in the same spatial range estimated for biological living cells assuming plausible values for the second-order rate constant involved in the catabolic process. Furthermore, the existence of very small vesicles could be seriously affected by the limited efficiency, far from the theoretical limits, with which these catabolic processes may proceed in a prebiotic system.
Collapse
Affiliation(s)
- Yoelsy Leyva
- Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Casilla 7-D, Arica, Chile.
| | - Osmel Martin
- Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba
| | - Noel Perez
- Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba
| | - José Suarez-Lezcano
- Escuela de Enfermería, Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador
| | - Manuel Fundora-Pozo
- Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba
| |
Collapse
|
61
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
62
|
Sugiyama H, Toyota T. Toward Experimental Evolution with Giant Vesicles. Life (Basel) 2018; 8:life8040053. [PMID: 30384503 PMCID: PMC6316375 DOI: 10.3390/life8040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
Experimental evolution in chemical models of cells could reveal the fundamental mechanisms of cells today. Various chemical cell models, water-in-oil emulsions, oil-on-water droplets, and vesicles have been constructed in order to conduct research on experimental evolution. In this review, firstly, recent studies with these candidate models are introduced and discussed with regards to the two hierarchical directions of experimental evolution (chemical evolution and evolution of a molecular self-assembly). Secondly, we suggest giant vesicles (GVs), which have diameters larger than 1 µm, as promising chemical cell models for studying experimental evolution. Thirdly, since technical difficulties still exist in conventional GV experiments, recent developments of microfluidic devices to deal with GVs are reviewed with regards to the realization of open-ended evolution in GVs. Finally, as a future perspective, we link the concept of messy chemistry to the promising, unexplored direction of experimental evolution in GVs.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
63
|
Pontefract A, Hachey J, Zuber MT, Ruvkun G, Carr CE. Sequencing nothing: Exploring failure modes of nanopore sensing and implications for life detection. LIFE SCIENCES IN SPACE RESEARCH 2018; 18:80-86. [PMID: 30100151 DOI: 10.1016/j.lssr.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The detection of extant life is a major focus of many planned future planetary missions, a current challenge of which is the ability to target biomarkers capable of providing unambiguous evidence of life. DNA sequencing is increasingly recognized as a powerful tool for life detection for planetary exploration missions; beyond use of sequence information to determine the origins of the sample (e.g., extant life or forward contamination), recent advances in the field have enabled interrogation of single molecules, with or without amplification. The focus of this work is on failure modes, specifically the issues encountered when there is no-to-low input DNA into a sequencing device, and the potential for the generation of sequencing artifacts that could be interpreted as a false positive. Using Oxford Nanopore Technologies (ONT) MinION, we assess whether single molecule sequencing, involving no amplification, generates noise signals that could be misinterpreted in the context of a planetary exploration mission, and also whether the ability of the instrument to handle these types of situations could make it feasible for clean room monitoring. Utilizing quality score filtering techniques in place at the time of this experiment, runs containing only initial flowcell chemistry and/or library reagents generated 5 passing reads out of a total of 3568 measured reads, and contained estimated sequences with low complexity that did not map to the NCBI database. The noise characteristics in all instances suggest that quality thresholds were appropriately chosen by ONT: new chemistry and basecalling workflows have shown further suppression of noise sources, which completely mitigate the generation of spurious reads.
Collapse
Affiliation(s)
- Alexandra Pontefract
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Julie Hachey
- ReadCoor, 840 Memorial Dr., Cambridge MA 02139, United States
| | - Maria T Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Christopher E Carr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
64
|
Designing with living systems in the synthetic yeast project. Nat Commun 2018; 9:2950. [PMID: 30054478 PMCID: PMC6063962 DOI: 10.1038/s41467-018-05332-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/28/2018] [Indexed: 11/08/2022] Open
Abstract
Synthetic biology is challenged by the complexity and the unpredictability of living systems. While one response to this complexity involves simplifying cells to create more fully specified systems, another approach utilizes directed evolution, releasing some control and using unpredictable change to achieve design goals. Here we discuss SCRaMbLE, employed in the synthetic yeast project, as an example of synthetic biology design through working with living systems. SCRaMbLE is a designed tool without being a design tool, harnessing the activities of the yeast rather than relying entirely on scientists’ deliberate choices. We suggest that directed evolution at the level of the whole organism allows scientists and microorganisms to “collaborate” to achieve design goals, suggesting new directions for synthetic biology. Synthetic biology often views the organism as a chassis into which a circuit can be inserted. Here the authors explore the idea of the organism as a core aspect of design, aiding researchers in navigating the genetic space opened up by SCRaMbLE.
Collapse
|
65
|
Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT, Moore W, Schwieterman EW, Shkolnik EL, Smith HB. Exoplanet Biosignatures: Future Directions. ASTROBIOLOGY 2018; 18:779-824. [PMID: 29938538 PMCID: PMC6016573 DOI: 10.1089/ast.2017.1738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Collapse
Affiliation(s)
- Sara I. Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
- Blue Marble Space Institute of Science, Seattle, Washington
| | - William Bains
- EAPS (Earth, Atmospheric and Planetary Science), MIT, Cambridge, Massachusetts
- Rufus Scientific Ltd., Royston, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sebastian Danielache
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Earth Life Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shawn Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
| | - Betul Kacar
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- NASA Astrobiology Institute, Reliving the Past Team, University of Montana, Missoula, Montana
- Department of Molecular and Cell Biology, University of Arizona, Tucson, Arizona
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - Adrian Lenardic
- Department of Earth Science, Rice University, Houston, Texas
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
| | - William Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
- National Institute of Aerospace, Hampton, Virginia
| | - Edward W. Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
| | - Evgenya L. Shkolnik
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
66
|
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life (Basel) 2018; 8:life8020018. [PMID: 29857564 PMCID: PMC6027145 DOI: 10.3390/life8020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Collapse
|
67
|
Ratcliff WC, Herron M, Conlin PL, Libby E. Nascent life cycles and the emergence of higher-level individuality. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0420. [PMID: 29061893 DOI: 10.1098/rstb.2016.0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Evolutionary transitions in individuality (ETIs) occur when formerly autonomous organisms evolve to become parts of a new, 'higher-level' organism. One of the first major hurdles that must be overcome during an ETI is the emergence of Darwinian evolvability in the higher-level entity (e.g. a multicellular group), and the loss of Darwinian autonomy in the lower-level units (e.g. individual cells). Here, we examine how simple higher-level life cycles are a key innovation during an ETI, allowing this transfer of fitness to occur 'for free'. Specifically, we show how novel life cycles can arise and lead to the origin of higher-level individuals by (i) mitigating conflicts between levels of selection, (ii) engendering the expression of heritable higher-level traits and (iii) allowing selection to efficiently act on these emergent higher-level traits. Further, we compute how canonical early life cycles vary in their ability to fix beneficial mutations via mathematical modelling. Life cycles that lack a persistent lower-level stage and develop clonally are far more likely to fix 'ratcheting' mutations that limit evolutionary reversion to the pre-ETI state. By stabilizing the fragile first steps of an evolutionary transition in individuality, nascent higher-level life cycles may play a crucial role in the origin of complex life.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter L Conlin
- Department of Biology and BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195, USA
| | - Eric Libby
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
68
|
Leyva Y, Martín O, García-Jacas CR. Constraining the Prebiotic Cell Size Limits in Extremely Hostile Environments: A Dynamical Perspective. ASTROBIOLOGY 2018; 18:403-411. [PMID: 29672138 DOI: 10.1089/ast.2017.1696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to support a replicator population in an extremely hostile environment is considered in a simple model of a prebiotic cell. We explore from a classical approach how the replicator viability changes as a function of the cell radius. The model includes the interaction between two different species: a substrate that flows from the exterior and a replicator that feeds on the substrate and is readily destroyed in the environment outside the cell. According to our results, replicators in the cell only exist when the radius exceeds some critical value [Formula: see text] being, in general, a function of the substrate concentration, the diffusion constant of the replicator species, and the reproduction rate coefficient. Additionally, the influence of other parameters on the replicator population is also considered. The viability of chemical replicators under such drastic conditions could be crucial in understanding the origin of the first primitive cells and the ulterior development of life on our planet. Key Words: Prebiotic cell-Chemical replicator-Environment-Reproduction rate. Astrobiology 18, 403-411.
Collapse
Affiliation(s)
- Yoelsy Leyva
- 1 Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá , Arica, Chile
| | - Osmel Martín
- 2 Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas , Santa Clara, Cuba
| | - César R García-Jacas
- 3 Escuela de Sistemas y Computación, Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE) , Esmeraldas, Ecuador
| |
Collapse
|
69
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
70
|
Markovitch O, Krasnogor N. Predicting species emergence in simulated complex pre-biotic networks. PLoS One 2018; 13:e0192871. [PMID: 29447212 PMCID: PMC5813963 DOI: 10.1371/journal.pone.0192871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
An intriguing question in evolution is what would happen if one could "replay" life's tape. Here, we explore the following hypothesis: when replaying the tape, the details ("decorations") of the outcomes would vary but certain "invariants" might emerge across different life-tapes sharing similar initial conditions. We use large-scale simulations of an in silico model of pre-biotic evolution called GARD (Graded Autocatalysis Replication Domain) to test this hypothesis. GARD models the temporal evolution of molecular assemblies, governed by a rates matrix (i.e. network) that biases different molecules' likelihood of joining or leaving a dynamically growing and splitting assembly. Previous studies have shown the emergence of so called compotypes, i.e., species capable of replication and selection response. Here, we apply networks' science to ascertain the degree to which invariants emerge across different life-tapes under GARD dynamics and whether one can predict these invariant from the chemistry specification alone (i.e. GARD's rates network representing initial conditions). We analysed the (complex) rates' network communities and asked whether communities are related (and how) to the emerging species under GARD's dynamic, and found that the communities correspond to the species emerging from the simulations. Importantly, we show how to use the set of communities detected to predict species emergence without performing any simulations. The analysis developed here may impact complex systems simulations in general.
Collapse
Affiliation(s)
- Omer Markovitch
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| |
Collapse
|
71
|
Love LG. Does the discovery of the mimivirus call into question attempts to define life? BIOSCIENCE HORIZONS: THE INTERNATIONAL JOURNAL OF STUDENT RESEARCH 2018. [PMCID: PMC7149470 DOI: 10.1093/biohorizons/hzy006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite biology being ‘The study of living organisms’ (Proffitt, 2017), there is no consensus between biologists on the definition of life (Bedau, 2010). Defining life has challenged and divided biologists and philosophers alike ever since Aristotle proposed the first definition. Emerging fields like synthetic biology and exobiology have rekindled attempts at establishing a definition of life for practical purposes. The question presents many challenges with each attempt thus far leading to unintended implications and strong counterexamples. It is an inherently multidisciplinary challenge with each approach giving wildly varying and often irreconcilable definitions. The given definitions of life are numerous with over 300 definitions published in books and journals. The unique characteristics of the mimivirus, discovered in 2003, and later giant viruses, rekindled the discussion in defining life, indicating other complications in a definition.
Collapse
Affiliation(s)
- Luca Gregory Love
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
72
|
From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe. J Mol Evol 2017; 86:1-10. [PMID: 29260254 PMCID: PMC5794832 DOI: 10.1007/s00239-017-9824-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022]
Abstract
Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.
Collapse
|
73
|
Ball R, Brindley J. Toy trains, loaded dice and the origin of life: dimerization on mineral surfaces under periodic drive with Gaussian inputs. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170141. [PMID: 29291048 PMCID: PMC5717622 DOI: 10.1098/rsos.170141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In a major extension of previous work, we model the putative hydrothermal rock pore setting for the origin of life on Earth as a series of coupled continuous flow units (the toy train). Perfusing through this train are reactants that set up thermochemical and pH oscillations, and an activated nucleotide that produces monomer and dimer monophosphates. The dynamical equations that model this system are thermally self-consistent. In an innovative step that breaks some new ground, we build stochasticity of the inputs into the model. The computational results infer various constraints and conditions on, and insights into, chemical evolution and the origin of life and its physical setting: long, interconnected porous structures with longitudinal non-uniformity would have been favourable, and the ubiquitous pH dependences of biology may have been established in the prebiotic era. We demonstrate the important role of Gaussian fluctuations of the inputs in driving polymerization, evolution and diversification. In particular, we find that the probability distribution of the resulting output fluctuations is left-skewed and right-weighted (the loaded dice), which could favour chemical evolution towards a living RNA world. We tentatively name this distribution 'Goldilocks'. These results also vindicate the general approach of constructing and running a simple model to learn important new information about a complex system.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra 2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
74
|
|
75
|
Higgs PG. Chemical Evolution and the Evolutionary Definition of Life. J Mol Evol 2017; 84:225-235. [PMID: 28664404 DOI: 10.1007/s00239-017-9799-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
Darwinian evolution requires a mechanism for generation of diversity in a population, and selective differences between individuals that influence reproduction. In biology, diversity is generated by mutations and selective differences arise because of the encoded functions of the sequences (e.g., ribozymes or proteins). Here, I draw attention to a process that I will call chemical evolution, in which the diversity is generated by random chemical synthesis instead of (or in addition to) mutation, and selection acts on physicochemical properties, such as hydrolysis, photolysis, solubility, or surface binding. Chemical evolution applies to short oligonucleotides that can be generated by random polymerization, as well as by template-directed replication, and which may be too short to encode a specific function. Chemical evolution is an important stage on the pathway to life, between the stage of "just chemistry" and the stage of full biological evolution. A mathematical model is presented here that illustrates the differences between these three stages. Chemical evolution leads to much larger differences in molecular concentrations than can be achieved by selection without replication. However, chemical evolution is not open-ended, unlike biological evolution. The ability to undergo Darwinian evolution is often considered to be a defining feature of life. Here, I argue that chemical evolution, although Darwinian, does not quite constitute life, and that a good place to put the conceptual boundary between non-life and life is between chemical and biological evolution.
Collapse
Affiliation(s)
- Paul G Higgs
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
76
|
Abstract
Abstract Although biology has achieved great successes in recent years, we have not got a clear idea on “what is life?” Actually, as explained here, the main reason for this situation is that there are two completely distinct aspects for “life”, which are usually talked about together. Indeed, in respect to these two aspects: Darwinian evolution and self-sustaining, we must split the concept of life correspondingly, for example, by defining “life form” and “living entity”, separately. For life’s implementation (related to the two aspects) in nature, three mechanisms are crucial: the replication of DNA/RNA-like polymers by residue-pairing, the sequence-dependent folding of RNA/protein-like polymers engendering special functions, and the assembly of phospholipid-like amphiphiles forming vesicles. The notion “information” is significant for us to comprehend life phenomenon: the life form of a living entity can just be defined by its genetic information; Darwinian evolution is essentially an evolution of such information, transferred across generations. The in-depth analysis concerning the essence of life would improve our cognition in the whole field of biology, and may have a direct influence on its subfields like the origin of life, artificial life and astrobiology. Reviewers This article was reviewed by Anthony Poole and Thomas Dandekar.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
77
|
Cockell CS, Bush T, Bryce C, Direito S, Fox-Powell M, Harrison JP, Lammer H, Landenmark H, Martin-Torres J, Nicholson N, Noack L, O'Malley-James J, Payler SJ, Rushby A, Samuels T, Schwendner P, Wadsworth J, Zorzano MP. Habitability: A Review. ASTROBIOLOGY 2016; 16:89-117. [PMID: 26741054 DOI: 10.1089/ast.2015.1295] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.
Collapse
Affiliation(s)
- C S Cockell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - T Bush
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - C Bryce
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - S Direito
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M Fox-Powell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J P Harrison
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - H Lammer
- 2 Austrian Academy of Sciences, Space Research Institute , Graz, Austria
| | - H Landenmark
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Martin-Torres
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
| | - N Nicholson
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - L Noack
- 4 Department of Reference Systems and Planetology, Royal Observatory of Belgium , Brussels, Belgium
| | - J O'Malley-James
- 5 School of Physics and Astronomy, University of St Andrews , St Andrews, UK; now at the Carl Sagan Institute, Cornell University, Ithaca, NY, USA
| | - S J Payler
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - A Rushby
- 6 Centre for Ocean and Atmospheric Science (COAS), School of Environmental Sciences, University of East Anglia , Norwich, UK
| | - T Samuels
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - P Schwendner
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Wadsworth
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M P Zorzano
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
- 7 Centro de Astrobiología (CSIC-INTA) , Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
78
|
Heams T. Can life be engineered? Epistemological roots and blind spots of Synthetic Biology. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150400016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
79
|
El origen geológico de la vida: una perspectiva desde la meteorítica. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2015. [DOI: 10.1016/j.recqb.2015.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
80
|
Unsolved problems in biology—The state of current thinking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:232-239. [DOI: 10.1016/j.pbiomolbio.2015.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
81
|
Ma W, Feng Y. Protocells: at the interface of life and non-life. Life (Basel) 2015; 5:447-58. [PMID: 25809963 PMCID: PMC4390862 DOI: 10.3390/life5010447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
The cellular form, manifesting as a membrane-bounded system (comprising various functional molecules), is essential to life. The ultimate reason for this is that, typically, one functional molecule can only adopt one “correct” structure to perform one special function (e.g., an enzyme), and thus molecular cooperation is inevitable. While this is particularly true for advanced life with complex functions, it should have already been true for life at its outset with only limited functions, which entailed some sort of primitive cellular form—“protocells”. At the very beginning, the protocells may have even been unable to intervene in the growth of their own membrane, which can be called “pseudo-protocells”. Then, the ability to synthesize membrane components (amphiphiles) may have emerged under selective pressure, leading to “true-protocells”. The emergence of a “chromosome” (with genes linked together)—thus avoiding “gene-loss” during the protocell division, was another key event in the evolution of protocells. Such “unitary-protocells”, containing a central genetic molecule, may have appeared as a milestone—in principle, since then life could evolve endlessly, “gaining” more and more functions by introducing new genes. To synthesize in laboratory these different types of protocells, which stand at the interface between life and non-life, would greatly enhance our understanding on the essence of life.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
82
|
Edwards HGM, Hutchinson IB, Ingley R, Jehlička J. Biomarkers and their Raman spectroscopic signatures: a spectral challenge for analytical astrobiology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2014.0193. [PMID: 25368349 DOI: 10.1098/rsta.2014.0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The remote robotic exploration of extraterrestrial scenarios for evidence of biological colonization in 'search for life' missions using Raman spectroscopy is critically dependent on two major factors: firstly, the Raman spectral recognition of characteristic biochemical spectral signatures in the presence of mineral matrix features; and secondly, the positive unambiguous identification of molecular biomaterials which are indicative of extinct or extant life. Both of these factors are considered here: the most important criterion is the clear definition of which biochemicals truly represent biomarkers, whose presence in the planetary geological record from an analytical astrobiological standpoint will unambiguously be indicative of life as recognized from its remote instrumental interrogation. Also discussed in this paper are chemical compounds which are associated with living systems, including biominerals, which may not in themselves be definitive signatures of life processes and origins but whose presence provides an indicator of potential life-bearing matrices.
Collapse
Affiliation(s)
- Howell G M Edwards
- Department of Physics and Astronomy, Centre for Astrobiology and Extremophiles Research, Space Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Ian B Hutchinson
- Department of Physics and Astronomy, Centre for Astrobiology and Extremophiles Research, Space Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Richard Ingley
- Department of Physics and Astronomy, Centre for Astrobiology and Extremophiles Research, Space Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jan Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Albertov 6, 12843 Prague, Czech Republic
| |
Collapse
|
83
|
Bissette AJ, Odell B, Fletcher SP. Physical autocatalysis driven by a bond-forming thiol-ene reaction. Nat Commun 2014; 5:4607. [PMID: 25178358 DOI: 10.1038/ncomms5607] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/07/2014] [Indexed: 02/04/2023] Open
Abstract
Autocatalysis has been extensively studied because it is central to the propagation of living systems. Chemical systems which self-reproduce like living cells would offer insight into principles underlying biology and its emergence from inanimate matter. Protocellular models feature a surfactant boundary, providing compartmentalization in the form of a micelle or vesicle and any model of the emergence of cellular life must account for the appearance, and evolution of, such boundaries. Here, we describe an autocatalytic system where two relatively simple components combine to form a more complex product. The reaction products aggregate into micelles that catalyse molecular self-reproduction. Study of the reaction kinetics and aggregation behaviour suggests a mechanism involving micelle-mediated physical autocatalysis and led to the rational design of a second-generation system. These reactions are driven by irreversible bond formation and provide a working model for the autocatalytic formation of protocells from the coupling of two simple molecular components.
Collapse
Affiliation(s)
- Andrew J Bissette
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Barbara Odell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Stephen P Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK
| |
Collapse
|
84
|
D'Onofrio DJ, Abel DL. Redundancy of the genetic code enables translational pausing. Front Genet 2014; 5:140. [PMID: 24904640 PMCID: PMC4033003 DOI: 10.3389/fgene.2014.00140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
The codon redundancy (“degeneracy”) found in protein-coding regions of mRNA also prescribes Translational Pausing (TP). When coupled with the appropriate interpreters, multiple meanings and functions are programmed into the same sequence of configurable switch-settings. This additional layer of Ontological Prescriptive Information (PIo) purposely slows or speeds up the translation-decoding process within the ribosome. Variable translation rates help prescribe functional folding of the nascent protein. Redundancy of the codon to amino acid mapping, therefore, is anything but superfluous or degenerate. Redundancy programming allows for simultaneous dual prescriptions of TP and amino acid assignments without cross-talk. This allows both functions to be coincident and realizable. We will demonstrate that the TP schema is a bona fide rule-based code, conforming to logical code-like properties. Second, we will demonstrate that this TP code is programmed into the supposedly degenerate redundancy of the codon table. We will show that algorithmic processes play a dominant role in the realization of this multi-dimensional code.
Collapse
Affiliation(s)
- David J D'Onofrio
- Control Systems Modeling and Simulation, General Dynamics Sterling Heights, MI, USA ; Department of Humanities and Science, Math Department, College of Humanities and Science, University of Phoenix Detroit, MI, USA
| | - David L Abel
- Department of ProtoBioCybernetics/ProtoBioSemiotics, The Gene Emergence Project of The Origin of Life Science Foundation, Inc. Greenbelt, MD, USA
| |
Collapse
|
85
|
Abstract
Synthetic theory of evolution is a superior integrative biological theory. Therefore, there is nothing surprising about the fact that multiple attempts of defining life are based on this theory. One of them even has a status of NASA's working definition. According to this definition, 'life is a self-sustained chemical system capable of undergoing Darwinian evolution' Luisi (Orig Life Evol Bios 28:613-622, 1998); Cleland, Chyba (Orig Life Evol Bios 32:387-393, 2002). This definition is often considered as one of the more theoretically mature definitions of life. This Darwinian definition has nonetheless provoked a lot of criticism. One of the major arguments claims that this definition is wrong due to 'mule's problem'. Mules (and other infertile hybrids), despite being obviously living organisms, in the light of this definition are considered inanimate objects. It is strongly counterintuitive. The aim of this article was to demonstrate that this reasoning is false. In the later part of the text, I also discuss some other arguments against the Darwinian approach to defining life.
Collapse
|
86
|
Dunn IS. Are molecular alphabets universal enabling factors for the evolution of complex life? ORIGINS LIFE EVOL B 2013; 43:445-64. [PMID: 24510462 DOI: 10.1007/s11084-014-9354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.
Collapse
Affiliation(s)
- Ian S Dunn
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, 01915, USA,
| |
Collapse
|
87
|
van Hateren JH. A new criterion for demarcating life from non-life. ORIGINS LIFE EVOL B 2013; 43:491-500. [PMID: 24402034 DOI: 10.1007/s11084-013-9352-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/13/2013] [Indexed: 11/26/2022]
Abstract
Criteria for demarcating life from non-life are important for deciding whether new candidate systems, either discovered extraterrestrially or constructed in the laboratory, are genuinely alive or not. They are also important for understanding the origin of life and its evolution. Current criteria are either too restrictive or too extensive. The new criterion proposed here poses that a system is living when it is capable of utilizing active causation, at evolutionary or behavioural timescales. Active causation is produced when the organism uses an estimate of its own Darwinian fitness to modulate the variance of stochasticity that drives hereditary or behavioural changes. The changes are subsequently fed back to the fitness estimate and used in the next cycle of a feedback loop. The ability to use a self-estimated fitness in this way is an evolved property of the organism, and the way in which fitness is estimated is therefore controlled and stabilized by Darwinian evolution. The hereditary and behavioural trajectories resulting from this mechanism combine predictability with unpredictability, and the mechanism produces a form of self-directed agency in living organisms that is absent from non-living systems.
Collapse
Affiliation(s)
- J H van Hateren
- Johann Bernouilli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands,
| |
Collapse
|
88
|
Clarke A, Morris GJ, Fonseca F, Murray BJ, Acton E, Price HC. A Low Temperature Limit for Life on Earth. PLoS One 2013; 8:e66207. [PMID: 23840425 PMCID: PMC3686811 DOI: 10.1371/journal.pone.0066207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/06/2013] [Indexed: 12/29/2022] Open
Abstract
There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between −10°C and −26°C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below −50°C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above −20°C) and multicellular organisms (typically below −20°C). Few multicellular organisms can, however, complete their life cycle at temperatures below ∼−2°C.
Collapse
Affiliation(s)
- Andrew Clarke
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, United Kingdom
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| | - G. John Morris
- Asymptote Ltd, St John’s Innovation Centre, Cambridge, United Kingdom
| | - Fernanda Fonseca
- Institut National de la Recherche Agronomique, Thiverval Grignon, France
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Acton
- Asymptote Ltd, St John’s Innovation Centre, Cambridge, United Kingdom
| | - Hannah C. Price
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
89
|
|
90
|
Enantioselective separation of amino acids as biomarkers indicating life in extraterrestrial environments. Anal Bioanal Chem 2013; 405:7931-40. [DOI: 10.1007/s00216-013-6915-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
91
|
Duncan MJ, Bourrat P, DeBerardinis J, O’Malley MA. Small Things, Big Consequences: Microbiological Perspectives on Biology. THE PHILOSOPHY OF BIOLOGY 2013. [DOI: 10.1007/978-94-007-6537-5_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
92
|
Abstract
Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation-where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies-may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
Collapse
|
93
|
Dick SJ. Critical issues in the history, philosophy, and sociology of astrobiology. ASTROBIOLOGY 2012; 12:906-927. [PMID: 23078642 DOI: 10.1089/ast.2011.0786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fifty years after serious scientific research began in the field of exobiology, and forty years after serious historical research began on the subject of extraterrestrial life, this paper identifies and examines some of the most important issues in the history, philosophy, and sociology of what is today known as astrobiology. As in the philosophy of science in general, and in the philosophies of particular sciences, critical issues in the philosophy and sociology of astrobiology are both stimulated and illuminated by history. Among those issues are (1) epistemological issues such as the status of astrobiology as a science, the problematic nature of evidence and inference, and the limits of science; (2) metaphysical/scientific issues, including the question of defining the fundamental concepts of life, mind, intelligence, and culture in a universal context; the role of contingency and necessity in the origin of these fundamental phenomena; and whether or not the universe is in some sense fine-tuned for life and perhaps biocentric; (3) societal issues such as the theological, ethical, and worldview impacts of the discovery of microbial or intelligent life; and the question of whether the search for extraterrestrial life should be pursued at all, and with what precautions; and (4) issues related to the sociology of scientific knowledge, including the diverse attitudes and assumptions of different scientific communities and different cultures to the problem of life beyond Earth, the public "will to believe," and the formation of the discipline of astrobiology. All these overlapping issues are framed by the concept of cosmic evolution-the 13.7 billion year Master Narrative of the Universe-which may result in a physical, biological, or postbiological universe and determine the long-term destiny of humanity.
Collapse
Affiliation(s)
- Steven J Dick
- National Air and Space Museum, Smithsonian Institution, Washington, DC, USA.
| |
Collapse
|